]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_lockf.c
Merge bmake-20230208
[FreeBSD/FreeBSD.git] / sys / kern / kern_lockf.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *      The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
61  */
62
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65
66 #include "opt_debug_lockf.h"
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/jail.h>
72 #include <sys/kernel.h>
73 #include <sys/limits.h>
74 #include <sys/lock.h>
75 #include <sys/mount.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/sbuf.h>
79 #include <sys/stat.h>
80 #include <sys/sx.h>
81 #include <sys/unistd.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/malloc.h>
85 #include <sys/fcntl.h>
86 #include <sys/lockf.h>
87 #include <sys/taskqueue.h>
88
89 #ifdef LOCKF_DEBUG
90 #include <sys/sysctl.h>
91
92 static int      lockf_debug = 0; /* control debug output */
93 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
94 #endif
95
96 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
97
98 struct owner_edge;
99 struct owner_vertex;
100 struct owner_vertex_list;
101 struct owner_graph;
102
103 #define NOLOCKF (struct lockf_entry *)0
104 #define SELF    0x1
105 #define OTHERS  0x2
106 static void      lf_init(void *);
107 static int       lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
108 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
109     int);
110 static struct lockf_entry *
111                  lf_alloc_lock(struct lock_owner *);
112 static int       lf_free_lock(struct lockf_entry *);
113 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
114 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
115 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
116 static void      lf_free_edge(struct lockf_edge *);
117 static struct lockf_edge *
118                  lf_alloc_edge(void);
119 static void      lf_alloc_vertex(struct lockf_entry *);
120 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
121 static void      lf_remove_edge(struct lockf_edge *);
122 static void      lf_remove_outgoing(struct lockf_entry *);
123 static void      lf_remove_incoming(struct lockf_entry *);
124 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
125 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
126 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
127     int);
128 static struct lockf_entry *
129                  lf_getblock(struct lockf *, struct lockf_entry *);
130 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
131 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
132 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
133 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
134     int all, struct lockf_entry_list *);
135 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
136         struct lockf_entry_list*);
137 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
138         struct lockf_entry_list*);
139 static int       lf_setlock(struct lockf *, struct lockf_entry *,
140     struct vnode *, void **cookiep);
141 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
142 static void      lf_split(struct lockf *, struct lockf_entry *,
143     struct lockf_entry *, struct lockf_entry_list *);
144 #ifdef LOCKF_DEBUG
145 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
146     struct owner_vertex_list *path);
147 static void      graph_check(struct owner_graph *g, int checkorder);
148 static void      graph_print_vertices(struct owner_vertex_list *set);
149 #endif
150 static int       graph_delta_forward(struct owner_graph *g,
151     struct owner_vertex *x, struct owner_vertex *y,
152     struct owner_vertex_list *delta);
153 static int       graph_delta_backward(struct owner_graph *g,
154     struct owner_vertex *x, struct owner_vertex *y,
155     struct owner_vertex_list *delta);
156 static int       graph_add_indices(int *indices, int n,
157     struct owner_vertex_list *set);
158 static int       graph_assign_indices(struct owner_graph *g, int *indices,
159     int nextunused, struct owner_vertex_list *set);
160 static int       graph_add_edge(struct owner_graph *g,
161     struct owner_vertex *x, struct owner_vertex *y);
162 static void      graph_remove_edge(struct owner_graph *g,
163     struct owner_vertex *x, struct owner_vertex *y);
164 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
165     struct lock_owner *lo);
166 static void      graph_free_vertex(struct owner_graph *g,
167     struct owner_vertex *v);
168 static struct owner_graph * graph_init(struct owner_graph *g);
169 #ifdef LOCKF_DEBUG
170 static void      lf_print(char *, struct lockf_entry *);
171 static void      lf_printlist(char *, struct lockf_entry *);
172 static void      lf_print_owner(struct lock_owner *);
173 #endif
174
175 /*
176  * This structure is used to keep track of both local and remote lock
177  * owners. The lf_owner field of the struct lockf_entry points back at
178  * the lock owner structure. Each possible lock owner (local proc for
179  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
180  * pair for remote locks) is represented by a unique instance of
181  * struct lock_owner.
182  *
183  * If a lock owner has a lock that blocks some other lock or a lock
184  * that is waiting for some other lock, it also has a vertex in the
185  * owner_graph below.
186  *
187  * Locks:
188  * (s)          locked by state->ls_lock
189  * (S)          locked by lf_lock_states_lock
190  * (g)          locked by lf_owner_graph_lock
191  * (c)          const until freeing
192  */
193 #define LOCK_OWNER_HASH_SIZE    256
194
195 struct lock_owner {
196         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
197         int     lo_refs;            /* (l) Number of locks referring to this */
198         int     lo_flags;           /* (c) Flags passwd to lf_advlock */
199         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
200         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
201         int     lo_sysid;           /* (c) System Id of the lock owner */
202         int     lo_hash;            /* (c) Used to lock the appropriate chain */
203         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
204 };
205
206 LIST_HEAD(lock_owner_list, lock_owner);
207
208 struct lock_owner_chain {
209         struct sx               lock;
210         struct lock_owner_list  list;
211 };
212
213 static struct sx                lf_lock_states_lock;
214 static struct lockf_list        lf_lock_states; /* (S) */
215 static struct lock_owner_chain  lf_lock_owners[LOCK_OWNER_HASH_SIZE];
216
217 /*
218  * Structures for deadlock detection.
219  *
220  * We have two types of directed graph, the first is the set of locks,
221  * both active and pending on a vnode. Within this graph, active locks
222  * are terminal nodes in the graph (i.e. have no out-going
223  * edges). Pending locks have out-going edges to each blocking active
224  * lock that prevents the lock from being granted and also to each
225  * older pending lock that would block them if it was active. The
226  * graph for each vnode is naturally acyclic; new edges are only ever
227  * added to or from new nodes (either new pending locks which only add
228  * out-going edges or new active locks which only add in-coming edges)
229  * therefore they cannot create loops in the lock graph.
230  *
231  * The second graph is a global graph of lock owners. Each lock owner
232  * is a vertex in that graph and an edge is added to the graph
233  * whenever an edge is added to a vnode graph, with end points
234  * corresponding to owner of the new pending lock and the owner of the
235  * lock upon which it waits. In order to prevent deadlock, we only add
236  * an edge to this graph if the new edge would not create a cycle.
237  * 
238  * The lock owner graph is topologically sorted, i.e. if a node has
239  * any outgoing edges, then it has an order strictly less than any
240  * node to which it has an outgoing edge. We preserve this ordering
241  * (and detect cycles) on edge insertion using Algorithm PK from the
242  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
243  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
244  * No. 1.7)
245  */
246 struct owner_vertex;
247
248 struct owner_edge {
249         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
250         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
251         int             e_refs;           /* (g) number of times added */
252         struct owner_vertex *e_from;      /* (c) out-going from here */
253         struct owner_vertex *e_to;        /* (c) in-coming to here */
254 };
255 LIST_HEAD(owner_edge_list, owner_edge);
256
257 struct owner_vertex {
258         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
259         uint32_t        v_gen;            /* (g) workspace for edge insertion */
260         int             v_order;          /* (g) order of vertex in graph */
261         struct owner_edge_list v_outedges;/* (g) list of out-edges */
262         struct owner_edge_list v_inedges; /* (g) list of in-edges */
263         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
264 };
265 TAILQ_HEAD(owner_vertex_list, owner_vertex);
266
267 struct owner_graph {
268         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
269         int             g_size;           /* (g) number of vertices */
270         int             g_space;          /* (g) space allocated for vertices */
271         int             *g_indexbuf;      /* (g) workspace for loop detection */
272         uint32_t        g_gen;            /* (g) increment when re-ordering */
273 };
274
275 static struct sx                lf_owner_graph_lock;
276 static struct owner_graph       lf_owner_graph;
277
278 /*
279  * Initialise various structures and locks.
280  */
281 static void
282 lf_init(void *dummy)
283 {
284         int i;
285
286         sx_init(&lf_lock_states_lock, "lock states lock");
287         LIST_INIT(&lf_lock_states);
288
289         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
290                 sx_init(&lf_lock_owners[i].lock, "lock owners lock");
291                 LIST_INIT(&lf_lock_owners[i].list);
292         }
293
294         sx_init(&lf_owner_graph_lock, "owner graph lock");
295         graph_init(&lf_owner_graph);
296 }
297 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
298
299 /*
300  * Generate a hash value for a lock owner.
301  */
302 static int
303 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
304 {
305         uint32_t h;
306
307         if (flags & F_REMOTE) {
308                 h = HASHSTEP(0, fl->l_pid);
309                 h = HASHSTEP(h, fl->l_sysid);
310         } else if (flags & F_FLOCK) {
311                 h = ((uintptr_t) id) >> 7;
312         } else {
313                 h = ((uintptr_t) vp) >> 7;
314         }
315
316         return (h % LOCK_OWNER_HASH_SIZE);
317 }
318
319 /*
320  * Return true if a lock owner matches the details passed to
321  * lf_advlock.
322  */
323 static int
324 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
325     int flags)
326 {
327         if (flags & F_REMOTE) {
328                 return lo->lo_pid == fl->l_pid
329                         && lo->lo_sysid == fl->l_sysid;
330         } else {
331                 return lo->lo_id == id;
332         }
333 }
334
335 static struct lockf_entry *
336 lf_alloc_lock(struct lock_owner *lo)
337 {
338         struct lockf_entry *lf;
339
340         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
341
342 #ifdef LOCKF_DEBUG
343         if (lockf_debug & 4)
344                 printf("Allocated lock %p\n", lf);
345 #endif
346         if (lo) {
347                 sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
348                 lo->lo_refs++;
349                 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
350                 lf->lf_owner = lo;
351         }
352
353         return (lf);
354 }
355
356 static int
357 lf_free_lock(struct lockf_entry *lock)
358 {
359         struct sx *chainlock;
360
361         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
362         if (--lock->lf_refs > 0)
363                 return (0);
364         /*
365          * Adjust the lock_owner reference count and
366          * reclaim the entry if this is the last lock
367          * for that owner.
