]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_cpu.c
Update to bmake-20200710
[FreeBSD/FreeBSD.git] / sys / kern / kern_cpu.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004-2007 Nate Lawson (SDG)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpu.h>
35 #include <sys/eventhandler.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/sysctl.h>
46 #include <sys/systm.h>
47 #include <sys/sx.h>
48 #include <sys/timetc.h>
49 #include <sys/taskqueue.h>
50
51 #include "cpufreq_if.h"
52
53 /*
54  * Common CPU frequency glue code.  Drivers for specific hardware can
55  * attach this interface to allow users to get/set the CPU frequency.
56  */
57
58 /*
59  * Number of levels we can handle.  Levels are synthesized from settings
60  * so for M settings and N drivers, there may be M*N levels.
61  */
62 #define CF_MAX_LEVELS   256
63
64 struct cf_saved_freq {
65         struct cf_level                 level;
66         int                             priority;
67         SLIST_ENTRY(cf_saved_freq)      link;
68 };
69
70 struct cpufreq_softc {
71         struct sx                       lock;
72         struct cf_level                 curr_level;
73         int                             curr_priority;
74         SLIST_HEAD(, cf_saved_freq)     saved_freq;
75         struct cf_level_lst             all_levels;
76         int                             all_count;
77         int                             max_mhz;
78         device_t                        dev;
79         device_t                        cf_drv_dev;
80         struct sysctl_ctx_list          sysctl_ctx;
81         struct task                     startup_task;
82         struct cf_level                 *levels_buf;
83 };
84
85 struct cf_setting_array {
86         struct cf_setting               sets[MAX_SETTINGS];
87         int                             count;
88         TAILQ_ENTRY(cf_setting_array)   link;
89 };
90
91 TAILQ_HEAD(cf_setting_lst, cf_setting_array);
92
93 #define CF_MTX_INIT(x)          sx_init((x), "cpufreq lock")
94 #define CF_MTX_LOCK(x)          sx_xlock((x))
95 #define CF_MTX_UNLOCK(x)        sx_xunlock((x))
96 #define CF_MTX_ASSERT(x)        sx_assert((x), SX_XLOCKED)
97
98 #define CF_DEBUG(msg...)        do {            \
99         if (cf_verbose)                         \
100                 printf("cpufreq: " msg);        \
101         } while (0)
102
103 static int      cpufreq_attach(device_t dev);
104 static void     cpufreq_startup_task(void *ctx, int pending);
105 static int      cpufreq_detach(device_t dev);
106 static int      cf_set_method(device_t dev, const struct cf_level *level,
107                     int priority);
108 static int      cf_get_method(device_t dev, struct cf_level *level);
109 static int      cf_levels_method(device_t dev, struct cf_level *levels,
110                     int *count);
111 static int      cpufreq_insert_abs(struct cpufreq_softc *sc,
112                     struct cf_setting *sets, int count);
113 static int      cpufreq_expand_set(struct cpufreq_softc *sc,
114                     struct cf_setting_array *set_arr);
115 static struct cf_level *cpufreq_dup_set(struct cpufreq_softc *sc,
116                     struct cf_level *dup, struct cf_setting *set);
117 static int      cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS);
118 static int      cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS);
119 static int      cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS);
120
121 static device_method_t cpufreq_methods[] = {
122         DEVMETHOD(device_probe,         bus_generic_probe),
123         DEVMETHOD(device_attach,        cpufreq_attach),
124         DEVMETHOD(device_detach,        cpufreq_detach),
125
126         DEVMETHOD(cpufreq_set,          cf_set_method),
127         DEVMETHOD(cpufreq_get,          cf_get_method),
128         DEVMETHOD(cpufreq_levels,       cf_levels_method),
129         {0, 0}
130 };
131 static driver_t cpufreq_driver = {
132         "cpufreq", cpufreq_methods, sizeof(struct cpufreq_softc)
133 };
134 static devclass_t cpufreq_dc;
135 DRIVER_MODULE(cpufreq, cpu, cpufreq_driver, cpufreq_dc, 0, 0);
136
137 static int              cf_lowest_freq;
138 static int              cf_verbose;
139 static SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
140     "cpufreq debugging");
141 SYSCTL_INT(_debug_cpufreq, OID_AUTO, lowest, CTLFLAG_RWTUN, &cf_lowest_freq, 1,
142     "Don't provide levels below this frequency.");
143 SYSCTL_INT(_debug_cpufreq, OID_AUTO, verbose, CTLFLAG_RWTUN, &cf_verbose, 1,
144     "Print verbose debugging messages");
145
146 /*
147  * This is called as the result of a hardware specific frequency control driver
148  * calling cpufreq_register. It provides a general interface for system wide
149  * frequency controls and operates on a per cpu basis.
