]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_lockf.c
VFS: update VOP_FSYNC() debug check to reflect actual locking policy
[FreeBSD/FreeBSD.git] / sys / kern / kern_lockf.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *      The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  */
60
61 #include <sys/cdefs.h>
62 #include "opt_debug_lockf.h"
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/hash.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/limits.h>
70 #include <sys/lock.h>
71 #include <sys/mount.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/sbuf.h>
75 #include <sys/stat.h>
76 #include <sys/sx.h>
77 #include <sys/unistd.h>
78 #include <sys/user.h>
79 #include <sys/vnode.h>
80 #include <sys/malloc.h>
81 #include <sys/fcntl.h>
82 #include <sys/lockf.h>
83 #include <sys/taskqueue.h>
84
85 #ifdef LOCKF_DEBUG
86 #include <sys/sysctl.h>
87
88 static int      lockf_debug = 0; /* control debug output */
89 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
90 #endif
91
92 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
93
94 struct owner_edge;
95 struct owner_vertex;
96 struct owner_vertex_list;
97 struct owner_graph;
98
99 #define NOLOCKF (struct lockf_entry *)0
100 #define SELF    0x1
101 #define OTHERS  0x2
102 static void      lf_init(void *);
103 static int       lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
104 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
105     int);
106 static struct lockf_entry *
107                  lf_alloc_lock(struct lock_owner *);
108 static int       lf_free_lock(struct lockf_entry *);
109 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
110 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
111 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
112 static void      lf_free_edge(struct lockf_edge *);
113 static struct lockf_edge *
114                  lf_alloc_edge(void);
115 static void      lf_alloc_vertex(struct lockf_entry *);
116 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
117 static void      lf_remove_edge(struct lockf_edge *);
118 static void      lf_remove_outgoing(struct lockf_entry *);
119 static void      lf_remove_incoming(struct lockf_entry *);
120 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
121 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
122 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
123     int);
124 static struct lockf_entry *
125                  lf_getblock(struct lockf *, struct lockf_entry *);
126 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
127 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
128 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
129 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
130     int all, struct lockf_entry_list *);
131 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
132         struct lockf_entry_list*);
133 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
134         struct lockf_entry_list*);
135 static int       lf_setlock(struct lockf *, struct lockf_entry *,
136     struct vnode *, void **cookiep);
137 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
138 static void      lf_split(struct lockf *, struct lockf_entry *,
139     struct lockf_entry *, struct lockf_entry_list *);
140 #ifdef LOCKF_DEBUG
141 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
142     struct owner_vertex_list *path);
143 static void      graph_check(struct owner_graph *g, int checkorder);
144 static void      graph_print_vertices(struct owner_vertex_list *set);
145 #endif
146 static int       graph_delta_forward(struct owner_graph *g,
147     struct owner_vertex *x, struct owner_vertex *y,
148     struct owner_vertex_list *delta);
149 static int       graph_delta_backward(struct owner_graph *g,
150     struct owner_vertex *x, struct owner_vertex *y,
151     struct owner_vertex_list *delta);
152 static int       graph_add_indices(int *indices, int n,
153     struct owner_vertex_list *set);
154 static int       graph_assign_indices(struct owner_graph *g, int *indices,
155     int nextunused, struct owner_vertex_list *set);
156 static int       graph_add_edge(struct owner_graph *g,
157     struct owner_vertex *x, struct owner_vertex *y);
158 static void      graph_remove_edge(struct owner_graph *g,
159     struct owner_vertex *x, struct owner_vertex *y);
160 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
161     struct lock_owner *lo);
162 static void      graph_free_vertex(struct owner_graph *g,
163     struct owner_vertex *v);
164 static struct owner_graph * graph_init(struct owner_graph *g);
165 #ifdef LOCKF_DEBUG
166 static void      lf_print(char *, struct lockf_entry *);
167 static void      lf_printlist(char *, struct lockf_entry *);
168 static void      lf_print_owner(struct lock_owner *);
169 #endif
170
171 /*
172  * This structure is used to keep track of both local and remote lock
173  * owners. The lf_owner field of the struct lockf_entry points back at
174  * the lock owner structure. Each possible lock owner (local proc for
175  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
176  * pair for remote locks) is represented by a unique instance of
177  * struct lock_owner.
178  *
179  * If a lock owner has a lock that blocks some other lock or a lock
180  * that is waiting for some other lock, it also has a vertex in the
181  * owner_graph below.