368          */
369         struct lock_owner *lo = lock->lf_owner;
370         if (lo) {
371                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
372                     ("freeing lock with dependencies"));
373                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
374                     ("freeing lock with dependants"));
375                 chainlock = &lf_lock_owners[lo->lo_hash].lock;
376                 sx_xlock(chainlock);
377                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
378                 lo->lo_refs--;
379                 if (lo->lo_refs == 0) {
380 #ifdef LOCKF_DEBUG
381                         if (lockf_debug & 1)
382                                 printf("lf_free_lock: freeing lock owner %p\n",
383                                     lo);
384 #endif
385                         if (lo->lo_vertex) {
386                                 sx_xlock(&lf_owner_graph_lock);
387                                 graph_free_vertex(&lf_owner_graph,
388                                     lo->lo_vertex);
389                                 sx_xunlock(&lf_owner_graph_lock);
390                         }
391                         LIST_REMOVE(lo, lo_link);
392                         free(lo, M_LOCKF);
393 #ifdef LOCKF_DEBUG
394                         if (lockf_debug & 4)
395                                 printf("Freed lock owner %p\n", lo);
396 #endif
397                 }
398                 sx_unlock(chainlock);
399         }
400         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
401                 vrele(lock->lf_vnode);
402                 lock->lf_vnode = NULL;
403         }
404 #ifdef LOCKF_DEBUG
405         if (lockf_debug & 4)
406                 printf("Freed lock %p\n", lock);
407 #endif
408         free(lock, M_LOCKF);
409         return (1);
410 }
411
412 /*
413  * Advisory record locking support
414  */
415 int
416 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
417     u_quad_t size)
418 {
419         struct lockf *state;
420         struct flock *fl = ap->a_fl;
421         struct lockf_entry *lock;
422         struct vnode *vp = ap->a_vp;
423         caddr_t id = ap->a_id;
424         int flags = ap->a_flags;
425         int hash;
426         struct lock_owner *lo;
427         off_t start, end, oadd;
428         int error;
429
430         /*
431          * Handle the F_UNLKSYS case first - no need to mess about
432          * creating a lock owner for this one.
433          */
434         if (ap->a_op == F_UNLCKSYS) {
435                 lf_clearremotesys(fl->l_sysid);
436                 return (0);
437         }
438
439         /*
440          * Convert the flock structure into a start and end.
441          */
442         switch (fl->l_whence) {
443         case SEEK_SET:
444         case SEEK_CUR:
445                 /*
446                  * Caller is responsible for adding any necessary offset
447                  * when SEEK_CUR is used.
448                  */
449                 start = fl->l_start;
450                 break;
451
452         case SEEK_END:
453                 if (size > OFF_MAX ||
454                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
455                         return (EOVERFLOW);
456                 start = size + fl->l_start;
457                 break;
458
459         default:
460                 return (EINVAL);
461         }
462         if (start < 0)
463                 return (EINVAL);
464         if (fl->l_len < 0) {
465                 if (start == 0)
466                         return (EINVAL);
467                 end = start - 1;
468                 start += fl->l_len;
469                 if (start < 0)
470                         return (EINVAL);
471         } else if (fl->l_len == 0) {
472                 end = OFF_MAX;
473         } else {
474                 oadd = fl->l_len - 1;
475                 if (oadd > OFF_MAX - start)
476                         return (EOVERFLOW);
477                 end = start + oadd;
478         }
479
480 retry_setlock:
481
482         /*
483          * Avoid the common case of unlocking when inode has no locks.
484          */
485         if (ap->a_op != F_SETLK && (*statep) == NULL) {
486                 VI_LOCK(vp);
487                 if ((*statep) == NULL) {
488                         fl->l_type = F_UNLCK;
489                         VI_UNLOCK(vp);
490                         return (0);
491                 }
492                 VI_UNLOCK(vp);
493         }
494
495         /*
496          * Map our arguments to an existing lock owner or create one
497          * if this is the first time we have seen this owner.
498          */
499         hash = lf_hash_owner(id, vp, fl, flags);
500         sx_xlock(&lf_lock_owners[hash].lock);
501         LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
502                 if (lf_owner_matches(lo, id, fl, flags))
503                         break;
504         if (!lo) {
505                 /*
506                  * We initialise the lock with a reference
507                  * count which matches the new lockf_entry
508                  * structure created below.
509                  */
510                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
511                     M_WAITOK|M_ZERO);
512 #ifdef LOCKF_DEBUG
513                 if (lockf_debug & 4)
514                         printf("Allocated lock owner %p\n", lo);
515 #endif
516
517                 lo->lo_refs = 1;
518                 lo->lo_flags = flags;
519                 lo->lo_id = id;
520                 lo->lo_hash = hash;
521                 if (flags & F_REMOTE) {
522                         lo->lo_pid = fl->l_pid;
523                         lo->lo_sysid = fl->l_sysid;
524                 } else if (flags & F_FLOCK) {
525                         lo->lo_pid = -1;
526                         lo->lo_sysid = 0;
527                 } else {
528                         struct proc *p = (struct proc *) id;
529                         lo->lo_pid = p->p_pid;
530                         lo->lo_sysid = 0;
531                 }
532                 lo->lo_vertex = NULL;
533
534 #ifdef LOCKF_DEBUG
535                 if (lockf_debug & 1) {
536                         printf("lf_advlockasync: new lock owner %p ", lo);
537                         lf_print_owner(lo);
538                         printf("\n");
539                 }
540 #endif
541
542                 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
543         } else {
544                 /*
545                  * We have seen this lock owner before, increase its
546                  * reference count to account for the new lockf_entry
547                  * structure we create below.
548                  */
549                 lo->lo_refs++;
550         }
551         sx_xunlock(&lf_lock_owners[hash].lock);
552
553         /*
554          * Create the lockf structure. We initialise the lf_owner
555          * field here instead of in lf_alloc_lock() to avoid paying
556          * the lf_lock_owners_lock tax twice.
557          */
558         lock = lf_alloc_lock(NULL);
559         lock->lf_refs = 1;
560         lock->lf_start = start;
561         lock->lf_end = end;
562         lock->lf_owner = lo;
563         lock->lf_vnode = vp;
564         if (flags & F_REMOTE) {
565                 /*
566                  * For remote locks, the caller may release its ref to
567                  * the vnode at any time - we have to ref it here to
568                  * prevent it from being recycled unexpectedly.
569                  */
570                 vref(vp);
571         }
572
573         lock->lf_type = fl->l_type;
574         LIST_INIT(&lock->lf_outedges);
575         LIST_INIT(&lock->lf_inedges);
576         lock->lf_async_task = ap->a_task;
577         lock->lf_flags = ap->a_flags;
578
579         /*
580          * Do the requested operation. First find our state structure
581          * and create a new one if necessary - the caller's *statep
582          * variable and the state's ls_threads count is protected by
583          * the vnode interlock.
584          */
585         VI_LOCK(vp);
586         if (VN_IS_DOOMED(vp)) {
587                 VI_UNLOCK(vp);
588                 lf_free_lock(lock);
589                 return (ENOENT);
590         }
591
592         /*
593          * Allocate a state structure if necessary.
594          */
595         state = *statep;
596         if (state == NULL) {
597                 struct lockf *ls;
598
599                 VI_UNLOCK(vp);
600
601                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
602                 sx_init(&ls->ls_lock, "ls_lock");
603                 LIST_INIT(&ls->ls_active);
604                 LIST_INIT(&ls->ls_pending);
605                 ls->ls_threads = 1;
606
607                 sx_xlock(&lf_lock_states_lock);
608                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
609                 sx_xunlock(&lf_lock_states_lock);
610
611                 /*
612                  * Cope if we lost a race with some other thread while
613                  * trying to allocate memory.
614                  */
615                 VI_LOCK(vp);
616                 if (VN_IS_DOOMED(vp)) {
617                         VI_UNLOCK(vp);
618                         sx_xlock(&lf_lock_states_lock);
619                         LIST_REMOVE(ls, ls_link);
620                         sx_xunlock(&lf_lock_states_lock);
621                         sx_destroy(&ls->ls_lock);
622                         free(ls, M_LOCKF);
623                         lf_free_lock(lock);
624                         return (ENOENT);
625                 }
626                 if ((*statep) == NULL) {
627                         state = *statep = ls;
628                         VI_UNLOCK(vp);
629                 } else {
630                         state = *statep;
631                         MPASS(state->ls_threads >= 0);
632                         state->ls_threads++;
633                         VI_UNLOCK(vp);
634
635                         sx_xlock(&lf_lock_states_lock);
636                         LIST_REMOVE(ls, ls_link);
637                         sx_xunlock(&lf_lock_states_lock);
638                         sx_destroy(&ls->ls_lock);
639                         free(ls, M_LOCKF);
640                 }
641         } else {
642                 MPASS(state->ls_threads >= 0);
643                 state->ls_threads++;
644                 VI_UNLOCK(vp);
645         }
646
647         sx_xlock(&state->ls_lock);
648         /*
649          * Recheck the doomed vnode after state->ls_lock is
650          * locked. lf_purgelocks() requires that no new threads add
651          * pending locks when vnode is marked by VIRF_DOOMED flag.
652          */
653         if (VN_IS_DOOMED(vp)) {
654                 VI_LOCK(vp);
655                 MPASS(state->ls_threads > 0);
656                 state->ls_threads--;
657                 wakeup(state);
658                 VI_UNLOCK(vp);
659                 sx_xunlock(&state->ls_lock);
660                 lf_free_lock(lock);
661                 return (ENOENT);
662         }
663
664         switch (ap->a_op) {
665         case F_SETLK:
666                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
667                 break;
668
669         case F_UNLCK:
670                 error = lf_clearlock(state, lock);
671                 lf_free_lock(lock);
672                 break;
673
674         case F_GETLK:
675                 error = lf_getlock(state, lock, fl);
676                 lf_free_lock(lock);
677                 break;
678
679         case F_CANCEL:
680                 if (ap->a_cookiep)
681                         error = lf_cancel(state, lock, *ap->a_cookiep);
682                 else
683                         error = EINVAL;
684                 lf_free_lock(lock);
685                 break;
686
687         default:
688                 lf_free_lock(lock);
689                 error = EINVAL;
690                 break;
691         }
692
693 #ifdef DIAGNOSTIC
694         /*
695          * Check for some can't happen stuff. In this case, the active
696          * lock list becoming disordered or containing mutually
697          * blocking locks. We also check the pending list for locks
698          * which should be active (i.e. have no out-going edges).
