]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_ffclock.c
sysent: Get rid of bogus sys/sysent.h include.
[FreeBSD/FreeBSD.git] / sys / kern / kern_ffclock.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 The University of Melbourne
5  * All rights reserved.
6  *
7  * This software was developed by Julien Ridoux at the University of Melbourne
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_ffclock.h"
36
37 #include <sys/param.h>
38 #include <sys/bus.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/sysproto.h>
47 #include <sys/sysctl.h>
48 #include <sys/systm.h>
49 #include <sys/timeffc.h>
50
51 #ifdef FFCLOCK
52
53 FEATURE(ffclock, "Feed-forward clock support");
54
55 extern struct ffclock_estimate ffclock_estimate;
56 extern struct bintime ffclock_boottime;
57 extern int8_t ffclock_updated;
58 extern struct mtx ffclock_mtx;
59
60 /*
61  * Feed-forward clock absolute time. This should be the preferred way to read
62  * the feed-forward clock for "wall-clock" type time. The flags allow to compose
63  * various flavours of absolute time (e.g. with or without leap seconds taken
64  * into account). If valid pointers are provided, the ffcounter value and an
65  * upper bound on clock error associated with the bintime are provided.
66  * NOTE: use ffclock_convert_abs() to differ the conversion of a ffcounter value
67  * read earlier.
68  */
69 void
70 ffclock_abstime(ffcounter *ffcount, struct bintime *bt,
71     struct bintime *error_bound, uint32_t flags)
72 {
73         struct ffclock_estimate cest;
74         ffcounter ffc;
75         ffcounter update_ffcount;
76         ffcounter ffdelta_error;
77
78         /* Get counter and corresponding time. */
79         if ((flags & FFCLOCK_FAST) == FFCLOCK_FAST)
80                 ffclock_last_tick(&ffc, bt, flags);
81         else {
82                 ffclock_read_counter(&ffc);
83                 ffclock_convert_abs(ffc, bt, flags);
84         }
85
86         /* Current ffclock estimate, use update_ffcount as generation number. */
87         do {
88                 update_ffcount = ffclock_estimate.update_ffcount;
89                 bcopy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
90         } while (update_ffcount != ffclock_estimate.update_ffcount);
91
92         /*
93          * Leap second adjustment. Total as seen by synchronisation algorithm
94          * since it started. cest.leapsec_next is the ffcounter prediction of
95          * when the next leapsecond occurs.
96          */
97         if ((flags & FFCLOCK_LEAPSEC) == FFCLOCK_LEAPSEC) {
98                 bt->sec -= cest.leapsec_total;
99                 if (ffc > cest.leapsec_next)
100                         bt->sec -= cest.leapsec;
101         }
102
103         /* Boot time adjustment, for uptime/monotonic clocks. */
104         if ((flags & FFCLOCK_UPTIME) == FFCLOCK_UPTIME) {
105                 bintime_sub(bt, &ffclock_boottime);
106         }
107
108         /* Compute error bound if a valid pointer has been passed. */
109         if (error_bound) {
110                 ffdelta_error = ffc - cest.update_ffcount;
111                 ffclock_convert_diff(ffdelta_error, error_bound);
112                 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s] */
113                 bintime_mul(error_bound, cest.errb_rate *
114                     (uint64_t)18446744073709LL);
115                 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns] */
116                 bintime_addx(error_bound, cest.errb_abs *
117                     (uint64_t)18446744073LL);
118         }
119
120         if (ffcount)
121                 *ffcount = ffc;
122 }
123
124 /*
125  * Feed-forward difference clock. This should be the preferred way to convert a
126  * time interval in ffcounter values into a time interval in seconds. If a valid
127  * pointer is passed, an upper bound on the error in computing the time interval
128  * in seconds is provided.
129  */
130 void
131 ffclock_difftime(ffcounter ffdelta, struct bintime *bt,
132     struct bintime *error_bound)
133 {
134         ffcounter update_ffcount;
135         uint32_t err_rate;
136
137         ffclock_convert_diff(ffdelta, bt);
138
139         if (error_bound) {
140                 do {
141                         update_ffcount = ffclock_estimate.update_ffcount;
142                         err_rate = ffclock_estimate.errb_rate;
143                 } while (update_ffcount != ffclock_estimate.update_ffcount);
144
145                 ffclock_convert_diff(ffdelta, error_bound);
146                 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s] */
147                 bintime_mul(error_bound, err_rate * (uint64_t)18446744073709LL);
148         }
149 }
150
151 /*
152  * Create a new kern.sysclock sysctl node, which will be home to some generic
153  * sysclock configuration variables. Feed-forward clock specific variables will
154  * live under the ffclock subnode.
