]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_lockf.c
ident(1): Normalizing date format
[FreeBSD/FreeBSD.git] / sys / kern / kern_lockf.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *      The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
61  */
62
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65
66 #include "opt_debug_lockf.h"
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/kernel.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sx.h>
78 #include <sys/unistd.h>
79 #include <sys/vnode.h>
80 #include <sys/malloc.h>
81 #include <sys/fcntl.h>
82 #include <sys/lockf.h>
83 #include <sys/taskqueue.h>
84
85 #ifdef LOCKF_DEBUG
86 #include <sys/sysctl.h>
87
88 #include <ufs/ufs/extattr.h>
89 #include <ufs/ufs/quota.h>
90 #include <ufs/ufs/ufsmount.h>
91 #include <ufs/ufs/inode.h>
92
93 static int      lockf_debug = 0; /* control debug output */
94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
95 #endif
96
97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
98
99 struct owner_edge;
100 struct owner_vertex;
101 struct owner_vertex_list;
102 struct owner_graph;
103
104 #define NOLOCKF (struct lockf_entry *)0
105 #define SELF    0x1
106 #define OTHERS  0x2
107 static void      lf_init(void *);
108 static int       lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
109 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
110     int);
111 static struct lockf_entry *
112                  lf_alloc_lock(struct lock_owner *);
113 static int       lf_free_lock(struct lockf_entry *);
114 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
115 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
116 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
117 static void      lf_free_edge(struct lockf_edge *);
118 static struct lockf_edge *
119                  lf_alloc_edge(void);
120 static void      lf_alloc_vertex(struct lockf_entry *);
121 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
122 static void      lf_remove_edge(struct lockf_edge *);
123 static void      lf_remove_outgoing(struct lockf_entry *);
124 static void      lf_remove_incoming(struct lockf_entry *);
125 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
126 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
127 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
128     int);
129 static struct lockf_entry *
130                  lf_getblock(struct lockf *, struct lockf_entry *);
131 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
132 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
133 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
134 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
135     int all, struct lockf_entry_list *);
136 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
137         struct lockf_entry_list*);
138 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
139         struct lockf_entry_list*);
140 static int       lf_setlock(struct lockf *, struct lockf_entry *,
141     struct vnode *, void **cookiep);
142 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
143 static void      lf_split(struct lockf *, struct lockf_entry *,
144     struct lockf_entry *, struct lockf_entry_list *);
145 #ifdef LOCKF_DEBUG
146 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
147     struct owner_vertex_list *path);
148 static void      graph_check(struct owner_graph *g, int checkorder);
149 static void      graph_print_vertices(struct owner_vertex_list *set);
150 #endif
151 static int       graph_delta_forward(struct owner_graph *g,
152     struct owner_vertex *x, struct owner_vertex *y,
153     struct owner_vertex_list *delta);
154 static int       graph_delta_backward(struct owner_graph *g,
155     struct owner_vertex *x, struct owner_vertex *y,
156     struct owner_vertex_list *delta);
157 static int       graph_add_indices(int *indices, int n,
158     struct owner_vertex_list *set);
159 static int       graph_assign_indices(struct owner_graph *g, int *indices,
160     int nextunused, struct owner_vertex_list *set);
161 static int       graph_add_edge(struct owner_graph *g,
162     struct owner_vertex *x, struct owner_vertex *y);
163 static void      graph_remove_edge(struct owner_graph *g,
164     struct owner_vertex *x, struct owner_vertex *y);
165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
166     struct lock_owner *lo);
167 static void      graph_free_vertex(struct owner_graph *g,
168     struct owner_vertex *v);
169 static struct owner_graph * graph_init(struct owner_graph *g);
170 #ifdef LOCKF_DEBUG
171 static void      lf_print(char *, struct lockf_entry *);
172 static void      lf_printlist(char *, struct lockf_entry *);
173 static void      lf_print_owner(struct lock_owner *);
174 #endif
175
176 /*
177  * This structure is used to keep track of both local and remote lock
178  * owners. The lf_owner field of the struct lockf_entry points back at
179  * the lock owner structure. Each possible lock owner (local proc for
180  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
181  * pair for remote locks) is represented by a unique instance of
182  * struct lock_owner.
183  *
184  * If a lock owner has a lock that blocks some other lock or a lock
185  * that is waiting for some other lock, it also has a vertex in the
186  * owner_graph below.
187  *
188  * Locks:
189  * (s)          locked by state->ls_lock
190  * (S)          locked by lf_lock_states_lock
191  * (g)          locked by lf_owner_graph_lock
192  * (c)          const until freeing
193  */
194 #define LOCK_OWNER_HASH_SIZE    256
195
196 struct lock_owner {
197         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
198         int     lo_refs;            /* (l) Number of locks referring to this */
199         int     lo_flags;           /* (c) Flags passwd to lf_advlock */
200         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
201         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
202         int     lo_sysid;           /* (c) System Id of the lock owner */
203         int     lo_hash;            /* (c) Used to lock the appropriate chain */
204         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
205 };
206
207 LIST_HEAD(lock_owner_list, lock_owner);
208
209 struct lock_owner_chain {
210         struct sx               lock;
211         struct lock_owner_list  list;
212 };
213
214 static struct sx                lf_lock_states_lock;
215 static struct lockf_list        lf_lock_states; /* (S) */
216 static struct lock_owner_chain  lf_lock_owners[LOCK_OWNER_HASH_SIZE];
217
218 /*
219  * Structures for deadlock detection.
220  *
221  * We have two types of directed graph, the first is the set of locks,
222  * both active and pending on a vnode. Within this graph, active locks
223  * are terminal nodes in the graph (i.e. have no out-going
224  * edges). Pending locks have out-going edges to each blocking active
225  * lock that prevents the lock from being granted and also to each
226  * older pending lock that would block them if it was active. The
227  * graph for each vnode is naturally acyclic; new edges are only ever
228  * added to or from new nodes (either new pending locks which only add
229  * out-going edges or new active locks which only add in-coming edges)
230  * therefore they cannot create loops in the lock graph.
231  *
232  * The second graph is a global graph of lock owners. Each lock owner
233  * is a vertex in that graph and an edge is added to the graph
234  * whenever an edge is added to a vnode graph, with end points
235  * corresponding to owner of the new pending lock and the owner of the
236  * lock upon which it waits. In order to prevent deadlock, we only add
237  * an edge to this graph if the new edge would not create a cycle.
238  * 
239  * The lock owner graph is topologically sorted, i.e. if a node has
240  * any outgoing edges, then it has an order strictly less than any
241  * node to which it has an outgoing edge. We preserve this ordering
242  * (and detect cycles) on edge insertion using Algorithm PK from the
243  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
244  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
245  * No. 1.7)
246  */
247 struct owner_vertex;
248
249 struct owner_edge {
250         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
251         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
252         int             e_refs;           /* (g) number of times added */
253         struct owner_vertex *e_from;      /* (c) out-going from here */
254         struct owner_vertex *e_to;        /* (c) in-coming to here */
255 };
256 LIST_HEAD(owner_edge_list, owner_edge);
257
258 struct owner_vertex {
259         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
260         uint32_t        v_gen;            /* (g) workspace for edge insertion */
261         int             v_order;          /* (g) order of vertex in graph */
262         struct owner_edge_list v_outedges;/* (g) list of out-edges */
263         struct owner_edge_list v_inedges; /* (g) list of in-edges */
264         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
265 };
266 TAILQ_HEAD(owner_vertex_list, owner_vertex);
267
268 struct owner_graph {
269         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
270         int             g_size;           /* (g) number of vertices */
271         int             g_space;          /* (g) space allocated for vertices */
272         int             *g_indexbuf;      /* (g) workspace for loop detection */
273         uint32_t        g_gen;            /* (g) increment when re-ordering */
274 };
275
276 static struct sx                lf_owner_graph_lock;
277 static struct owner_graph       lf_owner_graph;
278
279 /*
280  * Initialise various structures and locks.
281  */
282 static void
283 lf_init(void *dummy)
284 {
285         int i;
286
287         sx_init(&lf_lock_states_lock, "lock states lock");
288         LIST_INIT(&lf_lock_states);
289
290         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
291                 sx_init(&lf_lock_owners[i].lock, "lock owners lock");
292                 LIST_INIT(&lf_lock_owners[i].list);
293         }
294
295         sx_init(&lf_owner_graph_lock, "owner graph lock");
296         graph_init(&lf_owner_graph);
297 }
298 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
299
300 /*
301  * Generate a hash value for a lock owner.
302  */
303 static int
304 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
305 {
306         uint32_t h;
307
308         if (flags & F_REMOTE) {
309                 h = HASHSTEP(0, fl->l_pid);
310                 h = HASHSTEP(h, fl->l_sysid);
311         } else if (flags & F_FLOCK) {
312                 h = ((uintptr_t) id) >> 7;
313         } else {
314                 h = ((uintptr_t) vp) >> 7;
315         }
316
317         return (h % LOCK_OWNER_HASH_SIZE);
318 }
319
320 /*
321  * Return true if a lock owner matches the details passed to
322  * lf_advlock.
323  */
324 static int
325 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
326     int flags)
327 {
328         if (flags & F_REMOTE) {
329                 return lo->lo_pid == fl->l_pid
330                         && lo->lo_sysid == fl->l_sysid;
331         } else {
332                 return lo->lo_id == id;
333         }
334 }
335
336 static struct lockf_entry *
337 lf_alloc_lock(struct lock_owner *lo)
338 {
339         struct lockf_entry *lf;
340
341         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
342
343 #ifdef LOCKF_DEBUG
344         if (lockf_debug & 4)
345                 printf("Allocated lock %p\n", lf);
346 #endif
347         if (lo) {
348                 sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
349                 lo->lo_refs++;
350                 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
351                 lf->lf_owner = lo;
352         }
353
354         return (lf);
355 }
356
357 static int
358 lf_free_lock(struct lockf_entry *lock)
359 {
360         struct sx *chainlock;
361
362         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
363         if (--lock->lf_refs > 0)
364                 return (0);
365         /*
366          * Adjust the lock_owner reference count and
367          * reclaim the entry if this is the last lock
368          * for that owner.
