]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_lockf.c
libevent: Import libevent 2.1.12
[FreeBSD/FreeBSD.git] / sys / kern / kern_lockf.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *      The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
61  */
62
63 #include <sys/cdefs.h>
64 #include "opt_debug_lockf.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/jail.h>
70 #include <sys/kernel.h>
71 #include <sys/limits.h>
72 #include <sys/lock.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/sbuf.h>
77 #include <sys/stat.h>
78 #include <sys/sx.h>
79 #include <sys/unistd.h>
80 #include <sys/user.h>
81 #include <sys/vnode.h>
82 #include <sys/malloc.h>
83 #include <sys/fcntl.h>
84 #include <sys/lockf.h>
85 #include <sys/taskqueue.h>
86
87 #ifdef LOCKF_DEBUG
88 #include <sys/sysctl.h>
89
90 static int      lockf_debug = 0; /* control debug output */
91 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
92 #endif
93
94 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
95
96 struct owner_edge;
97 struct owner_vertex;
98 struct owner_vertex_list;
99 struct owner_graph;
100
101 #define NOLOCKF (struct lockf_entry *)0
102 #define SELF    0x1
103 #define OTHERS  0x2
104 static void      lf_init(void *);
105 static int       lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
106 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
107     int);
108 static struct lockf_entry *
109                  lf_alloc_lock(struct lock_owner *);
110 static int       lf_free_lock(struct lockf_entry *);
111 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
112 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
113 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
114 static void      lf_free_edge(struct lockf_edge *);
115 static struct lockf_edge *
116                  lf_alloc_edge(void);
117 static void      lf_alloc_vertex(struct lockf_entry *);
118 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
119 static void      lf_remove_edge(struct lockf_edge *);
120 static void      lf_remove_outgoing(struct lockf_entry *);
121 static void      lf_remove_incoming(struct lockf_entry *);
122 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
123 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
124 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
125     int);
126 static struct lockf_entry *
127                  lf_getblock(struct lockf *, struct lockf_entry *);
128 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
129 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
130 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
131 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
132     int all, struct lockf_entry_list *);
133 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
134         struct lockf_entry_list*);
135 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
136         struct lockf_entry_list*);
137 static int       lf_setlock(struct lockf *, struct lockf_entry *,
138     struct vnode *, void **cookiep);
139 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
140 static void      lf_split(struct lockf *, struct lockf_entry *,
141     struct lockf_entry *, struct lockf_entry_list *);
142 #ifdef LOCKF_DEBUG
143 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
144     struct owner_vertex_list *path);
145 static void      graph_check(struct owner_graph *g, int checkorder);
146 static void      graph_print_vertices(struct owner_vertex_list *set);
147 #endif
148 static int       graph_delta_forward(struct owner_graph *g,
149     struct owner_vertex *x, struct owner_vertex *y,
150     struct owner_vertex_list *delta);
151 static int       graph_delta_backward(struct owner_graph *g,
152     struct owner_vertex *x, struct owner_vertex *y,
153     struct owner_vertex_list *delta);
154 static int       graph_add_indices(int *indices, int n,
155     struct owner_vertex_list *set);
156 static int       graph_assign_indices(struct owner_graph *g, int *indices,
157     int nextunused, struct owner_vertex_list *set);
158 static int       graph_add_edge(struct owner_graph *g,
159     struct owner_vertex *x, struct owner_vertex *y);
160 static void      graph_remove_edge(struct owner_graph *g,
161     struct owner_vertex *x, struct owner_vertex *y);
162 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
163     struct lock_owner *lo);
164 static void      graph_free_vertex(struct owner_graph *g,
165     struct owner_vertex *v);
166 static struct owner_graph * graph_init(struct owner_graph *g);
167 #ifdef LOCKF_DEBUG
168 static void      lf_print(char *, struct lockf_entry *);
169 static void      lf_printlist(char *, struct lockf_entry *);
170 static void      lf_print_owner(struct lock_owner *);
171 #endif
172
173 /*
174  * This structure is used to keep track of both local and remote lock
175  * owners. The lf_owner field of the struct lockf_entry points back at
176  * the lock owner structure. Each possible lock owner (local proc for
177  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
178  * pair for remote locks) is represented by a unique instance of
179  * struct lock_owner.
180  *
181  * If a lock owner has a lock that blocks some other lock or a lock
182  * that is waiting for some other lock, it also has a vertex in the
183  * owner_graph below.
184  *
185  * Locks:
186  * (s)          locked by state->ls_lock
187  * (S)          locked by lf_lock_states_lock
188  * (g)          locked by lf_owner_graph_lock
189  * (c)          const until freeing
190  */
191 #define LOCK_OWNER_HASH_SIZE    256
192
193 struct lock_owner {
194         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195         int     lo_refs;            /* (l) Number of locks referring to this */
196         int     lo_flags;           /* (c) Flags passed to lf_advlock */
197         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
198         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
199         int     lo_sysid;           /* (c) System Id of the lock owner */
200         int     lo_hash;            /* (c) Used to lock the appropriate chain */
201         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
202 };
203
204 LIST_HEAD(lock_owner_list, lock_owner);
205
206 struct lock_owner_chain {
207         struct sx               lock;
208         struct lock_owner_list  list;
209 };
210
211 static struct sx                lf_lock_states_lock;
212 static struct lockf_list        lf_lock_states; /* (S) */
213 static struct lock_owner_chain  lf_lock_owners[LOCK_OWNER_HASH_SIZE];
214
215 /*
216  * Structures for deadlock detection.
217  *
218  * We have two types of directed graph, the first is the set of locks,
219  * both active and pending on a vnode. Within this graph, active locks
220  * are terminal nodes in the graph (i.e. have no out-going
221  * edges). Pending locks have out-going edges to each blocking active
222  * lock that prevents the lock from being granted and also to each
223  * older pending lock that would block them if it was active. The
224  * graph for each vnode is naturally acyclic; new edges are only ever
225  * added to or from new nodes (either new pending locks which only add
226  * out-going edges or new active locks which only add in-coming edges)
227  * therefore they cannot create loops in the lock graph.
228  *
229  * The second graph is a global graph of lock owners. Each lock owner
230  * is a vertex in that graph and an edge is added to the graph
231  * whenever an edge is added to a vnode graph, with end points
232  * corresponding to owner of the new pending lock and the owner of the
233  * lock upon which it waits. In order to prevent deadlock, we only add
234  * an edge to this graph if the new edge would not create a cycle.
235  * 
236  * The lock owner graph is topologically sorted, i.e. if a node has
237  * any outgoing edges, then it has an order strictly less than any
238  * node to which it has an outgoing edge. We preserve this ordering
239  * (and detect cycles) on edge insertion using Algorithm PK from the
240  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
241  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
242  * No. 1.7)
243  */
244 struct owner_vertex;
245
246 struct owner_edge {
247         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
248         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
249         int             e_refs;           /* (g) number of times added */
250         struct owner_vertex *e_from;      /* (c) out-going from here */
251         struct owner_vertex *e_to;        /* (c) in-coming to here */
252 };
253 LIST_HEAD(owner_edge_list, owner_edge);
254
255 struct owner_vertex {
256         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
257         uint32_t        v_gen;            /* (g) workspace for edge insertion */
258         int             v_order;          /* (g) order of vertex in graph */
259         struct owner_edge_list v_outedges;/* (g) list of out-edges */
260         struct owner_edge_list v_inedges; /* (g) list of in-edges */
261         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
262 };
263 TAILQ_HEAD(owner_vertex_list, owner_vertex);
264
265 struct owner_graph {
266         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
267         int             g_size;           /* (g) number of vertices */
268         int             g_space;          /* (g) space allocated for vertices */
269         int             *g_indexbuf;      /* (g) workspace for loop detection */
270         uint32_t        g_gen;            /* (g) increment when re-ordering */
271 };
272
273 static struct sx                lf_owner_graph_lock;
274 static struct owner_graph       lf_owner_graph;
275
276 /*
277  * Initialise various structures and locks.
278  */
279 static void
280 lf_init(void *dummy)
281 {
282         int i;
283
284         sx_init(&lf_lock_states_lock, "lock states lock");
285         LIST_INIT(&lf_lock_states);
286
287         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
288                 sx_init(&lf_lock_owners[i].lock, "lock owners lock");
289                 LIST_INIT(&lf_lock_owners[i].list);
290         }
291
292         sx_init(&lf_owner_graph_lock, "owner graph lock");
293         graph_init(&lf_owner_graph);
294 }
295 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
296
297 /*
298  * Generate a hash value for a lock owner.
299  */
300 static int
301 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
302 {
303         uint32_t h;
304
305         if (flags & F_REMOTE) {
306                 h = HASHSTEP(0, fl->l_pid);
307                 h = HASHSTEP(h, fl->l_sysid);
308         } else if (flags & F_FLOCK) {
309                 h = ((uintptr_t) id) >> 7;
310         } else {
311                 h = ((uintptr_t) vp) >> 7;
312         }
313
314         return (h % LOCK_OWNER_HASH_SIZE);
315 }
316
317 /*
318  * Return true if a lock owner matches the details passed to
319  * lf_advlock.
320  */
321 static int
322 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
323     int flags)
324 {
325         if (flags & F_REMOTE) {
326                 return lo->lo_pid == fl->l_pid
327                         && lo->lo_sysid == fl->l_sysid;
328         } else {
329                 return lo->lo_id == id;
330         }
331 }
332
333 static struct lockf_entry *
334 lf_alloc_lock(struct lock_owner *lo)
335 {
336         struct lockf_entry *lf;
337
338         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
339
340 #ifdef LOCKF_DEBUG
341         if (lockf_debug & 4)
342                 printf("Allocated lock %p\n", lf);
343 #endif
344         if (lo) {
345                 sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
346                 lo->lo_refs++;
347                 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
348                 lf->lf_owner = lo;
349         }
350
351         return (lf);
352 }
353
354 static int
355 lf_free_lock(struct lockf_entry *lock)
356 {
357         struct sx *chainlock;
358
359         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
360         if (--lock->lf_refs > 0)
361                 return (0);
362         /*
363          * Adjust the lock_owner reference count and
364          * reclaim the entry if this is the last lock
365          * for that owner.