182  *
183  * Locks:
184  * (s)          locked by state->ls_lock
185  * (S)          locked by lf_lock_states_lock
186  * (g)          locked by lf_owner_graph_lock
187  * (c)          const until freeing
188  */
189 #define LOCK_OWNER_HASH_SIZE    256
190
191 struct lock_owner {
192         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
193         int     lo_refs;            /* (l) Number of locks referring to this */
194         int     lo_flags;           /* (c) Flags passed to lf_advlock */
195         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
196         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
197         int     lo_sysid;           /* (c) System Id of the lock owner */
198         int     lo_hash;            /* (c) Used to lock the appropriate chain */
199         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
200 };
201
202 LIST_HEAD(lock_owner_list, lock_owner);
203
204 struct lock_owner_chain {
205         struct sx               lock;
206         struct lock_owner_list  list;
207 };
208
209 static struct sx                lf_lock_states_lock;
210 static struct lockf_list        lf_lock_states; /* (S) */
211 static struct lock_owner_chain  lf_lock_owners[LOCK_OWNER_HASH_SIZE];
212
213 /*
214  * Structures for deadlock detection.
215  *
216  * We have two types of directed graph, the first is the set of locks,
217  * both active and pending on a vnode. Within this graph, active locks
218  * are terminal nodes in the graph (i.e. have no out-going
219  * edges). Pending locks have out-going edges to each blocking active
220  * lock that prevents the lock from being granted and also to each
221  * older pending lock that would block them if it was active. The
222  * graph for each vnode is naturally acyclic; new edges are only ever
223  * added to or from new nodes (either new pending locks which only add
224  * out-going edges or new active locks which only add in-coming edges)
225  * therefore they cannot create loops in the lock graph.
226  *
227  * The second graph is a global graph of lock owners. Each lock owner
228  * is a vertex in that graph and an edge is added to the graph
229  * whenever an edge is added to a vnode graph, with end points
230  * corresponding to owner of the new pending lock and the owner of the
231  * lock upon which it waits. In order to prevent deadlock, we only add
232  * an edge to this graph if the new edge would not create a cycle.
233  * 
234  * The lock owner graph is topologically sorted, i.e. if a node has
235  * any outgoing edges, then it has an order strictly less than any
236  * node to which it has an outgoing edge. We preserve this ordering
237  * (and detect cycles) on edge insertion using Algorithm PK from the
238  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
239  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
240  * No. 1.7)
241  */
242 struct owner_vertex;
243
244 struct owner_edge {
245         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
246         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
247         int             e_refs;           /* (g) number of times added */
248         struct owner_vertex *e_from;      /* (c) out-going from here */
249         struct owner_vertex *e_to;        /* (c) in-coming to here */
250 };
251 LIST_HEAD(owner_edge_list, owner_edge);
252
253 struct owner_vertex {
254         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
255         uint32_t        v_gen;            /* (g) workspace for edge insertion */
256         int             v_order;          /* (g) order of vertex in graph */
257         struct owner_edge_list v_outedges;/* (g) list of out-edges */
258         struct owner_edge_list v_inedges; /* (g) list of in-edges */
259         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
260 };
261 TAILQ_HEAD(owner_vertex_list, owner_vertex);
262
263 struct owner_graph {
264         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
265         int             g_size;           /* (g) number of vertices */
266         int             g_space;          /* (g) space allocated for vertices */
267         int             *g_indexbuf;      /* (g) workspace for loop detection */
268         uint32_t        g_gen;            /* (g) increment when re-ordering */
269 };
270
271 static struct sx                lf_owner_graph_lock;
272 static struct owner_graph       lf_owner_graph;
273
274 /*
275  * Initialise various structures and locks.
276  */
277 static void
278 lf_init(void *dummy)
279 {
280         int i;
281
282         sx_init(&lf_lock_states_lock, "lock states lock");
283         LIST_INIT(&lf_lock_states);
284
285         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
286                 sx_init(&lf_lock_owners[i].lock, "lock owners lock");
287                 LIST_INIT(&lf_lock_owners[i].list);
288         }
289
290         sx_init(&lf_owner_graph_lock, "owner graph lock");
291         graph_init(&lf_owner_graph);
292 }
293 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
294
295 /*
296  * Generate a hash value for a lock owner.
297  */
298 static int
299 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
300 {
301         uint32_t h;
302
303         if (flags & F_REMOTE) {
304                 h = HASHSTEP(0, fl->l_pid);
305                 h = HASHSTEP(h, fl->l_sysid);
306         } else if (flags & F_FLOCK) {
307                 h = ((uintptr_t) id) >> 7;
308         } else {
309                 h = ((uintptr_t) vp) >> 7;
310         }
311
312         return (h % LOCK_OWNER_HASH_SIZE);
313 }
314
315 /*
316  * Return true if a lock owner matches the details passed to
317  * lf_advlock.
