]> CyberLeo.Net >> Repos - FreeBSD/releng/10.1.git/blob - sys/kern/kern_lockf.c
Document r273098, options for displaying mkimg(1) internals
[FreeBSD/releng/10.1.git] / sys / kern / kern_lockf.c
1 /*-
2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3  * Authors: Doug Rabson <dfr@rabson.org>
4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 /*-
28  * Copyright (c) 1982, 1986, 1989, 1993
29  *      The Regents of the University of California.  All rights reserved.
30  *
31  * This code is derived from software contributed to Berkeley by
32  * Scooter Morris at Genentech Inc.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 4. Neither the name of the University nor the names of its contributors
43  *    may be used to endorse or promote products derived from this software
44  *    without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
59  */
60
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63
64 #include "opt_debug_lockf.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/kernel.h>
70 #include <sys/limits.h>
71 #include <sys/lock.h>
72 #include <sys/mount.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sx.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/fcntl.h>
80 #include <sys/lockf.h>
81 #include <sys/taskqueue.h>
82
83 #ifdef LOCKF_DEBUG
84 #include <sys/sysctl.h>
85
86 #include <ufs/ufs/quota.h>
87 #include <ufs/ufs/inode.h>
88
89 static int      lockf_debug = 0; /* control debug output */
90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91 #endif
92
93 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94
95 struct owner_edge;
96 struct owner_vertex;
97 struct owner_vertex_list;
98 struct owner_graph;
99
100 #define NOLOCKF (struct lockf_entry *)0
101 #define SELF    0x1
102 #define OTHERS  0x2
103 static void      lf_init(void *);
104 static int       lf_hash_owner(caddr_t, struct flock *, int);
105 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106     int);
107 static struct lockf_entry *
108                  lf_alloc_lock(struct lock_owner *);
109 static int       lf_free_lock(struct lockf_entry *);
110 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
111 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
113 static void      lf_free_edge(struct lockf_edge *);
114 static struct lockf_edge *
115                  lf_alloc_edge(void);
116 static void      lf_alloc_vertex(struct lockf_entry *);
117 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118 static void      lf_remove_edge(struct lockf_edge *);
119 static void      lf_remove_outgoing(struct lockf_entry *);
120 static void      lf_remove_incoming(struct lockf_entry *);
121 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
122 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
123 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124     int);
125 static struct lockf_entry *
126                  lf_getblock(struct lockf *, struct lockf_entry *);
127 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
129 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
131     int all, struct lockf_entry_list *);
132 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133         struct lockf_entry_list*);
134 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135         struct lockf_entry_list*);
136 static int       lf_setlock(struct lockf *, struct lockf_entry *,
137     struct vnode *, void **cookiep);
138 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
139 static void      lf_split(struct lockf *, struct lockf_entry *,
140     struct lockf_entry *, struct lockf_entry_list *);
141 #ifdef LOCKF_DEBUG
142 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143     struct owner_vertex_list *path);
144 static void      graph_check(struct owner_graph *g, int checkorder);
145 static void      graph_print_vertices(struct owner_vertex_list *set);
146 #endif
147 static int       graph_delta_forward(struct owner_graph *g,
148     struct owner_vertex *x, struct owner_vertex *y,
149     struct owner_vertex_list *delta);
150 static int       graph_delta_backward(struct owner_graph *g,
151     struct owner_vertex *x, struct owner_vertex *y,
152     struct owner_vertex_list *delta);
153 static int       graph_add_indices(int *indices, int n,
154     struct owner_vertex_list *set);
155 static int       graph_assign_indices(struct owner_graph *g, int *indices,
156     int nextunused, struct owner_vertex_list *set);
157 static int       graph_add_edge(struct owner_graph *g,
158     struct owner_vertex *x, struct owner_vertex *y);
159 static void      graph_remove_edge(struct owner_graph *g,
160     struct owner_vertex *x, struct owner_vertex *y);
161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162     struct lock_owner *lo);
163 static void      graph_free_vertex(struct owner_graph *g,
164     struct owner_vertex *v);
165 static struct owner_graph * graph_init(struct owner_graph *g);
166 #ifdef LOCKF_DEBUG
167 static void      lf_print(char *, struct lockf_entry *);
168 static void      lf_printlist(char *, struct lockf_entry *);
169 static void      lf_print_owner(struct lock_owner *);
170 #endif
171
172 /*
173  * This structure is used to keep track of both local and remote lock
174  * owners. The lf_owner field of the struct lockf_entry points back at
175  * the lock owner structure. Each possible lock owner (local proc for
176  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177  * pair for remote locks) is represented by a unique instance of
178  * struct lock_owner.
179  *
180  * If a lock owner has a lock that blocks some other lock or a lock
181  * that is waiting for some other lock, it also has a vertex in the
182  * owner_graph below.
183  *
184  * Locks:
185  * (s)          locked by state->ls_lock
186  * (S)          locked by lf_lock_states_lock
187  * (l)          locked by lf_lock_owners_lock
188  * (g)          locked by lf_owner_graph_lock
189  * (c)          const until freeing
190  */
191 #define LOCK_OWNER_HASH_SIZE    256
192
193 struct lock_owner {
194         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195         int     lo_refs;            /* (l) Number of locks referring to this */
196         int     lo_flags;           /* (c) Flags passwd to lf_advlock */
197         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
198         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
199         int     lo_sysid;           /* (c) System Id of the lock owner */
200         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201 };
202
203 LIST_HEAD(lock_owner_list, lock_owner);
204
205 static struct sx                lf_lock_states_lock;
206 static struct lockf_list        lf_lock_states; /* (S) */
207 static struct sx                lf_lock_owners_lock;
208 static struct lock_owner_list   lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209
210 /*
211  * Structures for deadlock detection.
212  *
213  * We have two types of directed graph, the first is the set of locks,
214  * both active and pending on a vnode. Within this graph, active locks
215  * are terminal nodes in the graph (i.e. have no out-going
216  * edges). Pending locks have out-going edges to each blocking active
217  * lock that prevents the lock from being granted and also to each
218  * older pending lock that would block them if it was active. The
219  * graph for each vnode is naturally acyclic; new edges are only ever
220  * added to or from new nodes (either new pending locks which only add
221  * out-going edges or new active locks which only add in-coming edges)
222  * therefore they cannot create loops in the lock graph.
223  *
224  * The second graph is a global graph of lock owners. Each lock owner
225  * is a vertex in that graph and an edge is added to the graph
226  * whenever an edge is added to a vnode graph, with end points
227  * corresponding to owner of the new pending lock and the owner of the
228  * lock upon which it waits. In order to prevent deadlock, we only add
229  * an edge to this graph if the new edge would not create a cycle.
230  * 
231  * The lock owner graph is topologically sorted, i.e. if a node has
232  * any outgoing edges, then it has an order strictly less than any
233  * node to which it has an outgoing edge. We preserve this ordering
234  * (and detect cycles) on edge insertion using Algorithm PK from the
235  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237  * No. 1.7)
238  */
239 struct owner_vertex;
240
241 struct owner_edge {
242         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
244         int             e_refs;           /* (g) number of times added */
245         struct owner_vertex *e_from;      /* (c) out-going from here */
246         struct owner_vertex *e_to;        /* (c) in-coming to here */
247 };
248 LIST_HEAD(owner_edge_list, owner_edge);
249
250 struct owner_vertex {
251         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252         uint32_t        v_gen;            /* (g) workspace for edge insertion */
253         int             v_order;          /* (g) order of vertex in graph */
254         struct owner_edge_list v_outedges;/* (g) list of out-edges */
255         struct owner_edge_list v_inedges; /* (g) list of in-edges */
256         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
257 };
258 TAILQ_HEAD(owner_vertex_list, owner_vertex);
259
260 struct owner_graph {
261         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262         int             g_size;           /* (g) number of vertices */
263         int             g_space;          /* (g) space allocated for vertices */
264         int             *g_indexbuf;      /* (g) workspace for loop detection */
265         uint32_t        g_gen;            /* (g) increment when re-ordering */
266 };
267
268 static struct sx                lf_owner_graph_lock;
269 static struct owner_graph       lf_owner_graph;
270
271 /*
272  * Initialise various structures and locks.
273  */
274 static void
275 lf_init(void *dummy)
276 {
277         int i;
278
279         sx_init(&lf_lock_states_lock, "lock states lock");
280         LIST_INIT(&lf_lock_states);
281
282         sx_init(&lf_lock_owners_lock, "lock owners lock");
283         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284                 LIST_INIT(&lf_lock_owners[i]);
285
286         sx_init(&lf_owner_graph_lock, "owner graph lock");
287         graph_init(&lf_owner_graph);
288 }
289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290
291 /*
292  * Generate a hash value for a lock owner.
293  */
294 static int
295 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296 {
297         uint32_t h;
298
299         if (flags & F_REMOTE) {
300                 h = HASHSTEP(0, fl->l_pid);
301                 h = HASHSTEP(h, fl->l_sysid);
302         } else if (flags & F_FLOCK) {
303                 h = ((uintptr_t) id) >> 7;
304         } else {
305                 struct proc *p = (struct proc *) id;
306                 h = HASHSTEP(0, p->p_pid);
307                 h = HASHSTEP(h, 0);
308         }
309
310         return (h % LOCK_OWNER_HASH_SIZE);
311 }
312
313 /*
314  * Return true if a lock owner matches the details passed to
315  * lf_advlock.