150  */
151 static int
152 cpufreq_attach(device_t dev)
153 {
154         struct cpufreq_softc *sc;
155         struct pcpu *pc;
156         device_t parent;
157         uint64_t rate;
158
159         CF_DEBUG("initializing %s\n", device_get_nameunit(dev));
160         sc = device_get_softc(dev);
161         parent = device_get_parent(dev);
162         sc->dev = dev;
163         sysctl_ctx_init(&sc->sysctl_ctx);
164         TAILQ_INIT(&sc->all_levels);
165         CF_MTX_INIT(&sc->lock);
166         sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN;
167         SLIST_INIT(&sc->saved_freq);
168         /* Try to get nominal CPU freq to use it as maximum later if needed */
169         sc->max_mhz = cpu_get_nominal_mhz(dev);
170         /* If that fails, try to measure the current rate */
171         if (sc->max_mhz <= 0) {
172                 CF_DEBUG("Unable to obtain nominal frequency.\n");
173                 pc = cpu_get_pcpu(dev);
174                 if (cpu_est_clockrate(pc->pc_cpuid, &rate) == 0)
175                         sc->max_mhz = rate / 1000000;
176                 else
177                         sc->max_mhz = CPUFREQ_VAL_UNKNOWN;
178         }
179
180         CF_DEBUG("initializing one-time data for %s\n",
181             device_get_nameunit(dev));
182         sc->levels_buf = malloc(CF_MAX_LEVELS * sizeof(*sc->levels_buf),
183             M_DEVBUF, M_WAITOK);
184         SYSCTL_ADD_PROC(&sc->sysctl_ctx,
185             SYSCTL_CHILDREN(device_get_sysctl_tree(parent)),
186             OID_AUTO, "freq", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
187             sc, 0, cpufreq_curr_sysctl, "I", "Current CPU frequency");
188         SYSCTL_ADD_PROC(&sc->sysctl_ctx,
189             SYSCTL_CHILDREN(device_get_sysctl_tree(parent)),
190             OID_AUTO, "freq_levels",
191             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
192             cpufreq_levels_sysctl, "A", "CPU frequency levels");
193
194         /*
195          * Queue a one-shot broadcast that levels have changed.
196          * It will run once the system has completed booting.
197          */
198         TASK_INIT(&sc->startup_task, 0, cpufreq_startup_task, dev);
199         taskqueue_enqueue(taskqueue_thread, &sc->startup_task);
200
201         return (0);
202 }
203
204 /* Handle any work to be done for all drivers that attached during boot. */
205 static void 
206 cpufreq_startup_task(void *ctx, int pending)
207 {
208
209         cpufreq_settings_changed((device_t)ctx);
210 }
211
212 static int
213 cpufreq_detach(device_t dev)
214 {
215         struct cpufreq_softc *sc;
216         struct cf_saved_freq *saved_freq;
217
218         CF_DEBUG("shutdown %s\n", device_get_nameunit(dev));
219         sc = device_get_softc(dev);
220         sysctl_ctx_free(&sc->sysctl_ctx);
221
222         while ((saved_freq = SLIST_FIRST(&sc->saved_freq)) != NULL) {
223                 SLIST_REMOVE_HEAD(&sc->saved_freq, link);
224                 free(saved_freq, M_TEMP);
225         }
226
227         free(sc->levels_buf, M_DEVBUF);
228
229         return (0);
230 }
231
232 static int
233 cf_set_method(device_t dev, const struct cf_level *level, int priority)
234 {
235         struct cpufreq_softc *sc;
236         const struct cf_setting *set;
237         struct cf_saved_freq *saved_freq, *curr_freq;
238         struct pcpu *pc;
239         int error, i;
240         u_char pri;
241
242         sc = device_get_softc(dev);
243         error = 0;
244         set = NULL;
245         saved_freq = NULL;
246
247         /* We are going to change levels so notify the pre-change handler. */
248         EVENTHANDLER_INVOKE(cpufreq_pre_change, level, &error);
249         if (error != 0) {
250                 EVENTHANDLER_INVOKE(cpufreq_post_change, level, error);
251                 return (error);
252         }
253
254         CF_MTX_LOCK(&sc->lock);
255
256 #ifdef SMP
257 #ifdef EARLY_AP_STARTUP
258         MPASS(mp_ncpus == 1 || smp_started);
259 #else
260         /*
261          * If still booting and secondary CPUs not started yet, don't allow
262          * changing the frequency until they're online.  This is because we
263          * can't switch to them using sched_bind() and thus we'd only be
264          * switching the main CPU.  XXXTODO: Need to think more about how to
265          * handle having different CPUs at different frequencies.  
266          */
267         if (mp_ncpus > 1 && !smp_started) {
268                 device_printf(dev, "rejecting change, SMP not started yet\n");
269                 error = ENXIO;
270                 goto out;
271         }
272 #endif
273 #endif /* SMP */
274
275         /*
276          * If the requested level has a lower priority, don't allow
277          * the new level right now.
278          */
279         if (priority < sc->curr_priority) {
280                 CF_DEBUG("ignoring, curr prio %d less than %d\n", priority,
281                     sc->curr_priority);
282                 error = EPERM;
283                 goto out;
284         }
285
286         /*
287          * If the caller didn't specify a level and one is saved, prepare to
288          * restore the saved level.  If none has been saved, return an error.