318  */
319 static int
320 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
321     int flags)
322 {
323         if (flags & F_REMOTE) {
324                 return lo->lo_pid == fl->l_pid
325                         && lo->lo_sysid == fl->l_sysid;
326         } else {
327                 return lo->lo_id == id;
328         }
329 }
330
331 static struct lockf_entry *
332 lf_alloc_lock(struct lock_owner *lo)
333 {
334         struct lockf_entry *lf;
335
336         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
337
338 #ifdef LOCKF_DEBUG
339         if (lockf_debug & 4)
340                 printf("Allocated lock %p\n", lf);
341 #endif
342         if (lo) {
343                 sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
344                 lo->lo_refs++;
345                 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
346                 lf->lf_owner = lo;
347         }
348
349         return (lf);
350 }
351
352 static int
353 lf_free_lock(struct lockf_entry *lock)
354 {
355         struct sx *chainlock;
356
357         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
358         if (--lock->lf_refs > 0)
359                 return (0);
360         /*
361          * Adjust the lock_owner reference count and
362          * reclaim the entry if this is the last lock
363          * for that owner.
364          */
365         struct lock_owner *lo = lock->lf_owner;
366         if (lo) {
367                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
368                     ("freeing lock with dependencies"));
369                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
370                     ("freeing lock with dependants"));
371                 chainlock = &lf_lock_owners[lo->lo_hash].lock;
372                 sx_xlock(chainlock);
373                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
374                 lo->lo_refs--;
375                 if (lo->lo_refs == 0) {
376 #ifdef LOCKF_DEBUG
377                         if (lockf_debug & 1)
378                                 printf("lf_free_lock: freeing lock owner %p\n",
379                                     lo);
380 #endif
381                         if (lo->lo_vertex) {
382                                 sx_xlock(&lf_owner_graph_lock);
383                                 graph_free_vertex(&lf_owner_graph,
384                                     lo->lo_vertex);
385                                 sx_xunlock(&lf_owner_graph_lock);
386                         }
387                         LIST_REMOVE(lo, lo_link);
388                         free(lo, M_LOCKF);
389 #ifdef LOCKF_DEBUG
390                         if (lockf_debug & 4)
391                                 printf("Freed lock owner %p\n", lo);
392 #endif
393                 }
394                 sx_unlock(chainlock);
395         }
396         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
397                 vrele(lock->lf_vnode);
398                 lock->lf_vnode = NULL;
399         }
400 #ifdef LOCKF_DEBUG
401         if (lockf_debug & 4)
402                 printf("Freed lock %p\n", lock);
403 #endif
404         free(lock, M_LOCKF);
405         return (1);
406 }
407
408 /*
409  * Advisory record locking support
410  */
411 int
412 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
413     u_quad_t size)
414 {
415         struct lockf *state;
416         struct flock *fl = ap->a_fl;
417         struct lockf_entry *lock;
418         struct vnode *vp = ap->a_vp;
419         caddr_t id = ap->a_id;
420         int flags = ap->a_flags;
421         int hash;
422         struct lock_owner *lo;
423         off_t start, end, oadd;
424         int error;
425
426         /*
427          * Handle the F_UNLKSYS case first - no need to mess about
428          * creating a lock owner for this one.
429          */
430         if (ap->a_op == F_UNLCKSYS) {
431                 lf_clearremotesys(fl->l_sysid);
432                 return (0);
433         }
434
435         /*
436          * Convert the flock structure into a start and end.
437          */
438         switch (fl->l_whence) {
439         case SEEK_SET:
440         case SEEK_CUR:
441                 /*
442                  * Caller is responsible for adding any necessary offset
443                  * when SEEK_CUR is used.
444                  */
445                 start = fl->l_start;
446                 break;
447
448         case SEEK_END:
449                 if (size > OFF_MAX ||
450                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
451                         return (EOVERFLOW);
452                 start = size + fl->l_start;
453                 break;
454
455         default:
456                 return (EINVAL);
457         }
458         if (start < 0)
459                 return (EINVAL);
460         if (fl->l_len < 0) {
461                 if (start == 0)
462                         return (EINVAL);
463                 end = start - 1;
464                 start += fl->l_len;
465                 if (start < 0)
466                         return (EINVAL);
467         } else if (fl->l_len == 0) {
468                 end = OFF_MAX;
469         } else {
470                 oadd = fl->l_len - 1;
471                 if (oadd > OFF_MAX - start)
472                         return (EOVERFLOW);
473                 end = start + oadd;
474         }
475
476 retry_setlock:
477
478         /*
479          * Avoid the common case of unlocking when inode has no locks.
480          */
481         if (ap->a_op != F_SETLK && (*statep) == NULL) {
482                 VI_LOCK(vp);
483                 if ((*statep) == NULL) {
484                         fl->l_type = F_UNLCK;
485                         VI_UNLOCK(vp);
486                         return (0);
487                 }
488                 VI_UNLOCK(vp);
489         }
490
491         /*
492          * Map our arguments to an existing lock owner or create one
493          * if this is the first time we have seen this owner.
494          */
495         hash = lf_hash_owner(id, vp, fl, flags);
496         sx_xlock(&lf_lock_owners[hash].lock);
497         LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
498                 if (lf_owner_matches(lo, id, fl, flags))
499                         break;
500         if (!lo) {
501                 /*
502                  * We initialise the lock with a reference
503                  * count which matches the new lockf_entry
504                  * structure created below.