316  */
317 static int
318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319     int flags)
320 {
321         if (flags & F_REMOTE) {
322                 return lo->lo_pid == fl->l_pid
323                         && lo->lo_sysid == fl->l_sysid;
324         } else {
325                 return lo->lo_id == id;
326         }
327 }
328
329 static struct lockf_entry *
330 lf_alloc_lock(struct lock_owner *lo)
331 {
332         struct lockf_entry *lf;
333
334         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335
336 #ifdef LOCKF_DEBUG
337         if (lockf_debug & 4)
338                 printf("Allocated lock %p\n", lf);
339 #endif
340         if (lo) {
341                 sx_xlock(&lf_lock_owners_lock);
342                 lo->lo_refs++;
343                 sx_xunlock(&lf_lock_owners_lock);
344                 lf->lf_owner = lo;
345         }
346
347         return (lf);
348 }
349
350 static int
351 lf_free_lock(struct lockf_entry *lock)
352 {
353
354         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
355         if (--lock->lf_refs > 0)
356                 return (0);
357         /*
358          * Adjust the lock_owner reference count and
359          * reclaim the entry if this is the last lock
360          * for that owner.
361          */
362         struct lock_owner *lo = lock->lf_owner;
363         if (lo) {
364                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
365                     ("freeing lock with dependancies"));
366                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
367                     ("freeing lock with dependants"));
368                 sx_xlock(&lf_lock_owners_lock);
369                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
370                 lo->lo_refs--;
371                 if (lo->lo_refs == 0) {
372 #ifdef LOCKF_DEBUG
373                         if (lockf_debug & 1)
374                                 printf("lf_free_lock: freeing lock owner %p\n",
375                                     lo);
376 #endif
377                         if (lo->lo_vertex) {
378                                 sx_xlock(&lf_owner_graph_lock);
379                                 graph_free_vertex(&lf_owner_graph,
380                                     lo->lo_vertex);
381                                 sx_xunlock(&lf_owner_graph_lock);
382                         }
383                         LIST_REMOVE(lo, lo_link);
384                         free(lo, M_LOCKF);
385 #ifdef LOCKF_DEBUG
386                         if (lockf_debug & 4)
387                                 printf("Freed lock owner %p\n", lo);
388 #endif
389                 }
390                 sx_unlock(&lf_lock_owners_lock);
391         }
392         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
393                 vrele(lock->lf_vnode);
394                 lock->lf_vnode = NULL;
395         }
396 #ifdef LOCKF_DEBUG
397         if (lockf_debug & 4)
398                 printf("Freed lock %p\n", lock);
399 #endif
400         free(lock, M_LOCKF);
401         return (1);
402 }
403
404 /*
405  * Advisory record locking support
406  */
407 int
408 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
409     u_quad_t size)
410 {
411         struct lockf *state, *freestate = NULL;
412         struct flock *fl = ap->a_fl;
413         struct lockf_entry *lock;
414         struct vnode *vp = ap->a_vp;
415         caddr_t id = ap->a_id;
416         int flags = ap->a_flags;
417         int hash;
418         struct lock_owner *lo;
419         off_t start, end, oadd;
420         int error;
421
422         /*
423          * Handle the F_UNLKSYS case first - no need to mess about
424          * creating a lock owner for this one.
425          */
426         if (ap->a_op == F_UNLCKSYS) {
427                 lf_clearremotesys(fl->l_sysid);
428                 return (0);
429         }
430
431         /*
432          * Convert the flock structure into a start and end.
433          */
434         switch (fl->l_whence) {
435
436         case SEEK_SET:
437         case SEEK_CUR:
438                 /*
439                  * Caller is responsible for adding any necessary offset
440                  * when SEEK_CUR is used.
441                  */
442                 start = fl->l_start;
443                 break;
444
445         case SEEK_END:
446                 if (size > OFF_MAX ||
447                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
448                         return (EOVERFLOW);
449                 start = size + fl->l_start;
450                 break;
451
452         default:
453                 return (EINVAL);
454         }
455         if (start < 0)
456                 return (EINVAL);
457         if (fl->l_len < 0) {
458                 if (start == 0)
459                         return (EINVAL);
460                 end = start - 1;
461                 start += fl->l_len;
462                 if (start < 0)
463                         return (EINVAL);
464         } else if (fl->l_len == 0) {
465                 end = OFF_MAX;
466         } else {
467                 oadd = fl->l_len - 1;
468                 if (oadd > OFF_MAX - start)
469                         return (EOVERFLOW);
470                 end = start + oadd;
471         }
472
473 retry_setlock:
474
475         /*
476          * Avoid the common case of unlocking when inode has no locks.
477          */
478         VI_LOCK(vp);
479         if ((*statep) == NULL) {
480                 if (ap->a_op != F_SETLK) {
481                         fl->l_type = F_UNLCK;
482                         VI_UNLOCK(vp);
483                         return (0);
484                 }
485         }
486         VI_UNLOCK(vp);
487
488         /*
489          * Map our arguments to an existing lock owner or create one
490          * if this is the first time we have seen this owner.
491          */
492         hash = lf_hash_owner(id, fl, flags);
493         sx_xlock(&lf_lock_owners_lock);
494         LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
495                 if (lf_owner_matches(lo, id, fl, flags))
496                         break;
497         if (!lo) {
498                 /*
499                  * We initialise the lock with a reference
500                  * count which matches the new lockf_entry
501                  * structure created below.
502                  */
503                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
504                     M_WAITOK|M_ZERO);
505 #ifdef LOCKF_DEBUG
506                 if (lockf_debug & 4)
507                         printf("Allocated lock owner %p\n", lo);
508 #endif
509
510                 lo->lo_refs = 1;
511                 lo->lo_flags = flags;
512                 lo->lo_id = id;
513                 if (flags & F_REMOTE) {
514                         lo->lo_pid = fl->l_pid;
515                         lo->lo_sysid = fl->l_sysid;
516                 } else if (flags & F_FLOCK) {
517                         lo->lo_pid = -1;
518                         lo->lo_sysid = 0;
519                 } else {
520                         struct proc *p = (struct proc *) id;
521                         lo->lo_pid = p->p_pid;
522                         lo->lo_sysid = 0;
523                 }
524                 lo->lo_vertex = NULL;
525
526 #ifdef LOCKF_DEBUG
527                 if (lockf_debug & 1) {
528                         printf("lf_advlockasync: new lock owner %p ", lo);
529                         lf_print_owner(lo);
530                         printf("\n");
531                 }
532 #endif
533
534                 LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
535         } else {
536                 /*
537                  * We have seen this lock owner before, increase its
538                  * reference count to account for the new lockf_entry
539                  * structure we create below.
540                  */
541                 lo->lo_refs++;
542         }
543         sx_xunlock(&lf_lock_owners_lock);
544
545         /*
546          * Create the lockf structure. We initialise the lf_owner
547          * field here instead of in lf_alloc_lock() to avoid paying
548          * the lf_lock_owners_lock tax twice.
549          */
550         lock = lf_alloc_lock(NULL);
551         lock->lf_refs = 1;
552         lock->lf_start = start;
553         lock->lf_end = end;
554         lock->lf_owner = lo;
555         lock->lf_vnode = vp;
556         if (flags & F_REMOTE) {
557                 /*
558                  * For remote locks, the caller may release its ref to
559                  * the vnode at any time - we have to ref it here to
560                  * prevent it from being recycled unexpectedly.
561                  */
562                 vref(vp);
563         }
564
565         /*
566          * XXX The problem is that VTOI is ufs specific, so it will
567          * break LOCKF_DEBUG for all other FS's other than UFS because
568          * it casts the vnode->data ptr to struct inode *.
569          */
570 /*      lock->lf_inode = VTOI(ap->a_vp); */
571         lock->lf_inode = (struct inode *)0;
572         lock->lf_type = fl->l_type;
573         LIST_INIT(&lock->lf_outedges);
574         LIST_INIT(&lock->lf_inedges);
575         lock->lf_async_task = ap->a_task;
576         lock->lf_flags = ap->a_flags;
577
578         /*
579          * Do the requested operation. First find our state structure
580          * and create a new one if necessary - the caller's *statep
581          * variable and the state's ls_threads count is protected by
582          * the vnode interlock.
583          */
584         VI_LOCK(vp);
585         if (vp->v_iflag & VI_DOOMED) {
586                 VI_UNLOCK(vp);
587                 lf_free_lock(lock);
588                 return (ENOENT);
589         }
590
591         /*
592          * Allocate a state structure if necessary.
593          */
594         state = *statep;
595         if (state == NULL) {
596                 struct lockf *ls;
597
598                 VI_UNLOCK(vp);
599
600                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
601                 sx_init(&ls->ls_lock, "ls_lock");
602                 LIST_INIT(&ls->ls_active);
603                 LIST_INIT(&ls->ls_pending);
604                 ls->ls_threads = 1;
605
606                 sx_xlock(&lf_lock_states_lock);
607                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
608                 sx_xunlock(&lf_lock_states_lock);
609
610                 /*
611                  * Cope if we lost a race with some other thread while
612                  * trying to allocate memory.
613                  */
614                 VI_LOCK(vp);
615                 if (vp->v_iflag & VI_DOOMED) {
616                         VI_UNLOCK(vp);
617                         sx_xlock(&lf_lock_states_lock);
618                         LIST_REMOVE(ls, ls_link);
619                         sx_xunlock(&lf_lock_states_lock);
620                         sx_destroy(&ls->ls_lock);
621                         free(ls, M_LOCKF);
622                         lf_free_lock(lock);
623                         return (ENOENT);
624                 }
625                 if ((*statep) == NULL) {
626                         state = *statep = ls;
627                         VI_UNLOCK(vp);
628                 } else {
629                         state = *statep;
630                         state->ls_threads++;
631                         VI_UNLOCK(vp);
632
633                         sx_xlock(&lf_lock_states_lock);
634                         LIST_REMOVE(ls, ls_link);
635                         sx_xunlock(&lf_lock_states_lock);
636                         sx_destroy(&ls->ls_lock);
637                         free(ls, M_LOCKF);
638                 }
639         } else {
640                 state->ls_threads++;
641                 VI_UNLOCK(vp);
642         }
643
644         sx_xlock(&state->ls_lock);
645         /*
646          * Recheck the doomed vnode after state->ls_lock is
647          * locked. lf_purgelocks() requires that no new threads add
648          * pending locks when vnode is marked by VI_DOOMED flag.