366          */
367         struct lock_owner *lo = lock->lf_owner;
368         if (lo) {
369                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
370                     ("freeing lock with dependencies"));
371                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
372                     ("freeing lock with dependants"));
373                 chainlock = &lf_lock_owners[lo->lo_hash].lock;
374                 sx_xlock(chainlock);
375                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
376                 lo->lo_refs--;
377                 if (lo->lo_refs == 0) {
378 #ifdef LOCKF_DEBUG
379                         if (lockf_debug & 1)
380                                 printf("lf_free_lock: freeing lock owner %p\n",
381                                     lo);
382 #endif
383                         if (lo->lo_vertex) {
384                                 sx_xlock(&lf_owner_graph_lock);
385                                 graph_free_vertex(&lf_owner_graph,
386                                     lo->lo_vertex);
387                                 sx_xunlock(&lf_owner_graph_lock);
388                         }
389                         LIST_REMOVE(lo, lo_link);
390                         free(lo, M_LOCKF);
391 #ifdef LOCKF_DEBUG
392                         if (lockf_debug & 4)
393                                 printf("Freed lock owner %p\n", lo);
394 #endif
395                 }
396                 sx_unlock(chainlock);
397         }
398         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
399                 vrele(lock->lf_vnode);
400                 lock->lf_vnode = NULL;
401         }
402 #ifdef LOCKF_DEBUG
403         if (lockf_debug & 4)
404                 printf("Freed lock %p\n", lock);
405 #endif
406         free(lock, M_LOCKF);
407         return (1);
408 }
409
410 /*
411  * Advisory record locking support
412  */
413 int
414 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
415     u_quad_t size)
416 {
417         struct lockf *state;
418         struct flock *fl = ap->a_fl;
419         struct lockf_entry *lock;
420         struct vnode *vp = ap->a_vp;
421         caddr_t id = ap->a_id;
422         int flags = ap->a_flags;
423         int hash;
424         struct lock_owner *lo;
425         off_t start, end, oadd;
426         int error;
427
428         /*
429          * Handle the F_UNLKSYS case first - no need to mess about
430          * creating a lock owner for this one.
431          */
432         if (ap->a_op == F_UNLCKSYS) {
433                 lf_clearremotesys(fl->l_sysid);
434                 return (0);
435         }
436
437         /*
438          * Convert the flock structure into a start and end.
439          */
440         switch (fl->l_whence) {
441         case SEEK_SET:
442         case SEEK_CUR:
443                 /*
444                  * Caller is responsible for adding any necessary offset
445                  * when SEEK_CUR is used.
446                  */
447                 start = fl->l_start;
448                 break;
449
450         case SEEK_END:
451                 if (size > OFF_MAX ||
452                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
453                         return (EOVERFLOW);
454                 start = size + fl->l_start;
455                 break;
456
457         default:
458                 return (EINVAL);
459         }
460         if (start < 0)
461                 return (EINVAL);
462         if (fl->l_len < 0) {
463                 if (start == 0)
464                         return (EINVAL);
465                 end = start - 1;
466                 start += fl->l_len;
467                 if (start < 0)
468                         return (EINVAL);
469         } else if (fl->l_len == 0) {
470                 end = OFF_MAX;
471         } else {
472                 oadd = fl->l_len - 1;
473                 if (oadd > OFF_MAX - start)
474                         return (EOVERFLOW);
475                 end = start + oadd;
476         }
477
478 retry_setlock:
479
480         /*
481          * Avoid the common case of unlocking when inode has no locks.
482          */
483         if (ap->a_op != F_SETLK && (*statep) == NULL) {
484                 VI_LOCK(vp);
485                 if ((*statep) == NULL) {
486                         fl->l_type = F_UNLCK;
487                         VI_UNLOCK(vp);
488                         return (0);
489                 }
490                 VI_UNLOCK(vp);
491         }
492
493         /*
494          * Map our arguments to an existing lock owner or create one
495          * if this is the first time we have seen this owner.
496          */
497         hash = lf_hash_owner(id, vp, fl, flags);
498         sx_xlock(&lf_lock_owners[hash].lock);
499         LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
500                 if (lf_owner_matches(lo, id, fl, flags))
501                         break;
502         if (!lo) {
503                 /*
504                  * We initialise the lock with a reference
505                  * count which matches the new lockf_entry
506                  * structure created below.
507                  */
508                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
509                     M_WAITOK|M_ZERO);
510 #ifdef LOCKF_DEBUG
511                 if (lockf_debug & 4)
512                         printf("Allocated lock owner %p\n", lo);
513 #endif
514
515                 lo->lo_refs = 1;
516                 lo->lo_flags = flags;
517                 lo->lo_id = id;
518                 lo->lo_hash = hash;
519                 if (flags & F_REMOTE) {
520                         lo->lo_pid = fl->l_pid;
521                         lo->lo_sysid = fl->l_sysid;
522                 } else if (flags & F_FLOCK) {
523                         lo->lo_pid = -1;
524                         lo->lo_sysid = 0;
525                 } else {
526                         struct proc *p = (struct proc *) id;
527                         lo->lo_pid = p->p_pid;
528                         lo->lo_sysid = 0;
529                 }
530                 lo->lo_vertex = NULL;
531
532 #ifdef LOCKF_DEBUG
533                 if (lockf_debug & 1) {
534                         printf("lf_advlockasync: new lock owner %p ", lo);
535                         lf_print_owner(lo);
536                         printf("\n");
537                 }
538 #endif
539
540                 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
541         } else {
542                 /*
543                  * We have seen this lock owner before, increase its
544                  * reference count to account for the new lockf_entry
545                  * structure we create below.
546                  */
547                 lo->lo_refs++;
548         }
549         sx_xunlock(&lf_lock_owners[hash].lock);
550
551         /*
552          * Create the lockf structure. We initialise the lf_owner
553          * field here instead of in lf_alloc_lock() to avoid paying
554          * the lf_lock_owners_lock tax twice.
555          */
556         lock = lf_alloc_lock(NULL);
557         lock->lf_refs = 1;
558         lock->lf_start = start;
559         lock->lf_end = end;
560         lock->lf_owner = lo;
561         lock->lf_vnode = vp;
562         if (flags & F_REMOTE) {
563                 /*
564                  * For remote locks, the caller may release its ref to
565                  * the vnode at any time - we have to ref it here to
566                  * prevent it from being recycled unexpectedly.
567                  */
568                 vref(vp);
569         }
570
571         lock->lf_type = fl->l_type;
572         LIST_INIT(&lock->lf_outedges);
573         LIST_INIT(&lock->lf_inedges);
574         lock->lf_async_task = ap->a_task;
575         lock->lf_flags = ap->a_flags;
576
577         /*
578          * Do the requested operation. First find our state structure
579          * and create a new one if necessary - the caller's *statep
580          * variable and the state's ls_threads count is protected by
581          * the vnode interlock.
582          */
583         VI_LOCK(vp);
584         if (VN_IS_DOOMED(vp)) {
585                 VI_UNLOCK(vp);
586                 lf_free_lock(lock);
587                 return (ENOENT);
588         }
589
590         /*
591          * Allocate a state structure if necessary.
592          */
593         state = *statep;
594         if (state == NULL) {
595                 struct lockf *ls;
596
597                 VI_UNLOCK(vp);
598
599                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
600                 sx_init(&ls->ls_lock, "ls_lock");
601                 LIST_INIT(&ls->ls_active);
602                 LIST_INIT(&ls->ls_pending);
603                 ls->ls_threads = 1;
604
605                 sx_xlock(&lf_lock_states_lock);
606                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
607                 sx_xunlock(&lf_lock_states_lock);
608
609                 /*
610                  * Cope if we lost a race with some other thread while
611                  * trying to allocate memory.
612                  */
613                 VI_LOCK(vp);
614                 if (VN_IS_DOOMED(vp)) {
615                         VI_UNLOCK(vp);
616                         sx_xlock(&lf_lock_states_lock);
617                         LIST_REMOVE(ls, ls_link);
618                         sx_xunlock(&lf_lock_states_lock);
619                         sx_destroy(&ls->ls_lock);
620                         free(ls, M_LOCKF);
621                         lf_free_lock(lock);
622                         return (ENOENT);
623                 }
624                 if ((*statep) == NULL) {
625                         state = *statep = ls;
626                         VI_UNLOCK(vp);
627                 } else {
628                         state = *statep;
629                         MPASS(state->ls_threads >= 0);
630                         state->ls_threads++;
631                         VI_UNLOCK(vp);
632
633                         sx_xlock(&lf_lock_states_lock);
634                         LIST_REMOVE(ls, ls_link);
635                         sx_xunlock(&lf_lock_states_lock);
636                         sx_destroy(&ls->ls_lock);
637                         free(ls, M_LOCKF);
638                 }
639         } else {
640                 MPASS(state->ls_threads >= 0);
641                 state->ls_threads++;
642                 VI_UNLOCK(vp);
643         }
644
645         sx_xlock(&state->ls_lock);
646         /*
647          * Recheck the doomed vnode after state->ls_lock is
648          * locked. lf_purgelocks() requires that no new threads add
649          * pending locks when vnode is marked by VIRF_DOOMED flag.
650          */
651         if (VN_IS_DOOMED(vp)) {
652                 VI_LOCK(vp);
653                 MPASS(state->ls_threads > 0);
654                 state->ls_threads--;
655                 wakeup(state);
656                 VI_UNLOCK(vp);
657                 sx_xunlock(&state->ls_lock);
658                 lf_free_lock(lock);
659                 return (ENOENT);
660         }
661
662         switch (ap->a_op) {
663         case F_SETLK:
664                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
665                 break;
666
667         case F_UNLCK:
668                 error = lf_clearlock(state, lock);
669                 lf_free_lock(lock);
670                 break;
671
672         case F_GETLK:
673                 error = lf_getlock(state, lock, fl);
674                 lf_free_lock(lock);
675                 break;
676
677         case F_CANCEL:
678                 if (ap->a_cookiep)
679                         error = lf_cancel(state, lock, *ap->a_cookiep);
680                 else
681                         error = EINVAL;
682                 lf_free_lock(lock);
683                 break;
684
685         default:
686                 lf_free_lock(lock);
687                 error = EINVAL;
688                 break;
689         }
690
691 #ifdef DIAGNOSTIC
692         /*
693          * Check for some can't happen stuff. In this case, the active
694          * lock list becoming disordered or containing mutually
695          * blocking locks. We also check the pending list for locks
696          * which should be active (i.e. have no out-going edges).