505                  */
506                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
507                     M_WAITOK|M_ZERO);
508 #ifdef LOCKF_DEBUG
509                 if (lockf_debug & 4)
510                         printf("Allocated lock owner %p\n", lo);
511 #endif
512
513                 lo->lo_refs = 1;
514                 lo->lo_flags = flags;
515                 lo->lo_id = id;
516                 lo->lo_hash = hash;
517                 if (flags & F_REMOTE) {
518                         lo->lo_pid = fl->l_pid;
519                         lo->lo_sysid = fl->l_sysid;
520                 } else if (flags & F_FLOCK) {
521                         lo->lo_pid = -1;
522                         lo->lo_sysid = 0;
523                 } else {
524                         struct proc *p = (struct proc *) id;
525                         lo->lo_pid = p->p_pid;
526                         lo->lo_sysid = 0;
527                 }
528                 lo->lo_vertex = NULL;
529
530 #ifdef LOCKF_DEBUG
531                 if (lockf_debug & 1) {
532                         printf("lf_advlockasync: new lock owner %p ", lo);
533                         lf_print_owner(lo);
534                         printf("\n");
535                 }
536 #endif
537
538                 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
539         } else {
540                 /*
541                  * We have seen this lock owner before, increase its
542                  * reference count to account for the new lockf_entry
543                  * structure we create below.
544                  */
545                 lo->lo_refs++;
546         }
547         sx_xunlock(&lf_lock_owners[hash].lock);
548
549         /*
550          * Create the lockf structure. We initialise the lf_owner
551          * field here instead of in lf_alloc_lock() to avoid paying
552          * the lf_lock_owners_lock tax twice.
553          */
554         lock = lf_alloc_lock(NULL);
555         lock->lf_refs = 1;
556         lock->lf_start = start;
557         lock->lf_end = end;
558         lock->lf_owner = lo;
559         lock->lf_vnode = vp;
560         if (flags & F_REMOTE) {
561                 /*
562                  * For remote locks, the caller may release its ref to
563                  * the vnode at any time - we have to ref it here to
564                  * prevent it from being recycled unexpectedly.
565                  */
566                 vref(vp);
567         }
568
569         lock->lf_type = fl->l_type;
570         LIST_INIT(&lock->lf_outedges);
571         LIST_INIT(&lock->lf_inedges);
572         lock->lf_async_task = ap->a_task;
573         lock->lf_flags = ap->a_flags;
574
575         /*
576          * Do the requested operation. First find our state structure
577          * and create a new one if necessary - the caller's *statep
578          * variable and the state's ls_threads count is protected by
579          * the vnode interlock.
580          */
581         VI_LOCK(vp);
582         if (VN_IS_DOOMED(vp)) {
583                 VI_UNLOCK(vp);
584                 lf_free_lock(lock);
585                 return (ENOENT);
586         }
587
588         /*
589          * Allocate a state structure if necessary.
590          */
591         state = *statep;
592         if (state == NULL) {
593                 struct lockf *ls;
594
595                 VI_UNLOCK(vp);
596
597                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
598                 sx_init(&ls->ls_lock, "ls_lock");
599                 LIST_INIT(&ls->ls_active);
600                 LIST_INIT(&ls->ls_pending);
601                 ls->ls_threads = 1;
602
603                 sx_xlock(&lf_lock_states_lock);
604                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
605                 sx_xunlock(&lf_lock_states_lock);
606
607                 /*
608                  * Cope if we lost a race with some other thread while
609                  * trying to allocate memory.
610                  */
611                 VI_LOCK(vp);
612                 if (VN_IS_DOOMED(vp)) {
613                         VI_UNLOCK(vp);
614                         sx_xlock(&lf_lock_states_lock);
615                         LIST_REMOVE(ls, ls_link);
616                         sx_xunlock(&lf_lock_states_lock);
617                         sx_destroy(&ls->ls_lock);
618                         free(ls, M_LOCKF);
619                         lf_free_lock(lock);
620                         return (ENOENT);
621                 }
622                 if ((*statep) == NULL) {
623                         state = *statep = ls;
624                         VI_UNLOCK(vp);
625                 } else {
626                         state = *statep;
627                         MPASS(state->ls_threads >= 0);
628                         state->ls_threads++;
629                         VI_UNLOCK(vp);
630
631                         sx_xlock(&lf_lock_states_lock);
632                         LIST_REMOVE(ls, ls_link);
633                         sx_xunlock(&lf_lock_states_lock);
634                         sx_destroy(&ls->ls_lock);
635                         free(ls, M_LOCKF);
636                 }
637         } else {
638                 MPASS(state->ls_threads >= 0);
639                 state->ls_threads++;
640                 VI_UNLOCK(vp);
641         }
642
643         sx_xlock(&state->ls_lock);
644         /*
645          * Recheck the doomed vnode after state->ls_lock is
646          * locked. lf_purgelocks() requires that no new threads add
647          * pending locks when vnode is marked by VIRF_DOOMED flag.