649          */
650         VI_LOCK(vp);
651         if (vp->v_iflag & VI_DOOMED) {
652                 state->ls_threads--;
653                 wakeup(state);
654                 VI_UNLOCK(vp);
655                 sx_xunlock(&state->ls_lock);
656                 lf_free_lock(lock);
657                 return (ENOENT);
658         }
659         VI_UNLOCK(vp);
660
661         switch (ap->a_op) {
662         case F_SETLK:
663                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
664                 break;
665
666         case F_UNLCK:
667                 error = lf_clearlock(state, lock);
668                 lf_free_lock(lock);
669                 break;
670
671         case F_GETLK:
672                 error = lf_getlock(state, lock, fl);
673                 lf_free_lock(lock);
674                 break;
675
676         case F_CANCEL:
677                 if (ap->a_cookiep)
678                         error = lf_cancel(state, lock, *ap->a_cookiep);
679                 else
680                         error = EINVAL;
681                 lf_free_lock(lock);
682                 break;
683
684         default:
685                 lf_free_lock(lock);
686                 error = EINVAL;
687                 break;
688         }
689
690 #ifdef INVARIANTS
691         /*
692          * Check for some can't happen stuff. In this case, the active
693          * lock list becoming disordered or containing mutually
694          * blocking locks. We also check the pending list for locks
695          * which should be active (i.e. have no out-going edges).
696          */
697         LIST_FOREACH(lock, &state->ls_active, lf_link) {
698                 struct lockf_entry *lf;
699                 if (LIST_NEXT(lock, lf_link))
700                         KASSERT((lock->lf_start
701                                 <= LIST_NEXT(lock, lf_link)->lf_start),
702                             ("locks disordered"));
703                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
704                         if (lock == lf)
705                                 break;
706                         KASSERT(!lf_blocks(lock, lf),
707                             ("two conflicting active locks"));
708                         if (lock->lf_owner == lf->lf_owner)
709                                 KASSERT(!lf_overlaps(lock, lf),
710                                     ("two overlapping locks from same owner"));
711                 }
712         }
713         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
714                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
715                     ("pending lock which should be active"));
716         }
717 #endif
718         sx_xunlock(&state->ls_lock);
719
720         /*
721          * If we have removed the last active lock on the vnode and
722          * this is the last thread that was in-progress, we can free
723          * the state structure. We update the caller's pointer inside
724          * the vnode interlock but call free outside.
725          *
726          * XXX alternatively, keep the state structure around until
727          * the filesystem recycles - requires a callback from the
728          * filesystem.
729          */
730         VI_LOCK(vp);
731
732         state->ls_threads--;
733         wakeup(state);
734         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
735                 KASSERT(LIST_EMPTY(&state->ls_pending),
736                     ("freeing state with pending locks"));
737                 freestate = state;
738                 *statep = NULL;
739         }
740
741         VI_UNLOCK(vp);
742
743         if (freestate) {
744                 sx_xlock(&lf_lock_states_lock);
745                 LIST_REMOVE(freestate, ls_link);
746                 sx_xunlock(&lf_lock_states_lock);
747                 sx_destroy(&freestate->ls_lock);
748                 free(freestate, M_LOCKF);
749         }
750
751         if (error == EDOOFUS) {
752                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
753                 goto retry_setlock;
754         }
755         return (error);
756 }
757
758 int
759 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
760 {
761         struct vop_advlockasync_args a;
762
763         a.a_vp = ap->a_vp;
764         a.a_id = ap->a_id;
765         a.a_op = ap->a_op;
766         a.a_fl = ap->a_fl;
767         a.a_flags = ap->a_flags;
768         a.a_task = NULL;
769         a.a_cookiep = NULL;
770
771         return (lf_advlockasync(&a, statep, size));
772 }
773
774 void
775 lf_purgelocks(struct vnode *vp, struct lockf **statep)
776 {
777         struct lockf *state;
778         struct lockf_entry *lock, *nlock;
779
780         /*
781          * For this to work correctly, the caller must ensure that no
782          * other threads enter the locking system for this vnode,
783          * e.g. by checking VI_DOOMED. We wake up any threads that are
784          * sleeping waiting for locks on this vnode and then free all
785          * the remaining locks.
786          */
787         VI_LOCK(vp);
788         KASSERT(vp->v_iflag & VI_DOOMED,
789             ("lf_purgelocks: vp %p has not vgone yet", vp));
790         state = *statep;
791         if (state) {
792                 *statep = NULL;
793                 state->ls_threads++;
794                 VI_UNLOCK(vp);
795
796                 sx_xlock(&state->ls_lock);
797                 sx_xlock(&lf_owner_graph_lock);
798                 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
799                         LIST_REMOVE(lock, lf_link);
800                         lf_remove_outgoing(lock);
801                         lf_remove_incoming(lock);
802
803                         /*
804                          * If its an async lock, we can just free it
805                          * here, otherwise we let the sleeping thread
806                          * free it.
807                          */
808                         if (lock->lf_async_task) {
809                                 lf_free_lock(lock);
810                         } else {
811                                 lock->lf_flags |= F_INTR;
812                                 wakeup(lock);
813                         }
814                 }
815                 sx_xunlock(&lf_owner_graph_lock);
816                 sx_xunlock(&state->ls_lock);
817
818                 /*
819                  * Wait for all other threads, sleeping and otherwise
820                  * to leave.
821                  */
822                 VI_LOCK(vp);
823                 while (state->ls_threads > 1)
824                         msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
825                 VI_UNLOCK(vp);
826
827                 /*
828                  * We can just free all the active locks since they
829                  * will have no dependancies (we removed them all
830                  * above). We don't need to bother locking since we
831                  * are the last thread using this state structure.
832                  */
833                 KASSERT(LIST_EMPTY(&state->ls_pending),
834                     ("lock pending for %p", state));
835                 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
836                         LIST_REMOVE(lock, lf_link);
837                         lf_free_lock(lock);
838                 }
839                 sx_xlock(&lf_lock_states_lock);
840                 LIST_REMOVE(state, ls_link);
841                 sx_xunlock(&lf_lock_states_lock);
842                 sx_destroy(&state->ls_lock);
843                 free(state, M_LOCKF);
844         } else {
845                 VI_UNLOCK(vp);
846         }
847 }
848
849 /*
850  * Return non-zero if locks 'x' and 'y' overlap.
851  */
852 static int
853 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
854 {
855
856         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
857 }
858
859 /*
860  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
861  */
862 static int
863 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
864 {
865
866         return x->lf_owner != y->lf_owner
867                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
868                 && lf_overlaps(x, y);
869 }
870
871 /*
872  * Allocate a lock edge from the free list
873  */
874 static struct lockf_edge *
875 lf_alloc_edge(void)
876 {
877
878         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
879 }
880
881 /*
882  * Free a lock edge.
883  */
884 static void
885 lf_free_edge(struct lockf_edge *e)
886 {
887
888         free(e, M_LOCKF);
889 }
890
891
892 /*
893  * Ensure that the lock's owner has a corresponding vertex in the
894  * owner graph.
895  */
896 static void
897 lf_alloc_vertex(struct lockf_entry *lock)
898 {
899         struct owner_graph *g = &lf_owner_graph;
900
901         if (!lock->lf_owner->lo_vertex)
902                 lock->lf_owner->lo_vertex =
903                         graph_alloc_vertex(g, lock->lf_owner);
904 }
905
906 /*
907  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
908  * the new edge would cause a cycle in the owner graph.
909  */
910 static int
911 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
912 {
913         struct owner_graph *g = &lf_owner_graph;
914         struct lockf_edge *e;
915         int error;
916
917 #ifdef INVARIANTS
918         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
919                 KASSERT(e->le_to != y, ("adding lock edge twice"));
920 #endif
921
922         /*
923          * Make sure the two owners have entries in the owner graph.
924          */
925         lf_alloc_vertex(x);
926         lf_alloc_vertex(y);
927
928         error = graph_add_edge(g, x->lf_owner->lo_vertex,
929             y->lf_owner->lo_vertex);
930         if (error)
931                 return (error);
932
933         e = lf_alloc_edge();
934         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
935         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
936         e->le_from = x;
937         e->le_to = y;
938
939         return (0);
940 }
941
942 /*
943  * Remove an edge from the lock graph.
944  */
945 static void
946 lf_remove_edge(struct lockf_edge *e)
947 {
948         struct owner_graph *g = &lf_owner_graph;
949         struct lockf_entry *x = e->le_from;
950         struct lockf_entry *y = e->le_to;
951
952         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
953         LIST_REMOVE(e, le_outlink);
954         LIST_REMOVE(e, le_inlink);
955         e->le_from = NULL;
956         e->le_to = NULL;
957         lf_free_edge(e);
958 }
959
960 /*
961  * Remove all out-going edges from lock x.
962  */
963 static void
964 lf_remove_outgoing(struct lockf_entry *x)
965 {
966         struct lockf_edge *e;
967
968         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
969                 lf_remove_edge(e);
970         }
971 }
972
973 /*
974  * Remove all in-coming edges from lock x.
975  */
976 static void
977 lf_remove_incoming(struct lockf_entry *x)
978 {
979         struct lockf_edge *e;
980
981         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
982                 lf_remove_edge(e);
983         }
984 }
985
986 /*
987  * Walk the list of locks for the file and create an out-going edge
988  * from lock to each blocking lock.
989  */
990 static int
991 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
992 {
993         struct lockf_entry *overlap;
994         int error;
995
996         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
997                 /*
998                  * We may assume that the active list is sorted by
999                  * lf_start.
1000                  */
1001                 if (overlap->lf_start > lock->lf_end)
1002                         break;
1003                 if (!lf_blocks(lock, overlap))
1004                         continue;
1005
1006                 /*
1007                  * We've found a blocking lock. Add the corresponding
1008                  * edge to the graphs and see if it would cause a
1009                  * deadlock.
