]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_clocksource.c
MFV: tcpdump 4.3.0.
[FreeBSD/FreeBSD.git] / sys / kern / kern_clocksource.c
1 /*-
2  * Copyright (c) 2010-2012 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * Common routines to manage event timers hardware.
32  */
33
34 #include "opt_device_polling.h"
35 #include "opt_kdtrace.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/lock.h>
41 #include <sys/kdb.h>
42 #include <sys/ktr.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51
52 #include <machine/atomic.h>
53 #include <machine/clock.h>
54 #include <machine/cpu.h>
55 #include <machine/smp.h>
56
57 #ifdef KDTRACE_HOOKS
58 #include <sys/dtrace_bsd.h>
59 cyclic_clock_func_t     cyclic_clock_func = NULL;
60 #endif
61
62 int                     cpu_can_deep_sleep = 0; /* C3 state is available. */
63 int                     cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
64
65 static void             setuptimer(void);
66 static void             loadtimer(struct bintime *now, int first);
67 static int              doconfigtimer(void);
68 static void             configtimer(int start);
69 static int              round_freq(struct eventtimer *et, int freq);
70
71 static void             getnextcpuevent(struct bintime *event, int idle);
72 static void             getnextevent(struct bintime *event);
73 static int              handleevents(struct bintime *now, int fake);
74 #ifdef SMP
75 static void             cpu_new_callout(int cpu, int ticks);
76 #endif
77
78 static struct mtx       et_hw_mtx;
79
80 #define ET_HW_LOCK(state)                                               \
81         {                                                               \
82                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
83                         mtx_lock_spin(&(state)->et_hw_mtx);             \
84                 else                                                    \
85                         mtx_lock_spin(&et_hw_mtx);                      \
86         }
87
88 #define ET_HW_UNLOCK(state)                                             \
89         {                                                               \
90                 if (timer->et_flags & ET_FLAGS_PERCPU)                  \
91                         mtx_unlock_spin(&(state)->et_hw_mtx);           \
92                 else                                                    \
93                         mtx_unlock_spin(&et_hw_mtx);                    \
94         }
95
96 static struct eventtimer *timer = NULL;
97 static struct bintime   timerperiod;    /* Timer period for periodic mode. */
98 static struct bintime   hardperiod;     /* hardclock() events period. */
99 static struct bintime   statperiod;     /* statclock() events period. */
100 static struct bintime   profperiod;     /* profclock() events period. */
101 static struct bintime   nexttick;       /* Next global timer tick time. */
102 static struct bintime   nexthard;       /* Next global hardlock() event. */
103 static u_int            busy = 0;       /* Reconfiguration is in progress. */
104 static int              profiling = 0;  /* Profiling events enabled. */
105
106 static char             timername[32];  /* Wanted timer. */
107 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
108
109 static int              singlemul = 0;  /* Multiplier for periodic mode. */
110 TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
111 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
112     0, "Multiplier for periodic mode");
113
114 static u_int            idletick = 0;   /* Run periodic events when idle. */
115 TUNABLE_INT("kern.eventtimer.idletick", &idletick);
116 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
117     0, "Run periodic events when idle");
118
119 static u_int            activetick = 1; /* Run all periodic events when active. */
120 TUNABLE_INT("kern.eventtimer.activetick", &activetick);
121 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, activetick, CTLFLAG_RW, &activetick,
122     0, "Run all periodic events when active");
123
124 static int              periodic = 0;   /* Periodic or one-shot mode. */
125 static int              want_periodic = 0; /* What mode to prefer. */
126 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
127
128 struct pcpu_state {
129         struct mtx      et_hw_mtx;      /* Per-CPU timer mutex. */
130         u_int           action;         /* Reconfiguration requests. */
131         u_int           handle;         /* Immediate handle resuests. */
132         struct bintime  now;            /* Last tick time. */
133         struct bintime  nextevent;      /* Next scheduled event on this CPU. */
134         struct bintime  nexttick;       /* Next timer tick time. */
135         struct bintime  nexthard;       /* Next hardlock() event. */
136         struct bintime  nextstat;       /* Next statclock() event. */
137         struct bintime  nextprof;       /* Next profclock() event. */
138 #ifdef KDTRACE_HOOKS
139         struct bintime  nextcyc;        /* Next OpenSolaris cyclics event. */
140 #endif
141         int             ipi;            /* This CPU needs IPI. */
142         int             idle;           /* This CPU is in idle mode. */
143 };
144
145 static DPCPU_DEFINE(struct pcpu_state, timerstate);
146
147 #define FREQ2BT(freq, bt)                                               \
148 {                                                                       \
149         (bt)->sec = 0;                                                  \
150         (bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
151 }
152 #define BT2FREQ(bt)                                                     \
153         (((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
154             ((bt)->frac >> 1))
155
156 /*
157  * Timer broadcast IPI handler.