697          */
698         LIST_FOREACH(lock, &state->ls_active, lf_link) {
699                 struct lockf_entry *lf;
700                 if (LIST_NEXT(lock, lf_link))
701                         KASSERT((lock->lf_start
702                                 <= LIST_NEXT(lock, lf_link)->lf_start),
703                             ("locks disordered"));
704                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
705                         if (lock == lf)
706                                 break;
707                         KASSERT(!lf_blocks(lock, lf),
708                             ("two conflicting active locks"));
709                         if (lock->lf_owner == lf->lf_owner)
710                                 KASSERT(!lf_overlaps(lock, lf),
711                                     ("two overlapping locks from same owner"));
712                 }
713         }
714         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
715                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
716                     ("pending lock which should be active"));
717         }
718 #endif
719         sx_xunlock(&state->ls_lock);
720
721         VI_LOCK(vp);
722         MPASS(state->ls_threads > 0);
723         state->ls_threads--;
724         if (state->ls_threads != 0) {
725                 wakeup(state);
726         }
727         VI_UNLOCK(vp);
728
729         if (error == EDOOFUS) {
730                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
731                 goto retry_setlock;
732         }
733         return (error);
734 }
735
736 int
737 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
738 {
739         struct vop_advlockasync_args a;
740
741         a.a_vp = ap->a_vp;
742         a.a_id = ap->a_id;
743         a.a_op = ap->a_op;
744         a.a_fl = ap->a_fl;
745         a.a_flags = ap->a_flags;
746         a.a_task = NULL;
747         a.a_cookiep = NULL;
748
749         return (lf_advlockasync(&a, statep, size));
750 }
751
752 void
753 lf_purgelocks(struct vnode *vp, struct lockf **statep)
754 {
755         struct lockf *state;
756         struct lockf_entry *lock, *nlock;
757
758         /*
759          * For this to work correctly, the caller must ensure that no
760          * other threads enter the locking system for this vnode,
761          * e.g. by checking VIRF_DOOMED. We wake up any threads that are
762          * sleeping waiting for locks on this vnode and then free all
763          * the remaining locks.
764          */
765         KASSERT(VN_IS_DOOMED(vp),
766             ("lf_purgelocks: vp %p has not vgone yet", vp));
767         state = *statep;
768         if (state == NULL) {
769                 return;
770         }
771         VI_LOCK(vp);
772         *statep = NULL;
773         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
774                 KASSERT(LIST_EMPTY(&state->ls_pending),
775                     ("freeing state with pending locks"));
776                 VI_UNLOCK(vp);
777                 goto out_free;
778         }
779         MPASS(state->ls_threads >= 0);
780         state->ls_threads++;
781         VI_UNLOCK(vp);
782
783         sx_xlock(&state->ls_lock);
784         sx_xlock(&lf_owner_graph_lock);
785         LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
786                 LIST_REMOVE(lock, lf_link);
787                 lf_remove_outgoing(lock);
788                 lf_remove_incoming(lock);
789
790                 /*
791                  * If its an async lock, we can just free it
792                  * here, otherwise we let the sleeping thread
793                  * free it.
794                  */
795                 if (lock->lf_async_task) {
796                         lf_free_lock(lock);
797                 } else {
798                         lock->lf_flags |= F_INTR;
799                         wakeup(lock);
800                 }
801         }
802         sx_xunlock(&lf_owner_graph_lock);
803         sx_xunlock(&state->ls_lock);
804
805         /*
806          * Wait for all other threads, sleeping and otherwise
807          * to leave.
808          */
809         VI_LOCK(vp);
810         while (state->ls_threads > 1)
811                 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
812         VI_UNLOCK(vp);
813
814         /*
815          * We can just free all the active locks since they
816          * will have no dependencies (we removed them all
817          * above). We don't need to bother locking since we
818          * are the last thread using this state structure.
819          */
820         KASSERT(LIST_EMPTY(&state->ls_pending),
821             ("lock pending for %p", state));
822         LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
823                 LIST_REMOVE(lock, lf_link);
824                 lf_free_lock(lock);
825         }
826 out_free:
827         sx_xlock(&lf_lock_states_lock);
828         LIST_REMOVE(state, ls_link);
829         sx_xunlock(&lf_lock_states_lock);
830         sx_destroy(&state->ls_lock);
831         free(state, M_LOCKF);
832 }
833
834 /*
835  * Return non-zero if locks 'x' and 'y' overlap.
836  */
837 static int
838 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
839 {
840
841         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
842 }
843
844 /*
845  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
846  */
847 static int
848 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
849 {
850
851         return x->lf_owner != y->lf_owner
852                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
853                 && lf_overlaps(x, y);
854 }
855
856 /*
857  * Allocate a lock edge from the free list
858  */
859 static struct lockf_edge *
860 lf_alloc_edge(void)
861 {
862
863         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
864 }
865
866 /*
867  * Free a lock edge.
868  */
869 static void
870 lf_free_edge(struct lockf_edge *e)
871 {
872
873         free(e, M_LOCKF);
874 }
875
876 /*
877  * Ensure that the lock's owner has a corresponding vertex in the
878  * owner graph.
879  */
880 static void
881 lf_alloc_vertex(struct lockf_entry *lock)
882 {
883         struct owner_graph *g = &lf_owner_graph;
884
885         if (!lock->lf_owner->lo_vertex)
886                 lock->lf_owner->lo_vertex =
887                         graph_alloc_vertex(g, lock->lf_owner);
888 }
889
890 /*
891  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
892  * the new edge would cause a cycle in the owner graph.
893  */
894 static int
895 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
896 {
897         struct owner_graph *g = &lf_owner_graph;
898         struct lockf_edge *e;
899         int error;
900
901 #ifdef DIAGNOSTIC
902         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
903                 KASSERT(e->le_to != y, ("adding lock edge twice"));
904 #endif
905
906         /*
907          * Make sure the two owners have entries in the owner graph.
908          */
909         lf_alloc_vertex(x);
910         lf_alloc_vertex(y);
911
912         error = graph_add_edge(g, x->lf_owner->lo_vertex,
913             y->lf_owner->lo_vertex);
914         if (error)
915                 return (error);
916
917         e = lf_alloc_edge();
918         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
919         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
920         e->le_from = x;
921         e->le_to = y;
922
923         return (0);
924 }
925
926 /*
927  * Remove an edge from the lock graph.
928  */
929 static void
930 lf_remove_edge(struct lockf_edge *e)
931 {
932         struct owner_graph *g = &lf_owner_graph;
933         struct lockf_entry *x = e->le_from;
934         struct lockf_entry *y = e->le_to;
935
936         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
937         LIST_REMOVE(e, le_outlink);
938         LIST_REMOVE(e, le_inlink);
939         e->le_from = NULL;
940         e->le_to = NULL;
941         lf_free_edge(e);
942 }
943
944 /*
945  * Remove all out-going edges from lock x.
946  */
947 static void
948 lf_remove_outgoing(struct lockf_entry *x)
949 {
950         struct lockf_edge *e;
951
952         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
953                 lf_remove_edge(e);
954         }
955 }
956
957 /*
958  * Remove all in-coming edges from lock x.
959  */
960 static void
961 lf_remove_incoming(struct lockf_entry *x)
962 {
963         struct lockf_edge *e;
964
965         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
966                 lf_remove_edge(e);
967         }
968 }
969
970 /*
971  * Walk the list of locks for the file and create an out-going edge
972  * from lock to each blocking lock.
973  */
974 static int
975 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
976 {
977         struct lockf_entry *overlap;
978         int error;
979
980         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
981                 /*
982                  * We may assume that the active list is sorted by
983                  * lf_start.
984                  */
985                 if (overlap->lf_start > lock->lf_end)
986                         break;
987                 if (!lf_blocks(lock, overlap))
988                         continue;
989
990                 /*
991                  * We've found a blocking lock. Add the corresponding
992                  * edge to the graphs and see if it would cause a
993                  * deadlock.
994                  */
995                 error = lf_add_edge(lock, overlap);
996
997                 /*
998                  * The only error that lf_add_edge returns is EDEADLK.
999                  * Remove any edges we added and return the error.
1000                  */
1001                 if (error) {
1002                         lf_remove_outgoing(lock);
1003                         return (error);
1004                 }
1005         }
1006
1007         /*
1008          * We also need to add edges to sleeping locks that block
1009          * us. This ensures that lf_wakeup_lock cannot grant two
1010          * mutually blocking locks simultaneously and also enforces a
1011          * 'first come, first served' fairness model. Note that this
1012          * only happens if we are blocked by at least one active lock
1013          * due to the call to lf_getblock in lf_setlock below.
1014          */
1015         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1016                 if (!lf_blocks(lock, overlap))
1017                         continue;
1018                 /*
1019                  * We've found a blocking lock. Add the corresponding
1020                  * edge to the graphs and see if it would cause a
1021                  * deadlock.
1022                  */
1023                 error = lf_add_edge(lock, overlap);
1024
1025                 /*
1026                  * The only error that lf_add_edge returns is EDEADLK.
1027                  * Remove any edges we added and return the error.
1028                  */
1029                 if (error) {
1030                         lf_remove_outgoing(lock);
1031                         return (error);
1032                 }
1033         }
1034
1035         return (0);
1036 }
1037
1038 /*
1039  * Walk the list of pending locks for the file and create an in-coming
1040  * edge from lock to each blocking lock.
1041  */
1042 static int
1043 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1044 {
1045         struct lockf_entry *overlap;
1046         int error;
1047
1048         sx_assert(&state->ls_lock, SX_XLOCKED);
1049         if (LIST_EMPTY(&state->ls_pending))
1050                 return (0);
1051
1052         error = 0;
1053         sx_xlock(&lf_owner_graph_lock);
1054         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1055                 if (!lf_blocks(lock, overlap))
1056                         continue;
1057
1058                 /*
1059                  * We've found a blocking lock. Add the corresponding
1060                  * edge to the graphs and see if it would cause a
1061                  * deadlock.
1062                  */
1063                 error = lf_add_edge(overlap, lock);
1064
1065                 /*
1066                  * The only error that lf_add_edge returns is EDEADLK.
1067                  * Remove any edges we added and return the error.
1068                  */
1069                 if (error) {
1070                         lf_remove_incoming(lock);
1071                         break;
1072                 }
1073         }
1074         sx_xunlock(&lf_owner_graph_lock);
1075         return (error);
1076 }
1077
1078 /*
1079  * Insert lock into the active list, keeping list entries ordered by
1080  * increasing values of lf_start.
