]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_cpu.c
vmware: Fix a typo in a source code comment
[FreeBSD/FreeBSD.git] / sys / kern / kern_cpu.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004-2007 Nate Lawson (SDG)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/cpu.h>
33 #include <sys/eventhandler.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/proc.h>
39 #include <sys/queue.h>
40 #include <sys/sbuf.h>
41 #include <sys/sched.h>
42 #include <sys/smp.h>
43 #include <sys/sysctl.h>
44 #include <sys/systm.h>
45 #include <sys/sx.h>
46 #include <sys/timetc.h>
47 #include <sys/taskqueue.h>
48
49 #include "cpufreq_if.h"
50
51 /*
52  * Common CPU frequency glue code.  Drivers for specific hardware can
53  * attach this interface to allow users to get/set the CPU frequency.
54  */
55
56 /*
57  * Number of levels we can handle.  Levels are synthesized from settings
58  * so for M settings and N drivers, there may be M*N levels.
59  */
60 #define CF_MAX_LEVELS   256
61
62 struct cf_saved_freq {
63         struct cf_level                 level;
64         int                             priority;
65         SLIST_ENTRY(cf_saved_freq)      link;
66 };
67
68 struct cpufreq_softc {
69         struct sx                       lock;
70         struct cf_level                 curr_level;
71         int                             curr_priority;
72         SLIST_HEAD(, cf_saved_freq)     saved_freq;
73         struct cf_level_lst             all_levels;
74         int                             all_count;
75         int                             max_mhz;
76         device_t                        dev;
77         device_t                        cf_drv_dev;
78         struct sysctl_ctx_list          sysctl_ctx;
79         struct task                     startup_task;
80         struct cf_level                 *levels_buf;
81 };
82
83 struct cf_setting_array {
84         struct cf_setting               sets[MAX_SETTINGS];
85         int                             count;
86         TAILQ_ENTRY(cf_setting_array)   link;
87 };
88
89 TAILQ_HEAD(cf_setting_lst, cf_setting_array);
90
91 #define CF_MTX_INIT(x)          sx_init((x), "cpufreq lock")
92 #define CF_MTX_LOCK(x)          sx_xlock((x))
93 #define CF_MTX_UNLOCK(x)        sx_xunlock((x))
94 #define CF_MTX_ASSERT(x)        sx_assert((x), SX_XLOCKED)
95
96 #define CF_DEBUG(msg...)        do {            \
97         if (cf_verbose)                         \
98                 printf("cpufreq: " msg);        \
99         } while (0)
100
101 static int      cpufreq_attach(device_t dev);
102 static void     cpufreq_startup_task(void *ctx, int pending);
103 static int      cpufreq_detach(device_t dev);
104 static int      cf_set_method(device_t dev, const struct cf_level *level,
105                     int priority);
106 static int      cf_get_method(device_t dev, struct cf_level *level);
107 static int      cf_levels_method(device_t dev, struct cf_level *levels,
108                     int *count);
109 static int      cpufreq_insert_abs(struct cpufreq_softc *sc,
110                     struct cf_setting *sets, int count);
111 static int      cpufreq_expand_set(struct cpufreq_softc *sc,
112                     struct cf_setting_array *set_arr);
113 static struct cf_level *cpufreq_dup_set(struct cpufreq_softc *sc,
114                     struct cf_level *dup, struct cf_setting *set);
115 static int      cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS);
116 static int      cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS);
117 static int      cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS);
118
119 static device_method_t cpufreq_methods[] = {
120         DEVMETHOD(device_probe,         bus_generic_probe),
121         DEVMETHOD(device_attach,        cpufreq_attach),
122         DEVMETHOD(device_detach,        cpufreq_detach),
123
124         DEVMETHOD(cpufreq_set,          cf_set_method),
125         DEVMETHOD(cpufreq_get,          cf_get_method),
126         DEVMETHOD(cpufreq_levels,       cf_levels_method),
127         {0, 0}
128 };
129 static driver_t cpufreq_driver = {
130         "cpufreq", cpufreq_methods, sizeof(struct cpufreq_softc)
131 };
132 static devclass_t cpufreq_dc;
133 DRIVER_MODULE(cpufreq, cpu, cpufreq_driver, cpufreq_dc, 0, 0);
134
135 static int              cf_lowest_freq;
136 static int              cf_verbose;
137 static SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
138     "cpufreq debugging");
139 SYSCTL_INT(_debug_cpufreq, OID_AUTO, lowest, CTLFLAG_RWTUN, &cf_lowest_freq, 1,
140     "Don't provide levels below this frequency.");
141 SYSCTL_INT(_debug_cpufreq, OID_AUTO, verbose, CTLFLAG_RWTUN, &cf_verbose, 1,
142     "Print verbose debugging messages");
143
144 /*
145  * This is called as the result of a hardware specific frequency control driver
146  * calling cpufreq_register. It provides a general interface for system wide
147  * frequency controls and operates on a per cpu basis.