648          */
649         if (VN_IS_DOOMED(vp)) {
650                 VI_LOCK(vp);
651                 MPASS(state->ls_threads > 0);
652                 state->ls_threads--;
653                 wakeup(state);
654                 VI_UNLOCK(vp);
655                 sx_xunlock(&state->ls_lock);
656                 lf_free_lock(lock);
657                 return (ENOENT);
658         }
659
660         switch (ap->a_op) {
661         case F_SETLK:
662                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
663                 break;
664
665         case F_UNLCK:
666                 error = lf_clearlock(state, lock);
667                 lf_free_lock(lock);
668                 break;
669
670         case F_GETLK:
671                 error = lf_getlock(state, lock, fl);
672                 lf_free_lock(lock);
673                 break;
674
675         case F_CANCEL:
676                 if (ap->a_cookiep)
677                         error = lf_cancel(state, lock, *ap->a_cookiep);
678                 else
679                         error = EINVAL;
680                 lf_free_lock(lock);
681                 break;
682
683         default:
684                 lf_free_lock(lock);
685                 error = EINVAL;
686                 break;
687         }
688
689 #ifdef DIAGNOSTIC
690         /*
691          * Check for some can't happen stuff. In this case, the active
692          * lock list becoming disordered or containing mutually
693          * blocking locks. We also check the pending list for locks
694          * which should be active (i.e. have no out-going edges).
695          */
696         LIST_FOREACH(lock, &state->ls_active, lf_link) {
697                 struct lockf_entry *lf;
698                 if (LIST_NEXT(lock, lf_link))
699                         KASSERT((lock->lf_start
700                                 <= LIST_NEXT(lock, lf_link)->lf_start),
701                             ("locks disordered"));
702                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
703                         if (lock == lf)
704                                 break;
705                         KASSERT(!lf_blocks(lock, lf),
706                             ("two conflicting active locks"));
707                         if (lock->lf_owner == lf->lf_owner)
708                                 KASSERT(!lf_overlaps(lock, lf),
709                                     ("two overlapping locks from same owner"));
710                 }
711         }
712         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
713                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
714                     ("pending lock which should be active"));
715         }
716 #endif
717         sx_xunlock(&state->ls_lock);
718
719         VI_LOCK(vp);
720         MPASS(state->ls_threads > 0);
721         state->ls_threads--;
722         if (state->ls_threads != 0) {
723                 wakeup(state);
724         }
725         VI_UNLOCK(vp);
726
727         if (error == EDOOFUS) {
728                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
729                 goto retry_setlock;
730         }
731         return (error);
732 }
733
734 int
735 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
736 {
737         struct vop_advlockasync_args a;
738
739         a.a_vp = ap->a_vp;
740         a.a_id = ap->a_id;
741         a.a_op = ap->a_op;
742         a.a_fl = ap->a_fl;
743         a.a_flags = ap->a_flags;
744         a.a_task = NULL;
745         a.a_cookiep = NULL;
746
747         return (lf_advlockasync(&a, statep, size));
748 }
749
750 void
751 lf_purgelocks(struct vnode *vp, struct lockf **statep)
752 {
753         struct lockf *state;
754         struct lockf_entry *lock, *nlock;
755
756         /*
757          * For this to work correctly, the caller must ensure that no
758          * other threads enter the locking system for this vnode,
759          * e.g. by checking VIRF_DOOMED. We wake up any threads that are
760          * sleeping waiting for locks on this vnode and then free all
761          * the remaining locks.
762          */
763         KASSERT(VN_IS_DOOMED(vp),
764             ("lf_purgelocks: vp %p has not vgone yet", vp));
765         state = *statep;
766         if (state == NULL) {
767                 return;
768         }
769         VI_LOCK(vp);
770         *statep = NULL;
771         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
772                 KASSERT(LIST_EMPTY(&state->ls_pending),
773                     ("freeing state with pending locks"));
774                 VI_UNLOCK(vp);
775                 goto out_free;
776         }
777         MPASS(state->ls_threads >= 0);
778         state->ls_threads++;
779         VI_UNLOCK(vp);
780
781         sx_xlock(&state->ls_lock);
782         sx_xlock(&lf_owner_graph_lock);
783         LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
784                 LIST_REMOVE(lock, lf_link);
785                 lf_remove_outgoing(lock);
786                 lf_remove_incoming(lock);
787
788                 /*
789                  * If its an async lock, we can just free it
790                  * here, otherwise we let the sleeping thread
791                  * free it.
792                  */
793                 if (lock->lf_async_task) {
794                         lf_free_lock(lock);
795                 } else {
796                         lock->lf_flags |= F_INTR;
797                         wakeup(lock);
798                 }
799         }
800         sx_xunlock(&lf_owner_graph_lock);
801         sx_xunlock(&state->ls_lock);
802
803         /*
804          * Wait for all other threads, sleeping and otherwise
805          * to leave.
