]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_lockf.c
sys/{x86,amd64}: remove one of doubled ;s
[FreeBSD/FreeBSD.git] / sys / kern / kern_lockf.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *      The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
61  */
62
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65
66 #include "opt_debug_lockf.h"
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/kernel.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sx.h>
78 #include <sys/unistd.h>
79 #include <sys/vnode.h>
80 #include <sys/malloc.h>
81 #include <sys/fcntl.h>
82 #include <sys/lockf.h>
83 #include <sys/taskqueue.h>
84
85 #ifdef LOCKF_DEBUG
86 #include <sys/sysctl.h>
87
88 #include <ufs/ufs/extattr.h>
89 #include <ufs/ufs/quota.h>
90 #include <ufs/ufs/ufsmount.h>
91 #include <ufs/ufs/inode.h>
92
93 static int      lockf_debug = 0; /* control debug output */
94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
95 #endif
96
97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
98
99 struct owner_edge;
100 struct owner_vertex;
101 struct owner_vertex_list;
102 struct owner_graph;
103
104 #define NOLOCKF (struct lockf_entry *)0
105 #define SELF    0x1
106 #define OTHERS  0x2
107 static void      lf_init(void *);
108 static int       lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
109 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
110     int);
111 static struct lockf_entry *
112                  lf_alloc_lock(struct lock_owner *);
113 static int       lf_free_lock(struct lockf_entry *);
114 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
115 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
116 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
117 static void      lf_free_edge(struct lockf_edge *);
118 static struct lockf_edge *
119                  lf_alloc_edge(void);
120 static void      lf_alloc_vertex(struct lockf_entry *);
121 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
122 static void      lf_remove_edge(struct lockf_edge *);
123 static void      lf_remove_outgoing(struct lockf_entry *);
124 static void      lf_remove_incoming(struct lockf_entry *);
125 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
126 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
127 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
128     int);
129 static struct lockf_entry *
130                  lf_getblock(struct lockf *, struct lockf_entry *);
131 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
132 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
133 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
134 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
135     int all, struct lockf_entry_list *);
136 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
137         struct lockf_entry_list*);
138 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
139         struct lockf_entry_list*);
140 static int       lf_setlock(struct lockf *, struct lockf_entry *,
141     struct vnode *, void **cookiep);
142 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
143 static void      lf_split(struct lockf *, struct lockf_entry *,
144     struct lockf_entry *, struct lockf_entry_list *);
145 #ifdef LOCKF_DEBUG
146 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
147     struct owner_vertex_list *path);
148 static void      graph_check(struct owner_graph *g, int checkorder);
149 static void      graph_print_vertices(struct owner_vertex_list *set);
150 #endif
151 static int       graph_delta_forward(struct owner_graph *g,
152     struct owner_vertex *x, struct owner_vertex *y,
153     struct owner_vertex_list *delta);
154 static int       graph_delta_backward(struct owner_graph *g,
155     struct owner_vertex *x, struct owner_vertex *y,
156     struct owner_vertex_list *delta);
157 static int       graph_add_indices(int *indices, int n,
158     struct owner_vertex_list *set);
159 static int       graph_assign_indices(struct owner_graph *g, int *indices,
160     int nextunused, struct owner_vertex_list *set);
161 static int       graph_add_edge(struct owner_graph *g,
162     struct owner_vertex *x, struct owner_vertex *y);
163 static void      graph_remove_edge(struct owner_graph *g,
164     struct owner_vertex *x, struct owner_vertex *y);
165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
166     struct lock_owner *lo);
167 static void      graph_free_vertex(struct owner_graph *g,
168     struct owner_vertex *v);
169 static struct owner_graph * graph_init(struct owner_graph *g);
170 #ifdef LOCKF_DEBUG
171 static void      lf_print(char *, struct lockf_entry *);
172 static void      lf_printlist(char *, struct lockf_entry *);
173 static void      lf_print_owner(struct lock_owner *);
174 #endif
175
176 /*
177  * This structure is used to keep track of both local and remote lock
178  * owners. The lf_owner field of the struct lockf_entry points back at
179  * the lock owner structure. Each possible lock owner (local proc for
180  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
181  * pair for remote locks) is represented by a unique instance of
182  * struct lock_owner.
183  *
184  * If a lock owner has a lock that blocks some other lock or a lock
185  * that is waiting for some other lock, it also has a vertex in the
186  * owner_graph below.
187  *
188  * Locks:
189  * (s)          locked by state->ls_lock
190  * (S)          locked by lf_lock_states_lock
191  * (g)          locked by lf_owner_graph_lock
192  * (c)          const until freeing
193  */
194 #define LOCK_OWNER_HASH_SIZE    256
195
196 struct lock_owner {
197         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
198         int     lo_refs;            /* (l) Number of locks referring to this */
199         int     lo_flags;           /* (c) Flags passwd to lf_advlock */
200         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
201         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
202         int     lo_sysid;           /* (c) System Id of the lock owner */
203         int     lo_hash;            /* (c) Used to lock the appropriate chain */
204         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
205 };
206
207 LIST_HEAD(lock_owner_list, lock_owner);
208
209 struct lock_owner_chain {
210         struct sx               lock;
211         struct lock_owner_list  list;
212 };
213
214 static struct sx                lf_lock_states_lock;
215 static struct lockf_list        lf_lock_states; /* (S) */
216 static struct lock_owner_chain  lf_lock_owners[LOCK_OWNER_HASH_SIZE];
217
218 /*
219  * Structures for deadlock detection.
220  *
221  * We have two types of directed graph, the first is the set of locks,
222  * both active and pending on a vnode. Within this graph, active locks
223  * are terminal nodes in the graph (i.e. have no out-going
224  * edges). Pending locks have out-going edges to each blocking active
225  * lock that prevents the lock from being granted and also to each
226  * older pending lock that would block them if it was active. The
227  * graph for each vnode is naturally acyclic; new edges are only ever
228  * added to or from new nodes (either new pending locks which only add
229  * out-going edges or new active locks which only add in-coming edges)
230  * therefore they cannot create loops in the lock graph.
231  *
232  * The second graph is a global graph of lock owners. Each lock owner
233  * is a vertex in that graph and an edge is added to the graph
234  * whenever an edge is added to a vnode graph, with end points
235  * corresponding to owner of the new pending lock and the owner of the
236  * lock upon which it waits. In order to prevent deadlock, we only add
237  * an edge to this graph if the new edge would not create a cycle.
238  * 
239  * The lock owner graph is topologically sorted, i.e. if a node has
240  * any outgoing edges, then it has an order strictly less than any
241  * node to which it has an outgoing edge. We preserve this ordering
242  * (and detect cycles) on edge insertion using Algorithm PK from the
243  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
244  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
245  * No. 1.7)
246  */
247 struct owner_vertex;
248
249 struct owner_edge {
250         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
251         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
252         int             e_refs;           /* (g) number of times added */
253         struct owner_vertex *e_from;      /* (c) out-going from here */
254         struct owner_vertex *e_to;        /* (c) in-coming to here */
255 };
256 LIST_HEAD(owner_edge_list, owner_edge);
257
258 struct owner_vertex {
259         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
260         uint32_t        v_gen;            /* (g) workspace for edge insertion */
261         int             v_order;          /* (g) order of vertex in graph */
262         struct owner_edge_list v_outedges;/* (g) list of out-edges */
263         struct owner_edge_list v_inedges; /* (g) list of in-edges */
264         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
265 };
266 TAILQ_HEAD(owner_vertex_list, owner_vertex);
267
268 struct owner_graph {
269         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
270         int             g_size;           /* (g) number of vertices */
271         int             g_space;          /* (g) space allocated for vertices */
272         int             *g_indexbuf;      /* (g) workspace for loop detection */
273         uint32_t        g_gen;            /* (g) increment when re-ordering */
274 };
275
276 static struct sx                lf_owner_graph_lock;
277 static struct owner_graph       lf_owner_graph;
278
279 /*
280  * Initialise various structures and locks.
281  */
282 static void
283 lf_init(void *dummy)
284 {
285         int i;
286
287         sx_init(&lf_lock_states_lock, "lock states lock");
288         LIST_INIT(&lf_lock_states);
289
290         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
291                 sx_init(&lf_lock_owners[i].lock, "lock owners lock");
292                 LIST_INIT(&lf_lock_owners[i].list);
293         }
294
295         sx_init(&lf_owner_graph_lock, "owner graph lock");
296         graph_init(&lf_owner_graph);
297 }
298 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
299
300 /*
301  * Generate a hash value for a lock owner.
302  */
303 static int
304 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
305 {
306         uint32_t h;
307
308         if (flags & F_REMOTE) {
309                 h = HASHSTEP(0, fl->l_pid);
310                 h = HASHSTEP(h, fl->l_sysid);
311         } else if (flags & F_FLOCK) {
312                 h = ((uintptr_t) id) >> 7;
313         } else {
314                 h = ((uintptr_t) vp) >> 7;
315         }
316
317         return (h % LOCK_OWNER_HASH_SIZE);
318 }
319
320 /*
321  * Return true if a lock owner matches the details passed to
322  * lf_advlock.
323  */
324 static int
325 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
326     int flags)
327 {
328         if (flags & F_REMOTE) {
329                 return lo->lo_pid == fl->l_pid
330                         && lo->lo_sysid == fl->l_sysid;
331         } else {
332                 return lo->lo_id == id;
333         }
334 }
335
336 static struct lockf_entry *
337 lf_alloc_lock(struct lock_owner *lo)
338 {
339         struct lockf_entry *lf;
340
341         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
342
343 #ifdef LOCKF_DEBUG
344         if (lockf_debug & 4)
345                 printf("Allocated lock %p\n", lf);
346 #endif
347         if (lo) {
348                 sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
349                 lo->lo_refs++;
350                 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
351                 lf->lf_owner = lo;
352         }
353
354         return (lf);
355 }
356
357 static int
358 lf_free_lock(struct lockf_entry *lock)
359 {
360         struct sx *chainlock;
361
362         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
363         if (--lock->lf_refs > 0)
364                 return (0);
365         /*
366          * Adjust the lock_owner reference count and
367          * reclaim the entry if this is the last lock
368          * for that owner.