158  */
159 int
160 hardclockintr(void)
161 {
162         struct bintime now;
163         struct pcpu_state *state;
164         int done;
165
166         if (doconfigtimer() || busy)
167                 return (FILTER_HANDLED);
168         state = DPCPU_PTR(timerstate);
169         now = state->now;
170         CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
171             curcpu, now.sec, (u_int)(now.frac >> 32),
172                              (u_int)(now.frac & 0xffffffff));
173         done = handleevents(&now, 0);
174         return (done ? FILTER_HANDLED : FILTER_STRAY);
175 }
176
177 /*
178  * Handle all events for specified time on this CPU
179  */
180 static int
181 handleevents(struct bintime *now, int fake)
182 {
183         struct bintime t;
184         struct trapframe *frame;
185         struct pcpu_state *state;
186         uintfptr_t pc;
187         int usermode;
188         int done, runs;
189
190         CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
191             curcpu, now->sec, (u_int)(now->frac >> 32),
192                      (u_int)(now->frac & 0xffffffff));
193         done = 0;
194         if (fake) {
195                 frame = NULL;
196                 usermode = 0;
197                 pc = 0;
198         } else {
199                 frame = curthread->td_intr_frame;
200                 usermode = TRAPF_USERMODE(frame);
201                 pc = TRAPF_PC(frame);
202         }
203
204         state = DPCPU_PTR(timerstate);
205
206         runs = 0;
207         while (bintime_cmp(now, &state->nexthard, >=)) {
208                 bintime_addx(&state->nexthard, hardperiod.frac);
209                 runs++;
210         }
211         if (runs) {
212                 if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 &&
213                     bintime_cmp(&state->nexthard, &nexthard, >))
214                         nexthard = state->nexthard;
215                 if (fake < 2) {
216                         hardclock_cnt(runs, usermode);
217                         done = 1;
218                 }
219         }
220         runs = 0;
221         while (bintime_cmp(now, &state->nextstat, >=)) {
222                 bintime_addx(&state->nextstat, statperiod.frac);
223                 runs++;
224         }
225         if (runs && fake < 2) {
226                 statclock_cnt(runs, usermode);
227                 done = 1;
228         }
229         if (profiling) {
230                 runs = 0;
231                 while (bintime_cmp(now, &state->nextprof, >=)) {
232                         bintime_addx(&state->nextprof, profperiod.frac);
233                         runs++;
234                 }
235                 if (runs && !fake) {
236                         profclock_cnt(runs, usermode, pc);
237                         done = 1;
238                 }
239         } else
240                 state->nextprof = state->nextstat;
241
242 #ifdef KDTRACE_HOOKS
243         if (fake == 0 && cyclic_clock_func != NULL &&
244             state->nextcyc.sec != -1 &&
245             bintime_cmp(now, &state->nextcyc, >=)) {
246                 state->nextcyc.sec = -1;
247                 (*cyclic_clock_func)(frame);
248         }
249 #endif
250
251         getnextcpuevent(&t, 0);
252         if (fake == 2) {
253                 state->nextevent = t;
254                 return (done);
255         }
256         ET_HW_LOCK(state);
257         if (!busy) {
258                 state->idle = 0;
259                 state->nextevent = t;
260                 loadtimer(now, 0);
261         }
262         ET_HW_UNLOCK(state);
263         return (done);
264 }
265
266 /*
267  * Schedule binuptime of the next event on current CPU.