369          */
370         struct lock_owner *lo = lock->lf_owner;
371         if (lo) {
372                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
373                     ("freeing lock with dependencies"));
374                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
375                     ("freeing lock with dependants"));
376                 chainlock = &lf_lock_owners[lo->lo_hash].lock;
377                 sx_xlock(chainlock);
378                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
379                 lo->lo_refs--;
380                 if (lo->lo_refs == 0) {
381 #ifdef LOCKF_DEBUG
382                         if (lockf_debug & 1)
383                                 printf("lf_free_lock: freeing lock owner %p\n",
384                                     lo);
385 #endif
386                         if (lo->lo_vertex) {
387                                 sx_xlock(&lf_owner_graph_lock);
388                                 graph_free_vertex(&lf_owner_graph,
389                                     lo->lo_vertex);
390                                 sx_xunlock(&lf_owner_graph_lock);
391                         }
392                         LIST_REMOVE(lo, lo_link);
393                         free(lo, M_LOCKF);
394 #ifdef LOCKF_DEBUG
395                         if (lockf_debug & 4)
396                                 printf("Freed lock owner %p\n", lo);
397 #endif
398                 }
399                 sx_unlock(chainlock);
400         }
401         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
402                 vrele(lock->lf_vnode);
403                 lock->lf_vnode = NULL;
404         }
405 #ifdef LOCKF_DEBUG
406         if (lockf_debug & 4)
407                 printf("Freed lock %p\n", lock);
408 #endif
409         free(lock, M_LOCKF);
410         return (1);
411 }
412
413 /*
414  * Advisory record locking support
415  */
416 int
417 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
418     u_quad_t size)
419 {
420         struct lockf *state;
421         struct flock *fl = ap->a_fl;
422         struct lockf_entry *lock;
423         struct vnode *vp = ap->a_vp;
424         caddr_t id = ap->a_id;
425         int flags = ap->a_flags;
426         int hash;
427         struct lock_owner *lo;
428         off_t start, end, oadd;
429         int error;
430
431         /*
432          * Handle the F_UNLKSYS case first - no need to mess about
433          * creating a lock owner for this one.
434          */
435         if (ap->a_op == F_UNLCKSYS) {
436                 lf_clearremotesys(fl->l_sysid);
437                 return (0);
438         }
439
440         /*
441          * Convert the flock structure into a start and end.
442          */
443         switch (fl->l_whence) {
444         case SEEK_SET:
445         case SEEK_CUR:
446                 /*
447                  * Caller is responsible for adding any necessary offset
448                  * when SEEK_CUR is used.
449                  */
450                 start = fl->l_start;
451                 break;
452
453         case SEEK_END:
454                 if (size > OFF_MAX ||
455                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
456                         return (EOVERFLOW);
457                 start = size + fl->l_start;
458                 break;
459
460         default:
461                 return (EINVAL);
462         }
463         if (start < 0)
464                 return (EINVAL);
465         if (fl->l_len < 0) {
466                 if (start == 0)
467                         return (EINVAL);
468                 end = start - 1;
469                 start += fl->l_len;
470                 if (start < 0)
471                         return (EINVAL);
472         } else if (fl->l_len == 0) {
473                 end = OFF_MAX;
474         } else {
475                 oadd = fl->l_len - 1;
476                 if (oadd > OFF_MAX - start)
477                         return (EOVERFLOW);
478                 end = start + oadd;
479         }
480
481 retry_setlock:
482
483         /*
484          * Avoid the common case of unlocking when inode has no locks.
485          */
486         if (ap->a_op != F_SETLK && (*statep) == NULL) {
487                 VI_LOCK(vp);
488                 if ((*statep) == NULL) {
489                         fl->l_type = F_UNLCK;
490                         VI_UNLOCK(vp);
491                         return (0);
492                 }
493                 VI_UNLOCK(vp);
494         }
495
496         /*
497          * Map our arguments to an existing lock owner or create one
498          * if this is the first time we have seen this owner.
499          */
500         hash = lf_hash_owner(id, vp, fl, flags);
501         sx_xlock(&lf_lock_owners[hash].lock);
502         LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
503                 if (lf_owner_matches(lo, id, fl, flags))
504                         break;
505         if (!lo) {
506                 /*
507                  * We initialise the lock with a reference
508                  * count which matches the new lockf_entry
509                  * structure created below.
510                  */
511                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
512                     M_WAITOK|M_ZERO);
513 #ifdef LOCKF_DEBUG
514                 if (lockf_debug & 4)
515                         printf("Allocated lock owner %p\n", lo);
516 #endif
517
518                 lo->lo_refs = 1;
519                 lo->lo_flags = flags;
520                 lo->lo_id = id;
521                 lo->lo_hash = hash;
522                 if (flags & F_REMOTE) {
523                         lo->lo_pid = fl->l_pid;
524                         lo->lo_sysid = fl->l_sysid;
525                 } else if (flags & F_FLOCK) {
526                         lo->lo_pid = -1;
527                         lo->lo_sysid = 0;
528                 } else {
529                         struct proc *p = (struct proc *) id;
530                         lo->lo_pid = p->p_pid;
531                         lo->lo_sysid = 0;
532                 }
533                 lo->lo_vertex = NULL;
534
535 #ifdef LOCKF_DEBUG
536                 if (lockf_debug & 1) {
537                         printf("lf_advlockasync: new lock owner %p ", lo);
538                         lf_print_owner(lo);
539                         printf("\n");
540                 }
541 #endif
542
543                 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
544         } else {
545                 /*
546                  * We have seen this lock owner before, increase its
547                  * reference count to account for the new lockf_entry
548                  * structure we create below.
549                  */
550                 lo->lo_refs++;
551         }
552         sx_xunlock(&lf_lock_owners[hash].lock);
553
554         /*
555          * Create the lockf structure. We initialise the lf_owner
556          * field here instead of in lf_alloc_lock() to avoid paying
557          * the lf_lock_owners_lock tax twice.
558          */
559         lock = lf_alloc_lock(NULL);
560         lock->lf_refs = 1;
561         lock->lf_start = start;
562         lock->lf_end = end;
563         lock->lf_owner = lo;
564         lock->lf_vnode = vp;
565         if (flags & F_REMOTE) {
566                 /*
567                  * For remote locks, the caller may release its ref to
568                  * the vnode at any time - we have to ref it here to
569                  * prevent it from being recycled unexpectedly.
570                  */
571                 vref(vp);
572         }
573
574         /*
575          * XXX The problem is that VTOI is ufs specific, so it will
576          * break LOCKF_DEBUG for all other FS's other than UFS because
577          * it casts the vnode->data ptr to struct inode *.
578          */
579 /*      lock->lf_inode = VTOI(ap->a_vp); */
580         lock->lf_inode = (struct inode *)0;
581         lock->lf_type = fl->l_type;
582         LIST_INIT(&lock->lf_outedges);
583         LIST_INIT(&lock->lf_inedges);
584         lock->lf_async_task = ap->a_task;
585         lock->lf_flags = ap->a_flags;
586
587         /*
588          * Do the requested operation. First find our state structure
589          * and create a new one if necessary - the caller's *statep
590          * variable and the state's ls_threads count is protected by
591          * the vnode interlock.
592          */
593         VI_LOCK(vp);
594         if (VN_IS_DOOMED(vp)) {
595                 VI_UNLOCK(vp);
596                 lf_free_lock(lock);
597                 return (ENOENT);
598         }
599
600         /*
601          * Allocate a state structure if necessary.
602          */
603         state = *statep;
604         if (state == NULL) {
605                 struct lockf *ls;
606
607                 VI_UNLOCK(vp);
608
609                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
610                 sx_init(&ls->ls_lock, "ls_lock");
611                 LIST_INIT(&ls->ls_active);
612                 LIST_INIT(&ls->ls_pending);
613                 ls->ls_threads = 1;
614
615                 sx_xlock(&lf_lock_states_lock);
616                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
617                 sx_xunlock(&lf_lock_states_lock);
618
619                 /*
620                  * Cope if we lost a race with some other thread while
621                  * trying to allocate memory.
622                  */
623                 VI_LOCK(vp);
624                 if (VN_IS_DOOMED(vp)) {
625                         VI_UNLOCK(vp);
626                         sx_xlock(&lf_lock_states_lock);
627                         LIST_REMOVE(ls, ls_link);
628                         sx_xunlock(&lf_lock_states_lock);
629                         sx_destroy(&ls->ls_lock);
630                         free(ls, M_LOCKF);
631                         lf_free_lock(lock);
632                         return (ENOENT);
633                 }
634                 if ((*statep) == NULL) {
635                         state = *statep = ls;
636                         VI_UNLOCK(vp);
637                 } else {
638                         state = *statep;
639                         MPASS(state->ls_threads >= 0);
640                         state->ls_threads++;
641                         VI_UNLOCK(vp);
642
643                         sx_xlock(&lf_lock_states_lock);
644                         LIST_REMOVE(ls, ls_link);
645                         sx_xunlock(&lf_lock_states_lock);
646                         sx_destroy(&ls->ls_lock);
647                         free(ls, M_LOCKF);
648                 }
649         } else {
650                 MPASS(state->ls_threads >= 0);
651                 state->ls_threads++;
652                 VI_UNLOCK(vp);
653         }
654
655         sx_xlock(&state->ls_lock);
656         /*
657          * Recheck the doomed vnode after state->ls_lock is
658          * locked. lf_purgelocks() requires that no new threads add
659          * pending locks when vnode is marked by VIRF_DOOMED flag.