148  */
149 static int
150 cpufreq_attach(device_t dev)
151 {
152         struct cpufreq_softc *sc;
153         struct pcpu *pc;
154         device_t parent;
155         uint64_t rate;
156
157         CF_DEBUG("initializing %s\n", device_get_nameunit(dev));
158         sc = device_get_softc(dev);
159         parent = device_get_parent(dev);
160         sc->dev = dev;
161         sysctl_ctx_init(&sc->sysctl_ctx);
162         TAILQ_INIT(&sc->all_levels);
163         CF_MTX_INIT(&sc->lock);
164         sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN;
165         SLIST_INIT(&sc->saved_freq);
166         /* Try to get nominal CPU freq to use it as maximum later if needed */
167         sc->max_mhz = cpu_get_nominal_mhz(dev);
168         /* If that fails, try to measure the current rate */
169         if (sc->max_mhz <= 0) {
170                 CF_DEBUG("Unable to obtain nominal frequency.\n");
171                 pc = cpu_get_pcpu(dev);
172                 if (cpu_est_clockrate(pc->pc_cpuid, &rate) == 0)
173                         sc->max_mhz = rate / 1000000;
174                 else
175                         sc->max_mhz = CPUFREQ_VAL_UNKNOWN;
176         }
177
178         CF_DEBUG("initializing one-time data for %s\n",
179             device_get_nameunit(dev));
180         sc->levels_buf = malloc(CF_MAX_LEVELS * sizeof(*sc->levels_buf),
181             M_DEVBUF, M_WAITOK);
182         SYSCTL_ADD_PROC(&sc->sysctl_ctx,
183             SYSCTL_CHILDREN(device_get_sysctl_tree(parent)),
184             OID_AUTO, "freq", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185             sc, 0, cpufreq_curr_sysctl, "I", "Current CPU frequency");
186         SYSCTL_ADD_PROC(&sc->sysctl_ctx,
187             SYSCTL_CHILDREN(device_get_sysctl_tree(parent)),
188             OID_AUTO, "freq_levels",
189             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
190             cpufreq_levels_sysctl, "A", "CPU frequency levels");
191
192         /*
193          * Queue a one-shot broadcast that levels have changed.
194          * It will run once the system has completed booting.
195          */
196         TASK_INIT(&sc->startup_task, 0, cpufreq_startup_task, dev);
197         taskqueue_enqueue(taskqueue_thread, &sc->startup_task);
198
199         return (0);
200 }
201
202 /* Handle any work to be done for all drivers that attached during boot. */
203 static void 
204 cpufreq_startup_task(void *ctx, int pending)
205 {
206
207         cpufreq_settings_changed((device_t)ctx);
208 }
209
210 static int
211 cpufreq_detach(device_t dev)
212 {
213         struct cpufreq_softc *sc;
214         struct cf_saved_freq *saved_freq;
215
216         CF_DEBUG("shutdown %s\n", device_get_nameunit(dev));
217         sc = device_get_softc(dev);
218         sysctl_ctx_free(&sc->sysctl_ctx);
219
220         while ((saved_freq = SLIST_FIRST(&sc->saved_freq)) != NULL) {
221                 SLIST_REMOVE_HEAD(&sc->saved_freq, link);
222                 free(saved_freq, M_TEMP);
223         }
224
225         free(sc->levels_buf, M_DEVBUF);
226
227         return (0);
228 }
229
230 static int
231 cf_set_method(device_t dev, const struct cf_level *level, int priority)
232 {
233         struct cpufreq_softc *sc;
234         const struct cf_setting *set;
235         struct cf_saved_freq *saved_freq, *curr_freq;
236         struct pcpu *pc;
237         int error, i;
238         u_char pri;
239
240         sc = device_get_softc(dev);
241         error = 0;
242         set = NULL;
243         saved_freq = NULL;
244
245         /* We are going to change levels so notify the pre-change handler. */
246         EVENTHANDLER_INVOKE(cpufreq_pre_change, level, &error);
247         if (error != 0) {
248                 EVENTHANDLER_INVOKE(cpufreq_post_change, level, error);
249                 return (error);
250         }
251
252         CF_MTX_LOCK(&sc->lock);
253
254 #ifdef SMP
255 #ifdef EARLY_AP_STARTUP
256         MPASS(mp_ncpus == 1 || smp_started);
257 #else
258         /*
259          * If still booting and secondary CPUs not started yet, don't allow
260          * changing the frequency until they're online.  This is because we
261          * can't switch to them using sched_bind() and thus we'd only be
262          * switching the main CPU.  XXXTODO: Need to think more about how to
263          * handle having different CPUs at different frequencies.  
264          */
265         if (mp_ncpus > 1 && !smp_started) {
266                 device_printf(dev, "rejecting change, SMP not started yet\n");
267                 error = ENXIO;
268                 goto out;
269         }
270 #endif
271 #endif /* SMP */
272
273         /*
274          * If the requested level has a lower priority, don't allow
275          * the new level right now.
276          */
277         if (priority < sc->curr_priority) {
278                 CF_DEBUG("ignoring, curr prio %d less than %d\n", priority,
279                     sc->curr_priority);
280                 error = EPERM;
281                 goto out;
282         }
283
284         /*
285          * If the caller didn't specify a level and one is saved, prepare to
286          * restore the saved level.  If none has been saved, return an error.