268  */
269 static void
270 getnextcpuevent(struct bintime *event, int idle)
271 {
272         struct bintime tmp;
273         struct pcpu_state *state;
274         int skip;
275
276         state = DPCPU_PTR(timerstate);
277         /* Handle hardclock() events. */
278         *event = state->nexthard;
279         if (idle || (!activetick && !profiling &&
280             (timer->et_flags & ET_FLAGS_PERCPU) == 0)) {
281                 skip = idle ? 4 : (stathz / 2);
282                 if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
283                         skip = tc_min_ticktock_freq;
284                 skip = callout_tickstofirst(hz / skip) - 1;
285                 CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
286                 tmp = hardperiod;
287                 bintime_mul(&tmp, skip);
288                 bintime_add(event, &tmp);
289         }
290         if (!idle) { /* If CPU is active - handle other types of events. */
291                 if (bintime_cmp(event, &state->nextstat, >))
292                         *event = state->nextstat;
293                 if (profiling && bintime_cmp(event, &state->nextprof, >))
294                         *event = state->nextprof;
295         }
296 #ifdef KDTRACE_HOOKS
297         if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
298                 *event = state->nextcyc;
299 #endif
300 }
301
302 /*
303  * Schedule binuptime of the next event on all CPUs.
304  */
305 static void
306 getnextevent(struct bintime *event)
307 {
308         struct pcpu_state *state;
309 #ifdef SMP
310         int     cpu;
311 #endif
312         int     c, nonidle;
313
314         state = DPCPU_PTR(timerstate);
315         *event = state->nextevent;
316         c = curcpu;
317         nonidle = !state->idle;
318         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
319 #ifdef SMP
320                 CPU_FOREACH(cpu) {
321                         if (curcpu == cpu)
322                                 continue;
323                         state = DPCPU_ID_PTR(cpu, timerstate);
324                         nonidle += !state->idle;
325                         if (bintime_cmp(event, &state->nextevent, >)) {
326                                 *event = state->nextevent;
327                                 c = cpu;
328                         }
329                 }
330 #endif
331                 if (nonidle != 0 && bintime_cmp(event, &nexthard, >))
332                         *event = nexthard;
333         }
334         CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
335             curcpu, event->sec, (u_int)(event->frac >> 32),
336                              (u_int)(event->frac & 0xffffffff), c);
337 }
338
339 /* Hardware timer callback function. */
340 static void
341 timercb(struct eventtimer *et, void *arg)
342 {
343         struct bintime now;
344         struct bintime *next;
345         struct pcpu_state *state;
346 #ifdef SMP
347         int cpu, bcast;
348 #endif
349
350         /* Do not touch anything if somebody reconfiguring timers. */
351         if (busy)
352                 return;
353         /* Update present and next tick times. */
354         state = DPCPU_PTR(timerstate);
355         if (et->et_flags & ET_FLAGS_PERCPU) {
356                 next = &state->nexttick;
357         } else
358                 next = &nexttick;
359         binuptime(&now); 
360         if (periodic) { 
361                 *next = now;
362                 bintime_addx(next, timerperiod.frac); /* Next tick in 1 period. */
363         } else
364                 next->sec = -1; /* Next tick is not scheduled yet. */
365         state->now = now;
366         CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
367             curcpu, (int)(now.sec), (u_int)(now.frac >> 32),
368                              (u_int)(now.frac & 0xffffffff));
369
370 #ifdef SMP
371         /* Prepare broadcasting to other CPUs for non-per-CPU timers. */
372         bcast = 0;
373         if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
374                 CPU_FOREACH(cpu) {
375                         state = DPCPU_ID_PTR(cpu, timerstate);
376                         ET_HW_LOCK(state);
377                         state->now = now;
378                         if (bintime_cmp(&now, &state->nextevent, >=)) {
379                                 state->nextevent.sec++;
380                                 if (curcpu != cpu) {
381                                         state->ipi = 1;
382                                         bcast = 1;
383                                 }
384                         }
385                         ET_HW_UNLOCK(state);
386                 }
387         }
388 #endif
389
390         /* Handle events for this time on this CPU. */
391         handleevents(&now, 0);
392
393 #ifdef SMP
394         /* Broadcast interrupt to other CPUs for non-per-CPU timers. */
395         if (bcast) {
396                 CPU_FOREACH(cpu) {
397                         if (curcpu == cpu)
398                                 continue;
399                         state = DPCPU_ID_PTR(cpu, timerstate);
400                         if (state->ipi) {
401                                 state->ipi = 0;
402                                 ipi_cpu(cpu, IPI_HARDCLOCK);
403                         }
404                 }
405         }
406 #endif
407 }
408
409 /*
410  * Load new value into hardware timer.