660          */
661         if (VN_IS_DOOMED(vp)) {
662                 VI_LOCK(vp);
663                 MPASS(state->ls_threads > 0);
664                 state->ls_threads--;
665                 wakeup(state);
666                 VI_UNLOCK(vp);
667                 sx_xunlock(&state->ls_lock);
668                 lf_free_lock(lock);
669                 return (ENOENT);
670         }
671
672         switch (ap->a_op) {
673         case F_SETLK:
674                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
675                 break;
676
677         case F_UNLCK:
678                 error = lf_clearlock(state, lock);
679                 lf_free_lock(lock);
680                 break;
681
682         case F_GETLK:
683                 error = lf_getlock(state, lock, fl);
684                 lf_free_lock(lock);
685                 break;
686
687         case F_CANCEL:
688                 if (ap->a_cookiep)
689                         error = lf_cancel(state, lock, *ap->a_cookiep);
690                 else
691                         error = EINVAL;
692                 lf_free_lock(lock);
693                 break;
694
695         default:
696                 lf_free_lock(lock);
697                 error = EINVAL;
698                 break;
699         }
700
701 #ifdef DIAGNOSTIC
702         /*
703          * Check for some can't happen stuff. In this case, the active
704          * lock list becoming disordered or containing mutually
705          * blocking locks. We also check the pending list for locks
706          * which should be active (i.e. have no out-going edges).
707          */
708         LIST_FOREACH(lock, &state->ls_active, lf_link) {
709                 struct lockf_entry *lf;
710                 if (LIST_NEXT(lock, lf_link))
711                         KASSERT((lock->lf_start
712                                 <= LIST_NEXT(lock, lf_link)->lf_start),
713                             ("locks disordered"));
714                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
715                         if (lock == lf)
716                                 break;
717                         KASSERT(!lf_blocks(lock, lf),
718                             ("two conflicting active locks"));
719                         if (lock->lf_owner == lf->lf_owner)
720                                 KASSERT(!lf_overlaps(lock, lf),
721                                     ("two overlapping locks from same owner"));
722                 }
723         }
724         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
725                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
726                     ("pending lock which should be active"));
727         }
728 #endif
729         sx_xunlock(&state->ls_lock);
730
731         VI_LOCK(vp);
732         MPASS(state->ls_threads > 0);
733         state->ls_threads--;
734         if (state->ls_threads != 0) {
735                 wakeup(state);
736         }
737         VI_UNLOCK(vp);
738
739         if (error == EDOOFUS) {
740                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
741                 goto retry_setlock;
742         }
743         return (error);
744 }
745
746 int
747 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
748 {
749         struct vop_advlockasync_args a;
750
751         a.a_vp = ap->a_vp;
752         a.a_id = ap->a_id;
753         a.a_op = ap->a_op;
754         a.a_fl = ap->a_fl;
755         a.a_flags = ap->a_flags;
756         a.a_task = NULL;
757         a.a_cookiep = NULL;
758
759         return (lf_advlockasync(&a, statep, size));
760 }
761
762 void
763 lf_purgelocks(struct vnode *vp, struct lockf **statep)
764 {
765         struct lockf *state;
766         struct lockf_entry *lock, *nlock;
767
768         /*
769          * For this to work correctly, the caller must ensure that no
770          * other threads enter the locking system for this vnode,
771          * e.g. by checking VIRF_DOOMED. We wake up any threads that are
772          * sleeping waiting for locks on this vnode and then free all
773          * the remaining locks.
774          */
775         VI_LOCK(vp);
776         KASSERT(VN_IS_DOOMED(vp),
777             ("lf_purgelocks: vp %p has not vgone yet", vp));
778         state = *statep;
779         if (state == NULL) {
780                 VI_UNLOCK(vp);
781                 return;
782         }
783         *statep = NULL;
784         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
785                 KASSERT(LIST_EMPTY(&state->ls_pending),
786                     ("freeing state with pending locks"));
787                 VI_UNLOCK(vp);
788                 goto out_free;
789         }
790         MPASS(state->ls_threads >= 0);
791         state->ls_threads++;
792         VI_UNLOCK(vp);
793
794         sx_xlock(&state->ls_lock);
795         sx_xlock(&lf_owner_graph_lock);
796         LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
797                 LIST_REMOVE(lock, lf_link);
798                 lf_remove_outgoing(lock);
799                 lf_remove_incoming(lock);
800
801                 /*
802                  * If its an async lock, we can just free it
803                  * here, otherwise we let the sleeping thread
804                  * free it.
805                  */
806                 if (lock->lf_async_task) {
807                         lf_free_lock(lock);
808                 } else {
809                         lock->lf_flags |= F_INTR;
810                         wakeup(lock);
811                 }
812         }
813         sx_xunlock(&lf_owner_graph_lock);
814         sx_xunlock(&state->ls_lock);
815
816         /*
817          * Wait for all other threads, sleeping and otherwise
818          * to leave.
819          */
820         VI_LOCK(vp);
821         while (state->ls_threads > 1)
822                 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
823         VI_UNLOCK(vp);
824
825         /*
826          * We can just free all the active locks since they
827          * will have no dependencies (we removed them all
828          * above). We don't need to bother locking since we
829          * are the last thread using this state structure.
830          */
831         KASSERT(LIST_EMPTY(&state->ls_pending),
832             ("lock pending for %p", state));
833         LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
834                 LIST_REMOVE(lock, lf_link);
835                 lf_free_lock(lock);
836         }
837 out_free:
838         sx_xlock(&lf_lock_states_lock);
839         LIST_REMOVE(state, ls_link);
840         sx_xunlock(&lf_lock_states_lock);
841         sx_destroy(&state->ls_lock);
842         free(state, M_LOCKF);
843 }
844
845 /*
846  * Return non-zero if locks 'x' and 'y' overlap.
847  */
848 static int
849 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
850 {
851
852         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
853 }
854
855 /*
856  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
857  */
858 static int
859 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
860 {
861
862         return x->lf_owner != y->lf_owner
863                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
864                 && lf_overlaps(x, y);
865 }
866
867 /*
868  * Allocate a lock edge from the free list
869  */
870 static struct lockf_edge *
871 lf_alloc_edge(void)
872 {
873
874         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
875 }
876
877 /*
878  * Free a lock edge.
879  */
880 static void
881 lf_free_edge(struct lockf_edge *e)
882 {
883
884         free(e, M_LOCKF);
885 }
886
887 /*
888  * Ensure that the lock's owner has a corresponding vertex in the
889  * owner graph.
890  */
891 static void
892 lf_alloc_vertex(struct lockf_entry *lock)
893 {
894         struct owner_graph *g = &lf_owner_graph;
895
896         if (!lock->lf_owner->lo_vertex)
897                 lock->lf_owner->lo_vertex =
898                         graph_alloc_vertex(g, lock->lf_owner);
899 }
900
901 /*
902  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
903  * the new edge would cause a cycle in the owner graph.
904  */
905 static int
906 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
907 {
908         struct owner_graph *g = &lf_owner_graph;
909         struct lockf_edge *e;
910         int error;
911
912 #ifdef DIAGNOSTIC
913         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
914                 KASSERT(e->le_to != y, ("adding lock edge twice"));
915 #endif
916
917         /*
918          * Make sure the two owners have entries in the owner graph.
919          */
920         lf_alloc_vertex(x);
921         lf_alloc_vertex(y);
922
923         error = graph_add_edge(g, x->lf_owner->lo_vertex,
924             y->lf_owner->lo_vertex);
925         if (error)
926                 return (error);
927
928         e = lf_alloc_edge();
929         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
930         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
931         e->le_from = x;
932         e->le_to = y;
933
934         return (0);
935 }
936
937 /*
938  * Remove an edge from the lock graph.
939  */
940 static void
941 lf_remove_edge(struct lockf_edge *e)
942 {
943         struct owner_graph *g = &lf_owner_graph;
944         struct lockf_entry *x = e->le_from;
945         struct lockf_entry *y = e->le_to;
946
947         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
948         LIST_REMOVE(e, le_outlink);
949         LIST_REMOVE(e, le_inlink);
950         e->le_from = NULL;
951         e->le_to = NULL;
952         lf_free_edge(e);
953 }
954
955 /*
956  * Remove all out-going edges from lock x.
957  */
958 static void
959 lf_remove_outgoing(struct lockf_entry *x)
960 {
961         struct lockf_edge *e;
962
963         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
964                 lf_remove_edge(e);
965         }
966 }
967
968 /*
969  * Remove all in-coming edges from lock x.
970  */
971 static void
972 lf_remove_incoming(struct lockf_entry *x)
973 {
974         struct lockf_edge *e;
975
976         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
977                 lf_remove_edge(e);
978         }
979 }
980
981 /*
982  * Walk the list of locks for the file and create an out-going edge
983  * from lock to each blocking lock.
984  */
985 static int
986 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
987 {
988         struct lockf_entry *overlap;
989         int error;
990
991         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
992                 /*
993                  * We may assume that the active list is sorted by
994                  * lf_start.
995                  */
996                 if (overlap->lf_start > lock->lf_end)
997                         break;
998                 if (!lf_blocks(lock, overlap))
999                         continue;
1000
1001                 /*
1002                  * We've found a blocking lock. Add the corresponding
1003                  * edge to the graphs and see if it would cause a
1004                  * deadlock.
1005                  */
1006                 error = lf_add_edge(lock, overlap);
1007
1008                 /*
1009                  * The only error that lf_add_edge returns is EDEADLK.
1010                  * Remove any edges we added and return the error.
1011                  */
1012                 if (error) {
1013                         lf_remove_outgoing(lock);
1014                         return (error);
1015                 }
1016         }
1017
1018         /*
1019          * We also need to add edges to sleeping locks that block
1020          * us. This ensures that lf_wakeup_lock cannot grant two
1021          * mutually blocking locks simultaneously and also enforces a
1022          * 'first come, first served' fairness model. Note that this
1023          * only happens if we are blocked by at least one active lock
1024          * due to the call to lf_getblock in lf_setlock below.