289          */
290         if (level == NULL) {
291                 saved_freq = SLIST_FIRST(&sc->saved_freq);
292                 if (saved_freq == NULL) {
293                         CF_DEBUG("NULL level, no saved level\n");
294                         error = ENXIO;
295                         goto out;
296                 }
297                 level = &saved_freq->level;
298                 priority = saved_freq->priority;
299                 CF_DEBUG("restoring saved level, freq %d prio %d\n",
300                     level->total_set.freq, priority);
301         }
302
303         /* Reject levels that are below our specified threshold. */
304         if (level->total_set.freq < cf_lowest_freq) {
305                 CF_DEBUG("rejecting freq %d, less than %d limit\n",
306                     level->total_set.freq, cf_lowest_freq);
307                 error = EINVAL;
308                 goto out;
309         }
310
311         /* If already at this level, just return. */
312         if (sc->curr_level.total_set.freq == level->total_set.freq) {
313                 CF_DEBUG("skipping freq %d, same as current level %d\n",
314                     level->total_set.freq, sc->curr_level.total_set.freq);
315                 goto skip;
316         }
317
318         /* First, set the absolute frequency via its driver. */
319         set = &level->abs_set;
320         if (set->dev) {
321                 if (!device_is_attached(set->dev)) {
322                         error = ENXIO;
323                         goto out;
324                 }
325
326                 /* Bind to the target CPU before switching. */
327                 pc = cpu_get_pcpu(set->dev);
328
329                 /* Skip settings if CPU is not started. */
330                 if (pc == NULL) {
331                         error = 0;
332                         goto out;
333                 }
334                 thread_lock(curthread);
335                 pri = curthread->td_priority;
336                 sched_prio(curthread, PRI_MIN);
337                 sched_bind(curthread, pc->pc_cpuid);
338                 thread_unlock(curthread);
339                 CF_DEBUG("setting abs freq %d on %s (cpu %d)\n", set->freq,
340                     device_get_nameunit(set->dev), PCPU_GET(cpuid));
341                 error = CPUFREQ_DRV_SET(set->dev, set);
342                 thread_lock(curthread);
343                 sched_unbind(curthread);
344                 sched_prio(curthread, pri);
345                 thread_unlock(curthread);
346                 if (error) {
347                         goto out;
348                 }
349         }
350
351         /* Next, set any/all relative frequencies via their drivers. */
352         for (i = 0; i < level->rel_count; i++) {
353                 set = &level->rel_set[i];
354                 if (!device_is_attached(set->dev)) {
355                         error = ENXIO;
356                         goto out;
357                 }
358
359                 /* Bind to the target CPU before switching. */
360                 pc = cpu_get_pcpu(set->dev);
361                 thread_lock(curthread);
362                 pri = curthread->td_priority;
363                 sched_prio(curthread, PRI_MIN);
364                 sched_bind(curthread, pc->pc_cpuid);
365                 thread_unlock(curthread);
366                 CF_DEBUG("setting rel freq %d on %s (cpu %d)\n", set->freq,
367                     device_get_nameunit(set->dev), PCPU_GET(cpuid));
368                 error = CPUFREQ_DRV_SET(set->dev, set);
369                 thread_lock(curthread);
370                 sched_unbind(curthread);
371                 sched_prio(curthread, pri);
372                 thread_unlock(curthread);
373                 if (error) {
374                         /* XXX Back out any successful setting? */
375                         goto out;
376                 }
377         }
378
379 skip:
380         /*
381          * Before recording the current level, check if we're going to a
382          * higher priority.  If so, save the previous level and priority.
383          */
384         if (sc->curr_level.total_set.freq != CPUFREQ_VAL_UNKNOWN &&
385             priority > sc->curr_priority) {
386                 CF_DEBUG("saving level, freq %d prio %d\n",
387                     sc->curr_level.total_set.freq, sc->curr_priority);
388                 curr_freq = malloc(sizeof(*curr_freq), M_TEMP, M_NOWAIT);
389                 if (curr_freq == NULL) {
390                         error = ENOMEM;
391                         goto out;
392                 }
393                 curr_freq->level = sc->curr_level;
394                 curr_freq->priority = sc->curr_priority;
395                 SLIST_INSERT_HEAD(&sc->saved_freq, curr_freq, link);
396         }
397         sc->curr_level = *level;
398         sc->curr_priority = priority;
399
400         /* If we were restoring a saved state, reset it to "unused". */
401         if (saved_freq != NULL) {
402                 CF_DEBUG("resetting saved level\n");
403                 sc->curr_level.total_set.freq = CPUFREQ_VAL_UNKNOWN;
404                 SLIST_REMOVE_HEAD(&sc->saved_freq, link);
405                 free(saved_freq, M_TEMP);
406         }
407
408 out:
409         CF_MTX_UNLOCK(&sc->lock);
410
411         /*
412          * We changed levels (or attempted to) so notify the post-change
413          * handler of new frequency or error.
414          */
415         EVENTHANDLER_INVOKE(cpufreq_post_change, level, error);
416         if (error && set)
417                 device_printf(set->dev, "set freq failed, err %d\n", error);
418
419         return (error);
420 }
421
422 static int
423 cpufreq_get_frequency(device_t dev)
424 {
425         struct cf_setting set;
426
427         if (CPUFREQ_DRV_GET(dev, &set) != 0)
428                 return (-1);
429
430         return (set.freq);
431 }
432
433 /* Returns the index into *levels with the match */
434 static int
435 cpufreq_get_level(device_t dev, struct cf_level *levels, int count)
436 {
437         int i, freq;
438
439         if ((freq = cpufreq_get_frequency(dev)) < 0)
440                 return (-1);
441         for (i = 0; i < count; i++)
442                 if (freq == levels[i].total_set.freq)
443                         return (i);
444
445         return (-1);
446 }
447
448 /*
449  * Used by the cpufreq core, this function will populate *level with the current
450  * frequency as either determined by a cached value sc->curr_level, or in the
451  * case the lower level driver has set the CPUFREQ_FLAG_UNCACHED flag, it will
452  * obtain the frequency from the driver itself.