806          */
807         VI_LOCK(vp);
808         while (state->ls_threads > 1)
809                 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
810         VI_UNLOCK(vp);
811
812         /*
813          * We can just free all the active locks since they
814          * will have no dependencies (we removed them all
815          * above). We don't need to bother locking since we
816          * are the last thread using this state structure.
817          */
818         KASSERT(LIST_EMPTY(&state->ls_pending),
819             ("lock pending for %p", state));
820         LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
821                 LIST_REMOVE(lock, lf_link);
822                 lf_free_lock(lock);
823         }
824 out_free:
825         sx_xlock(&lf_lock_states_lock);
826         LIST_REMOVE(state, ls_link);
827         sx_xunlock(&lf_lock_states_lock);
828         sx_destroy(&state->ls_lock);
829         free(state, M_LOCKF);
830 }
831
832 /*
833  * Return non-zero if locks 'x' and 'y' overlap.
834  */
835 static int
836 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
837 {
838
839         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
840 }
841
842 /*
843  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
844  */
845 static int
846 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
847 {
848
849         return x->lf_owner != y->lf_owner
850                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
851                 && lf_overlaps(x, y);
852 }
853
854 /*
855  * Allocate a lock edge from the free list
856  */
857 static struct lockf_edge *
858 lf_alloc_edge(void)
859 {
860
861         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
862 }
863
864 /*
865  * Free a lock edge.
866  */
867 static void
868 lf_free_edge(struct lockf_edge *e)
869 {
870
871         free(e, M_LOCKF);
872 }
873
874 /*
875  * Ensure that the lock's owner has a corresponding vertex in the
876  * owner graph.
877  */
878 static void
879 lf_alloc_vertex(struct lockf_entry *lock)
880 {
881         struct owner_graph *g = &lf_owner_graph;
882
883         if (!lock->lf_owner->lo_vertex)
884                 lock->lf_owner->lo_vertex =
885                         graph_alloc_vertex(g, lock->lf_owner);
886 }
887
888 /*
889  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
890  * the new edge would cause a cycle in the owner graph.
891  */
892 static int
893 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
894 {
895         struct owner_graph *g = &lf_owner_graph;
896         struct lockf_edge *e;
897         int error;
898
899 #ifdef DIAGNOSTIC
900         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
901                 KASSERT(e->le_to != y, ("adding lock edge twice"));
902 #endif
903
904         /*
905          * Make sure the two owners have entries in the owner graph.
906          */
907         lf_alloc_vertex(x);
908         lf_alloc_vertex(y);
909
910         error = graph_add_edge(g, x->lf_owner->lo_vertex,
911             y->lf_owner->lo_vertex);
912         if (error)
913                 return (error);
914
915         e = lf_alloc_edge();
916         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
917         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
918         e->le_from = x;
919         e->le_to = y;
920
921         return (0);
922 }
923
924 /*
925  * Remove an edge from the lock graph.
926  */
927 static void
928 lf_remove_edge(struct lockf_edge *e)
929 {
930         struct owner_graph *g = &lf_owner_graph;
931         struct lockf_entry *x = e->le_from;
932         struct lockf_entry *y = e->le_to;
933
934         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
935         LIST_REMOVE(e, le_outlink);
936         LIST_REMOVE(e, le_inlink);
937         e->le_from = NULL;
938         e->le_to = NULL;
939         lf_free_edge(e);
940 }
941
942 /*
943  * Remove all out-going edges from lock x.
944  */
945 static void
946 lf_remove_outgoing(struct lockf_entry *x)
947 {
948         struct lockf_edge *e;
949
950         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
951                 lf_remove_edge(e);
952         }
953 }
954
955 /*
956  * Remove all in-coming edges from lock x.
957  */
958 static void
959 lf_remove_incoming(struct lockf_entry *x)
960 {
961         struct lockf_edge *e;
962
963         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
964                 lf_remove_edge(e);
965         }
966 }
967
968 /*
969  * Walk the list of locks for the file and create an out-going edge
970  * from lock to each blocking lock.
971  */
972 static int
973 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
974 {
975         struct lockf_entry *overlap;
976         int error;
977
978         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
979                 /*
980                  * We may assume that the active list is sorted by
981                  * lf_start.
982                  */
983                 if (overlap->lf_start > lock->lf_end)
984                         break;
985                 if (!lf_blocks(lock, overlap))
986                         continue;
987
988                 /*
989                  * We've found a blocking lock. Add the corresponding
990                  * edge to the graphs and see if it would cause a
991                  * deadlock.
992                  */
993                 error = lf_add_edge(lock, overlap);
994
995                 /*
996                  * The only error that lf_add_edge returns is EDEADLK.
997                  * Remove any edges we added and return the error.