369          */
370         struct lock_owner *lo = lock->lf_owner;
371         if (lo) {
372                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
373                     ("freeing lock with dependencies"));
374                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
375                     ("freeing lock with dependants"));
376                 chainlock = &lf_lock_owners[lo->lo_hash].lock;
377                 sx_xlock(chainlock);
378                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
379                 lo->lo_refs--;
380                 if (lo->lo_refs == 0) {
381 #ifdef LOCKF_DEBUG
382                         if (lockf_debug & 1)
383                                 printf("lf_free_lock: freeing lock owner %p\n",
384                                     lo);
385 #endif
386                         if (lo->lo_vertex) {
387                                 sx_xlock(&lf_owner_graph_lock);
388                                 graph_free_vertex(&lf_owner_graph,
389                                     lo->lo_vertex);
390                                 sx_xunlock(&lf_owner_graph_lock);
391                         }
392                         LIST_REMOVE(lo, lo_link);
393                         free(lo, M_LOCKF);
394 #ifdef LOCKF_DEBUG
395                         if (lockf_debug & 4)
396                                 printf("Freed lock owner %p\n", lo);
397 #endif
398                 }
399                 sx_unlock(chainlock);
400         }
401         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
402                 vrele(lock->lf_vnode);
403                 lock->lf_vnode = NULL;
404         }
405 #ifdef LOCKF_DEBUG
406         if (lockf_debug & 4)
407                 printf("Freed lock %p\n", lock);
408 #endif
409         free(lock, M_LOCKF);
410         return (1);
411 }
412
413 /*
414  * Advisory record locking support
415  */
416 int
417 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
418     u_quad_t size)
419 {
420         struct lockf *state;
421         struct flock *fl = ap->a_fl;
422         struct lockf_entry *lock;
423         struct vnode *vp = ap->a_vp;
424         caddr_t id = ap->a_id;
425         int flags = ap->a_flags;
426         int hash;
427         struct lock_owner *lo;
428         off_t start, end, oadd;
429         int error;
430
431         /*
432          * Handle the F_UNLKSYS case first - no need to mess about
433          * creating a lock owner for this one.
434          */
435         if (ap->a_op == F_UNLCKSYS) {
436                 lf_clearremotesys(fl->l_sysid);
437                 return (0);
438         }
439
440         /*
441          * Convert the flock structure into a start and end.
442          */
443         switch (fl->l_whence) {
444
445         case SEEK_SET:
446         case SEEK_CUR:
447                 /*
448                  * Caller is responsible for adding any necessary offset
449                  * when SEEK_CUR is used.
450                  */
451                 start = fl->l_start;
452                 break;
453
454         case SEEK_END:
455                 if (size > OFF_MAX ||
456                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
457                         return (EOVERFLOW);
458                 start = size + fl->l_start;
459                 break;
460
461         default:
462                 return (EINVAL);
463         }
464         if (start < 0)
465                 return (EINVAL);
466         if (fl->l_len < 0) {
467                 if (start == 0)
468                         return (EINVAL);
469                 end = start - 1;
470                 start += fl->l_len;
471                 if (start < 0)
472                         return (EINVAL);
473         } else if (fl->l_len == 0) {
474                 end = OFF_MAX;
475         } else {
476                 oadd = fl->l_len - 1;
477                 if (oadd > OFF_MAX - start)
478                         return (EOVERFLOW);
479                 end = start + oadd;
480         }
481
482 retry_setlock:
483
484         /*
485          * Avoid the common case of unlocking when inode has no locks.
486          */
487         if (ap->a_op != F_SETLK && (*statep) == NULL) {
488                 VI_LOCK(vp);
489                 if ((*statep) == NULL) {
490                         fl->l_type = F_UNLCK;
491                         VI_UNLOCK(vp);
492                         return (0);
493                 }
494                 VI_UNLOCK(vp);
495         }
496
497         /*
498          * Map our arguments to an existing lock owner or create one
499          * if this is the first time we have seen this owner.
500          */
501         hash = lf_hash_owner(id, vp, fl, flags);
502         sx_xlock(&lf_lock_owners[hash].lock);
503         LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
504                 if (lf_owner_matches(lo, id, fl, flags))
505                         break;
506         if (!lo) {
507                 /*
508                  * We initialise the lock with a reference
509                  * count which matches the new lockf_entry
510                  * structure created below.
511                  */
512                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
513                     M_WAITOK|M_ZERO);
514 #ifdef LOCKF_DEBUG
515                 if (lockf_debug & 4)
516                         printf("Allocated lock owner %p\n", lo);
517 #endif
518
519                 lo->lo_refs = 1;
520                 lo->lo_flags = flags;
521                 lo->lo_id = id;
522                 lo->lo_hash = hash;
523                 if (flags & F_REMOTE) {
524                         lo->lo_pid = fl->l_pid;
525                         lo->lo_sysid = fl->l_sysid;
526                 } else if (flags & F_FLOCK) {
527                         lo->lo_pid = -1;
528                         lo->lo_sysid = 0;
529                 } else {
530                         struct proc *p = (struct proc *) id;
531                         lo->lo_pid = p->p_pid;
532                         lo->lo_sysid = 0;
533                 }
534                 lo->lo_vertex = NULL;
535
536 #ifdef LOCKF_DEBUG
537                 if (lockf_debug & 1) {
538                         printf("lf_advlockasync: new lock owner %p ", lo);
539                         lf_print_owner(lo);
540                         printf("\n");
541                 }
542 #endif
543
544                 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
545         } else {
546                 /*
547                  * We have seen this lock owner before, increase its
548                  * reference count to account for the new lockf_entry
549                  * structure we create below.
550                  */
551                 lo->lo_refs++;
552         }
553         sx_xunlock(&lf_lock_owners[hash].lock);
554
555         /*
556          * Create the lockf structure. We initialise the lf_owner
557          * field here instead of in lf_alloc_lock() to avoid paying
558          * the lf_lock_owners_lock tax twice.
559          */
560         lock = lf_alloc_lock(NULL);
561         lock->lf_refs = 1;
562         lock->lf_start = start;
563         lock->lf_end = end;
564         lock->lf_owner = lo;
565         lock->lf_vnode = vp;
566         if (flags & F_REMOTE) {
567                 /*
568                  * For remote locks, the caller may release its ref to
569                  * the vnode at any time - we have to ref it here to
570                  * prevent it from being recycled unexpectedly.
571                  */
572                 vref(vp);
573         }
574
575         /*
576          * XXX The problem is that VTOI is ufs specific, so it will
577          * break LOCKF_DEBUG for all other FS's other than UFS because
578          * it casts the vnode->data ptr to struct inode *.
579          */
580 /*      lock->lf_inode = VTOI(ap->a_vp); */
581         lock->lf_inode = (struct inode *)0;
582         lock->lf_type = fl->l_type;
583         LIST_INIT(&lock->lf_outedges);
584         LIST_INIT(&lock->lf_inedges);
585         lock->lf_async_task = ap->a_task;
586         lock->lf_flags = ap->a_flags;
587
588         /*
589          * Do the requested operation. First find our state structure
590          * and create a new one if necessary - the caller's *statep
591          * variable and the state's ls_threads count is protected by
592          * the vnode interlock.
593          */
594         VI_LOCK(vp);
595         if (vp->v_iflag & VI_DOOMED) {
596                 VI_UNLOCK(vp);
597                 lf_free_lock(lock);
598                 return (ENOENT);
599         }
600
601         /*
602          * Allocate a state structure if necessary.
603          */
604         state = *statep;
605         if (state == NULL) {
606                 struct lockf *ls;
607
608                 VI_UNLOCK(vp);
609
610                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
611                 sx_init(&ls->ls_lock, "ls_lock");
612                 LIST_INIT(&ls->ls_active);
613                 LIST_INIT(&ls->ls_pending);
614                 ls->ls_threads = 1;
615
616                 sx_xlock(&lf_lock_states_lock);
617                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
618                 sx_xunlock(&lf_lock_states_lock);
619
620                 /*
621                  * Cope if we lost a race with some other thread while
622                  * trying to allocate memory.
623                  */
624                 VI_LOCK(vp);
625                 if (vp->v_iflag & VI_DOOMED) {
626                         VI_UNLOCK(vp);
627                         sx_xlock(&lf_lock_states_lock);
628                         LIST_REMOVE(ls, ls_link);
629                         sx_xunlock(&lf_lock_states_lock);
630                         sx_destroy(&ls->ls_lock);
631                         free(ls, M_LOCKF);
632                         lf_free_lock(lock);
633                         return (ENOENT);
634                 }
635                 if ((*statep) == NULL) {
636                         state = *statep = ls;
637                         VI_UNLOCK(vp);
638                 } else {
639                         state = *statep;
640                         state->ls_threads++;
641                         VI_UNLOCK(vp);
642
643                         sx_xlock(&lf_lock_states_lock);
644                         LIST_REMOVE(ls, ls_link);
645                         sx_xunlock(&lf_lock_states_lock);
646                         sx_destroy(&ls->ls_lock);
647                         free(ls, M_LOCKF);
648                 }
649         } else {
650                 state->ls_threads++;
651                 VI_UNLOCK(vp);
652         }
653
654         sx_xlock(&state->ls_lock);
655         /*
656          * Recheck the doomed vnode after state->ls_lock is
657          * locked. lf_purgelocks() requires that no new threads add
658          * pending locks when vnode is marked by VI_DOOMED flag.