453  */
454 static int
455 cf_get_method(device_t dev, struct cf_level *level)
456 {
457         struct cpufreq_softc *sc;
458         struct cf_level *levels;
459         struct cf_setting *curr_set;
460         struct pcpu *pc;
461         int bdiff, count, diff, error, i, type;
462         uint64_t rate;
463
464         sc = device_get_softc(dev);
465         error = 0;
466         levels = NULL;
467
468         /*
469          * If we already know the current frequency, and the driver didn't ask
470          * for uncached usage, we're done.
471          */
472         CF_MTX_LOCK(&sc->lock);
473         curr_set = &sc->curr_level.total_set;
474         error = CPUFREQ_DRV_TYPE(sc->cf_drv_dev, &type);
475         if (error == 0 && (type & CPUFREQ_FLAG_UNCACHED)) {
476                 struct cf_setting set;
477
478                 /*
479                  * If the driver wants to always report back the real frequency,
480                  * first try the driver and if that fails, fall back to
481                  * estimating.
482                  */
483                 if (CPUFREQ_DRV_GET(sc->cf_drv_dev, &set) == 0) {
484                         sc->curr_level.total_set = set;
485                         CF_DEBUG("get returning immediate freq %d\n",
486                             curr_set->freq);
487                         goto out;
488                 }
489         } else if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) {
490                 CF_DEBUG("get returning known freq %d\n", curr_set->freq);
491                 error = 0;
492                 goto out;
493         }
494         CF_MTX_UNLOCK(&sc->lock);
495
496         /*
497          * We need to figure out the current level.  Loop through every
498          * driver, getting the current setting.  Then, attempt to get a best
499          * match of settings against each level.
500          */
501         count = CF_MAX_LEVELS;
502         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
503         if (levels == NULL)
504                 return (ENOMEM);
505         error = CPUFREQ_LEVELS(sc->dev, levels, &count);
506         if (error) {
507                 if (error == E2BIG)
508                         printf("cpufreq: need to increase CF_MAX_LEVELS\n");
509                 free(levels, M_TEMP);
510                 return (error);
511         }
512
513         /*
514          * Reacquire the lock and search for the given level.
515          *
516          * XXX Note: this is not quite right since we really need to go
517          * through each level and compare both absolute and relative
518          * settings for each driver in the system before making a match.
519          * The estimation code below catches this case though.
520          */
521         CF_MTX_LOCK(&sc->lock);
522         i = cpufreq_get_level(sc->cf_drv_dev, levels, count);
523         if (i >= 0)
524                 sc->curr_level = levels[i];
525         else
526                 CF_DEBUG("Couldn't find supported level for %s\n",
527                     device_get_nameunit(sc->cf_drv_dev));
528
529         if (curr_set->freq != CPUFREQ_VAL_UNKNOWN) {
530                 CF_DEBUG("get matched freq %d from drivers\n", curr_set->freq);
531                 goto out;
532         }
533
534         /*
535          * We couldn't find an exact match, so attempt to estimate and then
536          * match against a level.
537          */
538         pc = cpu_get_pcpu(dev);
539         if (pc == NULL) {
540                 error = ENXIO;
541                 goto out;
542         }
543         cpu_est_clockrate(pc->pc_cpuid, &rate);
544         rate /= 1000000;
545         bdiff = 1 << 30;
546         for (i = 0; i < count; i++) {
547                 diff = abs(levels[i].total_set.freq - rate);
548                 if (diff < bdiff) {
549                         bdiff = diff;
550                         sc->curr_level = levels[i];
551                 }
552         }
553         CF_DEBUG("get estimated freq %d\n", curr_set->freq);
554
555 out:
556         if (error == 0)
557                 *level = sc->curr_level;
558
559         CF_MTX_UNLOCK(&sc->lock);
560         if (levels)
561                 free(levels, M_TEMP);
562         return (error);
563 }
564
565 /*
566  * Either directly obtain settings from the cpufreq driver, or build a list of
567  * relative settings to be integrated later against an absolute max.
568  */
569 static int
570 cpufreq_add_levels(device_t cf_dev, struct cf_setting_lst *rel_sets)
571 {
572         struct cf_setting_array *set_arr;
573         struct cf_setting *sets;
574         device_t dev;
575         struct cpufreq_softc *sc;
576         int type, set_count, error;
577
578         sc = device_get_softc(cf_dev);
579         dev = sc->cf_drv_dev;
580
581         /* Skip devices that aren't ready. */
582         if (!device_is_attached(cf_dev))
583                 return (0);
584
585         /*
586          * Get settings, skipping drivers that offer no settings or
587          * provide settings for informational purposes only.