998                  */
999                 if (error) {
1000                         lf_remove_outgoing(lock);
1001                         return (error);
1002                 }
1003         }
1004
1005         /*
1006          * We also need to add edges to sleeping locks that block
1007          * us. This ensures that lf_wakeup_lock cannot grant two
1008          * mutually blocking locks simultaneously and also enforces a
1009          * 'first come, first served' fairness model. Note that this
1010          * only happens if we are blocked by at least one active lock
1011          * due to the call to lf_getblock in lf_setlock below.
1012          */
1013         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1014                 if (!lf_blocks(lock, overlap))
1015                         continue;
1016                 /*
1017                  * We've found a blocking lock. Add the corresponding
1018                  * edge to the graphs and see if it would cause a
1019                  * deadlock.
1020                  */
1021                 error = lf_add_edge(lock, overlap);
1022
1023                 /*
1024                  * The only error that lf_add_edge returns is EDEADLK.
1025                  * Remove any edges we added and return the error.
1026                  */
1027                 if (error) {
1028                         lf_remove_outgoing(lock);
1029                         return (error);
1030                 }
1031         }
1032
1033         return (0);
1034 }
1035
1036 /*
1037  * Walk the list of pending locks for the file and create an in-coming
1038  * edge from lock to each blocking lock.
1039  */
1040 static int
1041 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1042 {
1043         struct lockf_entry *overlap;
1044         int error;
1045
1046         sx_assert(&state->ls_lock, SX_XLOCKED);
1047         if (LIST_EMPTY(&state->ls_pending))
1048                 return (0);
1049
1050         error = 0;
1051         sx_xlock(&lf_owner_graph_lock);
1052         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1053                 if (!lf_blocks(lock, overlap))
1054                         continue;
1055
1056                 /*
1057                  * We've found a blocking lock. Add the corresponding
1058                  * edge to the graphs and see if it would cause a
1059                  * deadlock.
1060                  */
1061                 error = lf_add_edge(overlap, lock);
1062
1063                 /*
1064                  * The only error that lf_add_edge returns is EDEADLK.
1065                  * Remove any edges we added and return the error.
1066                  */
1067                 if (error) {
1068                         lf_remove_incoming(lock);
1069                         break;
1070                 }
1071         }
1072         sx_xunlock(&lf_owner_graph_lock);
1073         return (error);
1074 }
1075
1076 /*
1077  * Insert lock into the active list, keeping list entries ordered by
1078  * increasing values of lf_start.
1079  */
1080 static void
1081 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1082 {
1083         struct lockf_entry *lf, *lfprev;
1084
1085         if (LIST_EMPTY(&state->ls_active)) {
1086                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1087                 return;
1088         }
1089
1090         lfprev = NULL;
1091         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1092                 if (lf->lf_start > lock->lf_start) {
1093                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1094                         return;
1095                 }
1096                 lfprev = lf;
1097         }
1098         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1099 }
1100
1101 /*
1102  * Wake up a sleeping lock and remove it from the pending list now
1103  * that all its dependencies have been resolved. The caller should
1104  * arrange for the lock to be added to the active list, adjusting any
1105  * existing locks for the same owner as needed.
1106  */
1107 static void
1108 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1109 {
1110
1111         /*
1112          * Remove from ls_pending list and wake up the caller
1113          * or start the async notification, as appropriate.
1114          */
1115         LIST_REMOVE(wakelock, lf_link);
1116 #ifdef LOCKF_DEBUG
1117         if (lockf_debug & 1)
1118                 lf_print("lf_wakeup_lock: awakening", wakelock);
1119 #endif /* LOCKF_DEBUG */
1120         if (wakelock->lf_async_task) {
1121                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1122         } else {
1123                 wakeup(wakelock);
1124         }
1125 }
1126
1127 /*
1128  * Re-check all dependent locks and remove edges to locks that we no
1129  * longer block. If 'all' is non-zero, the lock has been removed and
1130  * we must remove all the dependencies, otherwise it has simply been
1131  * reduced but remains active. Any pending locks which have been been
1132  * unblocked are added to 'granted'
1133  */
1134 static void
1135 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1136         struct lockf_entry_list *granted)
1137 {
1138         struct lockf_edge *e, *ne;
1139         struct lockf_entry *deplock;
1140
1141         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1142                 deplock = e->le_from;
1143                 if (all || !lf_blocks(lock, deplock)) {
1144                         sx_xlock(&lf_owner_graph_lock);
1145                         lf_remove_edge(e);
1146                         sx_xunlock(&lf_owner_graph_lock);
1147                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1148                                 lf_wakeup_lock(state, deplock);
1149                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1150                         }
1151                 }
1152         }
1153 }
1154
1155 /*
1156  * Set the start of an existing active lock, updating dependencies and
1157  * adding any newly woken locks to 'granted'.