1081  */
1082 static void
1083 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1084 {
1085         struct lockf_entry *lf, *lfprev;
1086
1087         if (LIST_EMPTY(&state->ls_active)) {
1088                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1089                 return;
1090         }
1091
1092         lfprev = NULL;
1093         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1094                 if (lf->lf_start > lock->lf_start) {
1095                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1096                         return;
1097                 }
1098                 lfprev = lf;
1099         }
1100         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1101 }
1102
1103 /*
1104  * Wake up a sleeping lock and remove it from the pending list now
1105  * that all its dependencies have been resolved. The caller should
1106  * arrange for the lock to be added to the active list, adjusting any
1107  * existing locks for the same owner as needed.
1108  */
1109 static void
1110 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1111 {
1112
1113         /*
1114          * Remove from ls_pending list and wake up the caller
1115          * or start the async notification, as appropriate.
1116          */
1117         LIST_REMOVE(wakelock, lf_link);
1118 #ifdef LOCKF_DEBUG
1119         if (lockf_debug & 1)
1120                 lf_print("lf_wakeup_lock: awakening", wakelock);
1121 #endif /* LOCKF_DEBUG */
1122         if (wakelock->lf_async_task) {
1123                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1124         } else {
1125                 wakeup(wakelock);
1126         }
1127 }
1128
1129 /*
1130  * Re-check all dependent locks and remove edges to locks that we no
1131  * longer block. If 'all' is non-zero, the lock has been removed and
1132  * we must remove all the dependencies, otherwise it has simply been
1133  * reduced but remains active. Any pending locks which have been been
1134  * unblocked are added to 'granted'
1135  */
1136 static void
1137 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1138         struct lockf_entry_list *granted)
1139 {
1140         struct lockf_edge *e, *ne;
1141         struct lockf_entry *deplock;
1142
1143         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1144                 deplock = e->le_from;
1145                 if (all || !lf_blocks(lock, deplock)) {
1146                         sx_xlock(&lf_owner_graph_lock);
1147                         lf_remove_edge(e);
1148                         sx_xunlock(&lf_owner_graph_lock);
1149                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1150                                 lf_wakeup_lock(state, deplock);
1151                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1152                         }
1153                 }
1154         }
1155 }
1156
1157 /*
1158  * Set the start of an existing active lock, updating dependencies and
1159  * adding any newly woken locks to 'granted'.
1160  */
1161 static void
1162 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1163         struct lockf_entry_list *granted)
1164 {
1165
1166         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1167         lock->lf_start = new_start;
1168         LIST_REMOVE(lock, lf_link);
1169         lf_insert_lock(state, lock);
1170         lf_update_dependancies(state, lock, FALSE, granted);
1171 }
1172
1173 /*
1174  * Set the end of an existing active lock, updating dependencies and
1175  * adding any newly woken locks to 'granted'.
1176  */
1177 static void
1178 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1179         struct lockf_entry_list *granted)
1180 {
1181
1182         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1183         lock->lf_end = new_end;
1184         lf_update_dependancies(state, lock, FALSE, granted);
1185 }
1186
1187 /*
1188  * Add a lock to the active list, updating or removing any current
1189  * locks owned by the same owner and processing any pending locks that
1190  * become unblocked as a result. This code is also used for unlock
1191  * since the logic for updating existing locks is identical.
1192  *
1193  * As a result of processing the new lock, we may unblock existing
1194  * pending locks as a result of downgrading/unlocking. We simply
1195  * activate the newly granted locks by looping.
1196  *
1197  * Since the new lock already has its dependencies set up, we always
1198  * add it to the list (unless its an unlock request). This may
1199  * fragment the lock list in some pathological cases but its probably
1200  * not a real problem.
1201  */
1202 static void
1203 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1204 {
1205         struct lockf_entry *overlap, *lf;
1206         struct lockf_entry_list granted;
1207         int ovcase;
1208
1209         LIST_INIT(&granted);
1210         LIST_INSERT_HEAD(&granted, lock, lf_link);
1211
1212         while (!LIST_EMPTY(&granted)) {
1213                 lock = LIST_FIRST(&granted);
1214                 LIST_REMOVE(lock, lf_link);
1215
1216                 /*
1217                  * Skip over locks owned by other processes.  Handle
1218                  * any locks that overlap and are owned by ourselves.
1219                  */
1220                 overlap = LIST_FIRST(&state->ls_active);
1221                 for (;;) {
1222                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1223
1224 #ifdef LOCKF_DEBUG
1225                         if (ovcase && (lockf_debug & 2)) {
1226                                 printf("lf_setlock: overlap %d", ovcase);
1227                                 lf_print("", overlap);
1228                         }
1229 #endif
1230                         /*
1231                          * Six cases:
1232                          *      0) no overlap
1233                          *      1) overlap == lock
1234                          *      2) overlap contains lock
1235                          *      3) lock contains overlap
1236                          *      4) overlap starts before lock
1237                          *      5) overlap ends after lock
1238                          */
1239                         switch (ovcase) {
1240                         case 0: /* no overlap */
1241                                 break;
1242
1243                         case 1: /* overlap == lock */
1244                                 /*
1245                                  * We have already setup the
1246                                  * dependants for the new lock, taking
1247                                  * into account a possible downgrade
1248                                  * or unlock. Remove the old lock.
1249                                  */
1250                                 LIST_REMOVE(overlap, lf_link);
1251                                 lf_update_dependancies(state, overlap, TRUE,
1252                                         &granted);
1253                                 lf_free_lock(overlap);
1254                                 break;
1255
1256                         case 2: /* overlap contains lock */
1257                                 /*
1258                                  * Just split the existing lock.
1259                                  */
1260                                 lf_split(state, overlap, lock, &granted);
1261                                 break;
1262
1263                         case 3: /* lock contains overlap */
1264                                 /*
1265                                  * Delete the overlap and advance to
1266                                  * the next entry in the list.
1267                                  */
1268                                 lf = LIST_NEXT(overlap, lf_link);
1269                                 LIST_REMOVE(overlap, lf_link);
1270                                 lf_update_dependancies(state, overlap, TRUE,
1271                                         &granted);
1272                                 lf_free_lock(overlap);
1273                                 overlap = lf;
1274                                 continue;
1275
1276                         case 4: /* overlap starts before lock */
1277                                 /*
1278                                  * Just update the overlap end and
1279                                  * move on.
1280                                  */
1281                                 lf_set_end(state, overlap, lock->lf_start - 1,
1282                                     &granted);
1283                                 overlap = LIST_NEXT(overlap, lf_link);
1284                                 continue;
1285
1286                         case 5: /* overlap ends after lock */
1287                                 /*
1288                                  * Change the start of overlap and
1289                                  * re-insert.
1290                                  */
1291                                 lf_set_start(state, overlap, lock->lf_end + 1,
1292                                     &granted);
1293                                 break;
1294                         }
1295                         break;
1296                 }
1297 #ifdef LOCKF_DEBUG
1298                 if (lockf_debug & 1) {
1299                         if (lock->lf_type != F_UNLCK)
1300                                 lf_print("lf_activate_lock: activated", lock);
1301                         else
1302                                 lf_print("lf_activate_lock: unlocked", lock);
1303                         lf_printlist("lf_activate_lock", lock);
1304                 }
1305 #endif /* LOCKF_DEBUG */
1306                 if (lock->lf_type != F_UNLCK)
1307                         lf_insert_lock(state, lock);
1308         }
1309 }
1310
1311 /*
1312  * Cancel a pending lock request, either as a result of a signal or a
1313  * cancel request for an async lock.
1314  */
1315 static void
1316 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1317 {
1318         struct lockf_entry_list granted;
1319
1320         /*
1321          * Note it is theoretically possible that cancelling this lock
1322          * may allow some other pending lock to become
1323          * active. Consider this case:
1324          *
1325          * Owner        Action          Result          Dependencies
1326          * 
1327          * A:           lock [0..0]     succeeds        
1328          * B:           lock [2..2]     succeeds        
1329          * C:           lock [1..2]     blocked         C->B
1330          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1331          * A:           unlock [0..0]                   C->B,D->C
1332          * C:           cancel [1..2]   
1333          */
1334
1335         LIST_REMOVE(lock, lf_link);
1336
1337         /*
1338          * Removing out-going edges is simple.
1339          */
1340         sx_xlock(&lf_owner_graph_lock);
1341         lf_remove_outgoing(lock);
1342         sx_xunlock(&lf_owner_graph_lock);
1343
1344         /*
1345          * Removing in-coming edges may allow some other lock to
1346          * become active - we use lf_update_dependancies to figure
1347          * this out.
1348          */
1349         LIST_INIT(&granted);
1350         lf_update_dependancies(state, lock, TRUE, &granted);
1351         lf_free_lock(lock);
1352
1353         /*
1354          * Feed any newly active locks to lf_activate_lock.
1355          */
1356         while (!LIST_EMPTY(&granted)) {
1357                 lock = LIST_FIRST(&granted);
1358                 LIST_REMOVE(lock, lf_link);
1359                 lf_activate_lock(state, lock);
1360         }
1361 }
1362
1363 /*
1364  * Set a byte-range lock.
1365  */
1366 static int
1367 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1368     void **cookiep)
1369 {
1370         static char lockstr[] = "lockf";
1371         int error, priority, stops_deferred;
1372
1373 #ifdef LOCKF_DEBUG
1374         if (lockf_debug & 1)
1375                 lf_print("lf_setlock", lock);
1376 #endif /* LOCKF_DEBUG */
1377
1378         /*
1379          * Set the priority
1380          */
1381         priority = PLOCK;
1382         if (lock->lf_type == F_WRLCK)
1383                 priority += 4;
1384         if (!(lock->lf_flags & F_NOINTR))
1385                 priority |= PCATCH;
1386         /*
1387          * Scan lock list for this file looking for locks that would block us.
1388          */
1389         if (lf_getblock(state, lock)) {
1390                 /*
1391                  * Free the structure and return if nonblocking.
1392                  */
1393                 if ((lock->lf_flags & F_WAIT) == 0
1394                     && lock->lf_async_task == NULL) {
1395                         lf_free_lock(lock);
1396                         error = EAGAIN;
1397                         goto out;
1398                 }
1399
1400                 /*
1401                  * For flock type locks, we must first remove
1402                  * any shared locks that we hold before we sleep
1403                  * waiting for an exclusive lock.