659          */
660         VI_LOCK(vp);
661         if (vp->v_iflag & VI_DOOMED) {
662                 state->ls_threads--;
663                 wakeup(state);
664                 VI_UNLOCK(vp);
665                 sx_xunlock(&state->ls_lock);
666                 lf_free_lock(lock);
667                 return (ENOENT);
668         }
669         VI_UNLOCK(vp);
670
671         switch (ap->a_op) {
672         case F_SETLK:
673                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
674                 break;
675
676         case F_UNLCK:
677                 error = lf_clearlock(state, lock);
678                 lf_free_lock(lock);
679                 break;
680
681         case F_GETLK:
682                 error = lf_getlock(state, lock, fl);
683                 lf_free_lock(lock);
684                 break;
685
686         case F_CANCEL:
687                 if (ap->a_cookiep)
688                         error = lf_cancel(state, lock, *ap->a_cookiep);
689                 else
690                         error = EINVAL;
691                 lf_free_lock(lock);
692                 break;
693
694         default:
695                 lf_free_lock(lock);
696                 error = EINVAL;
697                 break;
698         }
699
700 #ifdef DIAGNOSTIC
701         /*
702          * Check for some can't happen stuff. In this case, the active
703          * lock list becoming disordered or containing mutually
704          * blocking locks. We also check the pending list for locks
705          * which should be active (i.e. have no out-going edges).
706          */
707         LIST_FOREACH(lock, &state->ls_active, lf_link) {
708                 struct lockf_entry *lf;
709                 if (LIST_NEXT(lock, lf_link))
710                         KASSERT((lock->lf_start
711                                 <= LIST_NEXT(lock, lf_link)->lf_start),
712                             ("locks disordered"));
713                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
714                         if (lock == lf)
715                                 break;
716                         KASSERT(!lf_blocks(lock, lf),
717                             ("two conflicting active locks"));
718                         if (lock->lf_owner == lf->lf_owner)
719                                 KASSERT(!lf_overlaps(lock, lf),
720                                     ("two overlapping locks from same owner"));
721                 }
722         }
723         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
724                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
725                     ("pending lock which should be active"));
726         }
727 #endif
728         sx_xunlock(&state->ls_lock);
729
730         VI_LOCK(vp);
731
732         state->ls_threads--;
733         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
734                 KASSERT(LIST_EMPTY(&state->ls_pending),
735                     ("freeable state with pending locks"));
736         } else {
737                 wakeup(state);
738         }
739
740         VI_UNLOCK(vp);
741
742         if (error == EDOOFUS) {
743                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
744                 goto retry_setlock;
745         }
746         return (error);
747 }
748
749 int
750 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
751 {
752         struct vop_advlockasync_args a;
753
754         a.a_vp = ap->a_vp;
755         a.a_id = ap->a_id;
756         a.a_op = ap->a_op;
757         a.a_fl = ap->a_fl;
758         a.a_flags = ap->a_flags;
759         a.a_task = NULL;
760         a.a_cookiep = NULL;
761
762         return (lf_advlockasync(&a, statep, size));
763 }
764
765 void
766 lf_purgelocks(struct vnode *vp, struct lockf **statep)
767 {
768         struct lockf *state;
769         struct lockf_entry *lock, *nlock;
770
771         /*
772          * For this to work correctly, the caller must ensure that no
773          * other threads enter the locking system for this vnode,
774          * e.g. by checking VI_DOOMED. We wake up any threads that are
775          * sleeping waiting for locks on this vnode and then free all
776          * the remaining locks.
777          */
778         VI_LOCK(vp);
779         KASSERT(vp->v_iflag & VI_DOOMED,
780             ("lf_purgelocks: vp %p has not vgone yet", vp));
781         state = *statep;
782         if (state == NULL) {
783                 VI_UNLOCK(vp);
784                 return;
785         }
786         *statep = NULL;
787         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
788                 KASSERT(LIST_EMPTY(&state->ls_pending),
789                     ("freeing state with pending locks"));
790                 VI_UNLOCK(vp);
791                 goto out_free;
792         }
793         state->ls_threads++;
794         VI_UNLOCK(vp);
795
796         sx_xlock(&state->ls_lock);
797         sx_xlock(&lf_owner_graph_lock);
798         LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
799                 LIST_REMOVE(lock, lf_link);
800                 lf_remove_outgoing(lock);
801                 lf_remove_incoming(lock);
802
803                 /*
804                  * If its an async lock, we can just free it
805                  * here, otherwise we let the sleeping thread
806                  * free it.
807                  */
808                 if (lock->lf_async_task) {
809                         lf_free_lock(lock);
810                 } else {
811                         lock->lf_flags |= F_INTR;
812                         wakeup(lock);
813                 }
814         }
815         sx_xunlock(&lf_owner_graph_lock);
816         sx_xunlock(&state->ls_lock);
817
818         /*
819          * Wait for all other threads, sleeping and otherwise
820          * to leave.
821          */
822         VI_LOCK(vp);
823         while (state->ls_threads > 1)
824                 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
825         VI_UNLOCK(vp);
826
827         /*
828          * We can just free all the active locks since they
829          * will have no dependencies (we removed them all
830          * above). We don't need to bother locking since we
831          * are the last thread using this state structure.
832          */
833         KASSERT(LIST_EMPTY(&state->ls_pending),
834             ("lock pending for %p", state));
835         LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
836                 LIST_REMOVE(lock, lf_link);
837                 lf_free_lock(lock);
838         }
839 out_free:
840         sx_xlock(&lf_lock_states_lock);
841         LIST_REMOVE(state, ls_link);
842         sx_xunlock(&lf_lock_states_lock);
843         sx_destroy(&state->ls_lock);
844         free(state, M_LOCKF);
845 }
846
847 /*
848  * Return non-zero if locks 'x' and 'y' overlap.
849  */
850 static int
851 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
852 {
853
854         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
855 }
856
857 /*
858  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
859  */
860 static int
861 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
862 {
863
864         return x->lf_owner != y->lf_owner
865                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
866                 && lf_overlaps(x, y);
867 }
868
869 /*
870  * Allocate a lock edge from the free list
871  */
872 static struct lockf_edge *
873 lf_alloc_edge(void)
874 {
875
876         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
877 }
878
879 /*
880  * Free a lock edge.
881  */
882 static void
883 lf_free_edge(struct lockf_edge *e)
884 {
885
886         free(e, M_LOCKF);
887 }
888
889
890 /*
891  * Ensure that the lock's owner has a corresponding vertex in the
892  * owner graph.
893  */
894 static void
895 lf_alloc_vertex(struct lockf_entry *lock)
896 {
897         struct owner_graph *g = &lf_owner_graph;
898
899         if (!lock->lf_owner->lo_vertex)
900                 lock->lf_owner->lo_vertex =
901                         graph_alloc_vertex(g, lock->lf_owner);
902 }
903
904 /*
905  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
906  * the new edge would cause a cycle in the owner graph.
907  */
908 static int
909 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
910 {
911         struct owner_graph *g = &lf_owner_graph;
912         struct lockf_edge *e;
913         int error;
914
915 #ifdef DIAGNOSTIC
916         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
917                 KASSERT(e->le_to != y, ("adding lock edge twice"));
918 #endif
919
920         /*
921          * Make sure the two owners have entries in the owner graph.
922          */
923         lf_alloc_vertex(x);
924         lf_alloc_vertex(y);
925
926         error = graph_add_edge(g, x->lf_owner->lo_vertex,
927             y->lf_owner->lo_vertex);
928         if (error)
929                 return (error);
930
931         e = lf_alloc_edge();
932         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
933         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
934         e->le_from = x;
935         e->le_to = y;
936
937         return (0);
938 }
939
940 /*
941  * Remove an edge from the lock graph.
942  */
943 static void
944 lf_remove_edge(struct lockf_edge *e)
945 {
946         struct owner_graph *g = &lf_owner_graph;
947         struct lockf_entry *x = e->le_from;
948         struct lockf_entry *y = e->le_to;
949
950         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
951         LIST_REMOVE(e, le_outlink);
952         LIST_REMOVE(e, le_inlink);
953         e->le_from = NULL;
954         e->le_to = NULL;
955         lf_free_edge(e);
956 }
957
958 /*
959  * Remove all out-going edges from lock x.
960  */
961 static void
962 lf_remove_outgoing(struct lockf_entry *x)
963 {
964         struct lockf_edge *e;
965
966         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
967                 lf_remove_edge(e);
968         }
969 }
970
971 /*
972  * Remove all in-coming edges from lock x.
973  */
974 static void
975 lf_remove_incoming(struct lockf_entry *x)
976 {
977         struct lockf_edge *e;
978
979         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
980                 lf_remove_edge(e);
981         }
982 }
983
984 /*
985  * Walk the list of locks for the file and create an out-going edge
986  * from lock to each blocking lock.
987  */
988 static int
989 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
990 {
991         struct lockf_entry *overlap;
992         int error;
993
994         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
995                 /*
996                  * We may assume that the active list is sorted by
997                  * lf_start.
998                  */
999                 if (overlap->lf_start > lock->lf_end)
1000                         break;
1001                 if (!lf_blocks(lock, overlap))
1002                         continue;
1003
1004                 /*
1005                  * We've found a blocking lock. Add the corresponding
1006                  * edge to the graphs and see if it would cause a
1007                  * deadlock.
1008                  */
1009                 error = lf_add_edge(lock, overlap);
1010
1011                 /*
1012                  * The only error that lf_add_edge returns is EDEADLK.
1013                  * Remove any edges we added and return the error.
1014                  */
1015                 if (error) {
1016                         lf_remove_outgoing(lock);
1017                         return (error);
1018                 }
1019         }
1020
1021         /*
1022          * We also need to add edges to sleeping locks that block
1023          * us. This ensures that lf_wakeup_lock cannot grant two
1024          * mutually blocking locks simultaneously and also enforces a
1025          * 'first come, first served' fairness model. Note that this
1026          * only happens if we are blocked by at least one active lock
1027          * due to the call to lf_getblock in lf_setlock below.