1010                  */
1011                 error = lf_add_edge(lock, overlap);
1012
1013                 /*
1014                  * The only error that lf_add_edge returns is EDEADLK.
1015                  * Remove any edges we added and return the error.
1016                  */
1017                 if (error) {
1018                         lf_remove_outgoing(lock);
1019                         return (error);
1020                 }
1021         }
1022
1023         /*
1024          * We also need to add edges to sleeping locks that block
1025          * us. This ensures that lf_wakeup_lock cannot grant two
1026          * mutually blocking locks simultaneously and also enforces a
1027          * 'first come, first served' fairness model. Note that this
1028          * only happens if we are blocked by at least one active lock
1029          * due to the call to lf_getblock in lf_setlock below.
1030          */
1031         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1032                 if (!lf_blocks(lock, overlap))
1033                         continue;
1034                 /*
1035                  * We've found a blocking lock. Add the corresponding
1036                  * edge to the graphs and see if it would cause a
1037                  * deadlock.
1038                  */
1039                 error = lf_add_edge(lock, overlap);
1040
1041                 /*
1042                  * The only error that lf_add_edge returns is EDEADLK.
1043                  * Remove any edges we added and return the error.
1044                  */
1045                 if (error) {
1046                         lf_remove_outgoing(lock);
1047                         return (error);
1048                 }
1049         }
1050
1051         return (0);
1052 }
1053
1054 /*
1055  * Walk the list of pending locks for the file and create an in-coming
1056  * edge from lock to each blocking lock.
1057  */
1058 static int
1059 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1060 {
1061         struct lockf_entry *overlap;
1062         int error;
1063
1064         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1065                 if (!lf_blocks(lock, overlap))
1066                         continue;
1067
1068                 /*
1069                  * We've found a blocking lock. Add the corresponding
1070                  * edge to the graphs and see if it would cause a
1071                  * deadlock.
1072                  */
1073                 error = lf_add_edge(overlap, lock);
1074
1075                 /*
1076                  * The only error that lf_add_edge returns is EDEADLK.
1077                  * Remove any edges we added and return the error.
1078                  */
1079                 if (error) {
1080                         lf_remove_incoming(lock);
1081                         return (error);
1082                 }
1083         }
1084         return (0);
1085 }
1086
1087 /*
1088  * Insert lock into the active list, keeping list entries ordered by
1089  * increasing values of lf_start.
1090  */
1091 static void
1092 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1093 {
1094         struct lockf_entry *lf, *lfprev;
1095
1096         if (LIST_EMPTY(&state->ls_active)) {
1097                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1098                 return;
1099         }
1100
1101         lfprev = NULL;
1102         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1103                 if (lf->lf_start > lock->lf_start) {
1104                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1105                         return;
1106                 }
1107                 lfprev = lf;
1108         }
1109         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1110 }
1111
1112 /*
1113  * Wake up a sleeping lock and remove it from the pending list now
1114  * that all its dependancies have been resolved. The caller should
1115  * arrange for the lock to be added to the active list, adjusting any
1116  * existing locks for the same owner as needed.
1117  */
1118 static void
1119 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1120 {
1121
1122         /*
1123          * Remove from ls_pending list and wake up the caller
1124          * or start the async notification, as appropriate.
1125          */
1126         LIST_REMOVE(wakelock, lf_link);
1127 #ifdef LOCKF_DEBUG
1128         if (lockf_debug & 1)
1129                 lf_print("lf_wakeup_lock: awakening", wakelock);
1130 #endif /* LOCKF_DEBUG */
1131         if (wakelock->lf_async_task) {
1132                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1133         } else {
1134                 wakeup(wakelock);
1135         }
1136 }
1137
1138 /*
1139  * Re-check all dependant locks and remove edges to locks that we no
1140  * longer block. If 'all' is non-zero, the lock has been removed and
1141  * we must remove all the dependancies, otherwise it has simply been
1142  * reduced but remains active. Any pending locks which have been been
1143  * unblocked are added to 'granted'
1144  */
1145 static void
1146 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1147         struct lockf_entry_list *granted)
1148 {
1149         struct lockf_edge *e, *ne;
1150         struct lockf_entry *deplock;
1151
1152         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1153                 deplock = e->le_from;
1154                 if (all || !lf_blocks(lock, deplock)) {
1155                         sx_xlock(&lf_owner_graph_lock);
1156                         lf_remove_edge(e);
1157                         sx_xunlock(&lf_owner_graph_lock);
1158                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1159                                 lf_wakeup_lock(state, deplock);
1160                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1161                         }
1162                 }
1163         }
1164 }
1165
1166 /*
1167  * Set the start of an existing active lock, updating dependancies and
1168  * adding any newly woken locks to 'granted'.
1169  */
1170 static void
1171 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1172         struct lockf_entry_list *granted)
1173 {
1174
1175         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1176         lock->lf_start = new_start;
1177         LIST_REMOVE(lock, lf_link);
1178         lf_insert_lock(state, lock);
1179         lf_update_dependancies(state, lock, FALSE, granted);
1180 }
1181
1182 /*
1183  * Set the end of an existing active lock, updating dependancies and
1184  * adding any newly woken locks to 'granted'.
1185  */
1186 static void
1187 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1188         struct lockf_entry_list *granted)
1189 {
1190
1191         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1192         lock->lf_end = new_end;
1193         lf_update_dependancies(state, lock, FALSE, granted);
1194 }
1195
1196 /*
1197  * Add a lock to the active list, updating or removing any current
1198  * locks owned by the same owner and processing any pending locks that
1199  * become unblocked as a result. This code is also used for unlock
1200  * since the logic for updating existing locks is identical.
1201  *
1202  * As a result of processing the new lock, we may unblock existing
1203  * pending locks as a result of downgrading/unlocking. We simply
1204  * activate the newly granted locks by looping.
1205  *
1206  * Since the new lock already has its dependancies set up, we always
1207  * add it to the list (unless its an unlock request). This may
1208  * fragment the lock list in some pathological cases but its probably
1209  * not a real problem.
1210  */
1211 static void
1212 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1213 {
1214         struct lockf_entry *overlap, *lf;
1215         struct lockf_entry_list granted;
1216         int ovcase;
1217
1218         LIST_INIT(&granted);
1219         LIST_INSERT_HEAD(&granted, lock, lf_link);
1220
1221         while (!LIST_EMPTY(&granted)) {
1222                 lock = LIST_FIRST(&granted);
1223                 LIST_REMOVE(lock, lf_link);
1224
1225                 /*
1226                  * Skip over locks owned by other processes.  Handle
1227                  * any locks that overlap and are owned by ourselves.
1228                  */
1229                 overlap = LIST_FIRST(&state->ls_active);
1230                 for (;;) {
1231                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1232
1233 #ifdef LOCKF_DEBUG
1234                         if (ovcase && (lockf_debug & 2)) {
1235                                 printf("lf_setlock: overlap %d", ovcase);
1236                                 lf_print("", overlap);
1237                         }
1238 #endif
1239                         /*
1240                          * Six cases:
1241                          *      0) no overlap
1242                          *      1) overlap == lock
1243                          *      2) overlap contains lock
1244                          *      3) lock contains overlap
1245                          *      4) overlap starts before lock
1246                          *      5) overlap ends after lock
1247                          */
1248                         switch (ovcase) {
1249                         case 0: /* no overlap */
1250                                 break;
1251
1252                         case 1: /* overlap == lock */
1253                                 /*
1254                                  * We have already setup the
1255                                  * dependants for the new lock, taking
1256                                  * into account a possible downgrade
1257                                  * or unlock. Remove the old lock.
1258                                  */
1259                                 LIST_REMOVE(overlap, lf_link);
1260                                 lf_update_dependancies(state, overlap, TRUE,
1261                                         &granted);
1262                                 lf_free_lock(overlap);
1263                                 break;
1264
1265                         case 2: /* overlap contains lock */
1266                                 /*
1267                                  * Just split the existing lock.
1268                                  */
1269                                 lf_split(state, overlap, lock, &granted);
1270                                 break;
1271
1272                         case 3: /* lock contains overlap */
1273                                 /*
1274                                  * Delete the overlap and advance to
1275                                  * the next entry in the list.
1276                                  */
1277                                 lf = LIST_NEXT(overlap, lf_link);
1278                                 LIST_REMOVE(overlap, lf_link);
1279                                 lf_update_dependancies(state, overlap, TRUE,
1280                                         &granted);
1281                                 lf_free_lock(overlap);
1282                                 overlap = lf;
1283                                 continue;
1284
1285                         case 4: /* overlap starts before lock */
1286                                 /*
1287                                  * Just update the overlap end and
1288                                  * move on.
1289                                  */
1290                                 lf_set_end(state, overlap, lock->lf_start - 1,
1291                                     &granted);
1292                                 overlap = LIST_NEXT(overlap, lf_link);
1293                                 continue;
1294
1295                         case 5: /* overlap ends after lock */
1296                                 /*
1297                                  * Change the start of overlap and
1298                                  * re-insert.
1299                                  */
1300                                 lf_set_start(state, overlap, lock->lf_end + 1,
1301                                     &granted);
1302                                 break;
1303                         }
1304                         break;
1305                 }
1306 #ifdef LOCKF_DEBUG
1307                 if (lockf_debug & 1) {
1308                         if (lock->lf_type != F_UNLCK)
1309                                 lf_print("lf_activate_lock: activated", lock);
1310                         else
1311                                 lf_print("lf_activate_lock: unlocked", lock);
1312                         lf_printlist("lf_activate_lock", lock);
1313                 }
1314 #endif /* LOCKF_DEBUG */
1315                 if (lock->lf_type != F_UNLCK)
1316                         lf_insert_lock(state, lock);
1317         }
1318 }
1319
1320 /*
1321  * Cancel a pending lock request, either as a result of a signal or a
1322  * cancel request for an async lock.