699          */
700         LIST_FOREACH(lock, &state->ls_active, lf_link) {
701                 struct lockf_entry *lf;
702                 if (LIST_NEXT(lock, lf_link))
703                         KASSERT((lock->lf_start
704                                 <= LIST_NEXT(lock, lf_link)->lf_start),
705                             ("locks disordered"));
706                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
707                         if (lock == lf)
708                                 break;
709                         KASSERT(!lf_blocks(lock, lf),
710                             ("two conflicting active locks"));
711                         if (lock->lf_owner == lf->lf_owner)
712                                 KASSERT(!lf_overlaps(lock, lf),
713                                     ("two overlapping locks from same owner"));
714                 }
715         }
716         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
717                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
718                     ("pending lock which should be active"));
719         }
720 #endif
721         sx_xunlock(&state->ls_lock);
722
723         VI_LOCK(vp);
724         MPASS(state->ls_threads > 0);
725         state->ls_threads--;
726         if (state->ls_threads != 0) {
727                 wakeup(state);
728         }
729         VI_UNLOCK(vp);
730
731         if (error == EDOOFUS) {
732                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
733                 goto retry_setlock;
734         }
735         return (error);
736 }
737
738 int
739 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
740 {
741         struct vop_advlockasync_args a;
742
743         a.a_vp = ap->a_vp;
744         a.a_id = ap->a_id;
745         a.a_op = ap->a_op;
746         a.a_fl = ap->a_fl;
747         a.a_flags = ap->a_flags;
748         a.a_task = NULL;
749         a.a_cookiep = NULL;
750
751         return (lf_advlockasync(&a, statep, size));
752 }
753
754 void
755 lf_purgelocks(struct vnode *vp, struct lockf **statep)
756 {
757         struct lockf *state;
758         struct lockf_entry *lock, *nlock;
759
760         /*
761          * For this to work correctly, the caller must ensure that no
762          * other threads enter the locking system for this vnode,
763          * e.g. by checking VIRF_DOOMED. We wake up any threads that are
764          * sleeping waiting for locks on this vnode and then free all
765          * the remaining locks.
766          */
767         KASSERT(VN_IS_DOOMED(vp),
768             ("lf_purgelocks: vp %p has not vgone yet", vp));
769         state = *statep;
770         if (state == NULL) {
771                 return;
772         }
773         VI_LOCK(vp);
774         *statep = NULL;
775         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
776                 KASSERT(LIST_EMPTY(&state->ls_pending),
777                     ("freeing state with pending locks"));
778                 VI_UNLOCK(vp);
779                 goto out_free;
780         }
781         MPASS(state->ls_threads >= 0);
782         state->ls_threads++;
783         VI_UNLOCK(vp);
784
785         sx_xlock(&state->ls_lock);
786         sx_xlock(&lf_owner_graph_lock);
787         LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
788                 LIST_REMOVE(lock, lf_link);
789                 lf_remove_outgoing(lock);
790                 lf_remove_incoming(lock);
791
792                 /*
793                  * If its an async lock, we can just free it
794                  * here, otherwise we let the sleeping thread
795                  * free it.
796                  */
797                 if (lock->lf_async_task) {
798                         lf_free_lock(lock);
799                 } else {
800                         lock->lf_flags |= F_INTR;
801                         wakeup(lock);
802                 }
803         }
804         sx_xunlock(&lf_owner_graph_lock);
805         sx_xunlock(&state->ls_lock);
806
807         /*
808          * Wait for all other threads, sleeping and otherwise
809          * to leave.
810          */
811         VI_LOCK(vp);
812         while (state->ls_threads > 1)
813                 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
814         VI_UNLOCK(vp);
815
816         /*
817          * We can just free all the active locks since they
818          * will have no dependencies (we removed them all
819          * above). We don't need to bother locking since we
820          * are the last thread using this state structure.
821          */
822         KASSERT(LIST_EMPTY(&state->ls_pending),
823             ("lock pending for %p", state));
824         LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
825                 LIST_REMOVE(lock, lf_link);
826                 lf_free_lock(lock);
827         }
828 out_free:
829         sx_xlock(&lf_lock_states_lock);
830         LIST_REMOVE(state, ls_link);
831         sx_xunlock(&lf_lock_states_lock);
832         sx_destroy(&state->ls_lock);
833         free(state, M_LOCKF);
834 }
835
836 /*
837  * Return non-zero if locks 'x' and 'y' overlap.
838  */
839 static int
840 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
841 {
842
843         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
844 }
845
846 /*
847  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
848  */
849 static int
850 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
851 {
852
853         return x->lf_owner != y->lf_owner
854                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
855                 && lf_overlaps(x, y);
856 }
857
858 /*
859  * Allocate a lock edge from the free list
860  */
861 static struct lockf_edge *
862 lf_alloc_edge(void)
863 {
864
865         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
866 }
867
868 /*
869  * Free a lock edge.
870  */
871 static void
872 lf_free_edge(struct lockf_edge *e)
873 {
874
875         free(e, M_LOCKF);
876 }
877
878 /*
879  * Ensure that the lock's owner has a corresponding vertex in the
880  * owner graph.
881  */
882 static void
883 lf_alloc_vertex(struct lockf_entry *lock)
884 {
885         struct owner_graph *g = &lf_owner_graph;
886
887         if (!lock->lf_owner->lo_vertex)
888                 lock->lf_owner->lo_vertex =
889                         graph_alloc_vertex(g, lock->lf_owner);
890 }
891
892 /*
893  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
894  * the new edge would cause a cycle in the owner graph.
895  */
896 static int
897 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
898 {
899         struct owner_graph *g = &lf_owner_graph;
900         struct lockf_edge *e;
901         int error;
902
903 #ifdef DIAGNOSTIC
904         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
905                 KASSERT(e->le_to != y, ("adding lock edge twice"));
906 #endif
907
908         /*
909          * Make sure the two owners have entries in the owner graph.
910          */
911         lf_alloc_vertex(x);
912         lf_alloc_vertex(y);
913
914         error = graph_add_edge(g, x->lf_owner->lo_vertex,
915             y->lf_owner->lo_vertex);
916         if (error)
917                 return (error);
918
919         e = lf_alloc_edge();
920         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
921         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
922         e->le_from = x;
923         e->le_to = y;
924
925         return (0);
926 }
927
928 /*
929  * Remove an edge from the lock graph.
930  */
931 static void
932 lf_remove_edge(struct lockf_edge *e)
933 {
934         struct owner_graph *g = &lf_owner_graph;
935         struct lockf_entry *x = e->le_from;
936         struct lockf_entry *y = e->le_to;
937
938         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
939         LIST_REMOVE(e, le_outlink);
940         LIST_REMOVE(e, le_inlink);
941         e->le_from = NULL;
942         e->le_to = NULL;
943         lf_free_edge(e);
944 }
945
946 /*
947  * Remove all out-going edges from lock x.
948  */
949 static void
950 lf_remove_outgoing(struct lockf_entry *x)
951 {
952         struct lockf_edge *e;
953
954         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
955                 lf_remove_edge(e);
956         }
957 }
958
959 /*
960  * Remove all in-coming edges from lock x.
961  */
962 static void
963 lf_remove_incoming(struct lockf_entry *x)
964 {
965         struct lockf_edge *e;
966
967         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
968                 lf_remove_edge(e);
969         }
970 }
971
972 /*
973  * Walk the list of locks for the file and create an out-going edge
974  * from lock to each blocking lock.
975  */
976 static int
977 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
978 {
979         struct lockf_entry *overlap;
980         int error;
981
982         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
983                 /*
984                  * We may assume that the active list is sorted by
985                  * lf_start.
986                  */
987                 if (overlap->lf_start > lock->lf_end)
988                         break;
989                 if (!lf_blocks(lock, overlap))
990                         continue;
991
992                 /*
993                  * We've found a blocking lock. Add the corresponding
994                  * edge to the graphs and see if it would cause a
995                  * deadlock.
996                  */
997                 error = lf_add_edge(lock, overlap);
998
999                 /*
1000                  * The only error that lf_add_edge returns is EDEADLK.
1001                  * Remove any edges we added and return the error.
1002                  */
1003                 if (error) {
1004                         lf_remove_outgoing(lock);
1005                         return (error);
1006                 }
1007         }
1008
1009         /*
1010          * We also need to add edges to sleeping locks that block
1011          * us. This ensures that lf_wakeup_lock cannot grant two
1012          * mutually blocking locks simultaneously and also enforces a
1013          * 'first come, first served' fairness model. Note that this
1014          * only happens if we are blocked by at least one active lock
1015          * due to the call to lf_getblock in lf_setlock below.
1016          */
1017         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1018                 if (!lf_blocks(lock, overlap))
1019                         continue;
1020                 /*
1021                  * We've found a blocking lock. Add the corresponding
1022                  * edge to the graphs and see if it would cause a
1023                  * deadlock.
1024                  */
1025                 error = lf_add_edge(lock, overlap);
1026
1027                 /*
1028                  * The only error that lf_add_edge returns is EDEADLK.
1029                  * Remove any edges we added and return the error.
1030                  */
1031                 if (error) {
1032                         lf_remove_outgoing(lock);
1033                         return (error);
1034                 }
1035         }
1036
1037         return (0);
1038 }
1039
1040 /*
1041  * Walk the list of pending locks for the file and create an in-coming
1042  * edge from lock to each blocking lock.
1043  */
1044 static int
1045 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1046 {
1047         struct lockf_entry *overlap;
1048         int error;
1049
1050         sx_assert(&state->ls_lock, SX_XLOCKED);
1051         if (LIST_EMPTY(&state->ls_pending))
1052                 return (0);
1053
1054         error = 0;
1055         sx_xlock(&lf_owner_graph_lock);
1056         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1057                 if (!lf_blocks(lock, overlap))
1058                         continue;
1059
1060                 /*
1061                  * We've found a blocking lock. Add the corresponding
1062                  * edge to the graphs and see if it would cause a
1063                  * deadlock.
1064                  */
1065                 error = lf_add_edge(overlap, lock);
1066
1067                 /*
1068                  * The only error that lf_add_edge returns is EDEADLK.
1069                  * Remove any edges we added and return the error.
1070                  */
1071                 if (error) {
1072                         lf_remove_incoming(lock);
1073                         break;
1074                 }
1075         }
1076         sx_xunlock(&lf_owner_graph_lock);
1077         return (error);
1078 }
1079
1080 /*
1081  * Insert lock into the active list, keeping list entries ordered by
1082  * increasing values of lf_start.