287          */
288         if (level == NULL) {
289                 saved_freq = SLIST_FIRST(&sc->saved_freq);
290                 if (saved_freq == NULL) {
291                         CF_DEBUG("NULL level, no saved level\n");
292                         error = ENXIO;
293                         goto out;
294                 }
295                 level = &saved_freq->level;
296                 priority = saved_freq->priority;
297                 CF_DEBUG("restoring saved level, freq %d prio %d\n",
298                     level->total_set.freq, priority);
299         }
300
301         /* Reject levels that are below our specified threshold. */
302         if (level->total_set.freq < cf_lowest_freq) {
303                 CF_DEBUG("rejecting freq %d, less than %d limit\n",
304                     level->total_set.freq, cf_lowest_freq);
305                 error = EINVAL;
306                 goto out;
307         }
308
309         /* If already at this level, just return. */
310         if (sc->curr_level.total_set.freq == level->total_set.freq) {
311                 CF_DEBUG("skipping freq %d, same as current level %d\n",
312                     level->total_set.freq, sc->curr_level.total_set.freq);
313                 goto skip;
314         }
315
316         /* First, set the absolute frequency via its driver. */
317         set = &level->abs_set;
318         if (set->dev) {
319                 if (!device_is_attached(set->dev)) {
320                         error = ENXIO;
321                         goto out;
322                 }
323
324                 /* Bind to the target CPU before switching. */
325                 pc = cpu_get_pcpu(set->dev);
326
327                 /* Skip settings if CPU is not started. */
328                 if (pc == NULL) {
329                         error = 0;
330                         goto out;
331                 }
332                 thread_lock(curthread);
333                 pri = curthread->td_priority;
334                 sched_prio(curthread, PRI_MIN);
335                 sched_bind(curthread, pc->pc_cpuid);
336                 thread_unlock(curthread);
337                 CF_DEBUG("setting abs freq %d on %s (cpu %d)\n", set->freq,
338                     device_get_nameunit(set->dev), PCPU_GET(cpuid));
339                 error = CPUFREQ_DRV_SET(set->dev, set);
340                 thread_lock(curthread);
341                 sched_unbind(curthread);
342                 sched_prio(curthread, pri);
343                 thread_unlock(curthread);
344                 if (error) {
345                         goto out;
346                 }
347         }
348
349         /* Next, set any/all relative frequencies via their drivers. */
350         for (i = 0; i < level->rel_count; i++) {
351                 set = &level->rel_set[i];
352                 if (!device_is_attached(set->dev)) {
353                         error = ENXIO;
354                         goto out;
355                 }
356
357                 /* Bind to the target CPU before switching. */
358                 pc = cpu_get_pcpu(set->dev);
359                 thread_lock(curthread);
360                 pri = curthread->td_priority;
361                 sched_prio(curthread, PRI_MIN);
362                 sched_bind(curthread, pc->pc_cpuid);
363                 thread_unlock(curthread);
364                 CF_DEBUG("setting rel freq %d on %s (cpu %d)\n", set->freq,
365                     device_get_nameunit(set->dev), PCPU_GET(cpuid));
366                 error = CPUFREQ_DRV_SET(set->dev, set);
367                 thread_lock(curthread);
368                 sched_unbind(curthread);
369                 sched_prio(curthread, pri);
370                 thread_unlock(curthread);
371                 if (error) {
372                         /* XXX Back out any successful setting? */
373                         goto out;
374                 }
375         }
376
377 skip:
378         /*
379          * Before recording the current level, check if we're going to a
380          * higher priority.  If so, save the previous level and priority.
381          */
382         if (sc->curr_level.total_set.freq != CPUFREQ_VAL_UNKNOWN &&
383             priority > sc->curr_priority) {
384                 CF_DEBUG("saving level, freq %d prio %d\n",
385                     sc->curr_level.total_set.freq, sc->curr_priority);
386                 curr_freq = malloc(sizeof(*curr_freq), M_TEMP, M_NOWAIT);
387                 if (curr_freq == NULL) {
388                         error = ENOMEM;
389                         goto out;
390                 }
391                 curr_freq->level = sc->curr_level;
392                 curr_freq->priority = sc->curr_priority;
393                 SLIST_INSERT_HEAD(&sc->saved_freq, curr_freq, link);
394         }
395         sc->curr_level = *level;
396         sc->curr_priority = priority;
397
398         /* If we were restoring a saved state, reset it to "unused". */
399         if (saved_freq != NULL) {
400                 CF_DEBUG("resetting saved level\n");
401                 sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN;
402                 SLIST_REMOVE_HEAD(&sc->saved_freq, link);
403                 free(saved_freq, M_TEMP);
404         }
405
406 out:
407         CF_MTX_UNLOCK(&sc->lock);
408
409         /*
410          * We changed levels (or attempted to) so notify the post-change
411          * handler of new frequency or error.