1028          */
1029         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1030                 if (!lf_blocks(lock, overlap))
1031                         continue;
1032                 /*
1033                  * We've found a blocking lock. Add the corresponding
1034                  * edge to the graphs and see if it would cause a
1035                  * deadlock.
1036                  */
1037                 error = lf_add_edge(lock, overlap);
1038
1039                 /*
1040                  * The only error that lf_add_edge returns is EDEADLK.
1041                  * Remove any edges we added and return the error.
1042                  */
1043                 if (error) {
1044                         lf_remove_outgoing(lock);
1045                         return (error);
1046                 }
1047         }
1048
1049         return (0);
1050 }
1051
1052 /*
1053  * Walk the list of pending locks for the file and create an in-coming
1054  * edge from lock to each blocking lock.
1055  */
1056 static int
1057 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1058 {
1059         struct lockf_entry *overlap;
1060         int error;
1061
1062         sx_assert(&state->ls_lock, SX_XLOCKED);
1063         if (LIST_EMPTY(&state->ls_pending))
1064                 return (0);
1065
1066         error = 0;
1067         sx_xlock(&lf_owner_graph_lock);
1068         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1069                 if (!lf_blocks(lock, overlap))
1070                         continue;
1071
1072                 /*
1073                  * We've found a blocking lock. Add the corresponding
1074                  * edge to the graphs and see if it would cause a
1075                  * deadlock.
1076                  */
1077                 error = lf_add_edge(overlap, lock);
1078
1079                 /*
1080                  * The only error that lf_add_edge returns is EDEADLK.
1081                  * Remove any edges we added and return the error.
1082                  */
1083                 if (error) {
1084                         lf_remove_incoming(lock);
1085                         break;
1086                 }
1087         }
1088         sx_xunlock(&lf_owner_graph_lock);
1089         return (error);
1090 }
1091
1092 /*
1093  * Insert lock into the active list, keeping list entries ordered by
1094  * increasing values of lf_start.
1095  */
1096 static void
1097 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1098 {
1099         struct lockf_entry *lf, *lfprev;
1100
1101         if (LIST_EMPTY(&state->ls_active)) {
1102                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1103                 return;
1104         }
1105
1106         lfprev = NULL;
1107         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1108                 if (lf->lf_start > lock->lf_start) {
1109                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1110                         return;
1111                 }
1112                 lfprev = lf;
1113         }
1114         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1115 }
1116
1117 /*
1118  * Wake up a sleeping lock and remove it from the pending list now
1119  * that all its dependencies have been resolved. The caller should
1120  * arrange for the lock to be added to the active list, adjusting any
1121  * existing locks for the same owner as needed.
1122  */
1123 static void
1124 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1125 {
1126
1127         /*
1128          * Remove from ls_pending list and wake up the caller
1129          * or start the async notification, as appropriate.
1130          */
1131         LIST_REMOVE(wakelock, lf_link);
1132 #ifdef LOCKF_DEBUG
1133         if (lockf_debug & 1)
1134                 lf_print("lf_wakeup_lock: awakening", wakelock);
1135 #endif /* LOCKF_DEBUG */
1136         if (wakelock->lf_async_task) {
1137                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1138         } else {
1139                 wakeup(wakelock);
1140         }
1141 }
1142
1143 /*
1144  * Re-check all dependent locks and remove edges to locks that we no
1145  * longer block. If 'all' is non-zero, the lock has been removed and
1146  * we must remove all the dependencies, otherwise it has simply been
1147  * reduced but remains active. Any pending locks which have been been
1148  * unblocked are added to 'granted'
1149  */
1150 static void
1151 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1152         struct lockf_entry_list *granted)
1153 {
1154         struct lockf_edge *e, *ne;
1155         struct lockf_entry *deplock;
1156
1157         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1158                 deplock = e->le_from;
1159                 if (all || !lf_blocks(lock, deplock)) {
1160                         sx_xlock(&lf_owner_graph_lock);
1161                         lf_remove_edge(e);
1162                         sx_xunlock(&lf_owner_graph_lock);
1163                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1164                                 lf_wakeup_lock(state, deplock);
1165                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1166                         }
1167                 }
1168         }
1169 }
1170
1171 /*
1172  * Set the start of an existing active lock, updating dependencies and
1173  * adding any newly woken locks to 'granted'.
1174  */
1175 static void
1176 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1177         struct lockf_entry_list *granted)
1178 {
1179
1180         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1181         lock->lf_start = new_start;
1182         LIST_REMOVE(lock, lf_link);
1183         lf_insert_lock(state, lock);
1184         lf_update_dependancies(state, lock, FALSE, granted);
1185 }
1186
1187 /*
1188  * Set the end of an existing active lock, updating dependencies and
1189  * adding any newly woken locks to 'granted'.
1190  */
1191 static void
1192 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1193         struct lockf_entry_list *granted)
1194 {
1195
1196         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1197         lock->lf_end = new_end;
1198         lf_update_dependancies(state, lock, FALSE, granted);
1199 }
1200
1201 /*
1202  * Add a lock to the active list, updating or removing any current
1203  * locks owned by the same owner and processing any pending locks that
1204  * become unblocked as a result. This code is also used for unlock
1205  * since the logic for updating existing locks is identical.
1206  *
1207  * As a result of processing the new lock, we may unblock existing
1208  * pending locks as a result of downgrading/unlocking. We simply
1209  * activate the newly granted locks by looping.
1210  *
1211  * Since the new lock already has its dependencies set up, we always
1212  * add it to the list (unless its an unlock request). This may
1213  * fragment the lock list in some pathological cases but its probably
1214  * not a real problem.
1215  */
1216 static void
1217 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1218 {
1219         struct lockf_entry *overlap, *lf;
1220         struct lockf_entry_list granted;
1221         int ovcase;
1222
1223         LIST_INIT(&granted);
1224         LIST_INSERT_HEAD(&granted, lock, lf_link);
1225
1226         while (!LIST_EMPTY(&granted)) {
1227                 lock = LIST_FIRST(&granted);
1228                 LIST_REMOVE(lock, lf_link);
1229
1230                 /*
1231                  * Skip over locks owned by other processes.  Handle
1232                  * any locks that overlap and are owned by ourselves.
1233                  */
1234                 overlap = LIST_FIRST(&state->ls_active);
1235                 for (;;) {
1236                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1237
1238 #ifdef LOCKF_DEBUG
1239                         if (ovcase && (lockf_debug & 2)) {
1240                                 printf("lf_setlock: overlap %d", ovcase);
1241                                 lf_print("", overlap);
1242                         }
1243 #endif
1244                         /*
1245                          * Six cases:
1246                          *      0) no overlap
1247                          *      1) overlap == lock
1248                          *      2) overlap contains lock
1249                          *      3) lock contains overlap
1250                          *      4) overlap starts before lock
1251                          *      5) overlap ends after lock
1252                          */
1253                         switch (ovcase) {
1254                         case 0: /* no overlap */
1255                                 break;
1256
1257                         case 1: /* overlap == lock */
1258                                 /*
1259                                  * We have already setup the
1260                                  * dependants for the new lock, taking
1261                                  * into account a possible downgrade
1262                                  * or unlock. Remove the old lock.
1263                                  */
1264                                 LIST_REMOVE(overlap, lf_link);
1265                                 lf_update_dependancies(state, overlap, TRUE,
1266                                         &granted);
1267                                 lf_free_lock(overlap);
1268                                 break;
1269
1270                         case 2: /* overlap contains lock */
1271                                 /*
1272                                  * Just split the existing lock.
1273                                  */
1274                                 lf_split(state, overlap, lock, &granted);
1275                                 break;
1276
1277                         case 3: /* lock contains overlap */
1278                                 /*
1279                                  * Delete the overlap and advance to
1280                                  * the next entry in the list.
1281                                  */
1282                                 lf = LIST_NEXT(overlap, lf_link);
1283                                 LIST_REMOVE(overlap, lf_link);
1284                                 lf_update_dependancies(state, overlap, TRUE,
1285                                         &granted);
1286                                 lf_free_lock(overlap);
1287                                 overlap = lf;
1288                                 continue;
1289
1290                         case 4: /* overlap starts before lock */
1291                                 /*
1292                                  * Just update the overlap end and
1293                                  * move on.
1294                                  */
1295                                 lf_set_end(state, overlap, lock->lf_start - 1,
1296                                     &granted);
1297                                 overlap = LIST_NEXT(overlap, lf_link);
1298                                 continue;
1299
1300                         case 5: /* overlap ends after lock */
1301                                 /*
1302                                  * Change the start of overlap and
1303                                  * re-insert.
1304                                  */
1305                                 lf_set_start(state, overlap, lock->lf_end + 1,
1306                                     &granted);
1307                                 break;
1308                         }
1309                         break;
1310                 }
1311 #ifdef LOCKF_DEBUG
1312                 if (lockf_debug & 1) {
1313                         if (lock->lf_type != F_UNLCK)
1314                                 lf_print("lf_activate_lock: activated", lock);
1315                         else
1316                                 lf_print("lf_activate_lock: unlocked", lock);
1317                         lf_printlist("lf_activate_lock", lock);
1318                 }
1319 #endif /* LOCKF_DEBUG */
1320                 if (lock->lf_type != F_UNLCK)
1321                         lf_insert_lock(state, lock);
1322         }
1323 }
1324
1325 /*
1326  * Cancel a pending lock request, either as a result of a signal or a
1327  * cancel request for an async lock.