1404                  */
1405                 if ((lock->lf_flags & F_FLOCK) &&
1406                     lock->lf_type == F_WRLCK) {
1407                         lock->lf_type = F_UNLCK;
1408                         lf_activate_lock(state, lock);
1409                         lock->lf_type = F_WRLCK;
1410                 }
1411
1412                 /*
1413                  * We are blocked. Create edges to each blocking lock,
1414                  * checking for deadlock using the owner graph. For
1415                  * simplicity, we run deadlock detection for all
1416                  * locks, posix and otherwise.
1417                  */
1418                 sx_xlock(&lf_owner_graph_lock);
1419                 error = lf_add_outgoing(state, lock);
1420                 sx_xunlock(&lf_owner_graph_lock);
1421
1422                 if (error) {
1423 #ifdef LOCKF_DEBUG
1424                         if (lockf_debug & 1)
1425                                 lf_print("lf_setlock: deadlock", lock);
1426 #endif
1427                         lf_free_lock(lock);
1428                         goto out;
1429                 }
1430
1431                 /*
1432                  * We have added edges to everything that blocks
1433                  * us. Sleep until they all go away.
1434                  */
1435                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1436 #ifdef LOCKF_DEBUG
1437                 if (lockf_debug & 1) {
1438                         struct lockf_edge *e;
1439                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1440                                 lf_print("lf_setlock: blocking on", e->le_to);
1441                                 lf_printlist("lf_setlock", e->le_to);
1442                         }
1443                 }
1444 #endif /* LOCKF_DEBUG */
1445
1446                 if ((lock->lf_flags & F_WAIT) == 0) {
1447                         /*
1448                          * The caller requested async notification -
1449                          * this callback happens when the blocking
1450                          * lock is released, allowing the caller to
1451                          * make another attempt to take the lock.
1452                          */
1453                         *cookiep = (void *) lock;
1454                         error = EINPROGRESS;
1455                         goto out;
1456                 }
1457
1458                 lock->lf_refs++;
1459                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1460                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1461                 sigallowstop(stops_deferred);
1462                 if (lf_free_lock(lock)) {
1463                         error = EDOOFUS;
1464                         goto out;
1465                 }
1466
1467                 /*
1468                  * We may have been awakened by a signal and/or by a
1469                  * debugger continuing us (in which cases we must
1470                  * remove our lock graph edges) and/or by another
1471                  * process releasing a lock (in which case our edges
1472                  * have already been removed and we have been moved to
1473                  * the active list). We may also have been woken by
1474                  * lf_purgelocks which we report to the caller as
1475                  * EINTR. In that case, lf_purgelocks will have
1476                  * removed our lock graph edges.
1477                  *
1478                  * Note that it is possible to receive a signal after
1479                  * we were successfully woken (and moved to the active
1480                  * list) but before we resumed execution. In this
1481                  * case, our lf_outedges list will be clear. We
1482                  * pretend there was no error.
1483                  *
1484                  * Note also, if we have been sleeping long enough, we
1485                  * may now have incoming edges from some newer lock
1486                  * which is waiting behind us in the queue.
1487                  */
1488                 if (lock->lf_flags & F_INTR) {
1489                         error = EINTR;
1490                         lf_free_lock(lock);
1491                         goto out;
1492                 }
1493                 if (LIST_EMPTY(&lock->lf_outedges)) {
1494                         error = 0;
1495                 } else {
1496                         lf_cancel_lock(state, lock);
1497                         goto out;
1498                 }
1499 #ifdef LOCKF_DEBUG
1500                 if (lockf_debug & 1) {
1501                         lf_print("lf_setlock: granted", lock);
1502                 }
1503 #endif
1504                 goto out;
1505         }
1506         /*
1507          * It looks like we are going to grant the lock. First add
1508          * edges from any currently pending lock that the new lock
1509          * would block.
1510          */
1511         error = lf_add_incoming(state, lock);
1512         if (error) {
1513 #ifdef LOCKF_DEBUG
1514                 if (lockf_debug & 1)
1515                         lf_print("lf_setlock: deadlock", lock);
1516 #endif
1517                 lf_free_lock(lock);
1518                 goto out;
1519         }
1520
1521         /*
1522          * No blocks!!  Add the lock.  Note that we will
1523          * downgrade or upgrade any overlapping locks this
1524          * process already owns.
1525          */
1526         lf_activate_lock(state, lock);
1527         error = 0;
1528 out:
1529         return (error);
1530 }
1531
1532 /*
1533  * Remove a byte-range lock on an inode.
1534  *
1535  * Generally, find the lock (or an overlap to that lock)
1536  * and remove it (or shrink it), then wakeup anyone we can.
1537  */
1538 static int
1539 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1540 {
1541         struct lockf_entry *overlap;
1542
1543         overlap = LIST_FIRST(&state->ls_active);
1544
1545         if (overlap == NOLOCKF)
1546                 return (0);
1547 #ifdef LOCKF_DEBUG
1548         if (unlock->lf_type != F_UNLCK)
1549                 panic("lf_clearlock: bad type");
1550         if (lockf_debug & 1)
1551                 lf_print("lf_clearlock", unlock);
1552 #endif /* LOCKF_DEBUG */
1553
1554         lf_activate_lock(state, unlock);
1555
1556         return (0);
1557 }
1558
1559 /*
1560  * Check whether there is a blocking lock, and if so return its
1561  * details in '*fl'.
1562  */
1563 static int
1564 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1565 {
1566         struct lockf_entry *block;
1567
1568 #ifdef LOCKF_DEBUG
1569         if (lockf_debug & 1)
1570                 lf_print("lf_getlock", lock);
1571 #endif /* LOCKF_DEBUG */
1572
1573         if ((block = lf_getblock(state, lock))) {
1574                 fl->l_type = block->lf_type;
1575                 fl->l_whence = SEEK_SET;
1576                 fl->l_start = block->lf_start;
1577                 if (block->lf_end == OFF_MAX)
1578                         fl->l_len = 0;
1579                 else
1580                         fl->l_len = block->lf_end - block->lf_start + 1;
1581                 fl->l_pid = block->lf_owner->lo_pid;
1582                 fl->l_sysid = block->lf_owner->lo_sysid;
1583         } else {
1584                 fl->l_type = F_UNLCK;
1585         }
1586         return (0);
1587 }
1588
1589 /*
1590  * Cancel an async lock request.
1591  */
1592 static int
1593 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1594 {
1595         struct lockf_entry *reallock;
1596
1597         /*
1598          * We need to match this request with an existing lock
1599          * request.
1600          */
1601         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1602                 if ((void *) reallock == cookie) {
1603                         /*
1604                          * Double-check that this lock looks right
1605                          * (maybe use a rolling ID for the cancel
1606                          * cookie instead?)
1607                          */
1608                         if (!(reallock->lf_vnode == lock->lf_vnode
1609                                 && reallock->lf_start == lock->lf_start
1610                                 && reallock->lf_end == lock->lf_end)) {
1611                                 return (ENOENT);
1612                         }
1613
1614                         /*
1615                          * Make sure this lock was async and then just
1616                          * remove it from its wait lists.
1617                          */
1618                         if (!reallock->lf_async_task) {
1619                                 return (ENOENT);
1620                         }
1621
1622                         /*
1623                          * Note that since any other thread must take
1624                          * state->ls_lock before it can possibly
1625                          * trigger the async callback, we are safe
1626                          * from a race with lf_wakeup_lock, i.e. we
1627                          * can free the lock (actually our caller does
1628                          * this).
1629                          */
1630                         lf_cancel_lock(state, reallock);
1631                         return (0);
1632                 }
1633         }
1634
1635         /*
1636          * We didn't find a matching lock - not much we can do here.
1637          */
1638         return (ENOENT);
1639 }
1640
1641 /*
1642  * Walk the list of locks for an inode and
1643  * return the first blocking lock.
1644  */
1645 static struct lockf_entry *
1646 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1647 {
1648         struct lockf_entry *overlap;
1649
1650         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1651                 /*
1652                  * We may assume that the active list is sorted by
1653                  * lf_start.
1654                  */
1655                 if (overlap->lf_start > lock->lf_end)
1656                         break;
1657                 if (!lf_blocks(lock, overlap))
1658                         continue;
1659                 return (overlap);
1660         }
1661         return (NOLOCKF);
1662 }
1663
1664 /*
1665  * Walk the list of locks for an inode to find an overlapping lock (if
1666  * any) and return a classification of that overlap.
1667  *
1668  * Arguments:
1669  *      *overlap        The place in the lock list to start looking
1670  *      lock            The lock which is being tested
1671  *      type            Pass 'SELF' to test only locks with the same
1672  *                      owner as lock, or 'OTHER' to test only locks
1673  *                      with a different owner
1674  *
1675  * Returns one of six values:
1676  *      0) no overlap
1677  *      1) overlap == lock
1678  *      2) overlap contains lock
1679  *      3) lock contains overlap
1680  *      4) overlap starts before lock
1681  *      5) overlap ends after lock
1682  *
1683  * If there is an overlapping lock, '*overlap' is set to point at the
1684  * overlapping lock.
1685  *
1686  * NOTE: this returns only the FIRST overlapping lock.  There
1687  *       may be more than one.