412          */
413         EVENTHANDLER_INVOKE(cpufreq_post_change, level, error);
414         if (error && set)
415                 device_printf(set->dev, "set freq failed, err %d\n", error);
416
417         return (error);
418 }
419
420 static int
421 cpufreq_get_frequency(device_t dev)
422 {
423         struct cf_setting set;
424
425         if (CPUFREQ_DRV_GET(dev, &set) != 0)
426                 return (-1);
427
428         return (set.freq);
429 }
430
431 /* Returns the index into *levels with the match */
432 static int
433 cpufreq_get_level(device_t dev, struct cf_level *levels, int count)
434 {
435         int i, freq;
436
437         if ((freq = cpufreq_get_frequency(dev)) < 0)
438                 return (-1);
439         for (i = 0; i < count; i++)
440                 if (freq == levels[i].total_set.freq)
441                         return (i);
442
443         return (-1);
444 }
445
446 /*
447  * Used by the cpufreq core, this function will populate *level with the current
448  * frequency as either determined by a cached value sc->curr_level, or in the
449  * case the lower level driver has set the CPUFREQ_FLAG_UNCACHED flag, it will
450  * obtain the frequency from the driver itself.
451  */
452 static int
453 cf_get_method(device_t dev, struct cf_level *level)
454 {
455         struct cpufreq_softc *sc;
456         struct cf_level *levels;
457         struct cf_setting *curr_set;
458         struct pcpu *pc;
459         int bdiff, count, diff, error, i, type;
460         uint64_t rate;
461
462         sc = device_get_softc(dev);
463         error = 0;
464         levels = NULL;
465
466         /*
467          * If we already know the current frequency, and the driver didn't ask
468          * for uncached usage, we're done.
469          */
470         CF_MTX_LOCK(&sc->lock);
471         curr_set = &sc->curr_level.total_set;
472         error = CPUFREQ_DRV_TYPE(sc->cf_drv_dev, &type);
473         if (error == 0 && (type & CPUFREQ_FLAG_UNCACHED)) {
474                 struct cf_setting set;
475
476                 /*
477                  * If the driver wants to always report back the real frequency,
478                  * first try the driver and if that fails, fall back to
479                  * estimating.
480                  */
481                 if (CPUFREQ_DRV_GET(sc->cf_drv_dev, &set) == 0) {
482                         sc->curr_level.total_set = set;
483                         CF_DEBUG("get returning immediate freq %d\n",
484                             curr_set->freq);
485                         goto out;
486                 }
487         } else if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) {
488                 CF_DEBUG("get returning known freq %d\n", curr_set->freq);
489                 error = 0;
490                 goto out;
491         }
492         CF_MTX_UNLOCK(&sc->lock);
493
494         /*
495          * We need to figure out the current level.  Loop through every
496          * driver, getting the current setting.  Then, attempt to get a best
497          * match of settings against each level.
498          */
499         count = CF_MAX_LEVELS;
500         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
501         if (levels == NULL)
502                 return (ENOMEM);
503         error = CPUFREQ_LEVELS(sc->dev, levels, &count);
504         if (error) {
505                 if (error == E2BIG)
506                         printf("cpufreq: need to increase CF_MAX_LEVELS\n");
507                 free(levels, M_TEMP);
508                 return (error);
509         }
510
511         /*
512          * Reacquire the lock and search for the given level.
513          *
514          * XXX Note: this is not quite right since we really need to go
515          * through each level and compare both absolute and relative
516          * settings for each driver in the system before making a match.
517          * The estimation code below catches this case though.
518          */
519         CF_MTX_LOCK(&sc->lock);
520         i = cpufreq_get_level(sc->cf_drv_dev, levels, count);
521         if (i >= 0)
522                 sc->curr_level = levels[i];
523         else
524                 CF_DEBUG("Couldn't find supported level for %s\n",
525                     device_get_nameunit(sc->cf_drv_dev));
526
527         if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) {
528                 CF_DEBUG("get matched freq %d from drivers\n", curr_set->freq);
529                 goto out;
530         }
531
532         /*
533          * We couldn't find an exact match, so attempt to estimate and then
534          * match against a level.
535          */
536         pc = cpu_get_pcpu(dev);
537         if (pc == NULL) {
538                 error = ENXIO;
539                 goto out;
540         }
541         cpu_est_clockrate(pc->pc_cpuid, &rate);
542         rate /= 1000000;
543         bdiff = 1 << 30;
544         for (i = 0; i < count; i++) {
545                 diff = abs(levels[i].total_set.freq - rate);
546                 if (diff < bdiff) {
547                         bdiff = diff;
548                         sc->curr_level = levels[i];
549                 }
550         }
551         CF_DEBUG("get estimated freq %d\n", curr_set->freq);
552
553 out:
554         if (error == 0)
555                 *level = sc->curr_level;
556
557         CF_MTX_UNLOCK(&sc->lock);
558         if (levels)
559                 free(levels, M_TEMP);
560         return (error);
561 }
562
563 /*
564  * Either directly obtain settings from the cpufreq driver, or build a list of
565  * relative settings to be integrated later against an absolute max.
566  */
567 static int
568 cpufreq_add_levels(device_t cf_dev, struct cf_setting_lst *rel_sets)
569 {
570         struct cf_setting_array *set_arr;
571         struct cf_setting *sets;
572         device_t dev;
573         struct cpufreq_softc *sc;
574         int type, set_count, error;
575
576         sc = device_get_softc(cf_dev);
577         dev = sc->cf_drv_dev;
578
579         /* Skip devices that aren't ready. */
580         if (!device_is_attached(cf_dev))
581                 return (0);
582
583         /*
584          * Get settings, skipping drivers that offer no settings or
585          * provide settings for informational purposes only.