1025          */
1026         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1027                 if (!lf_blocks(lock, overlap))
1028                         continue;
1029                 /*
1030                  * We've found a blocking lock. Add the corresponding
1031                  * edge to the graphs and see if it would cause a
1032                  * deadlock.
1033                  */
1034                 error = lf_add_edge(lock, overlap);
1035
1036                 /*
1037                  * The only error that lf_add_edge returns is EDEADLK.
1038                  * Remove any edges we added and return the error.
1039                  */
1040                 if (error) {
1041                         lf_remove_outgoing(lock);
1042                         return (error);
1043                 }
1044         }
1045
1046         return (0);
1047 }
1048
1049 /*
1050  * Walk the list of pending locks for the file and create an in-coming
1051  * edge from lock to each blocking lock.
1052  */
1053 static int
1054 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1055 {
1056         struct lockf_entry *overlap;
1057         int error;
1058
1059         sx_assert(&state->ls_lock, SX_XLOCKED);
1060         if (LIST_EMPTY(&state->ls_pending))
1061                 return (0);
1062
1063         error = 0;
1064         sx_xlock(&lf_owner_graph_lock);
1065         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1066                 if (!lf_blocks(lock, overlap))
1067                         continue;
1068
1069                 /*
1070                  * We've found a blocking lock. Add the corresponding
1071                  * edge to the graphs and see if it would cause a
1072                  * deadlock.
1073                  */
1074                 error = lf_add_edge(overlap, lock);
1075
1076                 /*
1077                  * The only error that lf_add_edge returns is EDEADLK.
1078                  * Remove any edges we added and return the error.
1079                  */
1080                 if (error) {
1081                         lf_remove_incoming(lock);
1082                         break;
1083                 }
1084         }
1085         sx_xunlock(&lf_owner_graph_lock);
1086         return (error);
1087 }
1088
1089 /*
1090  * Insert lock into the active list, keeping list entries ordered by
1091  * increasing values of lf_start.
1092  */
1093 static void
1094 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1095 {
1096         struct lockf_entry *lf, *lfprev;
1097
1098         if (LIST_EMPTY(&state->ls_active)) {
1099                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1100                 return;
1101         }
1102
1103         lfprev = NULL;
1104         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1105                 if (lf->lf_start > lock->lf_start) {
1106                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1107                         return;
1108                 }
1109                 lfprev = lf;
1110         }
1111         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1112 }
1113
1114 /*
1115  * Wake up a sleeping lock and remove it from the pending list now
1116  * that all its dependencies have been resolved. The caller should
1117  * arrange for the lock to be added to the active list, adjusting any
1118  * existing locks for the same owner as needed.
1119  */
1120 static void
1121 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1122 {
1123
1124         /*
1125          * Remove from ls_pending list and wake up the caller
1126          * or start the async notification, as appropriate.
1127          */
1128         LIST_REMOVE(wakelock, lf_link);
1129 #ifdef LOCKF_DEBUG
1130         if (lockf_debug & 1)
1131                 lf_print("lf_wakeup_lock: awakening", wakelock);
1132 #endif /* LOCKF_DEBUG */
1133         if (wakelock->lf_async_task) {
1134                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1135         } else {
1136                 wakeup(wakelock);
1137         }
1138 }
1139
1140 /*
1141  * Re-check all dependent locks and remove edges to locks that we no
1142  * longer block. If 'all' is non-zero, the lock has been removed and
1143  * we must remove all the dependencies, otherwise it has simply been
1144  * reduced but remains active. Any pending locks which have been been
1145  * unblocked are added to 'granted'
1146  */
1147 static void
1148 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1149         struct lockf_entry_list *granted)
1150 {
1151         struct lockf_edge *e, *ne;
1152         struct lockf_entry *deplock;
1153
1154         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1155                 deplock = e->le_from;
1156                 if (all || !lf_blocks(lock, deplock)) {
1157                         sx_xlock(&lf_owner_graph_lock);
1158                         lf_remove_edge(e);
1159                         sx_xunlock(&lf_owner_graph_lock);
1160                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1161                                 lf_wakeup_lock(state, deplock);
1162                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1163                         }
1164                 }
1165         }
1166 }
1167
1168 /*
1169  * Set the start of an existing active lock, updating dependencies and
1170  * adding any newly woken locks to 'granted'.
1171  */
1172 static void
1173 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1174         struct lockf_entry_list *granted)
1175 {
1176
1177         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1178         lock->lf_start = new_start;
1179         LIST_REMOVE(lock, lf_link);
1180         lf_insert_lock(state, lock);
1181         lf_update_dependancies(state, lock, FALSE, granted);
1182 }
1183
1184 /*
1185  * Set the end of an existing active lock, updating dependencies and
1186  * adding any newly woken locks to 'granted'.
1187  */
1188 static void
1189 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1190         struct lockf_entry_list *granted)
1191 {
1192
1193         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1194         lock->lf_end = new_end;
1195         lf_update_dependancies(state, lock, FALSE, granted);
1196 }
1197
1198 /*
1199  * Add a lock to the active list, updating or removing any current
1200  * locks owned by the same owner and processing any pending locks that
1201  * become unblocked as a result. This code is also used for unlock
1202  * since the logic for updating existing locks is identical.
1203  *
1204  * As a result of processing the new lock, we may unblock existing
1205  * pending locks as a result of downgrading/unlocking. We simply
1206  * activate the newly granted locks by looping.
1207  *
1208  * Since the new lock already has its dependencies set up, we always
1209  * add it to the list (unless its an unlock request). This may
1210  * fragment the lock list in some pathological cases but its probably
1211  * not a real problem.
1212  */
1213 static void
1214 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1215 {
1216         struct lockf_entry *overlap, *lf;
1217         struct lockf_entry_list granted;
1218         int ovcase;
1219
1220         LIST_INIT(&granted);
1221         LIST_INSERT_HEAD(&granted, lock, lf_link);
1222
1223         while (!LIST_EMPTY(&granted)) {
1224                 lock = LIST_FIRST(&granted);
1225                 LIST_REMOVE(lock, lf_link);
1226
1227                 /*
1228                  * Skip over locks owned by other processes.  Handle
1229                  * any locks that overlap and are owned by ourselves.
1230                  */
1231                 overlap = LIST_FIRST(&state->ls_active);
1232                 for (;;) {
1233                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1234
1235 #ifdef LOCKF_DEBUG
1236                         if (ovcase && (lockf_debug & 2)) {
1237                                 printf("lf_setlock: overlap %d", ovcase);
1238                                 lf_print("", overlap);
1239                         }
1240 #endif
1241                         /*
1242                          * Six cases:
1243                          *      0) no overlap
1244                          *      1) overlap == lock
1245                          *      2) overlap contains lock
1246                          *      3) lock contains overlap
1247                          *      4) overlap starts before lock
1248                          *      5) overlap ends after lock
1249                          */
1250                         switch (ovcase) {
1251                         case 0: /* no overlap */
1252                                 break;
1253
1254                         case 1: /* overlap == lock */
1255                                 /*
1256                                  * We have already setup the
1257                                  * dependants for the new lock, taking
1258                                  * into account a possible downgrade
1259                                  * or unlock. Remove the old lock.
1260                                  */
1261                                 LIST_REMOVE(overlap, lf_link);
1262                                 lf_update_dependancies(state, overlap, TRUE,
1263                                         &granted);
1264                                 lf_free_lock(overlap);
1265                                 break;
1266
1267                         case 2: /* overlap contains lock */
1268                                 /*
1269                                  * Just split the existing lock.
1270                                  */
1271                                 lf_split(state, overlap, lock, &granted);
1272                                 break;
1273
1274                         case 3: /* lock contains overlap */
1275                                 /*
1276                                  * Delete the overlap and advance to
1277                                  * the next entry in the list.
1278                                  */
1279                                 lf = LIST_NEXT(overlap, lf_link);
1280                                 LIST_REMOVE(overlap, lf_link);
1281                                 lf_update_dependancies(state, overlap, TRUE,
1282                                         &granted);
1283                                 lf_free_lock(overlap);
1284                                 overlap = lf;
1285                                 continue;
1286
1287                         case 4: /* overlap starts before lock */
1288                                 /*
1289                                  * Just update the overlap end and
1290                                  * move on.
1291                                  */
1292                                 lf_set_end(state, overlap, lock->lf_start - 1,
1293                                     &granted);
1294                                 overlap = LIST_NEXT(overlap, lf_link);
1295                                 continue;
1296
1297                         case 5: /* overlap ends after lock */
1298                                 /*
1299                                  * Change the start of overlap and
1300                                  * re-insert.
1301                                  */
1302                                 lf_set_start(state, overlap, lock->lf_end + 1,
1303                                     &granted);
1304                                 break;
1305                         }
1306                         break;
1307                 }
1308 #ifdef LOCKF_DEBUG
1309                 if (lockf_debug & 1) {
1310                         if (lock->lf_type != F_UNLCK)
1311                                 lf_print("lf_activate_lock: activated", lock);
1312                         else
1313                                 lf_print("lf_activate_lock: unlocked", lock);
1314                         lf_printlist("lf_activate_lock", lock);
1315                 }
1316 #endif /* LOCKF_DEBUG */
1317                 if (lock->lf_type != F_UNLCK)
1318                         lf_insert_lock(state, lock);
1319         }
1320 }
1321
1322 /*
1323  * Cancel a pending lock request, either as a result of a signal or a
1324  * cancel request for an async lock.