1083  */
1084 static void
1085 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1086 {
1087         struct lockf_entry *lf, *lfprev;
1088
1089         if (LIST_EMPTY(&state->ls_active)) {
1090                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1091                 return;
1092         }
1093
1094         lfprev = NULL;
1095         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1096                 if (lf->lf_start > lock->lf_start) {
1097                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1098                         return;
1099                 }
1100                 lfprev = lf;
1101         }
1102         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1103 }
1104
1105 /*
1106  * Wake up a sleeping lock and remove it from the pending list now
1107  * that all its dependencies have been resolved. The caller should
1108  * arrange for the lock to be added to the active list, adjusting any
1109  * existing locks for the same owner as needed.
1110  */
1111 static void
1112 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1113 {
1114
1115         /*
1116          * Remove from ls_pending list and wake up the caller
1117          * or start the async notification, as appropriate.
1118          */
1119         LIST_REMOVE(wakelock, lf_link);
1120 #ifdef LOCKF_DEBUG
1121         if (lockf_debug & 1)
1122                 lf_print("lf_wakeup_lock: awakening", wakelock);
1123 #endif /* LOCKF_DEBUG */
1124         if (wakelock->lf_async_task) {
1125                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1126         } else {
1127                 wakeup(wakelock);
1128         }
1129 }
1130
1131 /*
1132  * Re-check all dependent locks and remove edges to locks that we no
1133  * longer block. If 'all' is non-zero, the lock has been removed and
1134  * we must remove all the dependencies, otherwise it has simply been
1135  * reduced but remains active. Any pending locks which have been been
1136  * unblocked are added to 'granted'
1137  */
1138 static void
1139 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1140         struct lockf_entry_list *granted)
1141 {
1142         struct lockf_edge *e, *ne;
1143         struct lockf_entry *deplock;
1144
1145         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1146                 deplock = e->le_from;
1147                 if (all || !lf_blocks(lock, deplock)) {
1148                         sx_xlock(&lf_owner_graph_lock);
1149                         lf_remove_edge(e);
1150                         sx_xunlock(&lf_owner_graph_lock);
1151                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1152                                 lf_wakeup_lock(state, deplock);
1153                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1154                         }
1155                 }
1156         }
1157 }
1158
1159 /*
1160  * Set the start of an existing active lock, updating dependencies and
1161  * adding any newly woken locks to 'granted'.
1162  */
1163 static void
1164 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1165         struct lockf_entry_list *granted)
1166 {
1167
1168         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1169         lock->lf_start = new_start;
1170         LIST_REMOVE(lock, lf_link);
1171         lf_insert_lock(state, lock);
1172         lf_update_dependancies(state, lock, FALSE, granted);
1173 }
1174
1175 /*
1176  * Set the end of an existing active lock, updating dependencies and
1177  * adding any newly woken locks to 'granted'.
1178  */
1179 static void
1180 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1181         struct lockf_entry_list *granted)
1182 {
1183
1184         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1185         lock->lf_end = new_end;
1186         lf_update_dependancies(state, lock, FALSE, granted);
1187 }
1188
1189 /*
1190  * Add a lock to the active list, updating or removing any current
1191  * locks owned by the same owner and processing any pending locks that
1192  * become unblocked as a result. This code is also used for unlock
1193  * since the logic for updating existing locks is identical.
1194  *
1195  * As a result of processing the new lock, we may unblock existing
1196  * pending locks as a result of downgrading/unlocking. We simply
1197  * activate the newly granted locks by looping.
1198  *
1199  * Since the new lock already has its dependencies set up, we always
1200  * add it to the list (unless its an unlock request). This may
1201  * fragment the lock list in some pathological cases but its probably
1202  * not a real problem.
1203  */
1204 static void
1205 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1206 {
1207         struct lockf_entry *overlap, *lf;
1208         struct lockf_entry_list granted;
1209         int ovcase;
1210
1211         LIST_INIT(&granted);
1212         LIST_INSERT_HEAD(&granted, lock, lf_link);
1213
1214         while (!LIST_EMPTY(&granted)) {
1215                 lock = LIST_FIRST(&granted);
1216                 LIST_REMOVE(lock, lf_link);
1217
1218                 /*
1219                  * Skip over locks owned by other processes.  Handle
1220                  * any locks that overlap and are owned by ourselves.
1221                  */
1222                 overlap = LIST_FIRST(&state->ls_active);
1223                 for (;;) {
1224                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1225
1226 #ifdef LOCKF_DEBUG
1227                         if (ovcase && (lockf_debug & 2)) {
1228                                 printf("lf_setlock: overlap %d", ovcase);
1229                                 lf_print("", overlap);
1230                         }
1231 #endif
1232                         /*
1233                          * Six cases:
1234                          *      0) no overlap
1235                          *      1) overlap == lock
1236                          *      2) overlap contains lock
1237                          *      3) lock contains overlap
1238                          *      4) overlap starts before lock
1239                          *      5) overlap ends after lock
1240                          */
1241                         switch (ovcase) {
1242                         case 0: /* no overlap */
1243                                 break;
1244
1245                         case 1: /* overlap == lock */
1246                                 /*
1247                                  * We have already setup the
1248                                  * dependants for the new lock, taking
1249                                  * into account a possible downgrade
1250                                  * or unlock. Remove the old lock.
1251                                  */
1252                                 LIST_REMOVE(overlap, lf_link);
1253                                 lf_update_dependancies(state, overlap, TRUE,
1254                                         &granted);
1255                                 lf_free_lock(overlap);
1256                                 break;
1257
1258                         case 2: /* overlap contains lock */
1259                                 /*
1260                                  * Just split the existing lock.
1261                                  */
1262                                 lf_split(state, overlap, lock, &granted);
1263                                 break;
1264
1265                         case 3: /* lock contains overlap */
1266                                 /*
1267                                  * Delete the overlap and advance to
1268                                  * the next entry in the list.
1269                                  */
1270                                 lf = LIST_NEXT(overlap, lf_link);
1271                                 LIST_REMOVE(overlap, lf_link);
1272                                 lf_update_dependancies(state, overlap, TRUE,
1273                                         &granted);
1274                                 lf_free_lock(overlap);
1275                                 overlap = lf;
1276                                 continue;
1277
1278                         case 4: /* overlap starts before lock */
1279                                 /*
1280                                  * Just update the overlap end and
1281                                  * move on.
1282                                  */
1283                                 lf_set_end(state, overlap, lock->lf_start - 1,
1284                                     &granted);
1285                                 overlap = LIST_NEXT(overlap, lf_link);
1286                                 continue;
1287
1288                         case 5: /* overlap ends after lock */
1289                                 /*
1290                                  * Change the start of overlap and
1291                                  * re-insert.
1292                                  */
1293                                 lf_set_start(state, overlap, lock->lf_end + 1,
1294                                     &granted);
1295                                 break;
1296                         }
1297                         break;
1298                 }
1299 #ifdef LOCKF_DEBUG
1300                 if (lockf_debug & 1) {
1301                         if (lock->lf_type != F_UNLCK)
1302                                 lf_print("lf_activate_lock: activated", lock);
1303                         else
1304                                 lf_print("lf_activate_lock: unlocked", lock);
1305                         lf_printlist("lf_activate_lock", lock);
1306                 }
1307 #endif /* LOCKF_DEBUG */
1308                 if (lock->lf_type != F_UNLCK)
1309                         lf_insert_lock(state, lock);
1310         }
1311 }
1312
1313 /*
1314  * Cancel a pending lock request, either as a result of a signal or a
1315  * cancel request for an async lock.
1316  */
1317 static void
1318 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1319 {
1320         struct lockf_entry_list granted;
1321
1322         /*
1323          * Note it is theoretically possible that cancelling this lock
1324          * may allow some other pending lock to become
1325          * active. Consider this case:
1326          *
1327          * Owner        Action          Result          Dependencies
1328          * 
1329          * A:           lock [0..0]     succeeds        
1330          * B:           lock [2..2]     succeeds        
1331          * C:           lock [1..2]     blocked         C->B
1332          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1333          * A:           unlock [0..0]                   C->B,D->C
1334          * C:           cancel [1..2]   
1335          */
1336
1337         LIST_REMOVE(lock, lf_link);
1338
1339         /*
1340          * Removing out-going edges is simple.
1341          */
1342         sx_xlock(&lf_owner_graph_lock);
1343         lf_remove_outgoing(lock);
1344         sx_xunlock(&lf_owner_graph_lock);
1345
1346         /*
1347          * Removing in-coming edges may allow some other lock to
1348          * become active - we use lf_update_dependancies to figure
1349          * this out.
1350          */
1351         LIST_INIT(&granted);
1352         lf_update_dependancies(state, lock, TRUE, &granted);
1353         lf_free_lock(lock);
1354
1355         /*
1356          * Feed any newly active locks to lf_activate_lock.
1357          */
1358         while (!LIST_EMPTY(&granted)) {
1359                 lock = LIST_FIRST(&granted);
1360                 LIST_REMOVE(lock, lf_link);
1361                 lf_activate_lock(state, lock);
1362         }
1363 }
1364
1365 /*
1366  * Set a byte-range lock.
1367  */
1368 static int
1369 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1370     void **cookiep)
1371 {
1372         static char lockstr[] = "lockf";
1373         int error, priority, stops_deferred;
1374
1375 #ifdef LOCKF_DEBUG
1376         if (lockf_debug & 1)
1377                 lf_print("lf_setlock", lock);
1378 #endif /* LOCKF_DEBUG */
1379
1380         /*
1381          * Set the priority
1382          */
1383         priority = PLOCK;
1384         if (lock->lf_type == F_WRLCK)
1385                 priority += 4;
1386         if (!(lock->lf_flags & F_NOINTR))
1387                 priority |= PCATCH;
1388         /*
1389          * Scan lock list for this file looking for locks that would block us.
1390          */
1391         if (lf_getblock(state, lock)) {
1392                 /*
1393                  * Free the structure and return if nonblocking.
1394                  */
1395                 if ((lock->lf_flags & F_WAIT) == 0
1396                     && lock->lf_async_task == NULL) {
1397                         lf_free_lock(lock);
1398                         error = EAGAIN;
1399                         goto out;
1400                 }
1401
1402                 /*
1403                  * For flock type locks, we must first remove
1404                  * any shared locks that we hold before we sleep
1405                  * waiting for an exclusive lock.