1328  */
1329 static void
1330 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1331 {
1332         struct lockf_entry_list granted;
1333
1334         /*
1335          * Note it is theoretically possible that cancelling this lock
1336          * may allow some other pending lock to become
1337          * active. Consider this case:
1338          *
1339          * Owner        Action          Result          Dependencies
1340          * 
1341          * A:           lock [0..0]     succeeds        
1342          * B:           lock [2..2]     succeeds        
1343          * C:           lock [1..2]     blocked         C->B
1344          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1345          * A:           unlock [0..0]                   C->B,D->C
1346          * C:           cancel [1..2]   
1347          */
1348
1349         LIST_REMOVE(lock, lf_link);
1350
1351         /*
1352          * Removing out-going edges is simple.
1353          */
1354         sx_xlock(&lf_owner_graph_lock);
1355         lf_remove_outgoing(lock);
1356         sx_xunlock(&lf_owner_graph_lock);
1357
1358         /*
1359          * Removing in-coming edges may allow some other lock to
1360          * become active - we use lf_update_dependancies to figure
1361          * this out.
1362          */
1363         LIST_INIT(&granted);
1364         lf_update_dependancies(state, lock, TRUE, &granted);
1365         lf_free_lock(lock);
1366
1367         /*
1368          * Feed any newly active locks to lf_activate_lock.
1369          */
1370         while (!LIST_EMPTY(&granted)) {
1371                 lock = LIST_FIRST(&granted);
1372                 LIST_REMOVE(lock, lf_link);
1373                 lf_activate_lock(state, lock);
1374         }
1375 }
1376
1377 /*
1378  * Set a byte-range lock.
1379  */
1380 static int
1381 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1382     void **cookiep)
1383 {
1384         static char lockstr[] = "lockf";
1385         int error, priority, stops_deferred;
1386
1387 #ifdef LOCKF_DEBUG
1388         if (lockf_debug & 1)
1389                 lf_print("lf_setlock", lock);
1390 #endif /* LOCKF_DEBUG */
1391
1392         /*
1393          * Set the priority
1394          */
1395         priority = PLOCK;
1396         if (lock->lf_type == F_WRLCK)
1397                 priority += 4;
1398         if (!(lock->lf_flags & F_NOINTR))
1399                 priority |= PCATCH;
1400         /*
1401          * Scan lock list for this file looking for locks that would block us.
1402          */
1403         if (lf_getblock(state, lock)) {
1404                 /*
1405                  * Free the structure and return if nonblocking.
1406                  */
1407                 if ((lock->lf_flags & F_WAIT) == 0
1408                     && lock->lf_async_task == NULL) {
1409                         lf_free_lock(lock);
1410                         error = EAGAIN;
1411                         goto out;
1412                 }
1413
1414                 /*
1415                  * For flock type locks, we must first remove
1416                  * any shared locks that we hold before we sleep
1417                  * waiting for an exclusive lock.
1418                  */
1419                 if ((lock->lf_flags & F_FLOCK) &&
1420                     lock->lf_type == F_WRLCK) {
1421                         lock->lf_type = F_UNLCK;
1422                         lf_activate_lock(state, lock);
1423                         lock->lf_type = F_WRLCK;
1424                 }
1425
1426                 /*
1427                  * We are blocked. Create edges to each blocking lock,
1428                  * checking for deadlock using the owner graph. For
1429                  * simplicity, we run deadlock detection for all
1430                  * locks, posix and otherwise.
1431                  */
1432                 sx_xlock(&lf_owner_graph_lock);
1433                 error = lf_add_outgoing(state, lock);
1434                 sx_xunlock(&lf_owner_graph_lock);
1435
1436                 if (error) {
1437 #ifdef LOCKF_DEBUG
1438                         if (lockf_debug & 1)
1439                                 lf_print("lf_setlock: deadlock", lock);
1440 #endif
1441                         lf_free_lock(lock);
1442                         goto out;
1443                 }
1444
1445                 /*
1446                  * We have added edges to everything that blocks
1447                  * us. Sleep until they all go away.
1448                  */
1449                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1450 #ifdef LOCKF_DEBUG
1451                 if (lockf_debug & 1) {
1452                         struct lockf_edge *e;
1453                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1454                                 lf_print("lf_setlock: blocking on", e->le_to);
1455                                 lf_printlist("lf_setlock", e->le_to);
1456                         }
1457                 }
1458 #endif /* LOCKF_DEBUG */
1459
1460                 if ((lock->lf_flags & F_WAIT) == 0) {
1461                         /*
1462                          * The caller requested async notification -
1463                          * this callback happens when the blocking
1464                          * lock is released, allowing the caller to
1465                          * make another attempt to take the lock.
1466                          */
1467                         *cookiep = (void *) lock;
1468                         error = EINPROGRESS;
1469                         goto out;
1470                 }
1471
1472                 lock->lf_refs++;
1473                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1474                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1475                 sigallowstop(stops_deferred);
1476                 if (lf_free_lock(lock)) {
1477                         error = EDOOFUS;
1478                         goto out;
1479                 }
1480
1481                 /*
1482                  * We may have been awakened by a signal and/or by a
1483                  * debugger continuing us (in which cases we must
1484                  * remove our lock graph edges) and/or by another
1485                  * process releasing a lock (in which case our edges
1486                  * have already been removed and we have been moved to
1487                  * the active list). We may also have been woken by
1488                  * lf_purgelocks which we report to the caller as
1489                  * EINTR. In that case, lf_purgelocks will have
1490                  * removed our lock graph edges.
1491                  *
1492                  * Note that it is possible to receive a signal after
1493                  * we were successfully woken (and moved to the active
1494                  * list) but before we resumed execution. In this
1495                  * case, our lf_outedges list will be clear. We
1496                  * pretend there was no error.
1497                  *
1498                  * Note also, if we have been sleeping long enough, we
1499                  * may now have incoming edges from some newer lock
1500                  * which is waiting behind us in the queue.
1501                  */
1502                 if (lock->lf_flags & F_INTR) {
1503                         error = EINTR;
1504                         lf_free_lock(lock);
1505                         goto out;
1506                 }
1507                 if (LIST_EMPTY(&lock->lf_outedges)) {
1508                         error = 0;
1509                 } else {
1510                         lf_cancel_lock(state, lock);
1511                         goto out;
1512                 }
1513 #ifdef LOCKF_DEBUG
1514                 if (lockf_debug & 1) {
1515                         lf_print("lf_setlock: granted", lock);
1516                 }
1517 #endif
1518                 goto out;
1519         }
1520         /*
1521          * It looks like we are going to grant the lock. First add
1522          * edges from any currently pending lock that the new lock
1523          * would block.
1524          */
1525         error = lf_add_incoming(state, lock);
1526         if (error) {
1527 #ifdef LOCKF_DEBUG
1528                 if (lockf_debug & 1)
1529                         lf_print("lf_setlock: deadlock", lock);
1530 #endif
1531                 lf_free_lock(lock);
1532                 goto out;
1533         }
1534
1535         /*
1536          * No blocks!!  Add the lock.  Note that we will
1537          * downgrade or upgrade any overlapping locks this
1538          * process already owns.
1539          */
1540         lf_activate_lock(state, lock);
1541         error = 0;
1542 out:
1543         return (error);
1544 }
1545
1546 /*
1547  * Remove a byte-range lock on an inode.
1548  *
1549  * Generally, find the lock (or an overlap to that lock)
1550  * and remove it (or shrink it), then wakeup anyone we can.
1551  */
1552 static int
1553 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1554 {
1555         struct lockf_entry *overlap;
1556
1557         overlap = LIST_FIRST(&state->ls_active);
1558
1559         if (overlap == NOLOCKF)
1560                 return (0);
1561 #ifdef LOCKF_DEBUG
1562         if (unlock->lf_type != F_UNLCK)
1563                 panic("lf_clearlock: bad type");
1564         if (lockf_debug & 1)
1565                 lf_print("lf_clearlock", unlock);
1566 #endif /* LOCKF_DEBUG */
1567
1568         lf_activate_lock(state, unlock);
1569
1570         return (0);
1571 }
1572
1573 /*
1574  * Check whether there is a blocking lock, and if so return its
1575  * details in '*fl'.
1576  */
1577 static int
1578 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1579 {
1580         struct lockf_entry *block;
1581
1582 #ifdef LOCKF_DEBUG
1583         if (lockf_debug & 1)
1584                 lf_print("lf_getlock", lock);
1585 #endif /* LOCKF_DEBUG */
1586
1587         if ((block = lf_getblock(state, lock))) {
1588                 fl->l_type = block->lf_type;
1589                 fl->l_whence = SEEK_SET;
1590                 fl->l_start = block->lf_start;
1591                 if (block->lf_end == OFF_MAX)
1592                         fl->l_len = 0;
1593                 else
1594                         fl->l_len = block->lf_end - block->lf_start + 1;
1595                 fl->l_pid = block->lf_owner->lo_pid;
1596                 fl->l_sysid = block->lf_owner->lo_sysid;
1597         } else {
1598                 fl->l_type = F_UNLCK;
1599         }
1600         return (0);
1601 }
1602
1603 /*
1604  * Cancel an async lock request.
1605  */
1606 static int
1607 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1608 {
1609         struct lockf_entry *reallock;
1610
1611         /*
1612          * We need to match this request with an existing lock
1613          * request.
1614          */
1615         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1616                 if ((void *) reallock == cookie) {
1617                         /*
1618                          * Double-check that this lock looks right
1619                          * (maybe use a rolling ID for the cancel
1620                          * cookie instead?)
1621                          */
1622                         if (!(reallock->lf_vnode == lock->lf_vnode
1623                                 && reallock->lf_start == lock->lf_start
1624                                 && reallock->lf_end == lock->lf_end)) {
1625                                 return (ENOENT);
1626                         }
1627
1628                         /*
1629                          * Make sure this lock was async and then just
1630                          * remove it from its wait lists.