1323  */
1324 static void
1325 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1326 {
1327         struct lockf_entry_list granted;
1328
1329         /*
1330          * Note it is theoretically possible that cancelling this lock
1331          * may allow some other pending lock to become
1332          * active. Consider this case:
1333          *
1334          * Owner        Action          Result          Dependancies
1335          * 
1336          * A:           lock [0..0]     succeeds        
1337          * B:           lock [2..2]     succeeds        
1338          * C:           lock [1..2]     blocked         C->B
1339          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1340          * A:           unlock [0..0]                   C->B,D->C
1341          * C:           cancel [1..2]   
1342          */
1343
1344         LIST_REMOVE(lock, lf_link);
1345
1346         /*
1347          * Removing out-going edges is simple.
1348          */
1349         sx_xlock(&lf_owner_graph_lock);
1350         lf_remove_outgoing(lock);
1351         sx_xunlock(&lf_owner_graph_lock);
1352
1353         /*
1354          * Removing in-coming edges may allow some other lock to
1355          * become active - we use lf_update_dependancies to figure
1356          * this out.
1357          */
1358         LIST_INIT(&granted);
1359         lf_update_dependancies(state, lock, TRUE, &granted);
1360         lf_free_lock(lock);
1361
1362         /*
1363          * Feed any newly active locks to lf_activate_lock.
1364          */
1365         while (!LIST_EMPTY(&granted)) {
1366                 lock = LIST_FIRST(&granted);
1367                 LIST_REMOVE(lock, lf_link);
1368                 lf_activate_lock(state, lock);
1369         }
1370 }
1371
1372 /*
1373  * Set a byte-range lock.
1374  */
1375 static int
1376 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1377     void **cookiep)
1378 {
1379         static char lockstr[] = "lockf";
1380         int priority, error;
1381
1382 #ifdef LOCKF_DEBUG
1383         if (lockf_debug & 1)
1384                 lf_print("lf_setlock", lock);
1385 #endif /* LOCKF_DEBUG */
1386
1387         /*
1388          * Set the priority
1389          */
1390         priority = PLOCK;
1391         if (lock->lf_type == F_WRLCK)
1392                 priority += 4;
1393         if (!(lock->lf_flags & F_NOINTR))
1394                 priority |= PCATCH;
1395         /*
1396          * Scan lock list for this file looking for locks that would block us.
1397          */
1398         if (lf_getblock(state, lock)) {
1399                 /*
1400                  * Free the structure and return if nonblocking.
1401                  */
1402                 if ((lock->lf_flags & F_WAIT) == 0
1403                     && lock->lf_async_task == NULL) {
1404                         lf_free_lock(lock);
1405                         error = EAGAIN;
1406                         goto out;
1407                 }
1408
1409                 /*
1410                  * For flock type locks, we must first remove
1411                  * any shared locks that we hold before we sleep
1412                  * waiting for an exclusive lock.
1413                  */
1414                 if ((lock->lf_flags & F_FLOCK) &&
1415                     lock->lf_type == F_WRLCK) {
1416                         lock->lf_type = F_UNLCK;
1417                         lf_activate_lock(state, lock);
1418                         lock->lf_type = F_WRLCK;
1419                 }
1420
1421                 /*
1422                  * We are blocked. Create edges to each blocking lock,
1423                  * checking for deadlock using the owner graph. For
1424                  * simplicity, we run deadlock detection for all
1425                  * locks, posix and otherwise.
1426                  */
1427                 sx_xlock(&lf_owner_graph_lock);
1428                 error = lf_add_outgoing(state, lock);
1429                 sx_xunlock(&lf_owner_graph_lock);
1430
1431                 if (error) {
1432 #ifdef LOCKF_DEBUG
1433                         if (lockf_debug & 1)
1434                                 lf_print("lf_setlock: deadlock", lock);
1435 #endif
1436                         lf_free_lock(lock);
1437                         goto out;
1438                 }
1439
1440                 /*
1441                  * We have added edges to everything that blocks
1442                  * us. Sleep until they all go away.
1443                  */
1444                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1445 #ifdef LOCKF_DEBUG
1446                 if (lockf_debug & 1) {
1447                         struct lockf_edge *e;
1448                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1449                                 lf_print("lf_setlock: blocking on", e->le_to);
1450                                 lf_printlist("lf_setlock", e->le_to);
1451                         }
1452                 }
1453 #endif /* LOCKF_DEBUG */
1454
1455                 if ((lock->lf_flags & F_WAIT) == 0) {
1456                         /*
1457                          * The caller requested async notification -
1458                          * this callback happens when the blocking
1459                          * lock is released, allowing the caller to
1460                          * make another attempt to take the lock.
1461                          */
1462                         *cookiep = (void *) lock;
1463                         error = EINPROGRESS;
1464                         goto out;
1465                 }
1466
1467                 lock->lf_refs++;
1468                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1469                 if (lf_free_lock(lock)) {
1470                         error = EDOOFUS;
1471                         goto out;
1472                 }
1473
1474                 /*
1475                  * We may have been awakened by a signal and/or by a
1476                  * debugger continuing us (in which cases we must
1477                  * remove our lock graph edges) and/or by another
1478                  * process releasing a lock (in which case our edges
1479                  * have already been removed and we have been moved to
1480                  * the active list). We may also have been woken by
1481                  * lf_purgelocks which we report to the caller as
1482                  * EINTR. In that case, lf_purgelocks will have
1483                  * removed our lock graph edges.
1484                  *
1485                  * Note that it is possible to receive a signal after
1486                  * we were successfully woken (and moved to the active
1487                  * list) but before we resumed execution. In this
1488                  * case, our lf_outedges list will be clear. We
1489                  * pretend there was no error.
1490                  *
1491                  * Note also, if we have been sleeping long enough, we
1492                  * may now have incoming edges from some newer lock
1493                  * which is waiting behind us in the queue.
1494                  */
1495                 if (lock->lf_flags & F_INTR) {
1496                         error = EINTR;
1497                         lf_free_lock(lock);
1498                         goto out;
1499                 }
1500                 if (LIST_EMPTY(&lock->lf_outedges)) {
1501                         error = 0;
1502                 } else {
1503                         lf_cancel_lock(state, lock);
1504                         goto out;
1505                 }
1506 #ifdef LOCKF_DEBUG
1507                 if (lockf_debug & 1) {
1508                         lf_print("lf_setlock: granted", lock);
1509                 }
1510 #endif
1511                 goto out;
1512         }
1513         /*
1514          * It looks like we are going to grant the lock. First add
1515          * edges from any currently pending lock that the new lock
1516          * would block.
1517          */
1518         sx_xlock(&lf_owner_graph_lock);
1519         error = lf_add_incoming(state, lock);
1520         sx_xunlock(&lf_owner_graph_lock);
1521         if (error) {
1522 #ifdef LOCKF_DEBUG
1523                 if (lockf_debug & 1)
1524                         lf_print("lf_setlock: deadlock", lock);
1525 #endif
1526                 lf_free_lock(lock);
1527                 goto out;
1528         }
1529
1530         /*
1531          * No blocks!!  Add the lock.  Note that we will
1532          * downgrade or upgrade any overlapping locks this
1533          * process already owns.
1534          */
1535         lf_activate_lock(state, lock);
1536         error = 0;
1537 out:
1538         return (error);
1539 }
1540
1541 /*
1542  * Remove a byte-range lock on an inode.
1543  *
1544  * Generally, find the lock (or an overlap to that lock)
1545  * and remove it (or shrink it), then wakeup anyone we can.
1546  */
1547 static int
1548 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1549 {
1550         struct lockf_entry *overlap;
1551
1552         overlap = LIST_FIRST(&state->ls_active);
1553
1554         if (overlap == NOLOCKF)
1555                 return (0);
1556 #ifdef LOCKF_DEBUG
1557         if (unlock->lf_type != F_UNLCK)
1558                 panic("lf_clearlock: bad type");
1559         if (lockf_debug & 1)
1560                 lf_print("lf_clearlock", unlock);
1561 #endif /* LOCKF_DEBUG */
1562
1563         lf_activate_lock(state, unlock);
1564
1565         return (0);
1566 }
1567
1568 /*
1569  * Check whether there is a blocking lock, and if so return its
1570  * details in '*fl'.
1571  */
1572 static int
1573 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1574 {
1575         struct lockf_entry *block;
1576
1577 #ifdef LOCKF_DEBUG
1578         if (lockf_debug & 1)
1579                 lf_print("lf_getlock", lock);
1580 #endif /* LOCKF_DEBUG */
1581
1582         if ((block = lf_getblock(state, lock))) {
1583                 fl->l_type = block->lf_type;
1584                 fl->l_whence = SEEK_SET;
1585                 fl->l_start = block->lf_start;
1586                 if (block->lf_end == OFF_MAX)
1587                         fl->l_len = 0;
1588                 else
1589                         fl->l_len = block->lf_end - block->lf_start + 1;
1590                 fl->l_pid = block->lf_owner->lo_pid;
1591                 fl->l_sysid = block->lf_owner->lo_sysid;
1592         } else {
1593                 fl->l_type = F_UNLCK;
1594         }
1595         return (0);
1596 }
1597
1598 /*
1599  * Cancel an async lock request.
1600  */
1601 static int
1602 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1603 {
1604         struct lockf_entry *reallock;
1605
1606         /*
1607          * We need to match this request with an existing lock
1608          * request.
1609          */
1610         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1611                 if ((void *) reallock == cookie) {
1612                         /*
1613                          * Double-check that this lock looks right
1614                          * (maybe use a rolling ID for the cancel
1615                          * cookie instead?)
1616                          */
1617                         if (!(reallock->lf_vnode == lock->lf_vnode
1618                                 && reallock->lf_start == lock->lf_start
1619                                 && reallock->lf_end == lock->lf_end)) {
1620                                 return (ENOENT);
1621                         }
1622
1623                         /*
1624                          * Make sure this lock was async and then just
1625                          * remove it from its wait lists.