1325  */
1326 static void
1327 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1328 {
1329         struct lockf_entry_list granted;
1330
1331         /*
1332          * Note it is theoretically possible that cancelling this lock
1333          * may allow some other pending lock to become
1334          * active. Consider this case:
1335          *
1336          * Owner        Action          Result          Dependencies
1337          * 
1338          * A:           lock [0..0]     succeeds        
1339          * B:           lock [2..2]     succeeds        
1340          * C:           lock [1..2]     blocked         C->B
1341          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1342          * A:           unlock [0..0]                   C->B,D->C
1343          * C:           cancel [1..2]   
1344          */
1345
1346         LIST_REMOVE(lock, lf_link);
1347
1348         /*
1349          * Removing out-going edges is simple.
1350          */
1351         sx_xlock(&lf_owner_graph_lock);
1352         lf_remove_outgoing(lock);
1353         sx_xunlock(&lf_owner_graph_lock);
1354
1355         /*
1356          * Removing in-coming edges may allow some other lock to
1357          * become active - we use lf_update_dependancies to figure
1358          * this out.
1359          */
1360         LIST_INIT(&granted);
1361         lf_update_dependancies(state, lock, TRUE, &granted);
1362         lf_free_lock(lock);
1363
1364         /*
1365          * Feed any newly active locks to lf_activate_lock.
1366          */
1367         while (!LIST_EMPTY(&granted)) {
1368                 lock = LIST_FIRST(&granted);
1369                 LIST_REMOVE(lock, lf_link);
1370                 lf_activate_lock(state, lock);
1371         }
1372 }
1373
1374 /*
1375  * Set a byte-range lock.
1376  */
1377 static int
1378 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1379     void **cookiep)
1380 {
1381         static char lockstr[] = "lockf";
1382         int error, priority, stops_deferred;
1383
1384 #ifdef LOCKF_DEBUG
1385         if (lockf_debug & 1)
1386                 lf_print("lf_setlock", lock);
1387 #endif /* LOCKF_DEBUG */
1388
1389         /*
1390          * Set the priority
1391          */
1392         priority = PLOCK;
1393         if (lock->lf_type == F_WRLCK)
1394                 priority += 4;
1395         if (!(lock->lf_flags & F_NOINTR))
1396                 priority |= PCATCH;
1397         /*
1398          * Scan lock list for this file looking for locks that would block us.
1399          */
1400         if (lf_getblock(state, lock)) {
1401                 /*
1402                  * Free the structure and return if nonblocking.
1403                  */
1404                 if ((lock->lf_flags & F_WAIT) == 0
1405                     && lock->lf_async_task == NULL) {
1406                         lf_free_lock(lock);
1407                         error = EAGAIN;
1408                         goto out;
1409                 }
1410
1411                 /*
1412                  * For flock type locks, we must first remove
1413                  * any shared locks that we hold before we sleep
1414                  * waiting for an exclusive lock.
1415                  */
1416                 if ((lock->lf_flags & F_FLOCK) &&
1417                     lock->lf_type == F_WRLCK) {
1418                         lock->lf_type = F_UNLCK;
1419                         lf_activate_lock(state, lock);
1420                         lock->lf_type = F_WRLCK;
1421                 }
1422
1423                 /*
1424                  * We are blocked. Create edges to each blocking lock,
1425                  * checking for deadlock using the owner graph. For
1426                  * simplicity, we run deadlock detection for all
1427                  * locks, posix and otherwise.
1428                  */
1429                 sx_xlock(&lf_owner_graph_lock);
1430                 error = lf_add_outgoing(state, lock);
1431                 sx_xunlock(&lf_owner_graph_lock);
1432
1433                 if (error) {
1434 #ifdef LOCKF_DEBUG
1435                         if (lockf_debug & 1)
1436                                 lf_print("lf_setlock: deadlock", lock);
1437 #endif
1438                         lf_free_lock(lock);
1439                         goto out;
1440                 }
1441
1442                 /*
1443                  * We have added edges to everything that blocks
1444                  * us. Sleep until they all go away.
1445                  */
1446                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1447 #ifdef LOCKF_DEBUG
1448                 if (lockf_debug & 1) {
1449                         struct lockf_edge *e;
1450                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1451                                 lf_print("lf_setlock: blocking on", e->le_to);
1452                                 lf_printlist("lf_setlock", e->le_to);
1453                         }
1454                 }
1455 #endif /* LOCKF_DEBUG */
1456
1457                 if ((lock->lf_flags & F_WAIT) == 0) {
1458                         /*
1459                          * The caller requested async notification -
1460                          * this callback happens when the blocking
1461                          * lock is released, allowing the caller to
1462                          * make another attempt to take the lock.
1463                          */
1464                         *cookiep = (void *) lock;
1465                         error = EINPROGRESS;
1466                         goto out;
1467                 }
1468
1469                 lock->lf_refs++;
1470                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1471                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1472                 sigallowstop(stops_deferred);
1473                 if (lf_free_lock(lock)) {
1474                         error = EDOOFUS;
1475                         goto out;
1476                 }
1477
1478                 /*
1479                  * We may have been awakened by a signal and/or by a
1480                  * debugger continuing us (in which cases we must
1481                  * remove our lock graph edges) and/or by another
1482                  * process releasing a lock (in which case our edges
1483                  * have already been removed and we have been moved to
1484                  * the active list). We may also have been woken by
1485                  * lf_purgelocks which we report to the caller as
1486                  * EINTR. In that case, lf_purgelocks will have
1487                  * removed our lock graph edges.
1488                  *
1489                  * Note that it is possible to receive a signal after
1490                  * we were successfully woken (and moved to the active
1491                  * list) but before we resumed execution. In this
1492                  * case, our lf_outedges list will be clear. We
1493                  * pretend there was no error.
1494                  *
1495                  * Note also, if we have been sleeping long enough, we
1496                  * may now have incoming edges from some newer lock
1497                  * which is waiting behind us in the queue.
1498                  */
1499                 if (lock->lf_flags & F_INTR) {
1500                         error = EINTR;
1501                         lf_free_lock(lock);
1502                         goto out;
1503                 }
1504                 if (LIST_EMPTY(&lock->lf_outedges)) {
1505                         error = 0;
1506                 } else {
1507                         lf_cancel_lock(state, lock);
1508                         goto out;
1509                 }
1510 #ifdef LOCKF_DEBUG
1511                 if (lockf_debug & 1) {
1512                         lf_print("lf_setlock: granted", lock);
1513                 }
1514 #endif
1515                 goto out;
1516         }
1517         /*
1518          * It looks like we are going to grant the lock. First add
1519          * edges from any currently pending lock that the new lock
1520          * would block.
1521          */
1522         error = lf_add_incoming(state, lock);
1523         if (error) {
1524 #ifdef LOCKF_DEBUG
1525                 if (lockf_debug & 1)
1526                         lf_print("lf_setlock: deadlock", lock);
1527 #endif
1528                 lf_free_lock(lock);
1529                 goto out;
1530         }
1531
1532         /*
1533          * No blocks!!  Add the lock.  Note that we will
1534          * downgrade or upgrade any overlapping locks this
1535          * process already owns.
1536          */
1537         lf_activate_lock(state, lock);
1538         error = 0;
1539 out:
1540         return (error);
1541 }
1542
1543 /*
1544  * Remove a byte-range lock on an inode.
1545  *
1546  * Generally, find the lock (or an overlap to that lock)
1547  * and remove it (or shrink it), then wakeup anyone we can.
1548  */
1549 static int
1550 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1551 {
1552         struct lockf_entry *overlap;
1553
1554         overlap = LIST_FIRST(&state->ls_active);
1555
1556         if (overlap == NOLOCKF)
1557                 return (0);
1558 #ifdef LOCKF_DEBUG
1559         if (unlock->lf_type != F_UNLCK)
1560                 panic("lf_clearlock: bad type");
1561         if (lockf_debug & 1)
1562                 lf_print("lf_clearlock", unlock);
1563 #endif /* LOCKF_DEBUG */
1564
1565         lf_activate_lock(state, unlock);
1566
1567         return (0);
1568 }
1569
1570 /*
1571  * Check whether there is a blocking lock, and if so return its
1572  * details in '*fl'.
1573  */
1574 static int
1575 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1576 {
1577         struct lockf_entry *block;
1578
1579 #ifdef LOCKF_DEBUG
1580         if (lockf_debug & 1)
1581                 lf_print("lf_getlock", lock);
1582 #endif /* LOCKF_DEBUG */
1583
1584         if ((block = lf_getblock(state, lock))) {
1585                 fl->l_type = block->lf_type;
1586                 fl->l_whence = SEEK_SET;
1587                 fl->l_start = block->lf_start;
1588                 if (block->lf_end == OFF_MAX)
1589                         fl->l_len = 0;
1590                 else
1591                         fl->l_len = block->lf_end - block->lf_start + 1;
1592                 fl->l_pid = block->lf_owner->lo_pid;
1593                 fl->l_sysid = block->lf_owner->lo_sysid;
1594         } else {
1595                 fl->l_type = F_UNLCK;
1596         }
1597         return (0);
1598 }
1599
1600 /*
1601  * Cancel an async lock request.
1602  */
1603 static int
1604 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1605 {
1606         struct lockf_entry *reallock;
1607
1608         /*
1609          * We need to match this request with an existing lock
1610          * request.
1611          */
1612         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1613                 if ((void *) reallock == cookie) {
1614                         /*
1615                          * Double-check that this lock looks right
1616                          * (maybe use a rolling ID for the cancel
1617                          * cookie instead?)
1618                          */
1619                         if (!(reallock->lf_vnode == lock->lf_vnode
1620                                 && reallock->lf_start == lock->lf_start
1621                                 && reallock->lf_end == lock->lf_end)) {
1622                                 return (ENOENT);
1623                         }
1624
1625                         /*
1626                          * Make sure this lock was async and then just
1627                          * remove it from its wait lists.
1628                          */
1629                         if (!reallock->lf_async_task) {
1630                                 return (ENOENT);
1631                         }
1632
1633                         /*
1634                          * Note that since any other thread must take
1635                          * state->ls_lock before it can possibly
1636                          * trigger the async callback, we are safe
1637                          * from a race with lf_wakeup_lock, i.e. we
1638                          * can free the lock (actually our caller does
1639                          * this).