1631                          */
1632                         if (!reallock->lf_async_task) {
1633                                 return (ENOENT);
1634                         }
1635
1636                         /*
1637                          * Note that since any other thread must take
1638                          * state->ls_lock before it can possibly
1639                          * trigger the async callback, we are safe
1640                          * from a race with lf_wakeup_lock, i.e. we
1641                          * can free the lock (actually our caller does
1642                          * this).
1643                          */
1644                         lf_cancel_lock(state, reallock);
1645                         return (0);
1646                 }
1647         }
1648
1649         /*
1650          * We didn't find a matching lock - not much we can do here.
1651          */
1652         return (ENOENT);
1653 }
1654
1655 /*
1656  * Walk the list of locks for an inode and
1657  * return the first blocking lock.
1658  */
1659 static struct lockf_entry *
1660 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1661 {
1662         struct lockf_entry *overlap;
1663
1664         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1665                 /*
1666                  * We may assume that the active list is sorted by
1667                  * lf_start.
1668                  */
1669                 if (overlap->lf_start > lock->lf_end)
1670                         break;
1671                 if (!lf_blocks(lock, overlap))
1672                         continue;
1673                 return (overlap);
1674         }
1675         return (NOLOCKF);
1676 }
1677
1678 /*
1679  * Walk the list of locks for an inode to find an overlapping lock (if
1680  * any) and return a classification of that overlap.
1681  *
1682  * Arguments:
1683  *      *overlap        The place in the lock list to start looking
1684  *      lock            The lock which is being tested
1685  *      type            Pass 'SELF' to test only locks with the same
1686  *                      owner as lock, or 'OTHER' to test only locks
1687  *                      with a different owner
1688  *
1689  * Returns one of six values:
1690  *      0) no overlap
1691  *      1) overlap == lock
1692  *      2) overlap contains lock
1693  *      3) lock contains overlap
1694  *      4) overlap starts before lock
1695  *      5) overlap ends after lock
1696  *
1697  * If there is an overlapping lock, '*overlap' is set to point at the
1698  * overlapping lock.
1699  *
1700  * NOTE: this returns only the FIRST overlapping lock.  There
1701  *       may be more than one.
1702  */
1703 static int
1704 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1705 {
1706         struct lockf_entry *lf;
1707         off_t start, end;
1708         int res;
1709
1710         if ((*overlap) == NOLOCKF) {
1711                 return (0);
1712         }
1713 #ifdef LOCKF_DEBUG
1714         if (lockf_debug & 2)
1715                 lf_print("lf_findoverlap: looking for overlap in", lock);
1716 #endif /* LOCKF_DEBUG */
1717         start = lock->lf_start;
1718         end = lock->lf_end;
1719         res = 0;
1720         while (*overlap) {
1721                 lf = *overlap;
1722                 if (lf->lf_start > end)
1723                         break;
1724                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1725                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1726                         *overlap = LIST_NEXT(lf, lf_link);
1727                         continue;
1728                 }
1729 #ifdef LOCKF_DEBUG
1730                 if (lockf_debug & 2)
1731                         lf_print("\tchecking", lf);
1732 #endif /* LOCKF_DEBUG */
1733                 /*
1734                  * OK, check for overlap
1735                  *
1736                  * Six cases:
1737                  *      0) no overlap
1738                  *      1) overlap == lock
1739                  *      2) overlap contains lock
1740                  *      3) lock contains overlap
1741                  *      4) overlap starts before lock
1742                  *      5) overlap ends after lock
1743                  */
1744                 if (start > lf->lf_end) {
1745                         /* Case 0 */
1746 #ifdef LOCKF_DEBUG
1747                         if (lockf_debug & 2)
1748                                 printf("no overlap\n");
1749 #endif /* LOCKF_DEBUG */
1750                         *overlap = LIST_NEXT(lf, lf_link);
1751                         continue;
1752                 }
1753                 if (lf->lf_start == start && lf->lf_end == end) {
1754                         /* Case 1 */
1755 #ifdef LOCKF_DEBUG
1756                         if (lockf_debug & 2)
1757                                 printf("overlap == lock\n");
1758 #endif /* LOCKF_DEBUG */
1759                         res = 1;
1760                         break;
1761                 }
1762                 if (lf->lf_start <= start && lf->lf_end >= end) {
1763                         /* Case 2 */
1764 #ifdef LOCKF_DEBUG
1765                         if (lockf_debug & 2)
1766                                 printf("overlap contains lock\n");
1767 #endif /* LOCKF_DEBUG */
1768                         res = 2;
1769                         break;
1770                 }
1771                 if (start <= lf->lf_start && end >= lf->lf_end) {
1772                         /* Case 3 */
1773 #ifdef LOCKF_DEBUG
1774                         if (lockf_debug & 2)
1775                                 printf("lock contains overlap\n");
1776 #endif /* LOCKF_DEBUG */
1777                         res = 3;
1778                         break;
1779                 }
1780                 if (lf->lf_start < start && lf->lf_end >= start) {
1781                         /* Case 4 */
1782 #ifdef LOCKF_DEBUG
1783                         if (lockf_debug & 2)
1784                                 printf("overlap starts before lock\n");
1785 #endif /* LOCKF_DEBUG */
1786                         res = 4;
1787                         break;
1788                 }
1789                 if (lf->lf_start > start && lf->lf_end > end) {
1790                         /* Case 5 */
1791 #ifdef LOCKF_DEBUG
1792                         if (lockf_debug & 2)
1793                                 printf("overlap ends after lock\n");
1794 #endif /* LOCKF_DEBUG */
1795                         res = 5;
1796                         break;
1797                 }
1798                 panic("lf_findoverlap: default");
1799         }
1800         return (res);
1801 }
1802
1803 /*
1804  * Split an the existing 'lock1', based on the extent of the lock
1805  * described by 'lock2'. The existing lock should cover 'lock2'
1806  * entirely.
1807  *
1808  * Any pending locks which have been been unblocked are added to
1809  * 'granted'
1810  */
1811 static void
1812 lf_split(struct lockf *state, struct lockf_entry *lock1,
1813     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1814 {
1815         struct lockf_entry *splitlock;
1816
1817 #ifdef LOCKF_DEBUG
1818         if (lockf_debug & 2) {
1819                 lf_print("lf_split", lock1);
1820                 lf_print("splitting from", lock2);
1821         }
1822 #endif /* LOCKF_DEBUG */
1823         /*
1824          * Check to see if we don't need to split at all.
1825          */
1826         if (lock1->lf_start == lock2->lf_start) {
1827                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1828                 return;
1829         }
1830         if (lock1->lf_end == lock2->lf_end) {
1831                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1832                 return;
1833         }
1834         /*
1835          * Make a new lock consisting of the last part of
1836          * the encompassing lock.
1837          */
1838         splitlock = lf_alloc_lock(lock1->lf_owner);
1839         memcpy(splitlock, lock1, sizeof *splitlock);
1840         splitlock->lf_refs = 1;
1841         if (splitlock->lf_flags & F_REMOTE)
1842                 vref(splitlock->lf_vnode);
1843
1844         /*
1845          * This cannot cause a deadlock since any edges we would add
1846          * to splitlock already exist in lock1. We must be sure to add
1847          * necessary dependencies to splitlock before we reduce lock1
1848          * otherwise we may accidentally grant a pending lock that
1849          * was blocked by the tail end of lock1.
1850          */
1851         splitlock->lf_start = lock2->lf_end + 1;
1852         LIST_INIT(&splitlock->lf_outedges);
1853         LIST_INIT(&splitlock->lf_inedges);
1854         lf_add_incoming(state, splitlock);
1855
1856         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1857
1858         /*
1859          * OK, now link it in
1860          */
1861         lf_insert_lock(state, splitlock);
1862 }
1863
1864 struct lockdesc {
1865         STAILQ_ENTRY(lockdesc) link;
1866         struct vnode *vp;
1867         struct flock fl;
1868 };
1869 STAILQ_HEAD(lockdesclist, lockdesc);
1870
1871 int
1872 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1873 {
1874         struct lockf *ls;
1875         struct lockf_entry *lf;
1876         struct lockdesc *ldesc;
1877         struct lockdesclist locks;
1878         int error;
1879
1880         /*
1881          * In order to keep the locking simple, we iterate over the
1882          * active lock lists to build a list of locks that need
1883          * releasing. We then call the iterator for each one in turn.
1884          *
1885          * We take an extra reference to the vnode for the duration to
1886          * make sure it doesn't go away before we are finished.
1887          */
1888         STAILQ_INIT(&locks);
1889         sx_xlock(&lf_lock_states_lock);
1890         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1891                 sx_xlock(&ls->ls_lock);
1892                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1893                         if (lf->lf_owner->lo_sysid != sysid)
1894                                 continue;
1895
1896                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1897                             M_WAITOK);
1898                         ldesc->vp = lf->lf_vnode;
1899                         vref(ldesc->vp);
1900                         ldesc->fl.l_start = lf->lf_start;
1901                         if (lf->lf_end == OFF_MAX)
1902                                 ldesc->fl.l_len = 0;
1903                         else
1904                                 ldesc->fl.l_len =
1905                                         lf->lf_end - lf->lf_start + 1;
1906                         ldesc->fl.l_whence = SEEK_SET;
1907                         ldesc->fl.l_type = F_UNLCK;
1908                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1909                         ldesc->fl.l_sysid = sysid;
1910                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1911                 }
1912                 sx_xunlock(&ls->ls_lock);
1913         }
1914         sx_xunlock(&lf_lock_states_lock);
1915
1916         /*
1917          * Call the iterator function for each lock in turn. If the
1918          * iterator returns an error code, just free the rest of the
1919          * lockdesc structures.