1688  */
1689 static int
1690 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1691 {
1692         struct lockf_entry *lf;
1693         off_t start, end;
1694         int res;
1695
1696         if ((*overlap) == NOLOCKF) {
1697                 return (0);
1698         }
1699 #ifdef LOCKF_DEBUG
1700         if (lockf_debug & 2)
1701                 lf_print("lf_findoverlap: looking for overlap in", lock);
1702 #endif /* LOCKF_DEBUG */
1703         start = lock->lf_start;
1704         end = lock->lf_end;
1705         res = 0;
1706         while (*overlap) {
1707                 lf = *overlap;
1708                 if (lf->lf_start > end)
1709                         break;
1710                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1711                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1712                         *overlap = LIST_NEXT(lf, lf_link);
1713                         continue;
1714                 }
1715 #ifdef LOCKF_DEBUG
1716                 if (lockf_debug & 2)
1717                         lf_print("\tchecking", lf);
1718 #endif /* LOCKF_DEBUG */
1719                 /*
1720                  * OK, check for overlap
1721                  *
1722                  * Six cases:
1723                  *      0) no overlap
1724                  *      1) overlap == lock
1725                  *      2) overlap contains lock
1726                  *      3) lock contains overlap
1727                  *      4) overlap starts before lock
1728                  *      5) overlap ends after lock
1729                  */
1730                 if (start > lf->lf_end) {
1731                         /* Case 0 */
1732 #ifdef LOCKF_DEBUG
1733                         if (lockf_debug & 2)
1734                                 printf("no overlap\n");
1735 #endif /* LOCKF_DEBUG */
1736                         *overlap = LIST_NEXT(lf, lf_link);
1737                         continue;
1738                 }
1739                 if (lf->lf_start == start && lf->lf_end == end) {
1740                         /* Case 1 */
1741 #ifdef LOCKF_DEBUG
1742                         if (lockf_debug & 2)
1743                                 printf("overlap == lock\n");
1744 #endif /* LOCKF_DEBUG */
1745                         res = 1;
1746                         break;
1747                 }
1748                 if (lf->lf_start <= start && lf->lf_end >= end) {
1749                         /* Case 2 */
1750 #ifdef LOCKF_DEBUG
1751                         if (lockf_debug & 2)
1752                                 printf("overlap contains lock\n");
1753 #endif /* LOCKF_DEBUG */
1754                         res = 2;
1755                         break;
1756                 }
1757                 if (start <= lf->lf_start && end >= lf->lf_end) {
1758                         /* Case 3 */
1759 #ifdef LOCKF_DEBUG
1760                         if (lockf_debug & 2)
1761                                 printf("lock contains overlap\n");
1762 #endif /* LOCKF_DEBUG */
1763                         res = 3;
1764                         break;
1765                 }
1766                 if (lf->lf_start < start && lf->lf_end >= start) {
1767                         /* Case 4 */
1768 #ifdef LOCKF_DEBUG
1769                         if (lockf_debug & 2)
1770                                 printf("overlap starts before lock\n");
1771 #endif /* LOCKF_DEBUG */
1772                         res = 4;
1773                         break;
1774                 }
1775                 if (lf->lf_start > start && lf->lf_end > end) {
1776                         /* Case 5 */
1777 #ifdef LOCKF_DEBUG
1778                         if (lockf_debug & 2)
1779                                 printf("overlap ends after lock\n");
1780 #endif /* LOCKF_DEBUG */
1781                         res = 5;
1782                         break;
1783                 }
1784                 panic("lf_findoverlap: default");
1785         }
1786         return (res);
1787 }
1788
1789 /*
1790  * Split an the existing 'lock1', based on the extent of the lock
1791  * described by 'lock2'. The existing lock should cover 'lock2'
1792  * entirely.
1793  *
1794  * Any pending locks which have been been unblocked are added to
1795  * 'granted'
1796  */
1797 static void
1798 lf_split(struct lockf *state, struct lockf_entry *lock1,
1799     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1800 {
1801         struct lockf_entry *splitlock;
1802
1803 #ifdef LOCKF_DEBUG
1804         if (lockf_debug & 2) {
1805                 lf_print("lf_split", lock1);
1806                 lf_print("splitting from", lock2);
1807         }
1808 #endif /* LOCKF_DEBUG */
1809         /*
1810          * Check to see if we don't need to split at all.
1811          */
1812         if (lock1->lf_start == lock2->lf_start) {
1813                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1814                 return;
1815         }
1816         if (lock1->lf_end == lock2->lf_end) {
1817                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1818                 return;
1819         }
1820         /*
1821          * Make a new lock consisting of the last part of
1822          * the encompassing lock.
1823          */
1824         splitlock = lf_alloc_lock(lock1->lf_owner);
1825         memcpy(splitlock, lock1, sizeof *splitlock);
1826         splitlock->lf_refs = 1;
1827         if (splitlock->lf_flags & F_REMOTE)
1828                 vref(splitlock->lf_vnode);
1829
1830         /*
1831          * This cannot cause a deadlock since any edges we would add
1832          * to splitlock already exist in lock1. We must be sure to add
1833          * necessary dependencies to splitlock before we reduce lock1
1834          * otherwise we may accidentally grant a pending lock that
1835          * was blocked by the tail end of lock1.
1836          */
1837         splitlock->lf_start = lock2->lf_end + 1;
1838         LIST_INIT(&splitlock->lf_outedges);
1839         LIST_INIT(&splitlock->lf_inedges);
1840         lf_add_incoming(state, splitlock);
1841
1842         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1843
1844         /*
1845          * OK, now link it in
1846          */
1847         lf_insert_lock(state, splitlock);
1848 }
1849
1850 struct lockdesc {
1851         STAILQ_ENTRY(lockdesc) link;
1852         struct vnode *vp;
1853         struct flock fl;
1854 };
1855 STAILQ_HEAD(lockdesclist, lockdesc);
1856
1857 int
1858 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1859 {
1860         struct lockf *ls;
1861         struct lockf_entry *lf;
1862         struct lockdesc *ldesc;
1863         struct lockdesclist locks;
1864         int error;
1865
1866         /*
1867          * In order to keep the locking simple, we iterate over the
1868          * active lock lists to build a list of locks that need
1869          * releasing. We then call the iterator for each one in turn.
1870          *
1871          * We take an extra reference to the vnode for the duration to
1872          * make sure it doesn't go away before we are finished.
1873          */
1874         STAILQ_INIT(&locks);
1875         sx_xlock(&lf_lock_states_lock);
1876         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1877                 sx_xlock(&ls->ls_lock);
1878                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1879                         if (lf->lf_owner->lo_sysid != sysid)
1880                                 continue;
1881
1882                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1883                             M_WAITOK);
1884                         ldesc->vp = lf->lf_vnode;
1885                         vref(ldesc->vp);
1886                         ldesc->fl.l_start = lf->lf_start;
1887                         if (lf->lf_end == OFF_MAX)
1888                                 ldesc->fl.l_len = 0;
1889                         else
1890                                 ldesc->fl.l_len =
1891                                         lf->lf_end - lf->lf_start + 1;
1892                         ldesc->fl.l_whence = SEEK_SET;
1893                         ldesc->fl.l_type = F_UNLCK;
1894                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1895                         ldesc->fl.l_sysid = sysid;
1896                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1897                 }
1898                 sx_xunlock(&ls->ls_lock);
1899         }
1900         sx_xunlock(&lf_lock_states_lock);
1901
1902         /*
1903          * Call the iterator function for each lock in turn. If the
1904          * iterator returns an error code, just free the rest of the
1905          * lockdesc structures.
1906          */
1907         error = 0;
1908         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1909                 STAILQ_REMOVE_HEAD(&locks, link);
1910                 if (!error)
1911                         error = fn(ldesc->vp, &ldesc->fl, arg);
1912                 vrele(ldesc->vp);
1913                 free(ldesc, M_LOCKF);
1914         }
1915
1916         return (error);
1917 }
1918
1919 int
1920 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1921 {
1922         struct lockf *ls;
1923         struct lockf_entry *lf;
1924         struct lockdesc *ldesc;
1925         struct lockdesclist locks;
1926         int error;
1927
1928         /*
1929          * In order to keep the locking simple, we iterate over the
1930          * active lock lists to build a list of locks that need
1931          * releasing. We then call the iterator for each one in turn.
1932          *
1933          * We take an extra reference to the vnode for the duration to
1934          * make sure it doesn't go away before we are finished.
1935          */
1936         STAILQ_INIT(&locks);
1937         VI_LOCK(vp);
1938         ls = vp->v_lockf;
1939         if (!ls) {
1940                 VI_UNLOCK(vp);
1941                 return (0);
1942         }
1943         MPASS(ls->ls_threads >= 0);
1944         ls->ls_threads++;
1945         VI_UNLOCK(vp);
1946
1947         sx_xlock(&ls->ls_lock);
1948         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1949                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1950                     M_WAITOK);
1951                 ldesc->vp = lf->lf_vnode;
1952                 vref(ldesc->vp);
1953                 ldesc->fl.l_start = lf->lf_start;
1954                 if (lf->lf_end == OFF_MAX)
1955                         ldesc->fl.l_len = 0;
1956                 else
1957                         ldesc->fl.l_len =
1958                                 lf->lf_end - lf->lf_start + 1;
1959                 ldesc->fl.l_whence = SEEK_SET;
1960                 ldesc->fl.l_type = F_UNLCK;
1961                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1962                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1963                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1964         }
1965         sx_xunlock(&ls->ls_lock);
1966         VI_LOCK(vp);
1967         MPASS(ls->ls_threads > 0);
1968         ls->ls_threads--;
1969         wakeup(ls);
1970         VI_UNLOCK(vp);
1971
1972         /*
1973          * Call the iterator function for each lock in turn. If the
1974          * iterator returns an error code, just free the rest of the
1975          * lockdesc structures.
1976          */
1977         error = 0;
1978         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1979                 STAILQ_REMOVE_HEAD(&locks, link);
1980                 if (!error)
1981                         error = fn(ldesc->vp, &ldesc->fl, arg);
1982                 vrele(ldesc->vp);
1983                 free(ldesc, M_LOCKF);
1984         }
1985
1986         return (error);
1987 }
1988
1989 static int
1990 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
1991 {
1992
1993         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
1994         return (0);
1995 }
1996
1997 void
1998 lf_clearremotesys(int sysid)
1999 {
2000
2001         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2002         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2003 }
2004
2005 int
2006 lf_countlocks(int sysid)
2007 {
2008         int i;
2009         struct lock_owner *lo;
2010         int count;
2011
2012         count = 0;
2013         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2014                 sx_xlock(&lf_lock_owners[i].lock);
2015                 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2016                         if (lo->lo_sysid == sysid)
2017                                 count += lo->lo_refs;
2018                 sx_xunlock(&lf_lock_owners[i].lock);
2019         }
2020
2021         return (count);
2022 }
2023
2024 #ifdef LOCKF_DEBUG
2025
2026 /*
2027  * Return non-zero if y is reachable from x using a brute force
2028  * search. If reachable and path is non-null, return the route taken
2029  * in path.
2030  */
2031 static int
2032 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2033     struct owner_vertex_list *path)
2034 {
2035         struct owner_edge *e;
2036
2037         if (x == y) {
2038                 if (path)
2039                         TAILQ_INSERT_HEAD(path, x, v_link);
2040                 return 1;
2041         }
2042
2043         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2044                 if (graph_reaches(e->e_to, y, path)) {
2045                         if (path)
2046                                 TAILQ_INSERT_HEAD(path, x, v_link);
2047                         return 1;
2048                 }
2049         }
2050         return 0;
2051 }
2052
2053 /*
2054  * Perform consistency checks on the graph. Make sure the values of
2055  * v_order are correct. If checkorder is non-zero, check no vertex can
2056  * reach any other vertex with a smaller order.