1640                          */
1641                         lf_cancel_lock(state, reallock);
1642                         return (0);
1643                 }
1644         }
1645
1646         /*
1647          * We didn't find a matching lock - not much we can do here.
1648          */
1649         return (ENOENT);
1650 }
1651
1652 /*
1653  * Walk the list of locks for an inode and
1654  * return the first blocking lock.
1655  */
1656 static struct lockf_entry *
1657 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1658 {
1659         struct lockf_entry *overlap;
1660
1661         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1662                 /*
1663                  * We may assume that the active list is sorted by
1664                  * lf_start.
1665                  */
1666                 if (overlap->lf_start > lock->lf_end)
1667                         break;
1668                 if (!lf_blocks(lock, overlap))
1669                         continue;
1670                 return (overlap);
1671         }
1672         return (NOLOCKF);
1673 }
1674
1675 /*
1676  * Walk the list of locks for an inode to find an overlapping lock (if
1677  * any) and return a classification of that overlap.
1678  *
1679  * Arguments:
1680  *      *overlap        The place in the lock list to start looking
1681  *      lock            The lock which is being tested
1682  *      type            Pass 'SELF' to test only locks with the same
1683  *                      owner as lock, or 'OTHER' to test only locks
1684  *                      with a different owner
1685  *
1686  * Returns one of six values:
1687  *      0) no overlap
1688  *      1) overlap == lock
1689  *      2) overlap contains lock
1690  *      3) lock contains overlap
1691  *      4) overlap starts before lock
1692  *      5) overlap ends after lock
1693  *
1694  * If there is an overlapping lock, '*overlap' is set to point at the
1695  * overlapping lock.
1696  *
1697  * NOTE: this returns only the FIRST overlapping lock.  There
1698  *       may be more than one.
1699  */
1700 static int
1701 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1702 {
1703         struct lockf_entry *lf;
1704         off_t start, end;
1705         int res;
1706
1707         if ((*overlap) == NOLOCKF) {
1708                 return (0);
1709         }
1710 #ifdef LOCKF_DEBUG
1711         if (lockf_debug & 2)
1712                 lf_print("lf_findoverlap: looking for overlap in", lock);
1713 #endif /* LOCKF_DEBUG */
1714         start = lock->lf_start;
1715         end = lock->lf_end;
1716         res = 0;
1717         while (*overlap) {
1718                 lf = *overlap;
1719                 if (lf->lf_start > end)
1720                         break;
1721                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1722                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1723                         *overlap = LIST_NEXT(lf, lf_link);
1724                         continue;
1725                 }
1726 #ifdef LOCKF_DEBUG
1727                 if (lockf_debug & 2)
1728                         lf_print("\tchecking", lf);
1729 #endif /* LOCKF_DEBUG */
1730                 /*
1731                  * OK, check for overlap
1732                  *
1733                  * Six cases:
1734                  *      0) no overlap
1735                  *      1) overlap == lock
1736                  *      2) overlap contains lock
1737                  *      3) lock contains overlap
1738                  *      4) overlap starts before lock
1739                  *      5) overlap ends after lock
1740                  */
1741                 if (start > lf->lf_end) {
1742                         /* Case 0 */
1743 #ifdef LOCKF_DEBUG
1744                         if (lockf_debug & 2)
1745                                 printf("no overlap\n");
1746 #endif /* LOCKF_DEBUG */
1747                         *overlap = LIST_NEXT(lf, lf_link);
1748                         continue;
1749                 }
1750                 if (lf->lf_start == start && lf->lf_end == end) {
1751                         /* Case 1 */
1752 #ifdef LOCKF_DEBUG
1753                         if (lockf_debug & 2)
1754                                 printf("overlap == lock\n");
1755 #endif /* LOCKF_DEBUG */
1756                         res = 1;
1757                         break;
1758                 }
1759                 if (lf->lf_start <= start && lf->lf_end >= end) {
1760                         /* Case 2 */
1761 #ifdef LOCKF_DEBUG
1762                         if (lockf_debug & 2)
1763                                 printf("overlap contains lock\n");
1764 #endif /* LOCKF_DEBUG */
1765                         res = 2;
1766                         break;
1767                 }
1768                 if (start <= lf->lf_start && end >= lf->lf_end) {
1769                         /* Case 3 */
1770 #ifdef LOCKF_DEBUG
1771                         if (lockf_debug & 2)
1772                                 printf("lock contains overlap\n");
1773 #endif /* LOCKF_DEBUG */
1774                         res = 3;
1775                         break;
1776                 }
1777                 if (lf->lf_start < start && lf->lf_end >= start) {
1778                         /* Case 4 */
1779 #ifdef LOCKF_DEBUG
1780                         if (lockf_debug & 2)
1781                                 printf("overlap starts before lock\n");
1782 #endif /* LOCKF_DEBUG */
1783                         res = 4;
1784                         break;
1785                 }
1786                 if (lf->lf_start > start && lf->lf_end > end) {
1787                         /* Case 5 */
1788 #ifdef LOCKF_DEBUG
1789                         if (lockf_debug & 2)
1790                                 printf("overlap ends after lock\n");
1791 #endif /* LOCKF_DEBUG */
1792                         res = 5;
1793                         break;
1794                 }
1795                 panic("lf_findoverlap: default");
1796         }
1797         return (res);
1798 }
1799
1800 /*
1801  * Split an the existing 'lock1', based on the extent of the lock
1802  * described by 'lock2'. The existing lock should cover 'lock2'
1803  * entirely.
1804  *
1805  * Any pending locks which have been been unblocked are added to
1806  * 'granted'
1807  */
1808 static void
1809 lf_split(struct lockf *state, struct lockf_entry *lock1,
1810     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1811 {
1812         struct lockf_entry *splitlock;
1813
1814 #ifdef LOCKF_DEBUG
1815         if (lockf_debug & 2) {
1816                 lf_print("lf_split", lock1);
1817                 lf_print("splitting from", lock2);
1818         }
1819 #endif /* LOCKF_DEBUG */
1820         /*
1821          * Check to see if we don't need to split at all.
1822          */
1823         if (lock1->lf_start == lock2->lf_start) {
1824                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1825                 return;
1826         }
1827         if (lock1->lf_end == lock2->lf_end) {
1828                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1829                 return;
1830         }
1831         /*
1832          * Make a new lock consisting of the last part of
1833          * the encompassing lock.
1834          */
1835         splitlock = lf_alloc_lock(lock1->lf_owner);
1836         memcpy(splitlock, lock1, sizeof *splitlock);
1837         splitlock->lf_refs = 1;
1838         if (splitlock->lf_flags & F_REMOTE)
1839                 vref(splitlock->lf_vnode);
1840
1841         /*
1842          * This cannot cause a deadlock since any edges we would add
1843          * to splitlock already exist in lock1. We must be sure to add
1844          * necessary dependencies to splitlock before we reduce lock1
1845          * otherwise we may accidentally grant a pending lock that
1846          * was blocked by the tail end of lock1.
1847          */
1848         splitlock->lf_start = lock2->lf_end + 1;
1849         LIST_INIT(&splitlock->lf_outedges);
1850         LIST_INIT(&splitlock->lf_inedges);
1851         lf_add_incoming(state, splitlock);
1852
1853         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1854
1855         /*
1856          * OK, now link it in
1857          */
1858         lf_insert_lock(state, splitlock);
1859 }
1860
1861 struct lockdesc {
1862         STAILQ_ENTRY(lockdesc) link;
1863         struct vnode *vp;
1864         struct flock fl;
1865 };
1866 STAILQ_HEAD(lockdesclist, lockdesc);
1867
1868 int
1869 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1870 {
1871         struct lockf *ls;
1872         struct lockf_entry *lf;
1873         struct lockdesc *ldesc;
1874         struct lockdesclist locks;
1875         int error;
1876
1877         /*
1878          * In order to keep the locking simple, we iterate over the
1879          * active lock lists to build a list of locks that need
1880          * releasing. We then call the iterator for each one in turn.
1881          *
1882          * We take an extra reference to the vnode for the duration to
1883          * make sure it doesn't go away before we are finished.
1884          */
1885         STAILQ_INIT(&locks);
1886         sx_xlock(&lf_lock_states_lock);
1887         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1888                 sx_xlock(&ls->ls_lock);
1889                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1890                         if (lf->lf_owner->lo_sysid != sysid)
1891                                 continue;
1892
1893                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1894                             M_WAITOK);
1895                         ldesc->vp = lf->lf_vnode;
1896                         vref(ldesc->vp);
1897                         ldesc->fl.l_start = lf->lf_start;
1898                         if (lf->lf_end == OFF_MAX)
1899                                 ldesc->fl.l_len = 0;
1900                         else
1901                                 ldesc->fl.l_len =
1902                                         lf->lf_end - lf->lf_start + 1;
1903                         ldesc->fl.l_whence = SEEK_SET;
1904                         ldesc->fl.l_type = F_UNLCK;
1905                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1906                         ldesc->fl.l_sysid = sysid;
1907                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1908                 }
1909                 sx_xunlock(&ls->ls_lock);
1910         }
1911         sx_xunlock(&lf_lock_states_lock);
1912
1913         /*
1914          * Call the iterator function for each lock in turn. If the
1915          * iterator returns an error code, just free the rest of the
1916          * lockdesc structures.
1917          */
1918         error = 0;
1919         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1920                 STAILQ_REMOVE_HEAD(&locks, link);
1921                 if (!error)
1922                         error = fn(ldesc->vp, &ldesc->fl, arg);
1923                 vrele(ldesc->vp);
1924                 free(ldesc, M_LOCKF);
1925         }
1926
1927         return (error);
1928 }
1929
1930 int
1931 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1932 {
1933         struct lockf *ls;
1934         struct lockf_entry *lf;
1935         struct lockdesc *ldesc;
1936         struct lockdesclist locks;
1937         int error;
1938
1939         /*
1940          * In order to keep the locking simple, we iterate over the
1941          * active lock lists to build a list of locks that need
1942          * releasing. We then call the iterator for each one in turn.