586          */
587         error = CPUFREQ_DRV_TYPE(dev, &type);
588         if (error != 0 || (type & CPUFREQ_FLAG_INFO_ONLY)) {
589                 if (error == 0) {
590                         CF_DEBUG("skipping info-only driver %s\n",
591                             device_get_nameunit(cf_dev));
592                 }
593                 return (error);
594         }
595
596         sets = malloc(MAX_SETTINGS * sizeof(*sets), M_TEMP, M_NOWAIT);
597         if (sets == NULL)
598                 return (ENOMEM);
599
600         set_count = MAX_SETTINGS;
601         error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count);
602         if (error != 0 || set_count == 0)
603                 goto out;
604
605         /* Add the settings to our absolute/relative lists. */
606         switch (type & CPUFREQ_TYPE_MASK) {
607         case CPUFREQ_TYPE_ABSOLUTE:
608                 error = cpufreq_insert_abs(sc, sets, set_count);
609                 break;
610         case CPUFREQ_TYPE_RELATIVE:
611                 CF_DEBUG("adding %d relative settings\n", set_count);
612                 set_arr = malloc(sizeof(*set_arr), M_TEMP, M_NOWAIT);
613                 if (set_arr == NULL) {
614                         error = ENOMEM;
615                         goto out;
616                 }
617                 bcopy(sets, set_arr->sets, set_count * sizeof(*sets));
618                 set_arr->count = set_count;
619                 TAILQ_INSERT_TAIL(rel_sets, set_arr, link);
620                 break;
621         default:
622                 error = EINVAL;
623         }
624
625 out:
626         free(sets, M_TEMP);
627         return (error);
628 }
629
630 static int
631 cf_levels_method(device_t dev, struct cf_level *levels, int *count)
632 {
633         struct cf_setting_array *set_arr;
634         struct cf_setting_lst rel_sets;
635         struct cpufreq_softc *sc;
636         struct cf_level *lev;
637         struct pcpu *pc;
638         int error, i;
639         uint64_t rate;
640
641         if (levels == NULL || count == NULL)
642                 return (EINVAL);
643
644         TAILQ_INIT(&rel_sets);
645         sc = device_get_softc(dev);
646
647         CF_MTX_LOCK(&sc->lock);
648         error = cpufreq_add_levels(sc->dev, &rel_sets);
649         if (error)
650                 goto out;
651
652         /*
653          * If there are no absolute levels, create a fake one at 100%.  We
654          * then cache the clockrate for later use as our base frequency.
655          */
656         if (TAILQ_EMPTY(&sc->all_levels)) {
657                 struct cf_setting set;
658
659                 CF_DEBUG("No absolute levels returned by driver\n");
660
661                 if (sc->max_mhz == CPUFREQ_VAL_UNKNOWN) {
662                         sc->max_mhz = cpu_get_nominal_mhz(dev);
663                         /*
664                          * If the CPU can't report a rate for 100%, hope
665                          * the CPU is running at its nominal rate right now,
666                          * and use that instead.
667                          */
668                         if (sc->max_mhz <= 0) {
669                                 pc = cpu_get_pcpu(dev);
670                                 cpu_est_clockrate(pc->pc_cpuid, &rate);
671                                 sc->max_mhz = rate / 1000000;
672                         }
673                 }
674                 memset(&set, CPUFREQ_VAL_UNKNOWN, sizeof(set));
675                 set.freq = sc->max_mhz;
676                 set.dev = NULL;
677                 error = cpufreq_insert_abs(sc, &set, 1);
678                 if (error)
679                         goto out;
680         }
681
682         /* Create a combined list of absolute + relative levels. */
683         TAILQ_FOREACH(set_arr, &rel_sets, link)
684                 cpufreq_expand_set(sc, set_arr);
685
686         /* If the caller doesn't have enough space, return the actual count. */
687         if (sc->all_count > *count) {
688                 *count = sc->all_count;
689                 error = E2BIG;
690                 goto out;
691         }
692
693         /* Finally, output the list of levels. */
694         i = 0;
695         TAILQ_FOREACH(lev, &sc->all_levels, link) {
696                 /* Skip levels that have a frequency that is too low. */
697                 if (lev->total_set.freq < cf_lowest_freq) {
698                         sc->all_count--;
699                         continue;
700                 }
701
702                 levels[i] = *lev;
703                 i++;
704         }
705         *count = sc->all_count;
706         error = 0;
707
708 out:
709         /* Clear all levels since we regenerate them each time. */
710         while ((lev = TAILQ_FIRST(&sc->all_levels)) != NULL) {
711                 TAILQ_REMOVE(&sc->all_levels, lev, link);
712                 free(lev, M_TEMP);
713         }
714         sc->all_count = 0;
715
716         CF_MTX_UNLOCK(&sc->lock);
717         while ((set_arr = TAILQ_FIRST(&rel_sets)) != NULL) {
718                 TAILQ_REMOVE(&rel_sets, set_arr, link);
719                 free(set_arr, M_TEMP);
720         }
721         return (error);
722 }
723
724 /*
725  * Create levels for an array of absolute settings and insert them in
726  * sorted order in the specified list.