2057  */
2058 static void
2059 graph_check(struct owner_graph *g, int checkorder)
2060 {
2061         int i, j;
2062
2063         for (i = 0; i < g->g_size; i++) {
2064                 if (!g->g_vertices[i]->v_owner)
2065                         continue;
2066                 KASSERT(g->g_vertices[i]->v_order == i,
2067                     ("lock graph vertices disordered"));
2068                 if (checkorder) {
2069                         for (j = 0; j < i; j++) {
2070                                 if (!g->g_vertices[j]->v_owner)
2071                                         continue;
2072                                 KASSERT(!graph_reaches(g->g_vertices[i],
2073                                         g->g_vertices[j], NULL),
2074                                     ("lock graph vertices disordered"));
2075                         }
2076                 }
2077         }
2078 }
2079
2080 static void
2081 graph_print_vertices(struct owner_vertex_list *set)
2082 {
2083         struct owner_vertex *v;
2084
2085         printf("{ ");
2086         TAILQ_FOREACH(v, set, v_link) {
2087                 printf("%d:", v->v_order);
2088                 lf_print_owner(v->v_owner);
2089                 if (TAILQ_NEXT(v, v_link))
2090                         printf(", ");
2091         }
2092         printf(" }\n");
2093 }
2094
2095 #endif
2096
2097 /*
2098  * Calculate the sub-set of vertices v from the affected region [y..x]
2099  * where v is reachable from y. Return -1 if a loop was detected
2100  * (i.e. x is reachable from y, otherwise the number of vertices in
2101  * this subset.
2102  */
2103 static int
2104 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2105     struct owner_vertex *y, struct owner_vertex_list *delta)
2106 {
2107         uint32_t gen;
2108         struct owner_vertex *v;
2109         struct owner_edge *e;
2110         int n;
2111
2112         /*
2113          * We start with a set containing just y. Then for each vertex
2114          * v in the set so far unprocessed, we add each vertex that v
2115          * has an out-edge to and that is within the affected region
2116          * [y..x]. If we see the vertex x on our travels, stop
2117          * immediately.
2118          */
2119         TAILQ_INIT(delta);
2120         TAILQ_INSERT_TAIL(delta, y, v_link);
2121         v = y;
2122         n = 1;
2123         gen = g->g_gen;
2124         while (v) {
2125                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2126                         if (e->e_to == x)
2127                                 return -1;
2128                         if (e->e_to->v_order < x->v_order
2129                             && e->e_to->v_gen != gen) {
2130                                 e->e_to->v_gen = gen;
2131                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2132                                 n++;
2133                         }
2134                 }
2135                 v = TAILQ_NEXT(v, v_link);
2136         }
2137
2138         return (n);
2139 }
2140
2141 /*
2142  * Calculate the sub-set of vertices v from the affected region [y..x]
2143  * where v reaches x. Return the number of vertices in this subset.
2144  */
2145 static int
2146 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2147     struct owner_vertex *y, struct owner_vertex_list *delta)
2148 {
2149         uint32_t gen;
2150         struct owner_vertex *v;
2151         struct owner_edge *e;
2152         int n;
2153
2154         /*
2155          * We start with a set containing just x. Then for each vertex
2156          * v in the set so far unprocessed, we add each vertex that v
2157          * has an in-edge from and that is within the affected region
2158          * [y..x].
2159          */
2160         TAILQ_INIT(delta);
2161         TAILQ_INSERT_TAIL(delta, x, v_link);
2162         v = x;
2163         n = 1;
2164         gen = g->g_gen;
2165         while (v) {
2166                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2167                         if (e->e_from->v_order > y->v_order
2168                             && e->e_from->v_gen != gen) {
2169                                 e->e_from->v_gen = gen;
2170                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2171                                 n++;
2172                         }
2173                 }
2174                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2175         }
2176
2177         return (n);
2178 }
2179
2180 static int
2181 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2182 {
2183         struct owner_vertex *v;
2184         int i, j;
2185
2186         TAILQ_FOREACH(v, set, v_link) {
2187                 for (i = n;
2188                      i > 0 && indices[i - 1] > v->v_order; i--)
2189                         ;
2190                 for (j = n - 1; j >= i; j--)
2191                         indices[j + 1] = indices[j];
2192                 indices[i] = v->v_order;
2193                 n++;
2194         }
2195
2196         return (n);
2197 }
2198
2199 static int
2200 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2201     struct owner_vertex_list *set)
2202 {
2203         struct owner_vertex *v, *vlowest;
2204
2205         while (!TAILQ_EMPTY(set)) {
2206                 vlowest = NULL;
2207                 TAILQ_FOREACH(v, set, v_link) {
2208                         if (!vlowest || v->v_order < vlowest->v_order)
2209                                 vlowest = v;
2210                 }
2211                 TAILQ_REMOVE(set, vlowest, v_link);
2212                 vlowest->v_order = indices[nextunused];
2213                 g->g_vertices[vlowest->v_order] = vlowest;
2214                 nextunused++;
2215         }
2216
2217         return (nextunused);
2218 }
2219
2220 static int
2221 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2222     struct owner_vertex *y)
2223 {
2224         struct owner_edge *e;
2225         struct owner_vertex_list deltaF, deltaB;
2226         int nF, n, vi, i;
2227         int *indices;
2228         int nB __unused;
2229
2230         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2231
2232         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2233                 if (e->e_to == y) {
2234                         e->e_refs++;
2235                         return (0);
2236                 }
2237         }
2238
2239 #ifdef LOCKF_DEBUG
2240         if (lockf_debug & 8) {
2241                 printf("adding edge %d:", x->v_order);
2242                 lf_print_owner(x->v_owner);
2243                 printf(" -> %d:", y->v_order);
2244                 lf_print_owner(y->v_owner);
2245                 printf("\n");
2246         }
2247 #endif
2248         if (y->v_order < x->v_order) {
2249                 /*
2250                  * The new edge violates the order. First find the set
2251                  * of affected vertices reachable from y (deltaF) and
2252                  * the set of affect vertices affected that reach x
2253                  * (deltaB), using the graph generation number to
2254                  * detect whether we have visited a given vertex
2255                  * already. We re-order the graph so that each vertex
2256                  * in deltaB appears before each vertex in deltaF.
2257                  *
2258                  * If x is a member of deltaF, then the new edge would
2259                  * create a cycle. Otherwise, we may assume that
2260                  * deltaF and deltaB are disjoint.
2261                  */
2262                 g->g_gen++;
2263                 if (g->g_gen == 0) {
2264                         /*
2265                          * Generation wrap.
2266                          */
2267                         for (vi = 0; vi < g->g_size; vi++) {
2268                                 g->g_vertices[vi]->v_gen = 0;
2269                         }
2270                         g->g_gen++;
2271                 }
2272                 nF = graph_delta_forward(g, x, y, &deltaF);
2273                 if (nF < 0) {
2274 #ifdef LOCKF_DEBUG
2275                         if (lockf_debug & 8) {
2276                                 struct owner_vertex_list path;
2277                                 printf("deadlock: ");
2278                                 TAILQ_INIT(&path);
2279                                 graph_reaches(y, x, &path);
2280                                 graph_print_vertices(&path);
2281                         }
2282 #endif
2283                         return (EDEADLK);
2284                 }
2285
2286 #ifdef LOCKF_DEBUG
2287                 if (lockf_debug & 8) {
2288                         printf("re-ordering graph vertices\n");
2289                         printf("deltaF = ");
2290                         graph_print_vertices(&deltaF);
2291                 }
2292 #endif
2293
2294                 nB = graph_delta_backward(g, x, y, &deltaB);
2295
2296 #ifdef LOCKF_DEBUG
2297                 if (lockf_debug & 8) {
2298                         printf("deltaB = ");
2299                         graph_print_vertices(&deltaB);
2300                 }
2301 #endif
2302
2303                 /*
2304                  * We first build a set of vertex indices (vertex
2305                  * order values) that we may use, then we re-assign
2306                  * orders first to those vertices in deltaB, then to
2307                  * deltaF. Note that the contents of deltaF and deltaB
2308                  * may be partially disordered - we perform an
2309                  * insertion sort while building our index set.
2310                  */
2311                 indices = g->g_indexbuf;
2312                 n = graph_add_indices(indices, 0, &deltaF);
2313                 graph_add_indices(indices, n, &deltaB);
2314
2315                 /*
2316                  * We must also be sure to maintain the relative
2317                  * ordering of deltaF and deltaB when re-assigning
2318                  * vertices. We do this by iteratively removing the
2319                  * lowest ordered element from the set and assigning
2320                  * it the next value from our new ordering.
2321                  */
2322                 i = graph_assign_indices(g, indices, 0, &deltaB);
2323                 graph_assign_indices(g, indices, i, &deltaF);
2324
2325 #ifdef LOCKF_DEBUG
2326                 if (lockf_debug & 8) {
2327                         struct owner_vertex_list set;
2328                         TAILQ_INIT(&set);
2329                         for (i = 0; i < nB + nF; i++)
2330                                 TAILQ_INSERT_TAIL(&set,
2331                                     g->g_vertices[indices[i]], v_link);
2332                         printf("new ordering = ");
2333                         graph_print_vertices(&set);
2334                 }
2335 #endif
2336         }
2337
2338         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2339
2340 #ifdef LOCKF_DEBUG
2341         if (lockf_debug & 8) {
2342                 graph_check(g, TRUE);
2343         }
2344 #endif
2345
2346         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2347
2348         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2349         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2350         e->e_refs = 1;
2351         e->e_from = x;
2352         e->e_to = y;
2353
2354         return (0);
2355 }
2356
2357 /*
2358  * Remove an edge x->y from the graph.
2359  */
2360 static void
2361 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2362     struct owner_vertex *y)
2363 {
2364         struct owner_edge *e;
2365
2366         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2367
2368         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2369                 if (e->e_to == y)
2370                         break;
2371         }
2372         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2373
2374         e->e_refs--;
2375         if (e->e_refs == 0) {
2376 #ifdef LOCKF_DEBUG
2377                 if (lockf_debug & 8) {
2378                         printf("removing edge %d:", x->v_order);
2379                         lf_print_owner(x->v_owner);
2380                         printf(" -> %d:", y->v_order);
2381                         lf_print_owner(y->v_owner);
2382                         printf("\n");
2383                 }
2384 #endif
2385                 LIST_REMOVE(e, e_outlink);
2386                 LIST_REMOVE(e, e_inlink);
2387                 free(e, M_LOCKF);
2388         }
2389 }
2390
2391 /*
2392  * Allocate a vertex from the free list. Return ENOMEM if there are
2393  * none.