1943          *
1944          * We take an extra reference to the vnode for the duration to
1945          * make sure it doesn't go away before we are finished.
1946          */
1947         STAILQ_INIT(&locks);
1948         VI_LOCK(vp);
1949         ls = vp->v_lockf;
1950         if (!ls) {
1951                 VI_UNLOCK(vp);
1952                 return (0);
1953         }
1954         MPASS(ls->ls_threads >= 0);
1955         ls->ls_threads++;
1956         VI_UNLOCK(vp);
1957
1958         sx_xlock(&ls->ls_lock);
1959         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1960                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1961                     M_WAITOK);
1962                 ldesc->vp = lf->lf_vnode;
1963                 vref(ldesc->vp);
1964                 ldesc->fl.l_start = lf->lf_start;
1965                 if (lf->lf_end == OFF_MAX)
1966                         ldesc->fl.l_len = 0;
1967                 else
1968                         ldesc->fl.l_len =
1969                                 lf->lf_end - lf->lf_start + 1;
1970                 ldesc->fl.l_whence = SEEK_SET;
1971                 ldesc->fl.l_type = F_UNLCK;
1972                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1973                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1974                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1975         }
1976         sx_xunlock(&ls->ls_lock);
1977         VI_LOCK(vp);
1978         MPASS(ls->ls_threads > 0);
1979         ls->ls_threads--;
1980         wakeup(ls);
1981         VI_UNLOCK(vp);
1982
1983         /*
1984          * Call the iterator function for each lock in turn. If the
1985          * iterator returns an error code, just free the rest of the
1986          * lockdesc structures.
1987          */
1988         error = 0;
1989         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1990                 STAILQ_REMOVE_HEAD(&locks, link);
1991                 if (!error)
1992                         error = fn(ldesc->vp, &ldesc->fl, arg);
1993                 vrele(ldesc->vp);
1994                 free(ldesc, M_LOCKF);
1995         }
1996
1997         return (error);
1998 }
1999
2000 static int
2001 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2002 {
2003
2004         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2005         return (0);
2006 }
2007
2008 void
2009 lf_clearremotesys(int sysid)
2010 {
2011
2012         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2013         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2014 }
2015
2016 int
2017 lf_countlocks(int sysid)
2018 {
2019         int i;
2020         struct lock_owner *lo;
2021         int count;
2022
2023         count = 0;
2024         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2025                 sx_xlock(&lf_lock_owners[i].lock);
2026                 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2027                         if (lo->lo_sysid == sysid)
2028                                 count += lo->lo_refs;
2029                 sx_xunlock(&lf_lock_owners[i].lock);
2030         }
2031
2032         return (count);
2033 }
2034
2035 #ifdef LOCKF_DEBUG
2036
2037 /*
2038  * Return non-zero if y is reachable from x using a brute force
2039  * search. If reachable and path is non-null, return the route taken
2040  * in path.
2041  */
2042 static int
2043 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2044     struct owner_vertex_list *path)
2045 {
2046         struct owner_edge *e;
2047
2048         if (x == y) {
2049                 if (path)
2050                         TAILQ_INSERT_HEAD(path, x, v_link);
2051                 return 1;
2052         }
2053
2054         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2055                 if (graph_reaches(e->e_to, y, path)) {
2056                         if (path)
2057                                 TAILQ_INSERT_HEAD(path, x, v_link);
2058                         return 1;
2059                 }
2060         }
2061         return 0;
2062 }
2063
2064 /*
2065  * Perform consistency checks on the graph. Make sure the values of
2066  * v_order are correct. If checkorder is non-zero, check no vertex can
2067  * reach any other vertex with a smaller order.
2068  */
2069 static void
2070 graph_check(struct owner_graph *g, int checkorder)
2071 {
2072         int i, j;
2073
2074         for (i = 0; i < g->g_size; i++) {
2075                 if (!g->g_vertices[i]->v_owner)
2076                         continue;
2077                 KASSERT(g->g_vertices[i]->v_order == i,
2078                     ("lock graph vertices disordered"));
2079                 if (checkorder) {
2080                         for (j = 0; j < i; j++) {
2081                                 if (!g->g_vertices[j]->v_owner)
2082                                         continue;
2083                                 KASSERT(!graph_reaches(g->g_vertices[i],
2084                                         g->g_vertices[j], NULL),
2085                                     ("lock graph vertices disordered"));
2086                         }
2087                 }
2088         }
2089 }
2090
2091 static void
2092 graph_print_vertices(struct owner_vertex_list *set)
2093 {
2094         struct owner_vertex *v;
2095
2096         printf("{ ");
2097         TAILQ_FOREACH(v, set, v_link) {
2098                 printf("%d:", v->v_order);
2099                 lf_print_owner(v->v_owner);
2100                 if (TAILQ_NEXT(v, v_link))
2101                         printf(", ");
2102         }
2103         printf(" }\n");
2104 }
2105
2106 #endif
2107
2108 /*
2109  * Calculate the sub-set of vertices v from the affected region [y..x]
2110  * where v is reachable from y. Return -1 if a loop was detected
2111  * (i.e. x is reachable from y, otherwise the number of vertices in
2112  * this subset.
2113  */
2114 static int
2115 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2116     struct owner_vertex *y, struct owner_vertex_list *delta)
2117 {
2118         uint32_t gen;
2119         struct owner_vertex *v;
2120         struct owner_edge *e;
2121         int n;
2122
2123         /*
2124          * We start with a set containing just y. Then for each vertex
2125          * v in the set so far unprocessed, we add each vertex that v
2126          * has an out-edge to and that is within the affected region
2127          * [y..x]. If we see the vertex x on our travels, stop
2128          * immediately.
2129          */
2130         TAILQ_INIT(delta);
2131         TAILQ_INSERT_TAIL(delta, y, v_link);
2132         v = y;
2133         n = 1;
2134         gen = g->g_gen;
2135         while (v) {
2136                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2137                         if (e->e_to == x)
2138                                 return -1;
2139                         if (e->e_to->v_order < x->v_order
2140                             && e->e_to->v_gen != gen) {
2141                                 e->e_to->v_gen = gen;
2142                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2143                                 n++;
2144                         }
2145                 }
2146                 v = TAILQ_NEXT(v, v_link);
2147         }
2148
2149         return (n);
2150 }
2151
2152 /*
2153  * Calculate the sub-set of vertices v from the affected region [y..x]
2154  * where v reaches x. Return the number of vertices in this subset.
2155  */
2156 static int
2157 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2158     struct owner_vertex *y, struct owner_vertex_list *delta)
2159 {
2160         uint32_t gen;
2161         struct owner_vertex *v;
2162         struct owner_edge *e;
2163         int n;
2164
2165         /*
2166          * We start with a set containing just x. Then for each vertex
2167          * v in the set so far unprocessed, we add each vertex that v
2168          * has an in-edge from and that is within the affected region
2169          * [y..x].
2170          */
2171         TAILQ_INIT(delta);
2172         TAILQ_INSERT_TAIL(delta, x, v_link);
2173         v = x;
2174         n = 1;
2175         gen = g->g_gen;
2176         while (v) {
2177                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2178                         if (e->e_from->v_order > y->v_order
2179                             && e->e_from->v_gen != gen) {
2180                                 e->e_from->v_gen = gen;
2181                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2182                                 n++;
2183                         }
2184                 }
2185                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2186         }
2187
2188         return (n);
2189 }
2190
2191 static int
2192 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2193 {
2194         struct owner_vertex *v;
2195         int i, j;
2196
2197         TAILQ_FOREACH(v, set, v_link) {
2198                 for (i = n;
2199                      i > 0 && indices[i - 1] > v->v_order; i--)
2200                         ;
2201                 for (j = n - 1; j >= i; j--)
2202                         indices[j + 1] = indices[j];
2203                 indices[i] = v->v_order;
2204                 n++;
2205         }
2206
2207         return (n);
2208 }
2209
2210 static int
2211 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2212     struct owner_vertex_list *set)
2213 {
2214         struct owner_vertex *v, *vlowest;
2215
2216         while (!TAILQ_EMPTY(set)) {
2217                 vlowest = NULL;
2218                 TAILQ_FOREACH(v, set, v_link) {
2219                         if (!vlowest || v->v_order < vlowest->v_order)
2220                                 vlowest = v;
2221                 }
2222                 TAILQ_REMOVE(set, vlowest, v_link);
2223                 vlowest->v_order = indices[nextunused];
2224                 g->g_vertices[vlowest->v_order] = vlowest;
2225                 nextunused++;
2226         }
2227
2228         return (nextunused);
2229 }
2230
2231 static int
2232 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2233     struct owner_vertex *y)
2234 {
2235         struct owner_edge *e;
2236         struct owner_vertex_list deltaF, deltaB;
2237         int nF, n, vi, i;
2238         int *indices;
2239         int nB __unused;
2240
2241         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2242
2243         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2244                 if (e->e_to == y) {
2245                         e->e_refs++;
2246                         return (0);
2247                 }
2248         }
2249
2250 #ifdef LOCKF_DEBUG
2251         if (lockf_debug & 8) {
2252                 printf("adding edge %d:", x->v_order);
2253                 lf_print_owner(x->v_owner);
2254                 printf(" -> %d:", y->v_order);
2255                 lf_print_owner(y->v_owner);
2256                 printf("\n");
2257         }
2258 #endif
2259         if (y->v_order < x->v_order) {
2260                 /*
2261                  * The new edge violates the order. First find the set
2262                  * of affected vertices reachable from y (deltaF) and
2263                  * the set of affect vertices affected that reach x
2264                  * (deltaB), using the graph generation number to
2265                  * detect whether we have visited a given vertex
2266                  * already. We re-order the graph so that each vertex
2267                  * in deltaB appears before each vertex in deltaF.