1406                  */
1407                 if ((lock->lf_flags & F_FLOCK) &&
1408                     lock->lf_type == F_WRLCK) {
1409                         lock->lf_type = F_UNLCK;
1410                         lf_activate_lock(state, lock);
1411                         lock->lf_type = F_WRLCK;
1412                 }
1413
1414                 /*
1415                  * We are blocked. Create edges to each blocking lock,
1416                  * checking for deadlock using the owner graph. For
1417                  * simplicity, we run deadlock detection for all
1418                  * locks, posix and otherwise.
1419                  */
1420                 sx_xlock(&lf_owner_graph_lock);
1421                 error = lf_add_outgoing(state, lock);
1422                 sx_xunlock(&lf_owner_graph_lock);
1423
1424                 if (error) {
1425 #ifdef LOCKF_DEBUG
1426                         if (lockf_debug & 1)
1427                                 lf_print("lf_setlock: deadlock", lock);
1428 #endif
1429                         lf_free_lock(lock);
1430                         goto out;
1431                 }
1432
1433                 /*
1434                  * We have added edges to everything that blocks
1435                  * us. Sleep until they all go away.
1436                  */
1437                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1438 #ifdef LOCKF_DEBUG
1439                 if (lockf_debug & 1) {
1440                         struct lockf_edge *e;
1441                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1442                                 lf_print("lf_setlock: blocking on", e->le_to);
1443                                 lf_printlist("lf_setlock", e->le_to);
1444                         }
1445                 }
1446 #endif /* LOCKF_DEBUG */
1447
1448                 if ((lock->lf_flags & F_WAIT) == 0) {
1449                         /*
1450                          * The caller requested async notification -
1451                          * this callback happens when the blocking
1452                          * lock is released, allowing the caller to
1453                          * make another attempt to take the lock.
1454                          */
1455                         *cookiep = (void *) lock;
1456                         error = EINPROGRESS;
1457                         goto out;
1458                 }
1459
1460                 lock->lf_refs++;
1461                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1462                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1463                 sigallowstop(stops_deferred);
1464                 if (lf_free_lock(lock)) {
1465                         error = EDOOFUS;
1466                         goto out;
1467                 }
1468
1469                 /*
1470                  * We may have been awakened by a signal and/or by a
1471                  * debugger continuing us (in which cases we must
1472                  * remove our lock graph edges) and/or by another
1473                  * process releasing a lock (in which case our edges
1474                  * have already been removed and we have been moved to
1475                  * the active list). We may also have been woken by
1476                  * lf_purgelocks which we report to the caller as
1477                  * EINTR. In that case, lf_purgelocks will have
1478                  * removed our lock graph edges.
1479                  *
1480                  * Note that it is possible to receive a signal after
1481                  * we were successfully woken (and moved to the active
1482                  * list) but before we resumed execution. In this
1483                  * case, our lf_outedges list will be clear. We
1484                  * pretend there was no error.
1485                  *
1486                  * Note also, if we have been sleeping long enough, we
1487                  * may now have incoming edges from some newer lock
1488                  * which is waiting behind us in the queue.
1489                  */
1490                 if (lock->lf_flags & F_INTR) {
1491                         error = EINTR;
1492                         lf_free_lock(lock);
1493                         goto out;
1494                 }
1495                 if (LIST_EMPTY(&lock->lf_outedges)) {
1496                         error = 0;
1497                 } else {
1498                         lf_cancel_lock(state, lock);
1499                         goto out;
1500                 }
1501 #ifdef LOCKF_DEBUG
1502                 if (lockf_debug & 1) {
1503                         lf_print("lf_setlock: granted", lock);
1504                 }
1505 #endif
1506                 goto out;
1507         }
1508         /*
1509          * It looks like we are going to grant the lock. First add
1510          * edges from any currently pending lock that the new lock
1511          * would block.
1512          */
1513         error = lf_add_incoming(state, lock);
1514         if (error) {
1515 #ifdef LOCKF_DEBUG
1516                 if (lockf_debug & 1)
1517                         lf_print("lf_setlock: deadlock", lock);
1518 #endif
1519                 lf_free_lock(lock);
1520                 goto out;
1521         }
1522
1523         /*
1524          * No blocks!!  Add the lock.  Note that we will
1525          * downgrade or upgrade any overlapping locks this
1526          * process already owns.
1527          */
1528         lf_activate_lock(state, lock);
1529         error = 0;
1530 out:
1531         return (error);
1532 }
1533
1534 /*
1535  * Remove a byte-range lock on an inode.
1536  *
1537  * Generally, find the lock (or an overlap to that lock)
1538  * and remove it (or shrink it), then wakeup anyone we can.
1539  */
1540 static int
1541 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1542 {
1543         struct lockf_entry *overlap;
1544
1545         overlap = LIST_FIRST(&state->ls_active);
1546
1547         if (overlap == NOLOCKF)
1548                 return (0);
1549 #ifdef LOCKF_DEBUG
1550         if (unlock->lf_type != F_UNLCK)
1551                 panic("lf_clearlock: bad type");
1552         if (lockf_debug & 1)
1553                 lf_print("lf_clearlock", unlock);
1554 #endif /* LOCKF_DEBUG */
1555
1556         lf_activate_lock(state, unlock);
1557
1558         return (0);
1559 }
1560
1561 /*
1562  * Check whether there is a blocking lock, and if so return its
1563  * details in '*fl'.
1564  */
1565 static int
1566 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1567 {
1568         struct lockf_entry *block;
1569
1570 #ifdef LOCKF_DEBUG
1571         if (lockf_debug & 1)
1572                 lf_print("lf_getlock", lock);
1573 #endif /* LOCKF_DEBUG */
1574
1575         if ((block = lf_getblock(state, lock))) {
1576                 fl->l_type = block->lf_type;
1577                 fl->l_whence = SEEK_SET;
1578                 fl->l_start = block->lf_start;
1579                 if (block->lf_end == OFF_MAX)
1580                         fl->l_len = 0;
1581                 else
1582                         fl->l_len = block->lf_end - block->lf_start + 1;
1583                 fl->l_pid = block->lf_owner->lo_pid;
1584                 fl->l_sysid = block->lf_owner->lo_sysid;
1585         } else {
1586                 fl->l_type = F_UNLCK;
1587         }
1588         return (0);
1589 }
1590
1591 /*
1592  * Cancel an async lock request.
1593  */
1594 static int
1595 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1596 {
1597         struct lockf_entry *reallock;
1598
1599         /*
1600          * We need to match this request with an existing lock
1601          * request.
1602          */
1603         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1604                 if ((void *) reallock == cookie) {
1605                         /*
1606                          * Double-check that this lock looks right
1607                          * (maybe use a rolling ID for the cancel
1608                          * cookie instead?)
1609                          */
1610                         if (!(reallock->lf_vnode == lock->lf_vnode
1611                                 && reallock->lf_start == lock->lf_start
1612                                 && reallock->lf_end == lock->lf_end)) {
1613                                 return (ENOENT);
1614                         }
1615
1616                         /*
1617                          * Make sure this lock was async and then just
1618                          * remove it from its wait lists.
1619                          */
1620                         if (!reallock->lf_async_task) {
1621                                 return (ENOENT);
1622                         }
1623
1624                         /*
1625                          * Note that since any other thread must take
1626                          * state->ls_lock before it can possibly
1627                          * trigger the async callback, we are safe
1628                          * from a race with lf_wakeup_lock, i.e. we
1629                          * can free the lock (actually our caller does
1630                          * this).
1631                          */
1632                         lf_cancel_lock(state, reallock);
1633                         return (0);
1634                 }
1635         }
1636
1637         /*
1638          * We didn't find a matching lock - not much we can do here.
1639          */
1640         return (ENOENT);
1641 }
1642
1643 /*
1644  * Walk the list of locks for an inode and
1645  * return the first blocking lock.
1646  */
1647 static struct lockf_entry *
1648 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1649 {
1650         struct lockf_entry *overlap;
1651
1652         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1653                 /*
1654                  * We may assume that the active list is sorted by
1655                  * lf_start.
1656                  */
1657                 if (overlap->lf_start > lock->lf_end)
1658                         break;
1659                 if (!lf_blocks(lock, overlap))
1660                         continue;
1661                 return (overlap);
1662         }
1663         return (NOLOCKF);
1664 }
1665
1666 /*
1667  * Walk the list of locks for an inode to find an overlapping lock (if
1668  * any) and return a classification of that overlap.
1669  *
1670  * Arguments:
1671  *      *overlap        The place in the lock list to start looking
1672  *      lock            The lock which is being tested
1673  *      type            Pass 'SELF' to test only locks with the same
1674  *                      owner as lock, or 'OTHER' to test only locks
1675  *                      with a different owner
1676  *
1677  * Returns one of six values:
1678  *      0) no overlap
1679  *      1) overlap == lock
1680  *      2) overlap contains lock
1681  *      3) lock contains overlap
1682  *      4) overlap starts before lock
1683  *      5) overlap ends after lock
1684  *
1685  * If there is an overlapping lock, '*overlap' is set to point at the
1686  * overlapping lock.
1687  *
1688  * NOTE: this returns only the FIRST overlapping lock.  There
1689  *       may be more than one.