727  */
728 static int
729 cpufreq_insert_abs(struct cpufreq_softc *sc, struct cf_setting *sets,
730     int count)
731 {
732         struct cf_level_lst *list;
733         struct cf_level *level, *search;
734         int i, inserted;
735
736         CF_MTX_ASSERT(&sc->lock);
737
738         list = &sc->all_levels;
739         for (i = 0; i < count; i++) {
740                 level = malloc(sizeof(*level), M_TEMP, M_NOWAIT | M_ZERO);
741                 if (level == NULL)
742                         return (ENOMEM);
743                 level->abs_set = sets[i];
744                 level->total_set = sets[i];
745                 level->total_set.dev = NULL;
746                 sc->all_count++;
747                 inserted = 0;
748
749                 if (TAILQ_EMPTY(list)) {
750                         CF_DEBUG("adding abs setting %d at head\n",
751                             sets[i].freq);
752                         TAILQ_INSERT_HEAD(list, level, link);
753                         continue;
754                 }
755
756                 TAILQ_FOREACH_REVERSE(search, list, cf_level_lst, link)
757                         if (sets[i].freq <= search->total_set.freq) {
758                                 CF_DEBUG("adding abs setting %d after %d\n",
759                                     sets[i].freq, search->total_set.freq);
760                                 TAILQ_INSERT_AFTER(list, search, level, link);
761                                 inserted = 1;
762                                 break;
763                         }
764
765                 if (inserted == 0) {
766                         TAILQ_FOREACH(search, list, link)
767                                 if (sets[i].freq >= search->total_set.freq) {
768                                         CF_DEBUG("adding abs setting %d before %d\n",
769                                             sets[i].freq, search->total_set.freq);
770                                         TAILQ_INSERT_BEFORE(search, level, link);
771                                         break;
772                                 }
773                 }
774         }
775
776         return (0);
777 }
778
779 /*
780  * Expand a group of relative settings, creating derived levels from them.
781  */
782 static int
783 cpufreq_expand_set(struct cpufreq_softc *sc, struct cf_setting_array *set_arr)
784 {
785         struct cf_level *fill, *search;
786         struct cf_setting *set;
787         int i;
788
789         CF_MTX_ASSERT(&sc->lock);
790
791         /*
792          * Walk the set of all existing levels in reverse.  This is so we
793          * create derived states from the lowest absolute settings first
794          * and discard duplicates created from higher absolute settings.
795          * For instance, a level of 50 Mhz derived from 100 Mhz + 50% is
796          * preferable to 200 Mhz + 25% because absolute settings are more
797          * efficient since they often change the voltage as well.
798          */
799         TAILQ_FOREACH_REVERSE(search, &sc->all_levels, cf_level_lst, link) {
800                 /* Add each setting to the level, duplicating if necessary. */
801                 for (i = 0; i < set_arr->count; i++) {
802                         set = &set_arr->sets[i];
803
804                         /*
805                          * If this setting is less than 100%, split the level
806                          * into two and add this setting to the new level.
807                          */
808                         fill = search;
809                         if (set->freq < 10000) {
810                                 fill = cpufreq_dup_set(sc, search, set);
811
812                                 /*
813                                  * The new level was a duplicate of an existing
814                                  * level or its absolute setting is too high
815                                  * so we freed it.  For example, we discard a
816                                  * derived level of 1000 MHz/25% if a level
817                                  * of 500 MHz/100% already exists.
818                                  */
819                                 if (fill == NULL)
820                                         break;
821                         }
822
823                         /* Add this setting to the existing or new level. */
824                         KASSERT(fill->rel_count < MAX_SETTINGS,
825                             ("cpufreq: too many relative drivers (%d)",
826                             MAX_SETTINGS));
827                         fill->rel_set[fill->rel_count] = *set;
828                         fill->rel_count++;
829                         CF_DEBUG(
830                         "expand set added rel setting %d%% to %d level\n",
831                             set->freq / 100, fill->total_set.freq);
832                 }
833         }
834
835         return (0);
836 }
837
838 static struct cf_level *
839 cpufreq_dup_set(struct cpufreq_softc *sc, struct cf_level *dup,
840     struct cf_setting *set)
841 {
842         struct cf_level_lst *list;
843         struct cf_level *fill, *itr;
844         struct cf_setting *fill_set, *itr_set;
845         int i;
846
847         CF_MTX_ASSERT(&sc->lock);
848
849         /*
850          * Create a new level, copy it from the old one, and update the
851          * total frequency and power by the percentage specified in the
852          * relative setting.