2268                  *
2269                  * If x is a member of deltaF, then the new edge would
2270                  * create a cycle. Otherwise, we may assume that
2271                  * deltaF and deltaB are disjoint.
2272                  */
2273                 g->g_gen++;
2274                 if (g->g_gen == 0) {
2275                         /*
2276                          * Generation wrap.
2277                          */
2278                         for (vi = 0; vi < g->g_size; vi++) {
2279                                 g->g_vertices[vi]->v_gen = 0;
2280                         }
2281                         g->g_gen++;
2282                 }
2283                 nF = graph_delta_forward(g, x, y, &deltaF);
2284                 if (nF < 0) {
2285 #ifdef LOCKF_DEBUG
2286                         if (lockf_debug & 8) {
2287                                 struct owner_vertex_list path;
2288                                 printf("deadlock: ");
2289                                 TAILQ_INIT(&path);
2290                                 graph_reaches(y, x, &path);
2291                                 graph_print_vertices(&path);
2292                         }
2293 #endif
2294                         return (EDEADLK);
2295                 }
2296
2297 #ifdef LOCKF_DEBUG
2298                 if (lockf_debug & 8) {
2299                         printf("re-ordering graph vertices\n");
2300                         printf("deltaF = ");
2301                         graph_print_vertices(&deltaF);
2302                 }
2303 #endif
2304
2305                 nB = graph_delta_backward(g, x, y, &deltaB);
2306
2307 #ifdef LOCKF_DEBUG
2308                 if (lockf_debug & 8) {
2309                         printf("deltaB = ");
2310                         graph_print_vertices(&deltaB);
2311                 }
2312 #endif
2313
2314                 /*
2315                  * We first build a set of vertex indices (vertex
2316                  * order values) that we may use, then we re-assign
2317                  * orders first to those vertices in deltaB, then to
2318                  * deltaF. Note that the contents of deltaF and deltaB
2319                  * may be partially disordered - we perform an
2320                  * insertion sort while building our index set.
2321                  */
2322                 indices = g->g_indexbuf;
2323                 n = graph_add_indices(indices, 0, &deltaF);
2324                 graph_add_indices(indices, n, &deltaB);
2325
2326                 /*
2327                  * We must also be sure to maintain the relative
2328                  * ordering of deltaF and deltaB when re-assigning
2329                  * vertices. We do this by iteratively removing the
2330                  * lowest ordered element from the set and assigning
2331                  * it the next value from our new ordering.
2332                  */
2333                 i = graph_assign_indices(g, indices, 0, &deltaB);
2334                 graph_assign_indices(g, indices, i, &deltaF);
2335
2336 #ifdef LOCKF_DEBUG
2337                 if (lockf_debug & 8) {
2338                         struct owner_vertex_list set;
2339                         TAILQ_INIT(&set);
2340                         for (i = 0; i < nB + nF; i++)
2341                                 TAILQ_INSERT_TAIL(&set,
2342                                     g->g_vertices[indices[i]], v_link);
2343                         printf("new ordering = ");
2344                         graph_print_vertices(&set);
2345                 }
2346 #endif
2347         }
2348
2349         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2350
2351 #ifdef LOCKF_DEBUG
2352         if (lockf_debug & 8) {
2353                 graph_check(g, TRUE);
2354         }
2355 #endif
2356
2357         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2358
2359         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2360         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2361         e->e_refs = 1;
2362         e->e_from = x;
2363         e->e_to = y;
2364
2365         return (0);
2366 }
2367
2368 /*
2369  * Remove an edge x->y from the graph.
2370  */
2371 static void
2372 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2373     struct owner_vertex *y)
2374 {
2375         struct owner_edge *e;
2376
2377         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2378
2379         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2380                 if (e->e_to == y)
2381                         break;
2382         }
2383         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2384
2385         e->e_refs--;
2386         if (e->e_refs == 0) {
2387 #ifdef LOCKF_DEBUG
2388                 if (lockf_debug & 8) {
2389                         printf("removing edge %d:", x->v_order);
2390                         lf_print_owner(x->v_owner);
2391                         printf(" -> %d:", y->v_order);
2392                         lf_print_owner(y->v_owner);
2393                         printf("\n");
2394                 }
2395 #endif
2396                 LIST_REMOVE(e, e_outlink);
2397                 LIST_REMOVE(e, e_inlink);
2398                 free(e, M_LOCKF);
2399         }
2400 }
2401
2402 /*
2403  * Allocate a vertex from the free list. Return ENOMEM if there are
2404  * none.
2405  */
2406 static struct owner_vertex *
2407 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2408 {
2409         struct owner_vertex *v;
2410
2411         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2412
2413         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2414         if (g->g_size == g->g_space) {
2415                 g->g_vertices = realloc(g->g_vertices,
2416                     2 * g->g_space * sizeof(struct owner_vertex *),
2417                     M_LOCKF, M_WAITOK);
2418                 free(g->g_indexbuf, M_LOCKF);
2419                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2420                     M_LOCKF, M_WAITOK);
2421                 g->g_space = 2 * g->g_space;
2422         }
2423         v->v_order = g->g_size;
2424         v->v_gen = g->g_gen;
2425         g->g_vertices[g->g_size] = v;
2426         g->g_size++;
2427
2428         LIST_INIT(&v->v_outedges);
2429         LIST_INIT(&v->v_inedges);
2430         v->v_owner = lo;
2431
2432         return (v);
2433 }
2434
2435 static void
2436 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2437 {
2438         struct owner_vertex *w;
2439         int i;
2440
2441         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2442
2443         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2444         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2445
2446         /*
2447          * Remove from the graph's array and close up the gap,
2448          * renumbering the other vertices.
2449          */
2450         for (i = v->v_order + 1; i < g->g_size; i++) {
2451                 w = g->g_vertices[i];
2452                 w->v_order--;
2453                 g->g_vertices[i - 1] = w;
2454         }
2455         g->g_size--;
2456
2457         free(v, M_LOCKF);
2458 }
2459
2460 static struct owner_graph *
2461 graph_init(struct owner_graph *g)
2462 {
2463
2464         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2465             M_LOCKF, M_WAITOK);
2466         g->g_size = 0;
2467         g->g_space = 10;
2468         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2469         g->g_gen = 0;
2470
2471         return (g);
2472 }
2473
2474 #ifdef LOCKF_DEBUG
2475 /*
2476  * Print description of a lock owner
2477  */
2478 static void
2479 lf_print_owner(struct lock_owner *lo)
2480 {
2481
2482         if (lo->lo_flags & F_REMOTE) {
2483                 printf("remote pid %d, system %d",
2484                     lo->lo_pid, lo->lo_sysid);
2485         } else if (lo->lo_flags & F_FLOCK) {
2486                 printf("file %p", lo->lo_id);
2487         } else {
2488                 printf("local pid %d", lo->lo_pid);
2489         }
2490 }
2491
2492 /*
2493  * Print out a lock.
2494  */
2495 static void
2496 lf_print(char *tag, struct lockf_entry *lock)
2497 {
2498
2499         printf("%s: lock %p for ", tag, (void *)lock);
2500         lf_print_owner(lock->lf_owner);
2501         if (lock->lf_inode != (struct inode *)0)
2502                 printf(" in ino %ju on dev <%s>,",
2503                     (uintmax_t)lock->lf_inode->i_number,
2504                     devtoname(ITODEV(lock->lf_inode)));
2505         printf(" %s, start %jd, end ",
2506             lock->lf_type == F_RDLCK ? "shared" :
2507             lock->lf_type == F_WRLCK ? "exclusive" :
2508             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2509             (intmax_t)lock->lf_start);
2510         if (lock->lf_end == OFF_MAX)
2511                 printf("EOF");
2512         else
2513                 printf("%jd", (intmax_t)lock->lf_end);
2514         if (!LIST_EMPTY(&lock->lf_outedges))
2515                 printf(" block %p\n",
2516                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2517         else
2518                 printf("\n");
2519 }
2520
2521 static void
2522 lf_printlist(char *tag, struct lockf_entry *lock)
2523 {
2524         struct lockf_entry *lf, *blk;
2525         struct lockf_edge *e;
2526
2527         if (lock->lf_inode == (struct inode *)0)
2528                 return;
2529
2530         printf("%s: Lock list for ino %ju on dev <%s>:\n",
2531             tag, (uintmax_t)lock->lf_inode->i_number,
2532             devtoname(ITODEV(lock->lf_inode)));
2533         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2534                 printf("\tlock %p for ",(void *)lf);
2535                 lf_print_owner(lock->lf_owner);
2536                 printf(", %s, start %jd, end %jd",
2537                     lf->lf_type == F_RDLCK ? "shared" :
2538                     lf->lf_type == F_WRLCK ? "exclusive" :
2539                     lf->lf_type == F_UNLCK ? "unlock" :
2540                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2541                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2542                         blk = e->le_to;
2543                         printf("\n\t\tlock request %p for ", (void *)blk);
2544                         lf_print_owner(blk->lf_owner);
2545                         printf(", %s, start %jd, end %jd",
2546                             blk->lf_type == F_RDLCK ? "shared" :
2547                             blk->lf_type == F_WRLCK ? "exclusive" :
2548                             blk->lf_type == F_UNLCK ? "unlock" :
2549                             "unknown", (intmax_t)blk->lf_start,
2550                             (intmax_t)blk->lf_end);
2551                         if (!LIST_EMPTY(&blk->lf_inedges))
2552                                 panic("lf_printlist: bad list");
2553                 }
2554                 printf("\n");
2555         }
2556 }
2557 #endif /* LOCKF_DEBUG */