588          */
589         error = CPUFREQ_DRV_TYPE(dev, &type);
590         if (error != 0 || (type & CPUFREQ_FLAG_INFO_ONLY)) {
591                 if (error == 0) {
592                         CF_DEBUG("skipping info-only driver %s\n",
593                             device_get_nameunit(cf_dev));
594                 }
595                 return (error);
596         }
597
598         sets = malloc(MAX_SETTINGS * sizeof(*sets), M_TEMP, M_NOWAIT);
599         if (sets == NULL)
600                 return (ENOMEM);
601
602         set_count = MAX_SETTINGS;
603         error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count);
604         if (error != 0 || set_count == 0)
605                 goto out;
606
607         /* Add the settings to our absolute/relative lists. */
608         switch (type & CPUFREQ_TYPE_MASK) {
609         case CPUFREQ_TYPE_ABSOLUTE:
610                 error = cpufreq_insert_abs(sc, sets, set_count);
611                 break;
612         case CPUFREQ_TYPE_RELATIVE:
613                 CF_DEBUG("adding %d relative settings\n", set_count);
614                 set_arr = malloc(sizeof(*set_arr), M_TEMP, M_NOWAIT);
615                 if (set_arr == NULL) {
616                         error = ENOMEM;
617                         goto out;
618                 }
619                 bcopy(sets, set_arr->sets, set_count * sizeof(*sets));
620                 set_arr->count = set_count;
621                 TAILQ_INSERT_TAIL(rel_sets, set_arr, link);
622                 break;
623         default:
624                 error = EINVAL;
625         }
626
627 out:
628         free(sets, M_TEMP);
629         return (error);
630 }
631
632 static int
633 cf_levels_method(device_t dev, struct cf_level *levels, int *count)
634 {
635         struct cf_setting_array *set_arr;
636         struct cf_setting_lst rel_sets;
637         struct cpufreq_softc *sc;
638         struct cf_level *lev;
639         struct pcpu *pc;
640         int error, i;
641         uint64_t rate;
642
643         if (levels == NULL || count == NULL)
644                 return (EINVAL);
645
646         TAILQ_INIT(&rel_sets);
647         sc = device_get_softc(dev);
648
649         CF_MTX_LOCK(&sc->lock);
650         error = cpufreq_add_levels(sc->dev, &rel_sets);
651         if (error)
652                 goto out;
653
654         /*
655          * If there are no absolute levels, create a fake one at 100%.  We
656          * then cache the clockrate for later use as our base frequency.
657          */
658         if (TAILQ_EMPTY(&sc->all_levels)) {
659                 struct cf_setting set;
660
661                 CF_DEBUG("No absolute levels returned by driver\n");
662
663                 if (sc->max_mhz == CPUFREQ_VAL_UNKNOWN) {
664                         sc->max_mhz = cpu_get_nominal_mhz(dev);
665                         /*
666                          * If the CPU can't report a rate for 100%, hope
667                          * the CPU is running at its nominal rate right now,
668                          * and use that instead.
669                          */
670                         if (sc->max_mhz <= 0) {
671                                 pc = cpu_get_pcpu(dev);
672                                 cpu_est_clockrate(pc->pc_cpuid, &rate);
673                                 sc->max_mhz = rate / 1000000;
674                         }
675                 }
676                 memset(&set, CPUFREQ_VAL_UNKNOWN, sizeof(set));
677                 set.freq = sc->max_mhz;
678                 set.dev = NULL;
679                 error = cpufreq_insert_abs(sc, &set, 1);
680                 if (error)
681                         goto out;
682         }
683
684         /* Create a combined list of absolute + relative levels. */
685         TAILQ_FOREACH(set_arr, &rel_sets, link)
686                 cpufreq_expand_set(sc, set_arr);
687
688         /* If the caller doesn't have enough space, return the actual count. */
689         if (sc->all_count > *count) {
690                 *count = sc->all_count;
691                 error = E2BIG;
692                 goto out;
693         }
694
695         /* Finally, output the list of levels. */
696         i = 0;
697         TAILQ_FOREACH(lev, &sc->all_levels, link) {
698
699                 /* Skip levels that have a frequency that is too low. */
700                 if (lev->total_set.freq < cf_lowest_freq) {
701                         sc->all_count--;
702                         continue;
703                 }
704
705                 levels[i] = *lev;
706                 i++;
707         }
708         *count = sc->all_count;
709         error = 0;
710
711 out:
712         /* Clear all levels since we regenerate them each time. */
713         while ((lev = TAILQ_FIRST(&sc->all_levels)) != NULL) {
714                 TAILQ_REMOVE(&sc->all_levels, lev, link);
715                 free(lev, M_TEMP);
716         }
717         sc->all_count = 0;
718
719         CF_MTX_UNLOCK(&sc->lock);
720         while ((set_arr = TAILQ_FIRST(&rel_sets)) != NULL) {
721                 TAILQ_REMOVE(&rel_sets, set_arr, link);
722                 free(set_arr, M_TEMP);
723         }
724         return (error);
725 }
726
727 /*
728  * Create levels for an array of absolute settings and insert them in
729  * sorted order in the specified list.