1920          */
1921         error = 0;
1922         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1923                 STAILQ_REMOVE_HEAD(&locks, link);
1924                 if (!error)
1925                         error = fn(ldesc->vp, &ldesc->fl, arg);
1926                 vrele(ldesc->vp);
1927                 free(ldesc, M_LOCKF);
1928         }
1929
1930         return (error);
1931 }
1932
1933 int
1934 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1935 {
1936         struct lockf *ls;
1937         struct lockf_entry *lf;
1938         struct lockdesc *ldesc;
1939         struct lockdesclist locks;
1940         int error;
1941
1942         /*
1943          * In order to keep the locking simple, we iterate over the
1944          * active lock lists to build a list of locks that need
1945          * releasing. We then call the iterator for each one in turn.
1946          *
1947          * We take an extra reference to the vnode for the duration to
1948          * make sure it doesn't go away before we are finished.
1949          */
1950         STAILQ_INIT(&locks);
1951         VI_LOCK(vp);
1952         ls = vp->v_lockf;
1953         if (!ls) {
1954                 VI_UNLOCK(vp);
1955                 return (0);
1956         }
1957         ls->ls_threads++;
1958         VI_UNLOCK(vp);
1959
1960         sx_xlock(&ls->ls_lock);
1961         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1962                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1963                     M_WAITOK);
1964                 ldesc->vp = lf->lf_vnode;
1965                 vref(ldesc->vp);
1966                 ldesc->fl.l_start = lf->lf_start;
1967                 if (lf->lf_end == OFF_MAX)
1968                         ldesc->fl.l_len = 0;
1969                 else
1970                         ldesc->fl.l_len =
1971                                 lf->lf_end - lf->lf_start + 1;
1972                 ldesc->fl.l_whence = SEEK_SET;
1973                 ldesc->fl.l_type = F_UNLCK;
1974                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1975                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1976                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1977         }
1978         sx_xunlock(&ls->ls_lock);
1979         VI_LOCK(vp);
1980         ls->ls_threads--;
1981         wakeup(ls);
1982         VI_UNLOCK(vp);
1983
1984         /*
1985          * Call the iterator function for each lock in turn. If the
1986          * iterator returns an error code, just free the rest of the
1987          * lockdesc structures.
1988          */
1989         error = 0;
1990         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1991                 STAILQ_REMOVE_HEAD(&locks, link);
1992                 if (!error)
1993                         error = fn(ldesc->vp, &ldesc->fl, arg);
1994                 vrele(ldesc->vp);
1995                 free(ldesc, M_LOCKF);
1996         }
1997
1998         return (error);
1999 }
2000
2001 static int
2002 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2003 {
2004
2005         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2006         return (0);
2007 }
2008
2009 void
2010 lf_clearremotesys(int sysid)
2011 {
2012
2013         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2014         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2015 }
2016
2017 int
2018 lf_countlocks(int sysid)
2019 {
2020         int i;
2021         struct lock_owner *lo;
2022         int count;
2023
2024         count = 0;
2025         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2026                 sx_xlock(&lf_lock_owners[i].lock);
2027                 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2028                         if (lo->lo_sysid == sysid)
2029                                 count += lo->lo_refs;
2030                 sx_xunlock(&lf_lock_owners[i].lock);
2031         }
2032
2033         return (count);
2034 }
2035
2036 #ifdef LOCKF_DEBUG
2037
2038 /*
2039  * Return non-zero if y is reachable from x using a brute force
2040  * search. If reachable and path is non-null, return the route taken
2041  * in path.
2042  */
2043 static int
2044 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2045     struct owner_vertex_list *path)
2046 {
2047         struct owner_edge *e;
2048
2049         if (x == y) {
2050                 if (path)
2051                         TAILQ_INSERT_HEAD(path, x, v_link);
2052                 return 1;
2053         }
2054
2055         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2056                 if (graph_reaches(e->e_to, y, path)) {
2057                         if (path)
2058                                 TAILQ_INSERT_HEAD(path, x, v_link);
2059                         return 1;
2060                 }
2061         }
2062         return 0;
2063 }
2064
2065 /*
2066  * Perform consistency checks on the graph. Make sure the values of
2067  * v_order are correct. If checkorder is non-zero, check no vertex can
2068  * reach any other vertex with a smaller order.
2069  */
2070 static void
2071 graph_check(struct owner_graph *g, int checkorder)
2072 {
2073         int i, j;
2074
2075         for (i = 0; i < g->g_size; i++) {
2076                 if (!g->g_vertices[i]->v_owner)
2077                         continue;
2078                 KASSERT(g->g_vertices[i]->v_order == i,
2079                     ("lock graph vertices disordered"));
2080                 if (checkorder) {
2081                         for (j = 0; j < i; j++) {
2082                                 if (!g->g_vertices[j]->v_owner)
2083                                         continue;
2084                                 KASSERT(!graph_reaches(g->g_vertices[i],
2085                                         g->g_vertices[j], NULL),
2086                                     ("lock graph vertices disordered"));
2087                         }
2088                 }
2089         }
2090 }
2091
2092 static void
2093 graph_print_vertices(struct owner_vertex_list *set)
2094 {
2095         struct owner_vertex *v;
2096
2097         printf("{ ");
2098         TAILQ_FOREACH(v, set, v_link) {
2099                 printf("%d:", v->v_order);
2100                 lf_print_owner(v->v_owner);
2101                 if (TAILQ_NEXT(v, v_link))
2102                         printf(", ");
2103         }
2104         printf(" }\n");
2105 }
2106
2107 #endif
2108
2109 /*
2110  * Calculate the sub-set of vertices v from the affected region [y..x]
2111  * where v is reachable from y. Return -1 if a loop was detected
2112  * (i.e. x is reachable from y, otherwise the number of vertices in
2113  * this subset.
2114  */
2115 static int
2116 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2117     struct owner_vertex *y, struct owner_vertex_list *delta)
2118 {
2119         uint32_t gen;
2120         struct owner_vertex *v;
2121         struct owner_edge *e;
2122         int n;
2123
2124         /*
2125          * We start with a set containing just y. Then for each vertex
2126          * v in the set so far unprocessed, we add each vertex that v
2127          * has an out-edge to and that is within the affected region
2128          * [y..x]. If we see the vertex x on our travels, stop
2129          * immediately.
2130          */
2131         TAILQ_INIT(delta);
2132         TAILQ_INSERT_TAIL(delta, y, v_link);
2133         v = y;
2134         n = 1;
2135         gen = g->g_gen;
2136         while (v) {
2137                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2138                         if (e->e_to == x)
2139                                 return -1;
2140                         if (e->e_to->v_order < x->v_order
2141                             && e->e_to->v_gen != gen) {
2142                                 e->e_to->v_gen = gen;
2143                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2144                                 n++;
2145                         }
2146                 }
2147                 v = TAILQ_NEXT(v, v_link);
2148         }
2149
2150         return (n);
2151 }
2152
2153 /*
2154  * Calculate the sub-set of vertices v from the affected region [y..x]
2155  * where v reaches x. Return the number of vertices in this subset.
2156  */
2157 static int
2158 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2159     struct owner_vertex *y, struct owner_vertex_list *delta)
2160 {
2161         uint32_t gen;
2162         struct owner_vertex *v;
2163         struct owner_edge *e;
2164         int n;
2165
2166         /*
2167          * We start with a set containing just x. Then for each vertex
2168          * v in the set so far unprocessed, we add each vertex that v
2169          * has an in-edge from and that is within the affected region
2170          * [y..x].
2171          */
2172         TAILQ_INIT(delta);
2173         TAILQ_INSERT_TAIL(delta, x, v_link);
2174         v = x;
2175         n = 1;
2176         gen = g->g_gen;
2177         while (v) {
2178                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2179                         if (e->e_from->v_order > y->v_order
2180                             && e->e_from->v_gen != gen) {
2181                                 e->e_from->v_gen = gen;
2182                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2183                                 n++;
2184                         }
2185                 }
2186                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2187         }
2188
2189         return (n);
2190 }
2191
2192 static int
2193 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2194 {
2195         struct owner_vertex *v;
2196         int i, j;
2197
2198         TAILQ_FOREACH(v, set, v_link) {
2199                 for (i = n;
2200                      i > 0 && indices[i - 1] > v->v_order; i--)
2201                         ;
2202                 for (j = n - 1; j >= i; j--)
2203                         indices[j + 1] = indices[j];
2204                 indices[i] = v->v_order;
2205                 n++;
2206         }
2207
2208         return (n);
2209 }
2210
2211 static int
2212 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2213     struct owner_vertex_list *set)
2214 {
2215         struct owner_vertex *v, *vlowest;
2216
2217         while (!TAILQ_EMPTY(set)) {
2218                 vlowest = NULL;
2219                 TAILQ_FOREACH(v, set, v_link) {
2220                         if (!vlowest || v->v_order < vlowest->v_order)
2221                                 vlowest = v;
2222                 }
2223                 TAILQ_REMOVE(set, vlowest, v_link);
2224                 vlowest->v_order = indices[nextunused];
2225                 g->g_vertices[vlowest->v_order] = vlowest;
2226                 nextunused++;
2227         }
2228
2229         return (nextunused);
2230 }
2231
2232 static int
2233 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2234     struct owner_vertex *y)
2235 {
2236         struct owner_edge *e;
2237         struct owner_vertex_list deltaF, deltaB;
2238         int nF, n, vi, i;
2239         int *indices;
2240         int nB __unused;
2241
2242         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2243
2244         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2245                 if (e->e_to == y) {
2246                         e->e_refs++;
2247                         return (0);
2248                 }
2249         }
2250
2251 #ifdef LOCKF_DEBUG
2252         if (lockf_debug & 8) {
2253                 printf("adding edge %d:", x->v_order);
2254                 lf_print_owner(x->v_owner);
2255                 printf(" -> %d:", y->v_order);
2256                 lf_print_owner(y->v_owner);
2257                 printf("\n");
2258         }
2259 #endif
2260         if (y->v_order < x->v_order) {
2261                 /*
2262                  * The new edge violates the order. First find the set
2263                  * of affected vertices reachable from y (deltaF) and
2264                  * the set of affect vertices affected that reach x
2265                  * (deltaB), using the graph generation number to
2266                  * detect whether we have visited a given vertex
2267                  * already. We re-order the graph so that each vertex
2268                  * in deltaB appears before each vertex in deltaF.