1626                          */
1627                         if (!reallock->lf_async_task) {
1628                                 return (ENOENT);
1629                         }
1630
1631                         /*
1632                          * Note that since any other thread must take
1633                          * state->ls_lock before it can possibly
1634                          * trigger the async callback, we are safe
1635                          * from a race with lf_wakeup_lock, i.e. we
1636                          * can free the lock (actually our caller does
1637                          * this).
1638                          */
1639                         lf_cancel_lock(state, reallock);
1640                         return (0);
1641                 }
1642         }
1643
1644         /*
1645          * We didn't find a matching lock - not much we can do here.
1646          */
1647         return (ENOENT);
1648 }
1649
1650 /*
1651  * Walk the list of locks for an inode and
1652  * return the first blocking lock.
1653  */
1654 static struct lockf_entry *
1655 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1656 {
1657         struct lockf_entry *overlap;
1658
1659         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1660                 /*
1661                  * We may assume that the active list is sorted by
1662                  * lf_start.
1663                  */
1664                 if (overlap->lf_start > lock->lf_end)
1665                         break;
1666                 if (!lf_blocks(lock, overlap))
1667                         continue;
1668                 return (overlap);
1669         }
1670         return (NOLOCKF);
1671 }
1672
1673 /*
1674  * Walk the list of locks for an inode to find an overlapping lock (if
1675  * any) and return a classification of that overlap.
1676  *
1677  * Arguments:
1678  *      *overlap        The place in the lock list to start looking
1679  *      lock            The lock which is being tested
1680  *      type            Pass 'SELF' to test only locks with the same
1681  *                      owner as lock, or 'OTHER' to test only locks
1682  *                      with a different owner
1683  *
1684  * Returns one of six values:
1685  *      0) no overlap
1686  *      1) overlap == lock
1687  *      2) overlap contains lock
1688  *      3) lock contains overlap
1689  *      4) overlap starts before lock
1690  *      5) overlap ends after lock
1691  *
1692  * If there is an overlapping lock, '*overlap' is set to point at the
1693  * overlapping lock.
1694  *
1695  * NOTE: this returns only the FIRST overlapping lock.  There
1696  *       may be more than one.
1697  */
1698 static int
1699 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1700 {
1701         struct lockf_entry *lf;
1702         off_t start, end;
1703         int res;
1704
1705         if ((*overlap) == NOLOCKF) {
1706                 return (0);
1707         }
1708 #ifdef LOCKF_DEBUG
1709         if (lockf_debug & 2)
1710                 lf_print("lf_findoverlap: looking for overlap in", lock);
1711 #endif /* LOCKF_DEBUG */
1712         start = lock->lf_start;
1713         end = lock->lf_end;
1714         res = 0;
1715         while (*overlap) {
1716                 lf = *overlap;
1717                 if (lf->lf_start > end)
1718                         break;
1719                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1720                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1721                         *overlap = LIST_NEXT(lf, lf_link);
1722                         continue;
1723                 }
1724 #ifdef LOCKF_DEBUG
1725                 if (lockf_debug & 2)
1726                         lf_print("\tchecking", lf);
1727 #endif /* LOCKF_DEBUG */
1728                 /*
1729                  * OK, check for overlap
1730                  *
1731                  * Six cases:
1732                  *      0) no overlap
1733                  *      1) overlap == lock
1734                  *      2) overlap contains lock
1735                  *      3) lock contains overlap
1736                  *      4) overlap starts before lock
1737                  *      5) overlap ends after lock
1738                  */
1739                 if (start > lf->lf_end) {
1740                         /* Case 0 */
1741 #ifdef LOCKF_DEBUG
1742                         if (lockf_debug & 2)
1743                                 printf("no overlap\n");
1744 #endif /* LOCKF_DEBUG */
1745                         *overlap = LIST_NEXT(lf, lf_link);
1746                         continue;
1747                 }
1748                 if (lf->lf_start == start && lf->lf_end == end) {
1749                         /* Case 1 */
1750 #ifdef LOCKF_DEBUG
1751                         if (lockf_debug & 2)
1752                                 printf("overlap == lock\n");
1753 #endif /* LOCKF_DEBUG */
1754                         res = 1;
1755                         break;
1756                 }
1757                 if (lf->lf_start <= start && lf->lf_end >= end) {
1758                         /* Case 2 */
1759 #ifdef LOCKF_DEBUG
1760                         if (lockf_debug & 2)
1761                                 printf("overlap contains lock\n");
1762 #endif /* LOCKF_DEBUG */
1763                         res = 2;
1764                         break;
1765                 }
1766                 if (start <= lf->lf_start && end >= lf->lf_end) {
1767                         /* Case 3 */
1768 #ifdef LOCKF_DEBUG
1769                         if (lockf_debug & 2)
1770                                 printf("lock contains overlap\n");
1771 #endif /* LOCKF_DEBUG */
1772                         res = 3;
1773                         break;
1774                 }
1775                 if (lf->lf_start < start && lf->lf_end >= start) {
1776                         /* Case 4 */
1777 #ifdef LOCKF_DEBUG
1778                         if (lockf_debug & 2)
1779                                 printf("overlap starts before lock\n");
1780 #endif /* LOCKF_DEBUG */
1781                         res = 4;
1782                         break;
1783                 }
1784                 if (lf->lf_start > start && lf->lf_end > end) {
1785                         /* Case 5 */
1786 #ifdef LOCKF_DEBUG
1787                         if (lockf_debug & 2)
1788                                 printf("overlap ends after lock\n");
1789 #endif /* LOCKF_DEBUG */
1790                         res = 5;
1791                         break;
1792                 }
1793                 panic("lf_findoverlap: default");
1794         }
1795         return (res);
1796 }
1797
1798 /*
1799  * Split an the existing 'lock1', based on the extent of the lock
1800  * described by 'lock2'. The existing lock should cover 'lock2'
1801  * entirely.
1802  *
1803  * Any pending locks which have been been unblocked are added to
1804  * 'granted'
1805  */
1806 static void
1807 lf_split(struct lockf *state, struct lockf_entry *lock1,
1808     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1809 {
1810         struct lockf_entry *splitlock;
1811
1812 #ifdef LOCKF_DEBUG
1813         if (lockf_debug & 2) {
1814                 lf_print("lf_split", lock1);
1815                 lf_print("splitting from", lock2);
1816         }
1817 #endif /* LOCKF_DEBUG */
1818         /*
1819          * Check to see if we don't need to split at all.
1820          */
1821         if (lock1->lf_start == lock2->lf_start) {
1822                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1823                 return;
1824         }
1825         if (lock1->lf_end == lock2->lf_end) {
1826                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1827                 return;
1828         }
1829         /*
1830          * Make a new lock consisting of the last part of
1831          * the encompassing lock.
1832          */
1833         splitlock = lf_alloc_lock(lock1->lf_owner);
1834         memcpy(splitlock, lock1, sizeof *splitlock);
1835         splitlock->lf_refs = 1;
1836         if (splitlock->lf_flags & F_REMOTE)
1837                 vref(splitlock->lf_vnode);
1838
1839         /*
1840          * This cannot cause a deadlock since any edges we would add
1841          * to splitlock already exist in lock1. We must be sure to add
1842          * necessary dependancies to splitlock before we reduce lock1
1843          * otherwise we may accidentally grant a pending lock that
1844          * was blocked by the tail end of lock1.
1845          */
1846         splitlock->lf_start = lock2->lf_end + 1;
1847         LIST_INIT(&splitlock->lf_outedges);
1848         LIST_INIT(&splitlock->lf_inedges);
1849         sx_xlock(&lf_owner_graph_lock);
1850         lf_add_incoming(state, splitlock);
1851         sx_xunlock(&lf_owner_graph_lock);
1852
1853         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1854
1855         /*
1856          * OK, now link it in
1857          */
1858         lf_insert_lock(state, splitlock);
1859 }
1860
1861 struct lockdesc {
1862         STAILQ_ENTRY(lockdesc) link;
1863         struct vnode *vp;
1864         struct flock fl;
1865 };
1866 STAILQ_HEAD(lockdesclist, lockdesc);
1867
1868 int
1869 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1870 {
1871         struct lockf *ls;
1872         struct lockf_entry *lf;
1873         struct lockdesc *ldesc;
1874         struct lockdesclist locks;
1875         int error;
1876
1877         /*
1878          * In order to keep the locking simple, we iterate over the
1879          * active lock lists to build a list of locks that need
1880          * releasing. We then call the iterator for each one in turn.
1881          *
1882          * We take an extra reference to the vnode for the duration to
1883          * make sure it doesn't go away before we are finished.
1884          */
1885         STAILQ_INIT(&locks);
1886         sx_xlock(&lf_lock_states_lock);
1887         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1888                 sx_xlock(&ls->ls_lock);
1889                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1890                         if (lf->lf_owner->lo_sysid != sysid)
1891                                 continue;
1892
1893                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1894                             M_WAITOK);
1895                         ldesc->vp = lf->lf_vnode;
1896                         vref(ldesc->vp);
1897                         ldesc->fl.l_start = lf->lf_start;
1898                         if (lf->lf_end == OFF_MAX)
1899                                 ldesc->fl.l_len = 0;
1900                         else
1901                                 ldesc->fl.l_len =
1902                                         lf->lf_end - lf->lf_start + 1;
1903                         ldesc->fl.l_whence = SEEK_SET;
1904                         ldesc->fl.l_type = F_UNLCK;
1905                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1906                         ldesc->fl.l_sysid = sysid;
1907                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1908                 }
1909                 sx_xunlock(&ls->ls_lock);
1910         }
1911         sx_xunlock(&lf_lock_states_lock);
1912
1913         /*
1914          * Call the iterator function for each lock in turn. If the
1915          * iterator returns an error code, just free the rest of the
1916          * lockdesc structures.