730  */
731 static int
732 cpufreq_insert_abs(struct cpufreq_softc *sc, struct cf_setting *sets,
733     int count)
734 {
735         struct cf_level_lst *list;
736         struct cf_level *level, *search;
737         int i, inserted;
738
739         CF_MTX_ASSERT(&sc->lock);
740
741         list = &sc->all_levels;
742         for (i = 0; i < count; i++) {
743                 level = malloc(sizeof(*level), M_TEMP, M_NOWAIT | M_ZERO);
744                 if (level == NULL)
745                         return (ENOMEM);
746                 level->abs_set = sets[i];
747                 level->total_set = sets[i];
748                 level->total_set.dev = NULL;
749                 sc->all_count++;
750                 inserted = 0;
751
752                 if (TAILQ_EMPTY(list)) {
753                         CF_DEBUG("adding abs setting %d at head\n",
754                             sets[i].freq);
755                         TAILQ_INSERT_HEAD(list, level, link);
756                         continue;
757                 }
758
759                 TAILQ_FOREACH_REVERSE(search, list, cf_level_lst, link)
760                         if (sets[i].freq <= search->total_set.freq) {
761                                 CF_DEBUG("adding abs setting %d after %d\n",
762                                     sets[i].freq, search->total_set.freq);
763                                 TAILQ_INSERT_AFTER(list, search, level, link);
764                                 inserted = 1;
765                                 break;
766                         }
767
768                 if (inserted == 0) {
769                         TAILQ_FOREACH(search, list, link)
770                                 if (sets[i].freq >= search->total_set.freq) {
771                                         CF_DEBUG("adding abs setting %d before %d\n",
772                                             sets[i].freq, search->total_set.freq);
773                                         TAILQ_INSERT_BEFORE(search, level, link);
774                                         break;
775                                 }
776                 }
777         }
778
779         return (0);
780 }
781
782 /*
783  * Expand a group of relative settings, creating derived levels from them.
784  */
785 static int
786 cpufreq_expand_set(struct cpufreq_softc *sc, struct cf_setting_array *set_arr)
787 {
788         struct cf_level *fill, *search;
789         struct cf_setting *set;
790         int i;
791
792         CF_MTX_ASSERT(&sc->lock);
793
794         /*
795          * Walk the set of all existing levels in reverse.  This is so we
796          * create derived states from the lowest absolute settings first
797          * and discard duplicates created from higher absolute settings.
798          * For instance, a level of 50 Mhz derived from 100 Mhz + 50% is
799          * preferable to 200 Mhz + 25% because absolute settings are more
800          * efficient since they often change the voltage as well.
801          */
802         TAILQ_FOREACH_REVERSE(search, &sc->all_levels, cf_level_lst, link) {
803                 /* Add each setting to the level, duplicating if necessary. */
804                 for (i = 0; i < set_arr->count; i++) {
805                         set = &set_arr->sets[i];
806
807                         /*
808                          * If this setting is less than 100%, split the level
809                          * into two and add this setting to the new level.
810                          */
811                         fill = search;
812                         if (set->freq < 10000) {
813                                 fill = cpufreq_dup_set(sc, search, set);
814
815                                 /*
816                                  * The new level was a duplicate of an existing
817                                  * level or its absolute setting is too high
818                                  * so we freed it.  For example, we discard a
819                                  * derived level of 1000 MHz/25% if a level
820                                  * of 500 MHz/100% already exists.
821                                  */
822                                 if (fill == NULL)
823                                         break;
824                         }
825
826                         /* Add this setting to the existing or new level. */
827                         KASSERT(fill->rel_count < MAX_SETTINGS,
828                             ("cpufreq: too many relative drivers (%d)",
829                             MAX_SETTINGS));
830                         fill->rel_set[fill->rel_count] = *set;
831                         fill->rel_count++;
832                         CF_DEBUG(
833                         "expand set added rel setting %d%% to %d level\n",
834                             set->freq / 100, fill->total_set.freq);
835                 }
836         }
837
838         return (0);
839 }
840
841 static struct cf_level *
842 cpufreq_dup_set(struct cpufreq_softc *sc, struct cf_level *dup,
843     struct cf_setting *set)
844 {
845         struct cf_level_lst *list;
846         struct cf_level *fill, *itr;
847         struct cf_setting *fill_set, *itr_set;
848         int i;
849
850         CF_MTX_ASSERT(&sc->lock);
851
852         /*
853          * Create a new level, copy it from the old one, and update the
854          * total frequency and power by the percentage specified in the
855          * relative setting.
856          */
857         fill = malloc(sizeof(*fill), M_TEMP, M_NOWAIT);
858         if (fill == NULL)
859                 return (NULL);
860         *fill = *dup;
861         fill_set = &fill->total_set;
862         fill_set->freq =
863             ((uint64_t)fill_set->freq * set->freq) / 10000;
864         if (fill_set->power != CPUFREQ_VAL_UNKNOWN) {
865                 fill_set->power = ((uint64_t)fill_set->power * set->freq)
866                     / 10000;
867         }
868         if (set->lat != CPUFREQ_VAL_UNKNOWN) {
869                 if (fill_set->lat != CPUFREQ_VAL_UNKNOWN)
870                         fill_set->lat += set->lat;
871                 else
872                         fill_set->lat = set->lat;
873         }
874         CF_DEBUG("dup set considering derived setting %d\n", fill_set->freq);
875
876         /*
877          * If we copied an old level that we already modified (say, at 100%),
878          * we need to remove that setting before adding this one.  Since we
879          * process each setting array in order, we know any settings for this
880          * driver will be found at the end.