2394  */
2395 static struct owner_vertex *
2396 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2397 {
2398         struct owner_vertex *v;
2399
2400         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2401
2402         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2403         if (g->g_size == g->g_space) {
2404                 g->g_vertices = realloc(g->g_vertices,
2405                     2 * g->g_space * sizeof(struct owner_vertex *),
2406                     M_LOCKF, M_WAITOK);
2407                 free(g->g_indexbuf, M_LOCKF);
2408                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2409                     M_LOCKF, M_WAITOK);
2410                 g->g_space = 2 * g->g_space;
2411         }
2412         v->v_order = g->g_size;
2413         v->v_gen = g->g_gen;
2414         g->g_vertices[g->g_size] = v;
2415         g->g_size++;
2416
2417         LIST_INIT(&v->v_outedges);
2418         LIST_INIT(&v->v_inedges);
2419         v->v_owner = lo;
2420
2421         return (v);
2422 }
2423
2424 static void
2425 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2426 {
2427         struct owner_vertex *w;
2428         int i;
2429
2430         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2431
2432         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2433         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2434
2435         /*
2436          * Remove from the graph's array and close up the gap,
2437          * renumbering the other vertices.
2438          */
2439         for (i = v->v_order + 1; i < g->g_size; i++) {
2440                 w = g->g_vertices[i];
2441                 w->v_order--;
2442                 g->g_vertices[i - 1] = w;
2443         }
2444         g->g_size--;
2445
2446         free(v, M_LOCKF);
2447 }
2448
2449 static struct owner_graph *
2450 graph_init(struct owner_graph *g)
2451 {
2452
2453         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2454             M_LOCKF, M_WAITOK);
2455         g->g_size = 0;
2456         g->g_space = 10;
2457         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2458         g->g_gen = 0;
2459
2460         return (g);
2461 }
2462
2463 struct kinfo_lockf_linked {
2464         struct kinfo_lockf kl;
2465         struct vnode *vp;
2466         STAILQ_ENTRY(kinfo_lockf_linked) link;
2467 };
2468
2469 int
2470 vfs_report_lockf(struct mount *mp, struct sbuf *sb)
2471 {
2472         struct lockf *ls;
2473         struct lockf_entry *lf;
2474         struct kinfo_lockf_linked *klf;
2475         struct vnode *vp;
2476         struct ucred *ucred;
2477         char *fullpath, *freepath;
2478         struct stat stt;
2479         STAILQ_HEAD(, kinfo_lockf_linked) locks;
2480         int error, gerror;
2481
2482         STAILQ_INIT(&locks);
2483         sx_slock(&lf_lock_states_lock);
2484         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
2485                 sx_slock(&ls->ls_lock);
2486                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
2487                         vp = lf->lf_vnode;
2488                         if (VN_IS_DOOMED(vp) || vp->v_mount != mp)
2489                                 continue;
2490                         vhold(vp);
2491                         klf = malloc(sizeof(struct kinfo_lockf_linked),
2492                             M_LOCKF, M_WAITOK | M_ZERO);
2493                         klf->vp = vp;
2494                         klf->kl.kl_structsize = sizeof(struct kinfo_lockf);
2495                         klf->kl.kl_start = lf->lf_start;
2496                         klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 :
2497                             lf->lf_end - lf->lf_start + 1;
2498                         klf->kl.kl_rw = lf->lf_type == F_RDLCK ?
2499                             KLOCKF_RW_READ : KLOCKF_RW_WRITE;
2500                         if (lf->lf_owner->lo_sysid != 0) {
2501                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
2502                                 klf->kl.kl_sysid = lf->lf_owner->lo_sysid;
2503                                 klf->kl.kl_type = KLOCKF_TYPE_REMOTE;
2504                         } else if (lf->lf_owner->lo_pid == -1) {
2505                                 klf->kl.kl_pid = -1;
2506                                 klf->kl.kl_sysid = 0;
2507                                 klf->kl.kl_type = KLOCKF_TYPE_FLOCK;
2508                         } else {
2509                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
2510                                 klf->kl.kl_sysid = 0;
2511                                 klf->kl.kl_type = KLOCKF_TYPE_PID;
2512                         }
2513                         STAILQ_INSERT_TAIL(&locks, klf, link);
2514                 }
2515                 sx_sunlock(&ls->ls_lock);
2516         }
2517         sx_sunlock(&lf_lock_states_lock);
2518
2519         gerror = 0;
2520         ucred = curthread->td_ucred;
2521         while ((klf = STAILQ_FIRST(&locks)) != NULL) {
2522                 STAILQ_REMOVE_HEAD(&locks, link);
2523                 vp = klf->vp;
2524                 if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) {
2525                         error = prison_canseemount(ucred, vp->v_mount);
2526                         if (error == 0)
2527                                 error = VOP_STAT(vp, &stt, ucred, NOCRED);
2528                         VOP_UNLOCK(vp);
2529                         if (error == 0) {
2530                                 klf->kl.kl_file_fsid = stt.st_dev;
2531                                 klf->kl.kl_file_rdev = stt.st_rdev;
2532                                 klf->kl.kl_file_fileid = stt.st_ino;
2533                                 freepath = NULL;
2534                                 fullpath = "-";
2535                                 error = vn_fullpath(vp, &fullpath, &freepath);
2536                                 if (error == 0)
2537                                         strlcpy(klf->kl.kl_path, fullpath,
2538                                             sizeof(klf->kl.kl_path));
2539                                 free(freepath, M_TEMP);
2540                                 if (sbuf_bcat(sb, &klf->kl,
2541                                     klf->kl.kl_structsize) != 0) {
2542                                         gerror = sbuf_error(sb);
2543                                 }
2544                         }
2545                 }
2546                 vdrop(vp);
2547                 free(klf, M_LOCKF);
2548         }
2549
2550         return (gerror);
2551 }
2552
2553 static int
2554 sysctl_kern_lockf_run(struct sbuf *sb)
2555 {
2556         struct mount *mp;
2557         int error;
2558
2559         error = 0;
2560         mtx_lock(&mountlist_mtx);
2561         TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2562                 error = vfs_busy(mp, MBF_MNTLSTLOCK);
2563                 if (error != 0)
2564                         continue;
2565                 error = mp->mnt_op->vfs_report_lockf(mp, sb);
2566                 mtx_lock(&mountlist_mtx);
2567                 vfs_unbusy(mp);
2568                 if (error != 0)
2569                         break;
2570         }
2571         mtx_unlock(&mountlist_mtx);
2572         return (error);
2573 }
2574
2575 static int
2576 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS)
2577 {
2578         struct sbuf sb;
2579         int error, error2;
2580
2581         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req);
2582         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2583         error = sysctl_kern_lockf_run(&sb);
2584         error2 = sbuf_finish(&sb);
2585         sbuf_delete(&sb);
2586         return (error != 0 ? error : error2);
2587 }
2588 SYSCTL_PROC(_kern, KERN_LOCKF, lockf,
2589     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2590     0, 0, sysctl_kern_lockf, "S,lockf",
2591     "Advisory locks table");
2592
2593 #ifdef LOCKF_DEBUG
2594 /*
2595  * Print description of a lock owner
2596  */
2597 static void
2598 lf_print_owner(struct lock_owner *lo)
2599 {
2600
2601         if (lo->lo_flags & F_REMOTE) {
2602                 printf("remote pid %d, system %d",
2603                     lo->lo_pid, lo->lo_sysid);
2604         } else if (lo->lo_flags & F_FLOCK) {
2605                 printf("file %p", lo->lo_id);
2606         } else {
2607                 printf("local pid %d", lo->lo_pid);
2608         }
2609 }
2610
2611 /*
2612  * Print out a lock.
2613  */
2614 static void
2615 lf_print(char *tag, struct lockf_entry *lock)
2616 {
2617
2618         printf("%s: lock %p for ", tag, (void *)lock);
2619         lf_print_owner(lock->lf_owner);
2620         printf("\nvnode %p", lock->lf_vnode);
2621         VOP_PRINT(lock->lf_vnode);
2622         printf(" %s, start %jd, end ",
2623             lock->lf_type == F_RDLCK ? "shared" :
2624             lock->lf_type == F_WRLCK ? "exclusive" :
2625             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2626             (intmax_t)lock->lf_start);
2627         if (lock->lf_end == OFF_MAX)
2628                 printf("EOF");
2629         else
2630                 printf("%jd", (intmax_t)lock->lf_end);
2631         if (!LIST_EMPTY(&lock->lf_outedges))
2632                 printf(" block %p\n",
2633                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2634         else
2635                 printf("\n");
2636 }
2637
2638 static void
2639 lf_printlist(char *tag, struct lockf_entry *lock)
2640 {
2641         struct lockf_entry *lf, *blk;
2642         struct lockf_edge *e;
2643
2644         printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode);
2645         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2646                 printf("\tlock %p for ",(void *)lf);
2647                 lf_print_owner(lock->lf_owner);
2648                 printf(", %s, start %jd, end %jd",
2649                     lf->lf_type == F_RDLCK ? "shared" :
2650                     lf->lf_type == F_WRLCK ? "exclusive" :
2651                     lf->lf_type == F_UNLCK ? "unlock" :
2652                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2653                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2654                         blk = e->le_to;
2655                         printf("\n\t\tlock request %p for ", (void *)blk);
2656                         lf_print_owner(blk->lf_owner);
2657                         printf(", %s, start %jd, end %jd",
2658                             blk->lf_type == F_RDLCK ? "shared" :
2659                             blk->lf_type == F_WRLCK ? "exclusive" :
2660                             blk->lf_type == F_UNLCK ? "unlock" :
2661                             "unknown", (intmax_t)blk->lf_start,
2662                             (intmax_t)blk->lf_end);
2663                         if (!LIST_EMPTY(&blk->lf_inedges))
2664                                 panic("lf_printlist: bad list");
2665                 }
2666                 printf("\n");
2667         }
2668 }
2669 #endif /* LOCKF_DEBUG */