411  */
412 static void
413 loadtimer(struct bintime *now, int start)
414 {
415         struct pcpu_state *state;
416         struct bintime new;
417         struct bintime *next;
418         uint64_t tmp;
419         int eq;
420
421         if (timer->et_flags & ET_FLAGS_PERCPU) {
422                 state = DPCPU_PTR(timerstate);
423                 next = &state->nexttick;
424         } else
425                 next = &nexttick;
426         if (periodic) {
427                 if (start) {
428                         /*
429                          * Try to start all periodic timers aligned
430                          * to period to make events synchronous.
431                          */
432                         tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
433                         tmp = (tmp % (timerperiod.frac >> 28)) << 28;
434                         new.sec = 0;
435                         new.frac = timerperiod.frac - tmp;
436                         if (new.frac < tmp)     /* Left less then passed. */
437                                 bintime_addx(&new, timerperiod.frac);
438                         CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
439                             curcpu, now->sec, (u_int)(now->frac >> 32),
440                             new.sec, (u_int)(new.frac >> 32));
441                         *next = new;
442                         bintime_add(next, now);
443                         et_start(timer, &new, &timerperiod);
444                 }
445         } else {
446                 getnextevent(&new);
447                 eq = bintime_cmp(&new, next, ==);
448                 CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
449                     curcpu, new.sec, (u_int)(new.frac >> 32),
450                              (u_int)(new.frac & 0xffffffff),
451                              eq);
452                 if (!eq) {
453                         *next = new;
454                         bintime_sub(&new, now);
455                         et_start(timer, &new, NULL);
456                 }
457         }
458 }
459
460 /*
461  * Prepare event timer parameters after configuration changes.
462  */
463 static void
464 setuptimer(void)
465 {
466         int freq;
467
468         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
469                 periodic = 0;
470         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
471                 periodic = 1;
472         singlemul = MIN(MAX(singlemul, 1), 20);
473         freq = hz * singlemul;
474         while (freq < (profiling ? profhz : stathz))
475                 freq += hz;
476         freq = round_freq(timer, freq);
477         FREQ2BT(freq, &timerperiod);
478 }
479
480 /*
481  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
482  */
483 static int
484 doconfigtimer(void)
485 {
486         struct bintime now;
487         struct pcpu_state *state;
488
489         state = DPCPU_PTR(timerstate);
490         switch (atomic_load_acq_int(&state->action)) {
491         case 1:
492                 binuptime(&now);
493                 ET_HW_LOCK(state);
494                 loadtimer(&now, 1);
495                 ET_HW_UNLOCK(state);
496                 state->handle = 0;
497                 atomic_store_rel_int(&state->action, 0);
498                 return (1);
499         case 2:
500                 ET_HW_LOCK(state);
501                 et_stop(timer);
502                 ET_HW_UNLOCK(state);
503                 state->handle = 0;
504                 atomic_store_rel_int(&state->action, 0);
505                 return (1);
506         }
507         if (atomic_readandclear_int(&state->handle) && !busy) {
508                 binuptime(&now);
509                 handleevents(&now, 0);
510                 return (1);
511         }
512         return (0);
513 }
514
515 /*
516  * Reconfigure specified timer.
517  * For per-CPU timers use IPI to make other CPUs to reconfigure.