1917          */
1918         error = 0;
1919         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1920                 STAILQ_REMOVE_HEAD(&locks, link);
1921                 if (!error)
1922                         error = fn(ldesc->vp, &ldesc->fl, arg);
1923                 vrele(ldesc->vp);
1924                 free(ldesc, M_LOCKF);
1925         }
1926
1927         return (error);
1928 }
1929
1930 int
1931 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1932 {
1933         struct lockf *ls;
1934         struct lockf_entry *lf;
1935         struct lockdesc *ldesc;
1936         struct lockdesclist locks;
1937         int error;
1938
1939         /*
1940          * In order to keep the locking simple, we iterate over the
1941          * active lock lists to build a list of locks that need
1942          * releasing. We then call the iterator for each one in turn.
1943          *
1944          * We take an extra reference to the vnode for the duration to
1945          * make sure it doesn't go away before we are finished.
1946          */
1947         STAILQ_INIT(&locks);
1948         VI_LOCK(vp);
1949         ls = vp->v_lockf;
1950         if (!ls) {
1951                 VI_UNLOCK(vp);
1952                 return (0);
1953         }
1954         ls->ls_threads++;
1955         VI_UNLOCK(vp);
1956
1957         sx_xlock(&ls->ls_lock);
1958         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1959                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1960                     M_WAITOK);
1961                 ldesc->vp = lf->lf_vnode;
1962                 vref(ldesc->vp);
1963                 ldesc->fl.l_start = lf->lf_start;
1964                 if (lf->lf_end == OFF_MAX)
1965                         ldesc->fl.l_len = 0;
1966                 else
1967                         ldesc->fl.l_len =
1968                                 lf->lf_end - lf->lf_start + 1;
1969                 ldesc->fl.l_whence = SEEK_SET;
1970                 ldesc->fl.l_type = F_UNLCK;
1971                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1972                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1973                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1974         }
1975         sx_xunlock(&ls->ls_lock);
1976         VI_LOCK(vp);
1977         ls->ls_threads--;
1978         wakeup(ls);
1979         VI_UNLOCK(vp);
1980
1981         /*
1982          * Call the iterator function for each lock in turn. If the
1983          * iterator returns an error code, just free the rest of the
1984          * lockdesc structures.
1985          */
1986         error = 0;
1987         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1988                 STAILQ_REMOVE_HEAD(&locks, link);
1989                 if (!error)
1990                         error = fn(ldesc->vp, &ldesc->fl, arg);
1991                 vrele(ldesc->vp);
1992                 free(ldesc, M_LOCKF);
1993         }
1994
1995         return (error);
1996 }
1997
1998 static int
1999 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2000 {
2001
2002         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2003         return (0);
2004 }
2005
2006 void
2007 lf_clearremotesys(int sysid)
2008 {
2009
2010         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2011         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2012 }
2013
2014 int
2015 lf_countlocks(int sysid)
2016 {
2017         int i;
2018         struct lock_owner *lo;
2019         int count;
2020
2021         count = 0;
2022         sx_xlock(&lf_lock_owners_lock);
2023         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2024                 LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2025                         if (lo->lo_sysid == sysid)
2026                                 count += lo->lo_refs;
2027         sx_xunlock(&lf_lock_owners_lock);
2028
2029         return (count);
2030 }
2031
2032 #ifdef LOCKF_DEBUG
2033
2034 /*
2035  * Return non-zero if y is reachable from x using a brute force
2036  * search. If reachable and path is non-null, return the route taken
2037  * in path.
2038  */
2039 static int
2040 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2041     struct owner_vertex_list *path)
2042 {
2043         struct owner_edge *e;
2044
2045         if (x == y) {
2046                 if (path)
2047                         TAILQ_INSERT_HEAD(path, x, v_link);
2048                 return 1;
2049         }
2050
2051         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2052                 if (graph_reaches(e->e_to, y, path)) {
2053                         if (path)
2054                                 TAILQ_INSERT_HEAD(path, x, v_link);
2055                         return 1;
2056                 }
2057         }
2058         return 0;
2059 }
2060
2061 /*
2062  * Perform consistency checks on the graph. Make sure the values of
2063  * v_order are correct. If checkorder is non-zero, check no vertex can
2064  * reach any other vertex with a smaller order.
2065  */
2066 static void
2067 graph_check(struct owner_graph *g, int checkorder)
2068 {
2069         int i, j;
2070
2071         for (i = 0; i < g->g_size; i++) {
2072                 if (!g->g_vertices[i]->v_owner)
2073                         continue;
2074                 KASSERT(g->g_vertices[i]->v_order == i,
2075                     ("lock graph vertices disordered"));
2076                 if (checkorder) {
2077                         for (j = 0; j < i; j++) {
2078                                 if (!g->g_vertices[j]->v_owner)
2079                                         continue;
2080                                 KASSERT(!graph_reaches(g->g_vertices[i],
2081                                         g->g_vertices[j], NULL),
2082                                     ("lock graph vertices disordered"));
2083                         }
2084                 }
2085         }
2086 }
2087
2088 static void
2089 graph_print_vertices(struct owner_vertex_list *set)
2090 {
2091         struct owner_vertex *v;
2092
2093         printf("{ ");
2094         TAILQ_FOREACH(v, set, v_link) {
2095                 printf("%d:", v->v_order);
2096                 lf_print_owner(v->v_owner);
2097                 if (TAILQ_NEXT(v, v_link))
2098                         printf(", ");
2099         }
2100         printf(" }\n");
2101 }
2102
2103 #endif
2104
2105 /*
2106  * Calculate the sub-set of vertices v from the affected region [y..x]
2107  * where v is reachable from y. Return -1 if a loop was detected
2108  * (i.e. x is reachable from y, otherwise the number of vertices in
2109  * this subset.
2110  */
2111 static int
2112 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2113     struct owner_vertex *y, struct owner_vertex_list *delta)
2114 {
2115         uint32_t gen;
2116         struct owner_vertex *v;
2117         struct owner_edge *e;
2118         int n;
2119
2120         /*
2121          * We start with a set containing just y. Then for each vertex
2122          * v in the set so far unprocessed, we add each vertex that v
2123          * has an out-edge to and that is within the affected region
2124          * [y..x]. If we see the vertex x on our travels, stop
2125          * immediately.
2126          */
2127         TAILQ_INIT(delta);
2128         TAILQ_INSERT_TAIL(delta, y, v_link);
2129         v = y;
2130         n = 1;
2131         gen = g->g_gen;
2132         while (v) {
2133                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2134                         if (e->e_to == x)
2135                                 return -1;
2136                         if (e->e_to->v_order < x->v_order
2137                             && e->e_to->v_gen != gen) {
2138                                 e->e_to->v_gen = gen;
2139                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2140                                 n++;
2141                         }
2142                 }
2143                 v = TAILQ_NEXT(v, v_link);
2144         }
2145
2146         return (n);
2147 }
2148
2149 /*
2150  * Calculate the sub-set of vertices v from the affected region [y..x]
2151  * where v reaches x. Return the number of vertices in this subset.
2152  */
2153 static int
2154 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2155     struct owner_vertex *y, struct owner_vertex_list *delta)
2156 {
2157         uint32_t gen;
2158         struct owner_vertex *v;
2159         struct owner_edge *e;
2160         int n;
2161
2162         /*
2163          * We start with a set containing just x. Then for each vertex
2164          * v in the set so far unprocessed, we add each vertex that v
2165          * has an in-edge from and that is within the affected region
2166          * [y..x].
2167          */
2168         TAILQ_INIT(delta);
2169         TAILQ_INSERT_TAIL(delta, x, v_link);
2170         v = x;
2171         n = 1;
2172         gen = g->g_gen;
2173         while (v) {
2174                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2175                         if (e->e_from->v_order > y->v_order
2176                             && e->e_from->v_gen != gen) {
2177                                 e->e_from->v_gen = gen;
2178                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2179                                 n++;
2180                         }
2181                 }
2182                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2183         }
2184
2185         return (n);
2186 }
2187
2188 static int
2189 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2190 {
2191         struct owner_vertex *v;
2192         int i, j;
2193
2194         TAILQ_FOREACH(v, set, v_link) {
2195                 for (i = n;
2196                      i > 0 && indices[i - 1] > v->v_order; i--)
2197                         ;
2198                 for (j = n - 1; j >= i; j--)
2199                         indices[j + 1] = indices[j];
2200                 indices[i] = v->v_order;
2201                 n++;
2202         }
2203
2204         return (n);
2205 }
2206
2207 static int
2208 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2209     struct owner_vertex_list *set)
2210 {
2211         struct owner_vertex *v, *vlowest;
2212
2213         while (!TAILQ_EMPTY(set)) {
2214                 vlowest = NULL;
2215                 TAILQ_FOREACH(v, set, v_link) {
2216                         if (!vlowest || v->v_order < vlowest->v_order)
2217                                 vlowest = v;
2218                 }
2219                 TAILQ_REMOVE(set, vlowest, v_link);
2220                 vlowest->v_order = indices[nextunused];
2221                 g->g_vertices[vlowest->v_order] = vlowest;
2222                 nextunused++;
2223         }
2224
2225         return (nextunused);
2226 }
2227
2228 static int
2229 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2230     struct owner_vertex *y)
2231 {
2232         struct owner_edge *e;
2233         struct owner_vertex_list deltaF, deltaB;
2234         int nF, nB, n, vi, i;
2235         int *indices;
2236
2237         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2238
2239         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2240                 if (e->e_to == y) {
2241                         e->e_refs++;
2242                         return (0);
2243                 }
2244         }
2245
2246 #ifdef LOCKF_DEBUG
2247         if (lockf_debug & 8) {
2248                 printf("adding edge %d:", x->v_order);
2249                 lf_print_owner(x->v_owner);
2250                 printf(" -> %d:", y->v_order);
2251                 lf_print_owner(y->v_owner);
2252                 printf("\n");
2253         }
2254 #endif
2255         if (y->v_order < x->v_order) {
2256                 /*
2257                  * The new edge violates the order. First find the set
2258                  * of affected vertices reachable from y (deltaF) and
2259                  * the set of affect vertices affected that reach x
2260                  * (deltaB), using the graph generation number to
2261                  * detect whether we have visited a given vertex
2262                  * already. We re-order the graph so that each vertex
2263                  * in deltaB appears before each vertex in deltaF.