2269                  *
2270                  * If x is a member of deltaF, then the new edge would
2271                  * create a cycle. Otherwise, we may assume that
2272                  * deltaF and deltaB are disjoint.
2273                  */
2274                 g->g_gen++;
2275                 if (g->g_gen == 0) {
2276                         /*
2277                          * Generation wrap.
2278                          */
2279                         for (vi = 0; vi < g->g_size; vi++) {
2280                                 g->g_vertices[vi]->v_gen = 0;
2281                         }
2282                         g->g_gen++;
2283                 }
2284                 nF = graph_delta_forward(g, x, y, &deltaF);
2285                 if (nF < 0) {
2286 #ifdef LOCKF_DEBUG
2287                         if (lockf_debug & 8) {
2288                                 struct owner_vertex_list path;
2289                                 printf("deadlock: ");
2290                                 TAILQ_INIT(&path);
2291                                 graph_reaches(y, x, &path);
2292                                 graph_print_vertices(&path);
2293                         }
2294 #endif
2295                         return (EDEADLK);
2296                 }
2297
2298 #ifdef LOCKF_DEBUG
2299                 if (lockf_debug & 8) {
2300                         printf("re-ordering graph vertices\n");
2301                         printf("deltaF = ");
2302                         graph_print_vertices(&deltaF);
2303                 }
2304 #endif
2305
2306                 nB = graph_delta_backward(g, x, y, &deltaB);
2307
2308 #ifdef LOCKF_DEBUG
2309                 if (lockf_debug & 8) {
2310                         printf("deltaB = ");
2311                         graph_print_vertices(&deltaB);
2312                 }
2313 #endif
2314
2315                 /*
2316                  * We first build a set of vertex indices (vertex
2317                  * order values) that we may use, then we re-assign
2318                  * orders first to those vertices in deltaB, then to
2319                  * deltaF. Note that the contents of deltaF and deltaB
2320                  * may be partially disordered - we perform an
2321                  * insertion sort while building our index set.
2322                  */
2323                 indices = g->g_indexbuf;
2324                 n = graph_add_indices(indices, 0, &deltaF);
2325                 graph_add_indices(indices, n, &deltaB);
2326
2327                 /*
2328                  * We must also be sure to maintain the relative
2329                  * ordering of deltaF and deltaB when re-assigning
2330                  * vertices. We do this by iteratively removing the
2331                  * lowest ordered element from the set and assigning
2332                  * it the next value from our new ordering.
2333                  */
2334                 i = graph_assign_indices(g, indices, 0, &deltaB);
2335                 graph_assign_indices(g, indices, i, &deltaF);
2336
2337 #ifdef LOCKF_DEBUG
2338                 if (lockf_debug & 8) {
2339                         struct owner_vertex_list set;
2340                         TAILQ_INIT(&set);
2341                         for (i = 0; i < nB + nF; i++)
2342                                 TAILQ_INSERT_TAIL(&set,
2343                                     g->g_vertices[indices[i]], v_link);
2344                         printf("new ordering = ");
2345                         graph_print_vertices(&set);
2346                 }
2347 #endif
2348         }
2349
2350         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2351
2352 #ifdef LOCKF_DEBUG
2353         if (lockf_debug & 8) {
2354                 graph_check(g, TRUE);
2355         }
2356 #endif
2357
2358         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2359
2360         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2361         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2362         e->e_refs = 1;
2363         e->e_from = x;
2364         e->e_to = y;
2365
2366         return (0);
2367 }
2368
2369 /*
2370  * Remove an edge x->y from the graph.
2371  */
2372 static void
2373 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2374     struct owner_vertex *y)
2375 {
2376         struct owner_edge *e;
2377
2378         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2379
2380         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2381                 if (e->e_to == y)
2382                         break;
2383         }
2384         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2385
2386         e->e_refs--;
2387         if (e->e_refs == 0) {
2388 #ifdef LOCKF_DEBUG
2389                 if (lockf_debug & 8) {
2390                         printf("removing edge %d:", x->v_order);
2391                         lf_print_owner(x->v_owner);
2392                         printf(" -> %d:", y->v_order);
2393                         lf_print_owner(y->v_owner);
2394                         printf("\n");
2395                 }
2396 #endif
2397                 LIST_REMOVE(e, e_outlink);
2398                 LIST_REMOVE(e, e_inlink);
2399                 free(e, M_LOCKF);
2400         }
2401 }
2402
2403 /*
2404  * Allocate a vertex from the free list. Return ENOMEM if there are
2405  * none.
2406  */
2407 static struct owner_vertex *
2408 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2409 {
2410         struct owner_vertex *v;
2411
2412         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2413
2414         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2415         if (g->g_size == g->g_space) {
2416                 g->g_vertices = realloc(g->g_vertices,
2417                     2 * g->g_space * sizeof(struct owner_vertex *),
2418                     M_LOCKF, M_WAITOK);
2419                 free(g->g_indexbuf, M_LOCKF);
2420                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2421                     M_LOCKF, M_WAITOK);
2422                 g->g_space = 2 * g->g_space;
2423         }
2424         v->v_order = g->g_size;
2425         v->v_gen = g->g_gen;
2426         g->g_vertices[g->g_size] = v;
2427         g->g_size++;
2428
2429         LIST_INIT(&v->v_outedges);
2430         LIST_INIT(&v->v_inedges);
2431         v->v_owner = lo;
2432
2433         return (v);
2434 }
2435
2436 static void
2437 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2438 {
2439         struct owner_vertex *w;
2440         int i;
2441
2442         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2443         
2444         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2445         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2446
2447         /*
2448          * Remove from the graph's array and close up the gap,
2449          * renumbering the other vertices.
2450          */
2451         for (i = v->v_order + 1; i < g->g_size; i++) {
2452                 w = g->g_vertices[i];
2453                 w->v_order--;
2454                 g->g_vertices[i - 1] = w;
2455         }
2456         g->g_size--;
2457
2458         free(v, M_LOCKF);
2459 }
2460
2461 static struct owner_graph *
2462 graph_init(struct owner_graph *g)
2463 {
2464
2465         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2466             M_LOCKF, M_WAITOK);
2467         g->g_size = 0;
2468         g->g_space = 10;
2469         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2470         g->g_gen = 0;
2471
2472         return (g);
2473 }
2474
2475 #ifdef LOCKF_DEBUG
2476 /*
2477  * Print description of a lock owner
2478  */
2479 static void
2480 lf_print_owner(struct lock_owner *lo)
2481 {
2482
2483         if (lo->lo_flags & F_REMOTE) {
2484                 printf("remote pid %d, system %d",
2485                     lo->lo_pid, lo->lo_sysid);
2486         } else if (lo->lo_flags & F_FLOCK) {
2487                 printf("file %p", lo->lo_id);
2488         } else {
2489                 printf("local pid %d", lo->lo_pid);
2490         }
2491 }
2492
2493 /*
2494  * Print out a lock.
2495  */
2496 static void
2497 lf_print(char *tag, struct lockf_entry *lock)
2498 {
2499
2500         printf("%s: lock %p for ", tag, (void *)lock);
2501         lf_print_owner(lock->lf_owner);
2502         if (lock->lf_inode != (struct inode *)0)
2503                 printf(" in ino %ju on dev <%s>,",
2504                     (uintmax_t)lock->lf_inode->i_number,
2505                     devtoname(ITODEV(lock->lf_inode)));
2506         printf(" %s, start %jd, end ",
2507             lock->lf_type == F_RDLCK ? "shared" :
2508             lock->lf_type == F_WRLCK ? "exclusive" :
2509             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2510             (intmax_t)lock->lf_start);
2511         if (lock->lf_end == OFF_MAX)
2512                 printf("EOF");
2513         else
2514                 printf("%jd", (intmax_t)lock->lf_end);
2515         if (!LIST_EMPTY(&lock->lf_outedges))
2516                 printf(" block %p\n",
2517                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2518         else
2519                 printf("\n");
2520 }
2521
2522 static void
2523 lf_printlist(char *tag, struct lockf_entry *lock)
2524 {
2525         struct lockf_entry *lf, *blk;
2526         struct lockf_edge *e;
2527
2528         if (lock->lf_inode == (struct inode *)0)
2529                 return;
2530
2531         printf("%s: Lock list for ino %ju on dev <%s>:\n",
2532             tag, (uintmax_t)lock->lf_inode->i_number,
2533             devtoname(ITODEV(lock->lf_inode)));
2534         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2535                 printf("\tlock %p for ",(void *)lf);
2536                 lf_print_owner(lock->lf_owner);
2537                 printf(", %s, start %jd, end %jd",
2538                     lf->lf_type == F_RDLCK ? "shared" :
2539                     lf->lf_type == F_WRLCK ? "exclusive" :
2540                     lf->lf_type == F_UNLCK ? "unlock" :
2541                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2542                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2543                         blk = e->le_to;
2544                         printf("\n\t\tlock request %p for ", (void *)blk);
2545                         lf_print_owner(blk->lf_owner);
2546                         printf(", %s, start %jd, end %jd",
2547                             blk->lf_type == F_RDLCK ? "shared" :
2548                             blk->lf_type == F_WRLCK ? "exclusive" :
2549                             blk->lf_type == F_UNLCK ? "unlock" :
2550                             "unknown", (intmax_t)blk->lf_start,
2551                             (intmax_t)blk->lf_end);
2552                         if (!LIST_EMPTY(&blk->lf_inedges))
2553                                 panic("lf_printlist: bad list");
2554                 }
2555                 printf("\n");
2556         }
2557 }
2558 #endif /* LOCKF_DEBUG */