518  */
519 static void
520 configtimer(int start)
521 {
522         struct bintime now, next;
523         struct pcpu_state *state;
524         int cpu;
525
526         if (start) {
527                 setuptimer();
528                 binuptime(&now);
529         }
530         critical_enter();
531         ET_HW_LOCK(DPCPU_PTR(timerstate));
532         if (start) {
533                 /* Initialize time machine parameters. */
534                 next = now;
535                 bintime_addx(&next, timerperiod.frac);
536                 if (periodic)
537                         nexttick = next;
538                 else
539                         nexttick.sec = -1;
540                 CPU_FOREACH(cpu) {
541                         state = DPCPU_ID_PTR(cpu, timerstate);
542                         state->now = now;
543                         state->nextevent = next;
544                         if (periodic)
545                                 state->nexttick = next;
546                         else
547                                 state->nexttick.sec = -1;
548                         state->nexthard = next;
549                         state->nextstat = next;
550                         state->nextprof = next;
551                         hardclock_sync(cpu);
552                 }
553                 busy = 0;
554                 /* Start global timer or per-CPU timer of this CPU. */
555                 loadtimer(&now, 1);
556         } else {
557                 busy = 1;
558                 /* Stop global timer or per-CPU timer of this CPU. */
559                 et_stop(timer);
560         }
561         ET_HW_UNLOCK(DPCPU_PTR(timerstate));
562 #ifdef SMP
563         /* If timer is global or there is no other CPUs yet - we are done. */
564         if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
565                 critical_exit();
566                 return;
567         }
568         /* Set reconfigure flags for other CPUs. */
569         CPU_FOREACH(cpu) {
570                 state = DPCPU_ID_PTR(cpu, timerstate);
571                 atomic_store_rel_int(&state->action,
572                     (cpu == curcpu) ? 0 : ( start ? 1 : 2));
573         }
574         /* Broadcast reconfigure IPI. */
575         ipi_all_but_self(IPI_HARDCLOCK);
576         /* Wait for reconfiguration completed. */
577 restart:
578         cpu_spinwait();
579         CPU_FOREACH(cpu) {
580                 if (cpu == curcpu)
581                         continue;
582                 state = DPCPU_ID_PTR(cpu, timerstate);
583                 if (atomic_load_acq_int(&state->action))
584                         goto restart;
585         }
586 #endif
587         critical_exit();
588 }
589
590 /*
591  * Calculate nearest frequency supported by hardware timer.
592  */
593 static int
594 round_freq(struct eventtimer *et, int freq)
595 {
596         uint64_t div;
597
598         if (et->et_frequency != 0) {
599                 div = lmax((et->et_frequency + freq / 2) / freq, 1);
600                 if (et->et_flags & ET_FLAGS_POW2DIV)
601                         div = 1 << (flsl(div + div / 2) - 1);
602                 freq = (et->et_frequency + div / 2) / div;
603         }
604         if (et->et_min_period.sec > 0)
605                 freq = 0;
606         else if (et->et_min_period.frac != 0)
607                 freq = min(freq, BT2FREQ(&et->et_min_period));
608         if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
609                 freq = max(freq, BT2FREQ(&et->et_max_period));
610         return (freq);
611 }
612
613 /*
614  * Configure and start event timers (BSP part).
615  */
616 void
617 cpu_initclocks_bsp(void)
618 {
619         struct pcpu_state *state;
620         int base, div, cpu;
621
622         mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
623         CPU_FOREACH(cpu) {
624                 state = DPCPU_ID_PTR(cpu, timerstate);
625                 mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
626 #ifdef KDTRACE_HOOKS
627                 state->nextcyc.sec = -1;
628 #endif
629         }
630 #ifdef SMP
631         callout_new_inserted = cpu_new_callout;
632 #endif
633         periodic = want_periodic;
634         /* Grab requested timer or the best of present. */
635         if (timername[0])
636                 timer = et_find(timername, 0, 0);
637         if (timer == NULL && periodic) {
638                 timer = et_find(NULL,
639                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
640         }
641         if (timer == NULL) {
642                 timer = et_find(NULL,
643                     ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
644         }
645         if (timer == NULL && !periodic) {
646                 timer = et_find(NULL,
647                     ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
648         }
649         if (timer == NULL)
650                 panic("No usable event timer found!");
651         et_init(timer, timercb, NULL, NULL);
652
653         /* Adapt to timer capabilities. */
654         if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
655                 periodic = 0;
656         else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
657                 periodic = 1;
658         if (timer->et_flags & ET_FLAGS_C3STOP)
659                 cpu_disable_deep_sleep++;
660
661         /*
662          * We honor the requested 'hz' value.
663          * We want to run stathz in the neighborhood of 128hz.
664          * We would like profhz to run as often as possible.