1690  */
1691 static int
1692 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1693 {
1694         struct lockf_entry *lf;
1695         off_t start, end;
1696         int res;
1697
1698         if ((*overlap) == NOLOCKF) {
1699                 return (0);
1700         }
1701 #ifdef LOCKF_DEBUG
1702         if (lockf_debug & 2)
1703                 lf_print("lf_findoverlap: looking for overlap in", lock);
1704 #endif /* LOCKF_DEBUG */
1705         start = lock->lf_start;
1706         end = lock->lf_end;
1707         res = 0;
1708         while (*overlap) {
1709                 lf = *overlap;
1710                 if (lf->lf_start > end)
1711                         break;
1712                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1713                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1714                         *overlap = LIST_NEXT(lf, lf_link);
1715                         continue;
1716                 }
1717 #ifdef LOCKF_DEBUG
1718                 if (lockf_debug & 2)
1719                         lf_print("\tchecking", lf);
1720 #endif /* LOCKF_DEBUG */
1721                 /*
1722                  * OK, check for overlap
1723                  *
1724                  * Six cases:
1725                  *      0) no overlap
1726                  *      1) overlap == lock
1727                  *      2) overlap contains lock
1728                  *      3) lock contains overlap
1729                  *      4) overlap starts before lock
1730                  *      5) overlap ends after lock
1731                  */
1732                 if (start > lf->lf_end) {
1733                         /* Case 0 */
1734 #ifdef LOCKF_DEBUG
1735                         if (lockf_debug & 2)
1736                                 printf("no overlap\n");
1737 #endif /* LOCKF_DEBUG */
1738                         *overlap = LIST_NEXT(lf, lf_link);
1739                         continue;
1740                 }
1741                 if (lf->lf_start == start && lf->lf_end == end) {
1742                         /* Case 1 */
1743 #ifdef LOCKF_DEBUG
1744                         if (lockf_debug & 2)
1745                                 printf("overlap == lock\n");
1746 #endif /* LOCKF_DEBUG */
1747                         res = 1;
1748                         break;
1749                 }
1750                 if (lf->lf_start <= start && lf->lf_end >= end) {
1751                         /* Case 2 */
1752 #ifdef LOCKF_DEBUG
1753                         if (lockf_debug & 2)
1754                                 printf("overlap contains lock\n");
1755 #endif /* LOCKF_DEBUG */
1756                         res = 2;
1757                         break;
1758                 }
1759                 if (start <= lf->lf_start && end >= lf->lf_end) {
1760                         /* Case 3 */
1761 #ifdef LOCKF_DEBUG
1762                         if (lockf_debug & 2)
1763                                 printf("lock contains overlap\n");
1764 #endif /* LOCKF_DEBUG */
1765                         res = 3;
1766                         break;
1767                 }
1768                 if (lf->lf_start < start && lf->lf_end >= start) {
1769                         /* Case 4 */
1770 #ifdef LOCKF_DEBUG
1771                         if (lockf_debug & 2)
1772                                 printf("overlap starts before lock\n");
1773 #endif /* LOCKF_DEBUG */
1774                         res = 4;
1775                         break;
1776                 }
1777                 if (lf->lf_start > start && lf->lf_end > end) {
1778                         /* Case 5 */
1779 #ifdef LOCKF_DEBUG
1780                         if (lockf_debug & 2)
1781                                 printf("overlap ends after lock\n");
1782 #endif /* LOCKF_DEBUG */
1783                         res = 5;
1784                         break;
1785                 }
1786                 panic("lf_findoverlap: default");
1787         }
1788         return (res);
1789 }
1790
1791 /*
1792  * Split an the existing 'lock1', based on the extent of the lock
1793  * described by 'lock2'. The existing lock should cover 'lock2'
1794  * entirely.
1795  *
1796  * Any pending locks which have been been unblocked are added to
1797  * 'granted'
1798  */
1799 static void
1800 lf_split(struct lockf *state, struct lockf_entry *lock1,
1801     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1802 {
1803         struct lockf_entry *splitlock;
1804
1805 #ifdef LOCKF_DEBUG
1806         if (lockf_debug & 2) {
1807                 lf_print("lf_split", lock1);
1808                 lf_print("splitting from", lock2);
1809         }
1810 #endif /* LOCKF_DEBUG */
1811         /*
1812          * Check to see if we don't need to split at all.
1813          */
1814         if (lock1->lf_start == lock2->lf_start) {
1815                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1816                 return;
1817         }
1818         if (lock1->lf_end == lock2->lf_end) {
1819                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1820                 return;
1821         }
1822         /*
1823          * Make a new lock consisting of the last part of
1824          * the encompassing lock.
1825          */
1826         splitlock = lf_alloc_lock(lock1->lf_owner);
1827         memcpy(splitlock, lock1, sizeof *splitlock);
1828         splitlock->lf_refs = 1;
1829         if (splitlock->lf_flags & F_REMOTE)
1830                 vref(splitlock->lf_vnode);
1831
1832         /*
1833          * This cannot cause a deadlock since any edges we would add
1834          * to splitlock already exist in lock1. We must be sure to add
1835          * necessary dependencies to splitlock before we reduce lock1
1836          * otherwise we may accidentally grant a pending lock that
1837          * was blocked by the tail end of lock1.
1838          */
1839         splitlock->lf_start = lock2->lf_end + 1;
1840         LIST_INIT(&splitlock->lf_outedges);
1841         LIST_INIT(&splitlock->lf_inedges);
1842         lf_add_incoming(state, splitlock);
1843
1844         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1845
1846         /*
1847          * OK, now link it in
1848          */
1849         lf_insert_lock(state, splitlock);
1850 }
1851
1852 struct lockdesc {
1853         STAILQ_ENTRY(lockdesc) link;
1854         struct vnode *vp;
1855         struct flock fl;
1856 };
1857 STAILQ_HEAD(lockdesclist, lockdesc);
1858
1859 int
1860 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1861 {
1862         struct lockf *ls;
1863         struct lockf_entry *lf;
1864         struct lockdesc *ldesc;
1865         struct lockdesclist locks;
1866         int error;
1867
1868         /*
1869          * In order to keep the locking simple, we iterate over the
1870          * active lock lists to build a list of locks that need
1871          * releasing. We then call the iterator for each one in turn.
1872          *
1873          * We take an extra reference to the vnode for the duration to
1874          * make sure it doesn't go away before we are finished.
1875          */
1876         STAILQ_INIT(&locks);
1877         sx_xlock(&lf_lock_states_lock);
1878         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1879                 sx_xlock(&ls->ls_lock);
1880                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1881                         if (lf->lf_owner->lo_sysid != sysid)
1882                                 continue;
1883
1884                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1885                             M_WAITOK);
1886                         ldesc->vp = lf->lf_vnode;
1887                         vref(ldesc->vp);
1888                         ldesc->fl.l_start = lf->lf_start;
1889                         if (lf->lf_end == OFF_MAX)
1890                                 ldesc->fl.l_len = 0;
1891                         else
1892                                 ldesc->fl.l_len =
1893                                         lf->lf_end - lf->lf_start + 1;
1894                         ldesc->fl.l_whence = SEEK_SET;
1895                         ldesc->fl.l_type = F_UNLCK;
1896                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1897                         ldesc->fl.l_sysid = sysid;
1898                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1899                 }
1900                 sx_xunlock(&ls->ls_lock);
1901         }
1902         sx_xunlock(&lf_lock_states_lock);
1903
1904         /*
1905          * Call the iterator function for each lock in turn. If the
1906          * iterator returns an error code, just free the rest of the
1907          * lockdesc structures.
1908          */
1909         error = 0;
1910         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1911                 STAILQ_REMOVE_HEAD(&locks, link);
1912                 if (!error)
1913                         error = fn(ldesc->vp, &ldesc->fl, arg);
1914                 vrele(ldesc->vp);
1915                 free(ldesc, M_LOCKF);
1916         }
1917
1918         return (error);
1919 }
1920
1921 int
1922 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1923 {
1924         struct lockf *ls;
1925         struct lockf_entry *lf;
1926         struct lockdesc *ldesc;
1927         struct lockdesclist locks;
1928         int error;
1929
1930         /*
1931          * In order to keep the locking simple, we iterate over the
1932          * active lock lists to build a list of locks that need
1933          * releasing. We then call the iterator for each one in turn.
1934          *
1935          * We take an extra reference to the vnode for the duration to
1936          * make sure it doesn't go away before we are finished.
1937          */
1938         STAILQ_INIT(&locks);
1939         VI_LOCK(vp);
1940         ls = vp->v_lockf;
1941         if (!ls) {
1942                 VI_UNLOCK(vp);
1943                 return (0);
1944         }
1945         MPASS(ls->ls_threads >= 0);
1946         ls->ls_threads++;
1947         VI_UNLOCK(vp);
1948
1949         sx_xlock(&ls->ls_lock);
1950         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1951                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1952                     M_WAITOK);
1953                 ldesc->vp = lf->lf_vnode;
1954                 vref(ldesc->vp);
1955                 ldesc->fl.l_start = lf->lf_start;
1956                 if (lf->lf_end == OFF_MAX)
1957                         ldesc->fl.l_len = 0;
1958                 else
1959                         ldesc->fl.l_len =
1960                                 lf->lf_end - lf->lf_start + 1;
1961                 ldesc->fl.l_whence = SEEK_SET;
1962                 ldesc->fl.l_type = F_UNLCK;
1963                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1964                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1965                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1966         }
1967         sx_xunlock(&ls->ls_lock);
1968         VI_LOCK(vp);
1969         MPASS(ls->ls_threads > 0);
1970         ls->ls_threads--;
1971         wakeup(ls);
1972         VI_UNLOCK(vp);
1973
1974         /*
1975          * Call the iterator function for each lock in turn. If the
1976          * iterator returns an error code, just free the rest of the
1977          * lockdesc structures.
1978          */
1979         error = 0;
1980         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1981                 STAILQ_REMOVE_HEAD(&locks, link);
1982                 if (!error)
1983                         error = fn(ldesc->vp, &ldesc->fl, arg);
1984                 vrele(ldesc->vp);
1985                 free(ldesc, M_LOCKF);
1986         }
1987
1988         return (error);
1989 }
1990
1991 static int
1992 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
1993 {
1994
1995         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
1996         return (0);
1997 }
1998
1999 void
2000 lf_clearremotesys(int sysid)
2001 {
2002
2003         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2004         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2005 }
2006
2007 int
2008 lf_countlocks(int sysid)
2009 {
2010         int i;
2011         struct lock_owner *lo;
2012         int count;
2013
2014         count = 0;
2015         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2016                 sx_xlock(&lf_lock_owners[i].lock);
2017                 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2018                         if (lo->lo_sysid == sysid)
2019                                 count += lo->lo_refs;
2020                 sx_xunlock(&lf_lock_owners[i].lock);
2021         }
2022
2023         return (count);
2024 }
2025
2026 #ifdef LOCKF_DEBUG
2027
2028 /*
2029  * Return non-zero if y is reachable from x using a brute force
2030  * search. If reachable and path is non-null, return the route taken
2031  * in path.
2032  */
2033 static int
2034 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2035     struct owner_vertex_list *path)
2036 {
2037         struct owner_edge *e;
2038
2039         if (x == y) {
2040                 if (path)
2041                         TAILQ_INSERT_HEAD(path, x, v_link);
2042                 return 1;
2043         }
2044
2045         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2046                 if (graph_reaches(e->e_to, y, path)) {
2047                         if (path)
2048                                 TAILQ_INSERT_HEAD(path, x, v_link);
2049                         return 1;
2050                 }
2051         }
2052         return 0;
2053 }
2054
2055 /*
2056  * Perform consistency checks on the graph. Make sure the values of
2057  * v_order are correct. If checkorder is non-zero, check no vertex can
2058  * reach any other vertex with a smaller order.