155  */
156
157 SYSCTL_NODE(_kern, OID_AUTO, sysclock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
158     "System clock related configuration");
159 SYSCTL_NODE(_kern_sysclock, OID_AUTO, ffclock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
160     "Feed-forward clock configuration");
161
162 static char *sysclocks[] = {"feedback", "feed-forward"};
163 #define MAX_SYSCLOCK_NAME_LEN 16
164 #define NUM_SYSCLOCKS nitems(sysclocks)
165
166 static int ffclock_version = 2;
167 SYSCTL_INT(_kern_sysclock_ffclock, OID_AUTO, version, CTLFLAG_RD,
168     &ffclock_version, 0, "Feed-forward clock kernel version");
169
170 /* List available sysclocks. */
171 static int
172 sysctl_kern_sysclock_available(SYSCTL_HANDLER_ARGS)
173 {
174         struct sbuf *s;
175         int clk, error;
176
177         s = sbuf_new_for_sysctl(NULL, NULL,
178             MAX_SYSCLOCK_NAME_LEN * NUM_SYSCLOCKS, req);
179         if (s == NULL)
180                 return (ENOMEM);
181
182         for (clk = 0; clk < NUM_SYSCLOCKS; clk++) {
183                 sbuf_cat(s, sysclocks[clk]);
184                 if (clk + 1 < NUM_SYSCLOCKS)
185                         sbuf_cat(s, " ");
186         }
187         error = sbuf_finish(s);
188         sbuf_delete(s);
189
190         return (error);
191 }
192
193 SYSCTL_PROC(_kern_sysclock, OID_AUTO, available,
194     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0,
195     sysctl_kern_sysclock_available, "A",
196     "List of available system clocks");
197
198 /*
199  * Return the name of the active system clock if read, or attempt to change
200  * the active system clock to the user specified one if written to. The active
201  * system clock is read when calling any of the [get]{bin,nano,micro}[up]time()
202  * functions.
203  */
204 static int
205 sysctl_kern_sysclock_active(SYSCTL_HANDLER_ARGS)
206 {
207         char newclock[MAX_SYSCLOCK_NAME_LEN];
208         int error;
209         int clk;
210
211         /* Return the name of the current active sysclock. */
212         strlcpy(newclock, sysclocks[sysclock_active], sizeof(newclock));
213         error = sysctl_handle_string(oidp, newclock, sizeof(newclock), req);
214
215         /* Check for error or no change */
216         if (error != 0 || req->newptr == NULL)
217                 goto done;
218
219         /* Change the active sysclock to the user specified one: */
220         error = EINVAL;
221         for (clk = 0; clk < NUM_SYSCLOCKS; clk++) {
222                 if (strncmp(newclock, sysclocks[clk],
223                     MAX_SYSCLOCK_NAME_LEN - 1)) {
224                         continue;
225                 }
226                 sysclock_active = clk;
227                 error = 0;
228                 break;
229         }
230 done:
231         return (error);
232 }
233
234 SYSCTL_PROC(_kern_sysclock, OID_AUTO, active,
235     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0,
236     sysctl_kern_sysclock_active, "A",
237     "Name of the active system clock which is currently serving time");
238
239 static int sysctl_kern_ffclock_ffcounter_bypass = 0;
240 SYSCTL_INT(_kern_sysclock_ffclock, OID_AUTO, ffcounter_bypass, CTLFLAG_RW,
241     &sysctl_kern_ffclock_ffcounter_bypass, 0,
242     "Use reliable hardware timecounter as the feed-forward counter");
243
244 /*
245  * High level functions to access the Feed-Forward Clock.
246  */
247 void
248 ffclock_bintime(struct bintime *bt)
249 {
250
251         ffclock_abstime(NULL, bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
252 }
253
254 void
255 ffclock_nanotime(struct timespec *tsp)
256 {
257         struct bintime bt;
258
259         ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
260         bintime2timespec(&bt, tsp);
261 }
262
263 void
264 ffclock_microtime(struct timeval *tvp)
265 {
266         struct bintime bt;
267
268         ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
269         bintime2timeval(&bt, tvp);
270 }
271
272 void
273 ffclock_getbintime(struct bintime *bt)
274 {
275
276         ffclock_abstime(NULL, bt, NULL,
277             FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
278 }
279
280 void
281 ffclock_getnanotime(struct timespec *tsp)
282 {
283         struct bintime bt;
284
285         ffclock_abstime(NULL, &bt, NULL,
286             FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
287         bintime2timespec(&bt, tsp);
288 }
289
290 void
291 ffclock_getmicrotime(struct timeval *tvp)
292 {
293         struct bintime bt;
294
295         ffclock_abstime(NULL, &bt, NULL,
296             FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
297         bintime2timeval(&bt, tvp);
298 }
299
300 void
301 ffclock_binuptime(struct bintime *bt)
302 {
303
304         ffclock_abstime(NULL, bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
305 }
306
307 void
308 ffclock_nanouptime(struct timespec *tsp)
309 {