853          */
854         fill = malloc(sizeof(*fill), M_TEMP, M_NOWAIT);
855         if (fill == NULL)
856                 return (NULL);
857         *fill = *dup;
858         fill_set = &fill->total_set;
859         fill_set->freq =
860             ((uint64_t)fill_set->freq * set->freq) / 10000;
861         if (fill_set->power != CPUFREQ_VAL_UNKNOWN) {
862                 fill_set->power = ((uint64_t)fill_set->power * set->freq)
863                     / 10000;
864         }
865         if (set->lat != CPUFREQ_VAL_UNKNOWN) {
866                 if (fill_set->lat != CPUFREQ_VAL_UNKNOWN)
867                         fill_set->lat += set->lat;
868                 else
869                         fill_set->lat = set->lat;
870         }
871         CF_DEBUG("dup set considering derived setting %d\n", fill_set->freq);
872
873         /*
874          * If we copied an old level that we already modified (say, at 100%),
875          * we need to remove that setting before adding this one.  Since we
876          * process each setting array in order, we know any settings for this
877          * driver will be found at the end.
878          */
879         for (i = fill->rel_count; i != 0; i--) {
880                 if (fill->rel_set[i - 1].dev != set->dev)
881                         break;
882                 CF_DEBUG("removed last relative driver: %s\n",
883                     device_get_nameunit(set->dev));
884                 fill->rel_count--;
885         }
886
887         /*
888          * Insert the new level in sorted order.  If it is a duplicate of an
889          * existing level (1) or has an absolute setting higher than the
890          * existing level (2), do not add it.  We can do this since any such
891          * level is guaranteed use less power.  For example (1), a level with
892          * one absolute setting of 800 Mhz uses less power than one composed
893          * of an absolute setting of 1600 Mhz and a relative setting at 50%.
894          * Also for example (2), a level of 800 Mhz/75% is preferable to
895          * 1600 Mhz/25% even though the latter has a lower total frequency.
896          */
897         list = &sc->all_levels;
898         KASSERT(!TAILQ_EMPTY(list), ("all levels list empty in dup set"));
899         TAILQ_FOREACH_REVERSE(itr, list, cf_level_lst, link) {
900                 itr_set = &itr->total_set;
901                 if (CPUFREQ_CMP(fill_set->freq, itr_set->freq)) {
902                         CF_DEBUG("dup set rejecting %d (dupe)\n",
903                             fill_set->freq);
904                         itr = NULL;
905                         break;
906                 } else if (fill_set->freq < itr_set->freq) {
907                         if (fill->abs_set.freq <= itr->abs_set.freq) {
908                                 CF_DEBUG(
909                         "dup done, inserting new level %d after %d\n",
910                                     fill_set->freq, itr_set->freq);
911                                 TAILQ_INSERT_AFTER(list, itr, fill, link);
912                                 sc->all_count++;
913                         } else {
914                                 CF_DEBUG("dup set rejecting %d (abs too big)\n",
915                                     fill_set->freq);
916                                 itr = NULL;
917                         }
918                         break;
919                 }
920         }
921
922         /* We didn't find a good place for this new level so free it. */
923         if (itr == NULL) {
924                 CF_DEBUG("dup set freeing new level %d (not optimal)\n",
925                     fill_set->freq);
926                 free(fill, M_TEMP);
927                 fill = NULL;
928         }
929
930         return (fill);
931 }
932
933 static int
934 cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS)
935 {
936         struct cpufreq_softc *sc;
937         struct cf_level *levels;
938         int best, count, diff, bdiff, devcount, error, freq, i, n;
939         device_t *devs;
940
941         devs = NULL;
942         sc = oidp->oid_arg1;
943         levels = sc->levels_buf;
944
945         error = CPUFREQ_GET(sc->dev, &levels[0]);
946         if (error)
947                 goto out;
948         freq = levels[0].total_set.freq;
949         error = sysctl_handle_int(oidp, &freq, 0, req);
950         if (error != 0 || req->newptr == NULL)
951                 goto out;
952
953         /*
954          * While we only call cpufreq_get() on one device (assuming all
955          * CPUs have equal levels), we call cpufreq_set() on all CPUs.
956          * This is needed for some MP systems.