2059  */
2060 static void
2061 graph_check(struct owner_graph *g, int checkorder)
2062 {
2063         int i, j;
2064
2065         for (i = 0; i < g->g_size; i++) {
2066                 if (!g->g_vertices[i]->v_owner)
2067                         continue;
2068                 KASSERT(g->g_vertices[i]->v_order == i,
2069                     ("lock graph vertices disordered"));
2070                 if (checkorder) {
2071                         for (j = 0; j < i; j++) {
2072                                 if (!g->g_vertices[j]->v_owner)
2073                                         continue;
2074                                 KASSERT(!graph_reaches(g->g_vertices[i],
2075                                         g->g_vertices[j], NULL),
2076                                     ("lock graph vertices disordered"));
2077                         }
2078                 }
2079         }
2080 }
2081
2082 static void
2083 graph_print_vertices(struct owner_vertex_list *set)
2084 {
2085         struct owner_vertex *v;
2086
2087         printf("{ ");
2088         TAILQ_FOREACH(v, set, v_link) {
2089                 printf("%d:", v->v_order);
2090                 lf_print_owner(v->v_owner);
2091                 if (TAILQ_NEXT(v, v_link))
2092                         printf(", ");
2093         }
2094         printf(" }\n");
2095 }
2096
2097 #endif
2098
2099 /*
2100  * Calculate the sub-set of vertices v from the affected region [y..x]
2101  * where v is reachable from y. Return -1 if a loop was detected
2102  * (i.e. x is reachable from y, otherwise the number of vertices in
2103  * this subset.
2104  */
2105 static int
2106 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2107     struct owner_vertex *y, struct owner_vertex_list *delta)
2108 {
2109         uint32_t gen;
2110         struct owner_vertex *v;
2111         struct owner_edge *e;
2112         int n;
2113
2114         /*
2115          * We start with a set containing just y. Then for each vertex
2116          * v in the set so far unprocessed, we add each vertex that v
2117          * has an out-edge to and that is within the affected region
2118          * [y..x]. If we see the vertex x on our travels, stop
2119          * immediately.
2120          */
2121         TAILQ_INIT(delta);
2122         TAILQ_INSERT_TAIL(delta, y, v_link);
2123         v = y;
2124         n = 1;
2125         gen = g->g_gen;
2126         while (v) {
2127                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2128                         if (e->e_to == x)
2129                                 return -1;
2130                         if (e->e_to->v_order < x->v_order
2131                             && e->e_to->v_gen != gen) {
2132                                 e->e_to->v_gen = gen;
2133                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2134                                 n++;
2135                         }
2136                 }
2137                 v = TAILQ_NEXT(v, v_link);
2138         }
2139
2140         return (n);
2141 }
2142
2143 /*
2144  * Calculate the sub-set of vertices v from the affected region [y..x]
2145  * where v reaches x. Return the number of vertices in this subset.
2146  */
2147 static int
2148 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2149     struct owner_vertex *y, struct owner_vertex_list *delta)
2150 {
2151         uint32_t gen;
2152         struct owner_vertex *v;
2153         struct owner_edge *e;
2154         int n;
2155
2156         /*
2157          * We start with a set containing just x. Then for each vertex
2158          * v in the set so far unprocessed, we add each vertex that v
2159          * has an in-edge from and that is within the affected region
2160          * [y..x].
2161          */
2162         TAILQ_INIT(delta);
2163         TAILQ_INSERT_TAIL(delta, x, v_link);
2164         v = x;
2165         n = 1;
2166         gen = g->g_gen;
2167         while (v) {
2168                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2169                         if (e->e_from->v_order > y->v_order
2170                             && e->e_from->v_gen != gen) {
2171                                 e->e_from->v_gen = gen;
2172                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2173                                 n++;
2174                         }
2175                 }
2176                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2177         }
2178
2179         return (n);
2180 }
2181
2182 static int
2183 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2184 {
2185         struct owner_vertex *v;
2186         int i, j;
2187
2188         TAILQ_FOREACH(v, set, v_link) {
2189                 for (i = n;
2190                      i > 0 && indices[i - 1] > v->v_order; i--)
2191                         ;
2192                 for (j = n - 1; j >= i; j--)
2193                         indices[j + 1] = indices[j];
2194                 indices[i] = v->v_order;
2195                 n++;
2196         }
2197
2198         return (n);
2199 }
2200
2201 static int
2202 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2203     struct owner_vertex_list *set)
2204 {
2205         struct owner_vertex *v, *vlowest;
2206
2207         while (!TAILQ_EMPTY(set)) {
2208                 vlowest = NULL;
2209                 TAILQ_FOREACH(v, set, v_link) {
2210                         if (!vlowest || v->v_order < vlowest->v_order)
2211                                 vlowest = v;
2212                 }
2213                 TAILQ_REMOVE(set, vlowest, v_link);
2214                 vlowest->v_order = indices[nextunused];
2215                 g->g_vertices[vlowest->v_order] = vlowest;
2216                 nextunused++;
2217         }
2218
2219         return (nextunused);
2220 }
2221
2222 static int
2223 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2224     struct owner_vertex *y)
2225 {
2226         struct owner_edge *e;
2227         struct owner_vertex_list deltaF, deltaB;
2228         int nF, n, vi, i;
2229         int *indices;
2230         int nB __unused;
2231
2232         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2233
2234         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2235                 if (e->e_to == y) {
2236                         e->e_refs++;
2237                         return (0);
2238                 }
2239         }
2240
2241 #ifdef LOCKF_DEBUG
2242         if (lockf_debug & 8) {
2243                 printf("adding edge %d:", x->v_order);
2244                 lf_print_owner(x->v_owner);
2245                 printf(" -> %d:", y->v_order);
2246                 lf_print_owner(y->v_owner);
2247                 printf("\n");
2248         }
2249 #endif
2250         if (y->v_order < x->v_order) {
2251                 /*
2252                  * The new edge violates the order. First find the set
2253                  * of affected vertices reachable from y (deltaF) and
2254                  * the set of affect vertices affected that reach x
2255                  * (deltaB), using the graph generation number to
2256                  * detect whether we have visited a given vertex
2257                  * already. We re-order the graph so that each vertex
2258                  * in deltaB appears before each vertex in deltaF.
2259                  *
2260                  * If x is a member of deltaF, then the new edge would
2261                  * create a cycle. Otherwise, we may assume that
2262                  * deltaF and deltaB are disjoint.
2263                  */
2264                 g->g_gen++;
2265                 if (g->g_gen == 0) {
2266                         /*
2267                          * Generation wrap.
2268                          */
2269                         for (vi = 0; vi < g->g_size; vi++) {
2270                                 g->g_vertices[vi]->v_gen = 0;
2271                         }
2272                         g->g_gen++;
2273                 }
2274                 nF = graph_delta_forward(g, x, y, &deltaF);
2275                 if (nF < 0) {
2276 #ifdef LOCKF_DEBUG
2277                         if (lockf_debug & 8) {
2278                                 struct owner_vertex_list path;
2279                                 printf("deadlock: ");
2280                                 TAILQ_INIT(&path);
2281                                 graph_reaches(y, x, &path);
2282                                 graph_print_vertices(&path);
2283                         }
2284 #endif
2285                         return (EDEADLK);
2286                 }
2287
2288 #ifdef LOCKF_DEBUG
2289                 if (lockf_debug & 8) {
2290                         printf("re-ordering graph vertices\n");
2291                         printf("deltaF = ");
2292                         graph_print_vertices(&deltaF);
2293                 }
2294 #endif
2295
2296                 nB = graph_delta_backward(g, x, y, &deltaB);
2297
2298 #ifdef LOCKF_DEBUG
2299                 if (lockf_debug & 8) {
2300                         printf("deltaB = ");
2301                         graph_print_vertices(&deltaB);
2302                 }
2303 #endif
2304
2305                 /*
2306                  * We first build a set of vertex indices (vertex
2307                  * order values) that we may use, then we re-assign
2308                  * orders first to those vertices in deltaB, then to
2309                  * deltaF. Note that the contents of deltaF and deltaB
2310                  * may be partially disordered - we perform an
2311                  * insertion sort while building our index set.
2312                  */
2313                 indices = g->g_indexbuf;
2314                 n = graph_add_indices(indices, 0, &deltaF);
2315                 graph_add_indices(indices, n, &deltaB);
2316
2317                 /*
2318                  * We must also be sure to maintain the relative
2319                  * ordering of deltaF and deltaB when re-assigning
2320                  * vertices. We do this by iteratively removing the
2321                  * lowest ordered element from the set and assigning
2322                  * it the next value from our new ordering.
2323                  */
2324                 i = graph_assign_indices(g, indices, 0, &deltaB);
2325                 graph_assign_indices(g, indices, i, &deltaF);
2326
2327 #ifdef LOCKF_DEBUG
2328                 if (lockf_debug & 8) {
2329                         struct owner_vertex_list set;
2330                         TAILQ_INIT(&set);
2331                         for (i = 0; i < nB + nF; i++)
2332                                 TAILQ_INSERT_TAIL(&set,
2333                                     g->g_vertices[indices[i]], v_link);
2334                         printf("new ordering = ");
2335                         graph_print_vertices(&set);
2336                 }
2337 #endif
2338         }
2339
2340         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2341
2342 #ifdef LOCKF_DEBUG
2343         if (lockf_debug & 8) {
2344                 graph_check(g, TRUE);
2345         }
2346 #endif
2347
2348         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2349
2350         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2351         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2352         e->e_refs = 1;
2353         e->e_from = x;
2354         e->e_to = y;
2355
2356         return (0);
2357 }
2358
2359 /*
2360  * Remove an edge x->y from the graph.
2361  */
2362 static void
2363 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2364     struct owner_vertex *y)
2365 {
2366         struct owner_edge *e;
2367
2368         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2369
2370         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2371                 if (e->e_to == y)
2372                         break;
2373         }
2374         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2375
2376         e->e_refs--;
2377         if (e->e_refs == 0) {
2378 #ifdef LOCKF_DEBUG
2379                 if (lockf_debug & 8) {
2380                         printf("removing edge %d:", x->v_order);
2381                         lf_print_owner(x->v_owner);
2382                         printf(" -> %d:", y->v_order);
2383                         lf_print_owner(y->v_owner);
2384                         printf("\n");
2385                 }
2386 #endif
2387                 LIST_REMOVE(e, e_outlink);
2388                 LIST_REMOVE(e, e_inlink);
2389                 free(e, M_LOCKF);
2390         }
2391 }
2392
2393 /*
2394  * Allocate a vertex from the free list. Return ENOMEM if there are
2395  * none.