665          */
666         if (singlemul <= 0 || singlemul > 20) {
667                 if (hz >= 1500 || (hz % 128) == 0)
668                         singlemul = 1;
669                 else if (hz >= 750)
670                         singlemul = 2;
671                 else
672                         singlemul = 4;
673         }
674         if (periodic) {
675                 base = round_freq(timer, hz * singlemul);
676                 singlemul = max((base + hz / 2) / hz, 1);
677                 hz = (base + singlemul / 2) / singlemul;
678                 if (base <= 128)
679                         stathz = base;
680                 else {
681                         div = base / 128;
682                         if (div >= singlemul && (div % singlemul) == 0)
683                                 div++;
684                         stathz = base / div;
685                 }
686                 profhz = stathz;
687                 while ((profhz + stathz) <= 128 * 64)
688                         profhz += stathz;
689                 profhz = round_freq(timer, profhz);
690         } else {
691                 hz = round_freq(timer, hz);
692                 stathz = round_freq(timer, 127);
693                 profhz = round_freq(timer, stathz * 64);
694         }
695         tick = 1000000 / hz;
696         FREQ2BT(hz, &hardperiod);
697         FREQ2BT(stathz, &statperiod);
698         FREQ2BT(profhz, &profperiod);
699         ET_LOCK();
700         configtimer(1);
701         ET_UNLOCK();
702 }
703
704 /*
705  * Start per-CPU event timers on APs.
706  */
707 void
708 cpu_initclocks_ap(void)
709 {
710         struct bintime now;
711         struct pcpu_state *state;
712
713         state = DPCPU_PTR(timerstate);
714         binuptime(&now);
715         ET_HW_LOCK(state);
716         state->now = now;
717         hardclock_sync(curcpu);
718         handleevents(&state->now, 2);
719         if (timer->et_flags & ET_FLAGS_PERCPU)
720                 loadtimer(&now, 1);
721         ET_HW_UNLOCK(state);
722 }
723
724 /*
725  * Switch to profiling clock rates.
726  */
727 void
728 cpu_startprofclock(void)
729 {
730
731         ET_LOCK();
732         if (periodic) {
733                 configtimer(0);
734                 profiling = 1;
735                 configtimer(1);
736         } else
737                 profiling = 1;
738         ET_UNLOCK();
739 }
740
741 /*
742  * Switch to regular clock rates.
743  */
744 void
745 cpu_stopprofclock(void)
746 {
747
748         ET_LOCK();
749         if (periodic) {
750                 configtimer(0);
751                 profiling = 0;
752                 configtimer(1);
753         } else
754                 profiling = 0;
755         ET_UNLOCK();
756 }
757
758 /*
759  * Switch to idle mode (all ticks handled).
760  */
761 void
762 cpu_idleclock(void)
763 {
764         struct bintime now, t;
765         struct pcpu_state *state;
766
767         if (idletick || busy ||
768             (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
769 #ifdef DEVICE_POLLING
770             || curcpu == CPU_FIRST()
771 #endif
772             )
773                 return;
774         state = DPCPU_PTR(timerstate);
775         if (periodic)
776                 now = state->now;
777         else
778                 binuptime(&now);
779         CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
780             curcpu, now.sec, (u_int)(now.frac >> 32),
781                              (u_int)(now.frac & 0xffffffff));
782         getnextcpuevent(&t, 1);
783         ET_HW_LOCK(state);
784         state->idle = 1;
785         state->nextevent = t;
786         if (!periodic)
787                 loadtimer(&now, 0);
788         ET_HW_UNLOCK(state);
789 }
790
791 /*
792  * Switch to active mode (skip empty ticks).