957          */
958         error = devclass_get_devices(cpufreq_dc, &devs, &devcount);
959         if (error)
960                 goto out;
961         for (n = 0; n < devcount; n++) {
962                 count = CF_MAX_LEVELS;
963                 error = CPUFREQ_LEVELS(devs[n], levels, &count);
964                 if (error) {
965                         if (error == E2BIG)
966                                 printf(
967                         "cpufreq: need to increase CF_MAX_LEVELS\n");
968                         break;
969                 }
970                 best = 0;
971                 bdiff = 1 << 30;
972                 for (i = 0; i < count; i++) {
973                         diff = abs(levels[i].total_set.freq - freq);
974                         if (diff < bdiff) {
975                                 bdiff = diff;
976                                 best = i;
977                         }
978                 }
979                 error = CPUFREQ_SET(devs[n], &levels[best], CPUFREQ_PRIO_USER);
980         }
981
982 out:
983         if (devs)
984                 free(devs, M_TEMP);
985         return (error);
986 }
987
988 static int
989 cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS)
990 {
991         struct cpufreq_softc *sc;
992         struct cf_level *levels;
993         struct cf_setting *set;
994         struct sbuf sb;
995         int count, error, i;
996
997         sc = oidp->oid_arg1;
998         sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
999
1000         /* Get settings from the device and generate the output string. */
1001         count = CF_MAX_LEVELS;
1002         levels = sc->levels_buf;
1003         if (levels == NULL) {
1004                 sbuf_delete(&sb);
1005                 return (ENOMEM);
1006         }
1007         error = CPUFREQ_LEVELS(sc->dev, levels, &count);
1008         if (error) {
1009                 if (error == E2BIG)
1010                         printf("cpufreq: need to increase CF_MAX_LEVELS\n");
1011                 goto out;
1012         }
1013         if (count) {
1014                 for (i = 0; i < count; i++) {
1015                         set = &levels[i].total_set;
1016                         sbuf_printf(&sb, "%d/%d ", set->freq, set->power);
1017                 }
1018         } else
1019                 sbuf_cpy(&sb, "0");
1020         sbuf_trim(&sb);
1021         sbuf_finish(&sb);
1022         error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1023
1024 out:
1025         sbuf_delete(&sb);
1026         return (error);
1027 }
1028
1029 static int
1030 cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS)
1031 {
1032         device_t dev;
1033         struct cf_setting *sets;
1034         struct sbuf sb;
1035         int error, i, set_count;
1036
1037         dev = oidp->oid_arg1;
1038         sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
1039
1040         /* Get settings from the device and generate the output string. */
1041         set_count = MAX_SETTINGS;
1042         sets = malloc(set_count * sizeof(*sets), M_TEMP, M_NOWAIT);
1043         if (sets == NULL) {
1044                 sbuf_delete(&sb);
1045                 return (ENOMEM);
1046         }
1047         error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count);
1048         if (error)
1049                 goto out;
1050         if (set_count) {
1051                 for (i = 0; i < set_count; i++)
1052                         sbuf_printf(&sb, "%d/%d ", sets[i].freq, sets[i].power);
1053         } else
1054                 sbuf_cpy(&sb, "0");
1055         sbuf_trim(&sb);
1056         sbuf_finish(&sb);
1057         error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1058
1059 out:
1060         free(sets, M_TEMP);
1061         sbuf_delete(&sb);
1062         return (error);
1063 }
1064
1065 static void
1066 cpufreq_add_freq_driver_sysctl(device_t cf_dev)
1067 {
1068         struct cpufreq_softc *sc;
1069
1070         sc = device_get_softc(cf_dev);
1071         SYSCTL_ADD_CONST_STRING(&sc->sysctl_ctx,
1072             SYSCTL_CHILDREN(device_get_sysctl_tree(cf_dev)), OID_AUTO,
1073             "freq_driver", CTLFLAG_RD, device_get_nameunit(sc->cf_drv_dev),
1074             "cpufreq driver used by this cpu");
1075 }
1076
1077 int
1078 cpufreq_register(device_t dev)
1079 {
1080         struct cpufreq_softc *sc;
1081         device_t cf_dev, cpu_dev;
1082         int error;
1083
1084         /* Add a sysctl to get each driver's settings separately. */
1085         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1086             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1087             OID_AUTO, "freq_settings",
1088             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dev, 0,
1089             cpufreq_settings_sysctl, "A", "CPU frequency driver settings");
1090
1091         /*
1092          * Add only one cpufreq device to each CPU.  Currently, all CPUs
1093          * must offer the same levels and be switched at the same time.
1094          */
1095         cpu_dev = device_get_parent(dev);
1096         if ((cf_dev = device_find_child(cpu_dev, "cpufreq", -1))) {
1097                 sc = device_get_softc(cf_dev);
1098                 sc->max_mhz = CPUFREQ_VAL_UNKNOWN;
1099                 MPASS(sc->cf_drv_dev != NULL);
1100                 return (0);
1101         }
1102
1103         /* Add the child device and possibly sysctls. */
1104         cf_dev = BUS_ADD_CHILD(cpu_dev, 0, "cpufreq", device_get_unit(cpu_dev));
1105         if (cf_dev == NULL)
1106                 return (ENOMEM);
1107         device_quiet(cf_dev);
1108
1109         error = device_probe_and_attach(cf_dev);
1110         if (error)
1111                 return (error);
1112
1113         sc = device_get_softc(cf_dev);
1114         sc->cf_drv_dev = dev;
1115         cpufreq_add_freq_driver_sysctl(cf_dev);
1116         return (error);
1117 }
1118
1119 int
1120 cpufreq_unregister(device_t dev)
1121 {
1122         device_t cf_dev;
1123         struct cpufreq_softc *sc;
1124
1125         /*
1126          * If this is the last cpufreq child device, remove the control
1127          * device as well.  We identify cpufreq children by calling a method
1128          * they support.
1129          */
1130         cf_dev = device_find_child(device_get_parent(dev), "cpufreq", -1);
1131         if (cf_dev == NULL) {
1132                 device_printf(dev,
1133         "warning: cpufreq_unregister called with no cpufreq device active\n");
1134                 return (0);
1135         }
1136         sc = device_get_softc(cf_dev);
1137         MPASS(sc->cf_drv_dev == dev);
1138         device_delete_child(device_get_parent(cf_dev), cf_dev);
1139
1140         return (0);
1141 }
1142
1143 int
1144 cpufreq_settings_changed(device_t dev)
1145 {
1146
1147         EVENTHANDLER_INVOKE(cpufreq_levels_changed,
1148             device_get_unit(device_get_parent(dev)));
1149         return (0);
1150 }