2396  */
2397 static struct owner_vertex *
2398 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2399 {
2400         struct owner_vertex *v;
2401
2402         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2403
2404         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2405         if (g->g_size == g->g_space) {
2406                 g->g_vertices = realloc(g->g_vertices,
2407                     2 * g->g_space * sizeof(struct owner_vertex *),
2408                     M_LOCKF, M_WAITOK);
2409                 free(g->g_indexbuf, M_LOCKF);
2410                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2411                     M_LOCKF, M_WAITOK);
2412                 g->g_space = 2 * g->g_space;
2413         }
2414         v->v_order = g->g_size;
2415         v->v_gen = g->g_gen;
2416         g->g_vertices[g->g_size] = v;
2417         g->g_size++;
2418
2419         LIST_INIT(&v->v_outedges);
2420         LIST_INIT(&v->v_inedges);
2421         v->v_owner = lo;
2422
2423         return (v);
2424 }
2425
2426 static void
2427 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2428 {
2429         struct owner_vertex *w;
2430         int i;
2431
2432         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2433
2434         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2435         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2436
2437         /*
2438          * Remove from the graph's array and close up the gap,
2439          * renumbering the other vertices.
2440          */
2441         for (i = v->v_order + 1; i < g->g_size; i++) {
2442                 w = g->g_vertices[i];
2443                 w->v_order--;
2444                 g->g_vertices[i - 1] = w;
2445         }
2446         g->g_size--;
2447
2448         free(v, M_LOCKF);
2449 }
2450
2451 static struct owner_graph *
2452 graph_init(struct owner_graph *g)
2453 {
2454
2455         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2456             M_LOCKF, M_WAITOK);
2457         g->g_size = 0;
2458         g->g_space = 10;
2459         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2460         g->g_gen = 0;
2461
2462         return (g);
2463 }
2464
2465 struct kinfo_lockf_linked {
2466         struct kinfo_lockf kl;
2467         struct vnode *vp;
2468         STAILQ_ENTRY(kinfo_lockf_linked) link;
2469 };
2470
2471 int
2472 vfs_report_lockf(struct mount *mp, struct sbuf *sb)
2473 {
2474         struct lockf *ls;
2475         struct lockf_entry *lf;
2476         struct kinfo_lockf_linked *klf;
2477         struct vnode *vp;
2478         struct ucred *ucred;
2479         char *fullpath, *freepath;
2480         struct stat stt;
2481         STAILQ_HEAD(, kinfo_lockf_linked) locks;
2482         int error, gerror;
2483
2484         STAILQ_INIT(&locks);
2485         sx_slock(&lf_lock_states_lock);
2486         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
2487                 sx_slock(&ls->ls_lock);
2488                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
2489                         vp = lf->lf_vnode;
2490                         if (VN_IS_DOOMED(vp) || vp->v_mount != mp)
2491                                 continue;
2492                         vhold(vp);
2493                         klf = malloc(sizeof(struct kinfo_lockf_linked),
2494                             M_LOCKF, M_WAITOK | M_ZERO);
2495                         klf->vp = vp;
2496                         klf->kl.kl_structsize = sizeof(struct kinfo_lockf);
2497                         klf->kl.kl_start = lf->lf_start;
2498                         klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 :
2499                             lf->lf_end - lf->lf_start + 1;
2500                         klf->kl.kl_rw = lf->lf_type == F_RDLCK ?
2501                             KLOCKF_RW_READ : KLOCKF_RW_WRITE;
2502                         if (lf->lf_owner->lo_sysid != 0) {
2503                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
2504                                 klf->kl.kl_sysid = lf->lf_owner->lo_sysid;
2505                                 klf->kl.kl_type = KLOCKF_TYPE_REMOTE;
2506                         } else if (lf->lf_owner->lo_pid == -1) {
2507                                 klf->kl.kl_pid = -1;
2508                                 klf->kl.kl_sysid = 0;
2509                                 klf->kl.kl_type = KLOCKF_TYPE_FLOCK;
2510                         } else {
2511                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
2512                                 klf->kl.kl_sysid = 0;
2513                                 klf->kl.kl_type = KLOCKF_TYPE_PID;
2514                         }
2515                         STAILQ_INSERT_TAIL(&locks, klf, link);
2516                 }
2517                 sx_sunlock(&ls->ls_lock);
2518         }
2519         sx_sunlock(&lf_lock_states_lock);
2520
2521         gerror = 0;
2522         ucred = curthread->td_ucred;
2523         while ((klf = STAILQ_FIRST(&locks)) != NULL) {
2524                 STAILQ_REMOVE_HEAD(&locks, link);
2525                 vp = klf->vp;
2526                 if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) {
2527                         error = prison_canseemount(ucred, vp->v_mount);
2528                         if (error == 0)
2529                                 error = VOP_STAT(vp, &stt, ucred, NOCRED);
2530                         VOP_UNLOCK(vp);
2531                         if (error == 0) {
2532                                 klf->kl.kl_file_fsid = stt.st_dev;
2533                                 klf->kl.kl_file_rdev = stt.st_rdev;
2534                                 klf->kl.kl_file_fileid = stt.st_ino;
2535                                 freepath = NULL;
2536                                 fullpath = "-";
2537                                 error = vn_fullpath(vp, &fullpath, &freepath);
2538                                 if (error == 0)
2539                                         strlcpy(klf->kl.kl_path, fullpath,
2540                                             sizeof(klf->kl.kl_path));
2541                                 free(freepath, M_TEMP);
2542                                 if (sbuf_bcat(sb, &klf->kl,
2543                                     klf->kl.kl_structsize) != 0) {
2544                                         gerror = sbuf_error(sb);
2545                                 }
2546                         }
2547                 }
2548                 vdrop(vp);
2549                 free(klf, M_LOCKF);
2550         }
2551
2552         return (gerror);
2553 }
2554
2555 static int
2556 sysctl_kern_lockf_run(struct sbuf *sb)
2557 {
2558         struct mount *mp;
2559         int error;
2560
2561         error = 0;
2562         mtx_lock(&mountlist_mtx);
2563         TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2564                 error = vfs_busy(mp, MBF_MNTLSTLOCK);
2565                 if (error != 0)
2566                         continue;
2567                 error = mp->mnt_op->vfs_report_lockf(mp, sb);
2568                 mtx_lock(&mountlist_mtx);
2569                 vfs_unbusy(mp);
2570                 if (error != 0)
2571                         break;
2572         }
2573         mtx_unlock(&mountlist_mtx);
2574         return (error);
2575 }
2576
2577 static int
2578 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS)
2579 {
2580         struct sbuf sb;
2581         int error, error2;
2582
2583         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req);
2584         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2585         error = sysctl_kern_lockf_run(&sb);
2586         error2 = sbuf_finish(&sb);
2587         sbuf_delete(&sb);
2588         return (error != 0 ? error : error2);
2589 }
2590 SYSCTL_PROC(_kern, KERN_LOCKF, lockf,
2591     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2592     0, 0, sysctl_kern_lockf, "S,lockf",
2593     "Advisory locks table");
2594
2595 #ifdef LOCKF_DEBUG
2596 /*
2597  * Print description of a lock owner
2598  */
2599 static void
2600 lf_print_owner(struct lock_owner *lo)
2601 {
2602
2603         if (lo->lo_flags & F_REMOTE) {
2604                 printf("remote pid %d, system %d",
2605                     lo->lo_pid, lo->lo_sysid);
2606         } else if (lo->lo_flags & F_FLOCK) {
2607                 printf("file %p", lo->lo_id);
2608         } else {
2609                 printf("local pid %d", lo->lo_pid);
2610         }
2611 }
2612
2613 /*
2614  * Print out a lock.
2615  */
2616 static void
2617 lf_print(char *tag, struct lockf_entry *lock)
2618 {
2619
2620         printf("%s: lock %p for ", tag, (void *)lock);
2621         lf_print_owner(lock->lf_owner);
2622         printf("\nvnode %p", lock->lf_vnode);
2623         VOP_PRINT(lock->lf_vnode);
2624         printf(" %s, start %jd, end ",
2625             lock->lf_type == F_RDLCK ? "shared" :
2626             lock->lf_type == F_WRLCK ? "exclusive" :
2627             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2628             (intmax_t)lock->lf_start);
2629         if (lock->lf_end == OFF_MAX)
2630                 printf("EOF");
2631         else
2632                 printf("%jd", (intmax_t)lock->lf_end);
2633         if (!LIST_EMPTY(&lock->lf_outedges))
2634                 printf(" block %p\n",
2635                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2636         else
2637                 printf("\n");
2638 }
2639
2640 static void
2641 lf_printlist(char *tag, struct lockf_entry *lock)
2642 {
2643         struct lockf_entry *lf, *blk;
2644         struct lockf_edge *e;
2645
2646         printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode);
2647         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2648                 printf("\tlock %p for ",(void *)lf);
2649                 lf_print_owner(lock->lf_owner);
2650                 printf(", %s, start %jd, end %jd",
2651                     lf->lf_type == F_RDLCK ? "shared" :
2652                     lf->lf_type == F_WRLCK ? "exclusive" :
2653                     lf->lf_type == F_UNLCK ? "unlock" :
2654                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2655                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2656                         blk = e->le_to;
2657                         printf("\n\t\tlock request %p for ", (void *)blk);
2658                         lf_print_owner(blk->lf_owner);
2659                         printf(", %s, start %jd, end %jd",
2660                             blk->lf_type == F_RDLCK ? "shared" :
2661                             blk->lf_type == F_WRLCK ? "exclusive" :
2662                             blk->lf_type == F_UNLCK ? "unlock" :
2663                             "unknown", (intmax_t)blk->lf_start,
2664                             (intmax_t)blk->lf_end);
2665                         if (!LIST_EMPTY(&blk->lf_inedges))
2666                                 panic("lf_printlist: bad list");
2667                 }
2668                 printf("\n");
2669         }
2670 }
2671 #endif /* LOCKF_DEBUG */