881          */
882         for (i = fill->rel_count; i != 0; i--) {
883                 if (fill->rel_set[i - 1].dev != set->dev)
884                         break;
885                 CF_DEBUG("removed last relative driver: %s\n",
886                     device_get_nameunit(set->dev));
887                 fill->rel_count--;
888         }
889
890         /*
891          * Insert the new level in sorted order.  If it is a duplicate of an
892          * existing level (1) or has an absolute setting higher than the
893          * existing level (2), do not add it.  We can do this since any such
894          * level is guaranteed use less power.  For example (1), a level with
895          * one absolute setting of 800 Mhz uses less power than one composed
896          * of an absolute setting of 1600 Mhz and a relative setting at 50%.
897          * Also for example (2), a level of 800 Mhz/75% is preferable to
898          * 1600 Mhz/25% even though the latter has a lower total frequency.
899          */
900         list = &sc->all_levels;
901         KASSERT(!TAILQ_EMPTY(list), ("all levels list empty in dup set"));
902         TAILQ_FOREACH_REVERSE(itr, list, cf_level_lst, link) {
903                 itr_set = &itr->total_set;
904                 if (CPUFREQ_CMP(fill_set->freq, itr_set->freq)) {
905                         CF_DEBUG("dup set rejecting %d (dupe)\n",
906                             fill_set->freq);
907                         itr = NULL;
908                         break;
909                 } else if (fill_set->freq < itr_set->freq) {
910                         if (fill->abs_set.freq <= itr->abs_set.freq) {
911                                 CF_DEBUG(
912                         "dup done, inserting new level %d after %d\n",
913                                     fill_set->freq, itr_set->freq);
914                                 TAILQ_INSERT_AFTER(list, itr, fill, link);
915                                 sc->all_count++;
916                         } else {
917                                 CF_DEBUG("dup set rejecting %d (abs too big)\n",
918                                     fill_set->freq);
919                                 itr = NULL;
920                         }
921                         break;
922                 }
923         }
924
925         /* We didn't find a good place for this new level so free it. */
926         if (itr == NULL) {
927                 CF_DEBUG("dup set freeing new level %d (not optimal)\n",
928                     fill_set->freq);
929                 free(fill, M_TEMP);
930                 fill = NULL;
931         }
932
933         return (fill);
934 }
935
936 static int
937 cpufreq_curr_sysctl(SYSCTL_HANDLER_ARGS)
938 {
939         struct cpufreq_softc *sc;
940         struct cf_level *levels;
941         int best, count, diff, bdiff, devcount, error, freq, i, n;
942         device_t *devs;
943
944         devs = NULL;
945         sc = oidp->oid_arg1;
946         levels = sc->levels_buf;
947
948         error = CPUFREQ_GET(sc->dev, &levels[0]);
949         if (error)
950                 goto out;
951         freq = levels[0].total_set.freq;
952         error = sysctl_handle_int(oidp, &freq, 0, req);
953         if (error != 0 || req->newptr == NULL)
954                 goto out;
955
956         /*
957          * While we only call cpufreq_get() on one device (assuming all
958          * CPUs have equal levels), we call cpufreq_set() on all CPUs.
959          * This is needed for some MP systems.
960          */
961         error = devclass_get_devices(cpufreq_dc, &devs, &devcount);
962         if (error)
963                 goto out;
964         for (n = 0; n < devcount; n++) {
965                 count = CF_MAX_LEVELS;
966                 error = CPUFREQ_LEVELS(devs[n], levels, &count);
967                 if (error) {
968                         if (error == E2BIG)
969                                 printf(
970                         "cpufreq: need to increase CF_MAX_LEVELS\n");
971                         break;
972                 }
973                 best = 0;
974                 bdiff = 1 << 30;
975                 for (i = 0; i < count; i++) {
976                         diff = abs(levels[i].total_set.freq - freq);
977                         if (diff < bdiff) {
978                                 bdiff = diff;
979                                 best = i;
980                         }
981                 }
982                 error = CPUFREQ_SET(devs[n], &levels[best], CPUFREQ_PRIO_USER);
983         }
984
985 out:
986         if (devs)
987                 free(devs, M_TEMP);
988         return (error);
989 }
990
991 static int
992 cpufreq_levels_sysctl(SYSCTL_HANDLER_ARGS)
993 {
994         struct cpufreq_softc *sc;
995         struct cf_level *levels;
996         struct cf_setting *set;
997         struct sbuf sb;
998         int count, error, i;
999
1000         sc = oidp->oid_arg1;
1001         sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
1002
1003         /* Get settings from the device and generate the output string. */
1004         count = CF_MAX_LEVELS;
1005         levels = sc->levels_buf;
1006         if (levels == NULL) {