310         struct bintime bt;
311
312         ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
313         bintime2timespec(&bt, tsp);
314 }
315
316 void
317 ffclock_microuptime(struct timeval *tvp)
318 {
319         struct bintime bt;
320
321         ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
322         bintime2timeval(&bt, tvp);
323 }
324
325 void
326 ffclock_getbinuptime(struct bintime *bt)
327 {
328
329         ffclock_abstime(NULL, bt, NULL,
330             FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
331 }
332
333 void
334 ffclock_getnanouptime(struct timespec *tsp)
335 {
336         struct bintime bt;
337
338         ffclock_abstime(NULL, &bt, NULL,
339             FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
340         bintime2timespec(&bt, tsp);
341 }
342
343 void
344 ffclock_getmicrouptime(struct timeval *tvp)
345 {
346         struct bintime bt;
347
348         ffclock_abstime(NULL, &bt, NULL,
349             FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
350         bintime2timeval(&bt, tvp);
351 }
352
353 void
354 ffclock_bindifftime(ffcounter ffdelta, struct bintime *bt)
355 {
356
357         ffclock_difftime(ffdelta, bt, NULL);
358 }
359
360 void
361 ffclock_nanodifftime(ffcounter ffdelta, struct timespec *tsp)
362 {
363         struct bintime bt;
364
365         ffclock_difftime(ffdelta, &bt, NULL);
366         bintime2timespec(&bt, tsp);
367 }
368
369 void
370 ffclock_microdifftime(ffcounter ffdelta, struct timeval *tvp)
371 {
372         struct bintime bt;
373
374         ffclock_difftime(ffdelta, &bt, NULL);
375         bintime2timeval(&bt, tvp);
376 }
377
378 /*
379  * System call allowing userland applications to retrieve the current value of
380  * the Feed-Forward Clock counter.
381  */
382 #ifndef _SYS_SYSPROTO_H_
383 struct ffclock_getcounter_args {
384         ffcounter *ffcount;
385 };
386 #endif
387 /* ARGSUSED */
388 int
389 sys_ffclock_getcounter(struct thread *td, struct ffclock_getcounter_args *uap)
390 {
391         ffcounter ffcount;
392         int error;
393
394         ffcount = 0;
395         ffclock_read_counter(&ffcount);
396         if (ffcount == 0)
397                 return (EAGAIN);
398         error = copyout(&ffcount, uap->ffcount, sizeof(ffcounter));
399
400         return (error);
401 }
402
403 /*
404  * System call allowing the synchronisation daemon to push new feed-forward clock
405  * estimates to the kernel. Acquire ffclock_mtx to prevent concurrent updates
406  * and ensure data consistency.
407  * NOTE: ffclock_updated signals the fftimehands that new estimates are
408  * available. The updated estimates are picked up by the fftimehands on next
409  * tick, which could take as long as 1/hz seconds (if ticks are not missed).
410  */
411 #ifndef _SYS_SYSPROTO_H_
412 struct ffclock_setestimate_args {
413         struct ffclock_estimate *cest;
414 };
415 #endif
416 /* ARGSUSED */
417 int
418 sys_ffclock_setestimate(struct thread *td, struct ffclock_setestimate_args *uap)
419 {
420         struct ffclock_estimate cest;
421         int error;
422
423         /* Reuse of PRIV_CLOCK_SETTIME. */
424         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
425                 return (error);
426
427         if ((error = copyin(uap->cest, &cest, sizeof(struct ffclock_estimate)))
428             != 0)
429                 return (error);
430
431         mtx_lock(&ffclock_mtx);
432         memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
433         ffclock_updated++;
434         mtx_unlock(&ffclock_mtx);
435         return (error);
436 }
437
438 /*
439  * System call allowing userland applications to retrieve the clock estimates
440  * stored within the kernel. It is useful to kickstart the synchronisation
441  * daemon with the kernel's knowledge of hardware timecounter.
442  */
443 #ifndef _SYS_SYSPROTO_H_
444 struct ffclock_getestimate_args {
445         struct ffclock_estimate *cest;
446 };
447 #endif
448 /* ARGSUSED */
449 int
450 sys_ffclock_getestimate(struct thread *td, struct ffclock_getestimate_args *uap)
451 {
452         struct ffclock_estimate cest;
453         int error;
454
455         mtx_lock(&ffclock_mtx);
456         memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
457         mtx_unlock(&ffclock_mtx);
458         error = copyout(&cest, uap->cest, sizeof(struct ffclock_estimate));
459         return (error);
460 }
461
462 #else /* !FFCLOCK */
463
464 int
465 sys_ffclock_getcounter(struct thread *td, struct ffclock_getcounter_args *uap)
466 {
467
468         return (ENOSYS);
469 }
470
471 int
472 sys_ffclock_setestimate(struct thread *td, struct ffclock_setestimate_args *uap)
473 {
474
475         return (ENOSYS);
476 }
477
478 int
479 sys_ffclock_getestimate(struct thread *td, struct ffclock_getestimate_args *uap)
480 {
481
482         return (ENOSYS);
483 }
484
485 #endif /* FFCLOCK */