2264                  *
2265                  * If x is a member of deltaF, then the new edge would
2266                  * create a cycle. Otherwise, we may assume that
2267                  * deltaF and deltaB are disjoint.
2268                  */
2269                 g->g_gen++;
2270                 if (g->g_gen == 0) {
2271                         /*
2272                          * Generation wrap.
2273                          */
2274                         for (vi = 0; vi < g->g_size; vi++) {
2275                                 g->g_vertices[vi]->v_gen = 0;
2276                         }
2277                         g->g_gen++;
2278                 }
2279                 nF = graph_delta_forward(g, x, y, &deltaF);
2280                 if (nF < 0) {
2281 #ifdef LOCKF_DEBUG
2282                         if (lockf_debug & 8) {
2283                                 struct owner_vertex_list path;
2284                                 printf("deadlock: ");
2285                                 TAILQ_INIT(&path);
2286                                 graph_reaches(y, x, &path);
2287                                 graph_print_vertices(&path);
2288                         }
2289 #endif
2290                         return (EDEADLK);
2291                 }
2292
2293 #ifdef LOCKF_DEBUG
2294                 if (lockf_debug & 8) {
2295                         printf("re-ordering graph vertices\n");
2296                         printf("deltaF = ");
2297                         graph_print_vertices(&deltaF);
2298                 }
2299 #endif
2300
2301                 nB = graph_delta_backward(g, x, y, &deltaB);
2302
2303 #ifdef LOCKF_DEBUG
2304                 if (lockf_debug & 8) {
2305                         printf("deltaB = ");
2306                         graph_print_vertices(&deltaB);
2307                 }
2308 #endif
2309
2310                 /*
2311                  * We first build a set of vertex indices (vertex
2312                  * order values) that we may use, then we re-assign
2313                  * orders first to those vertices in deltaB, then to
2314                  * deltaF. Note that the contents of deltaF and deltaB
2315                  * may be partially disordered - we perform an
2316                  * insertion sort while building our index set.
2317                  */
2318                 indices = g->g_indexbuf;
2319                 n = graph_add_indices(indices, 0, &deltaF);
2320                 graph_add_indices(indices, n, &deltaB);
2321
2322                 /*
2323                  * We must also be sure to maintain the relative
2324                  * ordering of deltaF and deltaB when re-assigning
2325                  * vertices. We do this by iteratively removing the
2326                  * lowest ordered element from the set and assigning
2327                  * it the next value from our new ordering.
2328                  */
2329                 i = graph_assign_indices(g, indices, 0, &deltaB);
2330                 graph_assign_indices(g, indices, i, &deltaF);
2331
2332 #ifdef LOCKF_DEBUG
2333                 if (lockf_debug & 8) {
2334                         struct owner_vertex_list set;
2335                         TAILQ_INIT(&set);
2336                         for (i = 0; i < nB + nF; i++)
2337                                 TAILQ_INSERT_TAIL(&set,
2338                                     g->g_vertices[indices[i]], v_link);
2339                         printf("new ordering = ");
2340                         graph_print_vertices(&set);
2341                 }
2342 #endif
2343         }
2344
2345         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2346
2347 #ifdef LOCKF_DEBUG
2348         if (lockf_debug & 8) {
2349                 graph_check(g, TRUE);
2350         }
2351 #endif
2352
2353         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2354
2355         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2356         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2357         e->e_refs = 1;
2358         e->e_from = x;
2359         e->e_to = y;
2360
2361         return (0);
2362 }
2363
2364 /*
2365  * Remove an edge x->y from the graph.
2366  */
2367 static void
2368 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2369     struct owner_vertex *y)
2370 {
2371         struct owner_edge *e;
2372
2373         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2374
2375         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2376                 if (e->e_to == y)
2377                         break;
2378         }
2379         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2380
2381         e->e_refs--;
2382         if (e->e_refs == 0) {
2383 #ifdef LOCKF_DEBUG
2384                 if (lockf_debug & 8) {
2385                         printf("removing edge %d:", x->v_order);
2386                         lf_print_owner(x->v_owner);
2387                         printf(" -> %d:", y->v_order);
2388                         lf_print_owner(y->v_owner);
2389                         printf("\n");
2390                 }
2391 #endif
2392                 LIST_REMOVE(e, e_outlink);
2393                 LIST_REMOVE(e, e_inlink);
2394                 free(e, M_LOCKF);
2395         }
2396 }
2397
2398 /*
2399  * Allocate a vertex from the free list. Return ENOMEM if there are
2400  * none.
2401  */
2402 static struct owner_vertex *
2403 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2404 {
2405         struct owner_vertex *v;
2406
2407         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2408
2409         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2410         if (g->g_size == g->g_space) {
2411                 g->g_vertices = realloc(g->g_vertices,
2412                     2 * g->g_space * sizeof(struct owner_vertex *),
2413                     M_LOCKF, M_WAITOK);
2414                 free(g->g_indexbuf, M_LOCKF);
2415                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2416                     M_LOCKF, M_WAITOK);
2417                 g->g_space = 2 * g->g_space;
2418         }
2419         v->v_order = g->g_size;
2420         v->v_gen = g->g_gen;
2421         g->g_vertices[g->g_size] = v;
2422         g->g_size++;
2423
2424         LIST_INIT(&v->v_outedges);
2425         LIST_INIT(&v->v_inedges);
2426         v->v_owner = lo;
2427
2428         return (v);
2429 }
2430
2431 static void
2432 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2433 {
2434         struct owner_vertex *w;
2435         int i;
2436
2437         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2438         
2439         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2440         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2441
2442         /*
2443          * Remove from the graph's array and close up the gap,
2444          * renumbering the other vertices.
2445          */
2446         for (i = v->v_order + 1; i < g->g_size; i++) {
2447                 w = g->g_vertices[i];
2448                 w->v_order--;
2449                 g->g_vertices[i - 1] = w;
2450         }
2451         g->g_size--;
2452
2453         free(v, M_LOCKF);
2454 }
2455
2456 static struct owner_graph *
2457 graph_init(struct owner_graph *g)
2458 {
2459
2460         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2461             M_LOCKF, M_WAITOK);
2462         g->g_size = 0;
2463         g->g_space = 10;
2464         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2465         g->g_gen = 0;
2466
2467         return (g);
2468 }
2469
2470 #ifdef LOCKF_DEBUG
2471 /*
2472  * Print description of a lock owner
2473  */
2474 static void
2475 lf_print_owner(struct lock_owner *lo)
2476 {
2477
2478         if (lo->lo_flags & F_REMOTE) {
2479                 printf("remote pid %d, system %d",
2480                     lo->lo_pid, lo->lo_sysid);
2481         } else if (lo->lo_flags & F_FLOCK) {
2482                 printf("file %p", lo->lo_id);
2483         } else {
2484                 printf("local pid %d", lo->lo_pid);
2485         }
2486 }
2487
2488 /*
2489  * Print out a lock.
2490  */
2491 static void
2492 lf_print(char *tag, struct lockf_entry *lock)
2493 {
2494
2495         printf("%s: lock %p for ", tag, (void *)lock);
2496         lf_print_owner(lock->lf_owner);
2497         if (lock->lf_inode != (struct inode *)0)
2498                 printf(" in ino %ju on dev <%s>,",
2499                     (uintmax_t)lock->lf_inode->i_number,
2500                     devtoname(lock->lf_inode->i_dev));
2501         printf(" %s, start %jd, end ",
2502             lock->lf_type == F_RDLCK ? "shared" :
2503             lock->lf_type == F_WRLCK ? "exclusive" :
2504             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2505             (intmax_t)lock->lf_start);
2506         if (lock->lf_end == OFF_MAX)
2507                 printf("EOF");
2508         else
2509                 printf("%jd", (intmax_t)lock->lf_end);
2510         if (!LIST_EMPTY(&lock->lf_outedges))
2511                 printf(" block %p\n",
2512                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2513         else
2514                 printf("\n");
2515 }
2516
2517 static void
2518 lf_printlist(char *tag, struct lockf_entry *lock)
2519 {
2520         struct lockf_entry *lf, *blk;
2521         struct lockf_edge *e;
2522
2523         if (lock->lf_inode == (struct inode *)0)
2524                 return;
2525
2526         printf("%s: Lock list for ino %ju on dev <%s>:\n",
2527             tag, (uintmax_t)lock->lf_inode->i_number,
2528             devtoname(lock->lf_inode->i_dev));
2529         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2530                 printf("\tlock %p for ",(void *)lf);
2531                 lf_print_owner(lock->lf_owner);
2532                 printf(", %s, start %jd, end %jd",
2533                     lf->lf_type == F_RDLCK ? "shared" :
2534                     lf->lf_type == F_WRLCK ? "exclusive" :
2535                     lf->lf_type == F_UNLCK ? "unlock" :
2536                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2537                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2538                         blk = e->le_to;
2539                         printf("\n\t\tlock request %p for ", (void *)blk);
2540                         lf_print_owner(blk->lf_owner);
2541                         printf(", %s, start %jd, end %jd",
2542                             blk->lf_type == F_RDLCK ? "shared" :
2543                             blk->lf_type == F_WRLCK ? "exclusive" :
2544                             blk->lf_type == F_UNLCK ? "unlock" :
2545                             "unknown", (intmax_t)blk->lf_start,
2546                             (intmax_t)blk->lf_end);
2547                         if (!LIST_EMPTY(&blk->lf_inedges))
2548                                 panic("lf_printlist: bad list");
2549                 }
2550                 printf("\n");
2551         }
2552 }
2553 #endif /* LOCKF_DEBUG */