1007                 sbuf_delete(&sb);
1008                 return (ENOMEM);
1009         }
1010         error = CPUFREQ_LEVELS(sc->dev, levels, &count);
1011         if (error) {
1012                 if (error == E2BIG)
1013                         printf("cpufreq: need to increase CF_MAX_LEVELS\n");
1014                 goto out;
1015         }
1016         if (count) {
1017                 for (i = 0; i < count; i++) {
1018                         set = &levels[i].total_set;
1019                         sbuf_printf(&sb, "%d/%d ", set->freq, set->power);
1020                 }
1021         } else
1022                 sbuf_cpy(&sb, "0");
1023         sbuf_trim(&sb);
1024         sbuf_finish(&sb);
1025         error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1026
1027 out:
1028         sbuf_delete(&sb);
1029         return (error);
1030 }
1031
1032 static int
1033 cpufreq_settings_sysctl(SYSCTL_HANDLER_ARGS)
1034 {
1035         device_t dev;
1036         struct cf_setting *sets;
1037         struct sbuf sb;
1038         int error, i, set_count;
1039
1040         dev = oidp->oid_arg1;
1041         sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
1042
1043         /* Get settings from the device and generate the output string. */
1044         set_count = MAX_SETTINGS;
1045         sets = malloc(set_count * sizeof(*sets), M_TEMP, M_NOWAIT);
1046         if (sets == NULL) {
1047                 sbuf_delete(&sb);
1048                 return (ENOMEM);
1049         }
1050         error = CPUFREQ_DRV_SETTINGS(dev, sets, &set_count);
1051         if (error)
1052                 goto out;
1053         if (set_count) {
1054                 for (i = 0; i < set_count; i++)
1055                         sbuf_printf(&sb, "%d/%d ", sets[i].freq, sets[i].power);
1056         } else
1057                 sbuf_cpy(&sb, "0");
1058         sbuf_trim(&sb);
1059         sbuf_finish(&sb);
1060         error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1061
1062 out:
1063         free(sets, M_TEMP);
1064         sbuf_delete(&sb);
1065         return (error);
1066 }
1067
1068 static void
1069 cpufreq_add_freq_driver_sysctl(device_t cf_dev)
1070 {
1071         struct cpufreq_softc *sc;
1072
1073         sc = device_get_softc(cf_dev);
1074         SYSCTL_ADD_CONST_STRING(&sc->sysctl_ctx,
1075             SYSCTL_CHILDREN(device_get_sysctl_tree(cf_dev)), OID_AUTO,
1076             "freq_driver", CTLFLAG_RD, device_get_nameunit(sc->cf_drv_dev),
1077             "cpufreq driver used by this cpu");
1078 }
1079
1080 int
1081 cpufreq_register(device_t dev)
1082 {
1083         struct cpufreq_softc *sc;
1084         device_t cf_dev, cpu_dev;
1085         int error;
1086
1087         /* Add a sysctl to get each driver's settings separately. */
1088         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1089             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1090             OID_AUTO, "freq_settings",
1091             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dev, 0,
1092             cpufreq_settings_sysctl, "A", "CPU frequency driver settings");
1093
1094         /*
1095          * Add only one cpufreq device to each CPU.  Currently, all CPUs
1096          * must offer the same levels and be switched at the same time.
1097          */
1098         cpu_dev = device_get_parent(dev);
1099         if ((cf_dev = device_find_child(cpu_dev, "cpufreq", -1))) {
1100                 sc = device_get_softc(cf_dev);
1101                 sc->max_mhz = CPUFREQ_VAL_UNKNOWN;
1102                 MPASS(sc->cf_drv_dev != NULL);
1103                 return (0);
1104         }
1105
1106         /* Add the child device and possibly sysctls. */
1107         cf_dev = BUS_ADD_CHILD(cpu_dev, 0, "cpufreq", -1);
1108         if (cf_dev == NULL)
1109                 return (ENOMEM);
1110         device_quiet(cf_dev);
1111
1112         error = device_probe_and_attach(cf_dev);
1113         if (error)
1114                 return (error);
1115
1116         sc = device_get_softc(cf_dev);
1117         sc->cf_drv_dev = dev;
1118         cpufreq_add_freq_driver_sysctl(cf_dev);
1119         return (error);
1120 }
1121
1122 int
1123 cpufreq_unregister(device_t dev)
1124 {
1125         device_t cf_dev;
1126         struct cpufreq_softc *sc;
1127
1128         /*
1129          * If this is the last cpufreq child device, remove the control
1130          * device as well.  We identify cpufreq children by calling a method
1131          * they support.
1132          */
1133         cf_dev = device_find_child(device_get_parent(dev), "cpufreq", -1);
1134         if (cf_dev == NULL) {
1135                 device_printf(dev,
1136         "warning: cpufreq_unregister called with no cpufreq device active\n");
1137                 return (0);
1138         }
1139         sc = device_get_softc(cf_dev);
1140         MPASS(sc->cf_drv_dev == dev);
1141         device_delete_child(device_get_parent(cf_dev), cf_dev);
1142
1143         return (0);
1144 }
1145
1146 int
1147 cpufreq_settings_changed(device_t dev)
1148 {
1149
1150         EVENTHANDLER_INVOKE(cpufreq_levels_changed,
1151             device_get_unit(device_get_parent(dev)));
1152         return (0);
1153 }