793  */
794 void
795 cpu_activeclock(void)
796 {
797         struct bintime now;
798         struct pcpu_state *state;
799         struct thread *td;
800
801         state = DPCPU_PTR(timerstate);
802         if (state->idle == 0 || busy)
803                 return;
804         if (periodic)
805                 now = state->now;
806         else
807                 binuptime(&now);
808         CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
809             curcpu, now.sec, (u_int)(now.frac >> 32),
810                              (u_int)(now.frac & 0xffffffff));
811         spinlock_enter();
812         td = curthread;
813         td->td_intr_nesting_level++;
814         handleevents(&now, 1);
815         td->td_intr_nesting_level--;
816         spinlock_exit();
817 }
818
819 #ifdef KDTRACE_HOOKS
820 void
821 clocksource_cyc_set(const struct bintime *t)
822 {
823         struct bintime now;
824         struct pcpu_state *state;
825
826         state = DPCPU_PTR(timerstate);
827         if (periodic)
828                 now = state->now;
829         else
830                 binuptime(&now);
831
832         CTR4(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x%08x",
833             curcpu, now.sec, (u_int)(now.frac >> 32),
834                              (u_int)(now.frac & 0xffffffff));
835         CTR4(KTR_SPARE2, "set_cyc at %d:  t  %d.%08x%08x",
836             curcpu, t->sec, (u_int)(t->frac >> 32),
837                              (u_int)(t->frac & 0xffffffff));
838
839         ET_HW_LOCK(state);
840         if (bintime_cmp(t, &state->nextcyc, ==)) {
841                 ET_HW_UNLOCK(state);
842                 return;
843         }
844         state->nextcyc = *t;
845         if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
846                 ET_HW_UNLOCK(state);
847                 return;
848         }
849         state->nextevent = state->nextcyc;
850         if (!periodic)
851                 loadtimer(&now, 0);
852         ET_HW_UNLOCK(state);
853 }
854 #endif
855
856 #ifdef SMP
857 static void
858 cpu_new_callout(int cpu, int ticks)
859 {
860         struct bintime tmp;
861         struct pcpu_state *state;
862
863         CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
864             curcpu, cpu, ticks);
865         state = DPCPU_ID_PTR(cpu, timerstate);
866         ET_HW_LOCK(state);
867         if (state->idle == 0 || busy) {
868                 ET_HW_UNLOCK(state);
869                 return;
870         }
871         /*
872          * If timer is periodic - just update next event time for target CPU.
873          * If timer is global - there is chance it is already programmed.
874          */
875         if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
876                 tmp = hardperiod;
877                 bintime_mul(&tmp, ticks - 1);
878                 bintime_add(&tmp, &state->nexthard);
879                 if (bintime_cmp(&tmp, &state->nextevent, <))
880                         state->nextevent = tmp;
881                 if (periodic ||
882                     bintime_cmp(&state->nextevent, &nexttick, >=)) {
883                         ET_HW_UNLOCK(state);
884                         return;
885                 }
886         }
887         /*
888          * Otherwise we have to wake that CPU up, as we can't get present
889          * bintime to reprogram global timer from here. If timer is per-CPU,
890          * we by definition can't do it from here.
891          */
892         ET_HW_UNLOCK(state);
893         if (timer->et_flags & ET_FLAGS_PERCPU) {
894                 state->handle = 1;
895                 ipi_cpu(cpu, IPI_HARDCLOCK);
896         } else {
897                 if (!cpu_idle_wakeup(cpu))
898                         ipi_cpu(cpu, IPI_AST);
899         }
900 }
901 #endif
902
903 /*
904  * Report or change the active event timers hardware.
905  */
906 static int
907 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
908 {
909         char buf[32];
910         struct eventtimer *et;
911         int error;
912
913         ET_LOCK();
914         et = timer;
915         snprintf(buf, sizeof(buf), "%s", et->et_name);
916         ET_UNLOCK();
917         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
918         ET_LOCK();
919         et = timer;
920         if (error != 0 || req->newptr == NULL ||
921             strcasecmp(buf, et->et_name) == 0) {
922                 ET_UNLOCK();
923                 return (error);
924         }
925         et = et_find(buf, 0, 0);
926         if (et == NULL) {
927                 ET_UNLOCK();
928                 return (ENOENT);
929         }
930         configtimer(0);
931         et_free(timer);
932         if (et->et_flags & ET_FLAGS_C3STOP)
933                 cpu_disable_deep_sleep++;
934         if (timer->et_flags & ET_FLAGS_C3STOP)
935                 cpu_disable_deep_sleep--;
936         periodic = want_periodic;
937         timer = et;
938         et_init(timer, timercb, NULL, NULL);
939         configtimer(1);
940         ET_UNLOCK();
941         return (error);
942 }
943 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
944     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
945     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
946
947 /*
948  * Report or change the active event timer periodicity.
949  */
950 static int
951 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
952 {
953         int error, val;
954
955         val = periodic;
956         error = sysctl_handle_int(oidp, &val, 0, req);
957         if (error != 0 || req->newptr == NULL)
958                 return (error);
959         ET_LOCK();
960         configtimer(0);
961         periodic = want_periodic = val;
962         configtimer(1);
963         ET_UNLOCK();
964         return (error);
965 }
966 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
967     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
968     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");