1158  */
1159 static void
1160 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1161         struct lockf_entry_list *granted)
1162 {
1163
1164         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1165         lock->lf_start = new_start;
1166         LIST_REMOVE(lock, lf_link);
1167         lf_insert_lock(state, lock);
1168         lf_update_dependancies(state, lock, FALSE, granted);
1169 }
1170
1171 /*
1172  * Set the end of an existing active lock, updating dependencies and
1173  * adding any newly woken locks to 'granted'.
1174  */
1175 static void
1176 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1177         struct lockf_entry_list *granted)
1178 {
1179
1180         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1181         lock->lf_end = new_end;
1182         lf_update_dependancies(state, lock, FALSE, granted);
1183 }
1184
1185 /*
1186  * Add a lock to the active list, updating or removing any current
1187  * locks owned by the same owner and processing any pending locks that
1188  * become unblocked as a result. This code is also used for unlock
1189  * since the logic for updating existing locks is identical.
1190  *
1191  * As a result of processing the new lock, we may unblock existing
1192  * pending locks as a result of downgrading/unlocking. We simply
1193  * activate the newly granted locks by looping.
1194  *
1195  * Since the new lock already has its dependencies set up, we always
1196  * add it to the list (unless its an unlock request). This may
1197  * fragment the lock list in some pathological cases but its probably
1198  * not a real problem.
1199  */
1200 static void
1201 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1202 {
1203         struct lockf_entry *overlap, *lf;
1204         struct lockf_entry_list granted;
1205         int ovcase;
1206
1207         LIST_INIT(&granted);
1208         LIST_INSERT_HEAD(&granted, lock, lf_link);
1209
1210         while (!LIST_EMPTY(&granted)) {
1211                 lock = LIST_FIRST(&granted);
1212                 LIST_REMOVE(lock, lf_link);
1213
1214                 /*
1215                  * Skip over locks owned by other processes.  Handle
1216                  * any locks that overlap and are owned by ourselves.
1217                  */
1218                 overlap = LIST_FIRST(&state->ls_active);
1219                 for (;;) {
1220                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1221
1222 #ifdef LOCKF_DEBUG
1223                         if (ovcase && (lockf_debug & 2)) {
1224                                 printf("lf_setlock: overlap %d", ovcase);
1225                                 lf_print("", overlap);
1226                         }
1227 #endif
1228                         /*
1229                          * Six cases:
1230                          *      0) no overlap
1231                          *      1) overlap == lock
1232                          *      2) overlap contains lock
1233                          *      3) lock contains overlap
1234                          *      4) overlap starts before lock
1235                          *      5) overlap ends after lock
1236                          */
1237                         switch (ovcase) {
1238                         case 0: /* no overlap */
1239                                 break;
1240
1241                         case 1: /* overlap == lock */
1242                                 /*
1243                                  * We have already setup the
1244                                  * dependants for the new lock, taking
1245                                  * into account a possible downgrade
1246                                  * or unlock. Remove the old lock.
1247                                  */
1248                                 LIST_REMOVE(overlap, lf_link);
1249                                 lf_update_dependancies(state, overlap, TRUE,
1250                                         &granted);
1251                                 lf_free_lock(overlap);
1252                                 break;
1253
1254                         case 2: /* overlap contains lock */
1255                                 /*
1256                                  * Just split the existing lock.
1257                                  */
1258                                 lf_split(state, overlap, lock, &granted);
1259                                 break;
1260
1261                         case 3: /* lock contains overlap */
1262                                 /*
1263                                  * Delete the overlap and advance to
1264                                  * the next entry in the list.
1265                                  */
1266                                 lf = LIST_NEXT(overlap, lf_link);
1267                                 LIST_REMOVE(overlap, lf_link);
1268                                 lf_update_dependancies(state, overlap, TRUE,
1269                                         &granted);
1270                                 lf_free_lock(overlap);
1271                                 overlap = lf;
1272                                 continue;
1273
1274                         case 4: /* overlap starts before lock */
1275                                 /*
1276                                  * Just update the overlap end and
1277                                  * move on.
1278                                  */
1279                                 lf_set_end(state, overlap, lock->lf_start - 1,
1280                                     &granted);
1281                                 overlap = LIST_NEXT(overlap, lf_link);
1282                                 continue;
1283
1284                         case 5: /* overlap ends after lock */
1285                                 /*
1286                                  * Change the start of overlap and
1287                                  * re-insert.
1288                                  */
1289                                 lf_set_start(state, overlap, lock->lf_end + 1,
1290                                     &granted);
1291                                 break;
1292                         }
1293                         break;
1294                 }
1295 #ifdef LOCKF_DEBUG
1296                 if (lockf_debug & 1) {
1297                         if (lock->lf_type != F_UNLCK)
1298                                 lf_print("lf_activate_lock: activated", lock);
1299                         else
1300                                 lf_print("lf_activate_lock: unlocked", lock);
1301                         lf_printlist("lf_activate_lock", lock);
1302                 }
1303 #endif /* LOCKF_DEBUG */
1304                 if (lock->lf_type != F_UNLCK)
1305                         lf_insert_lock(state, lock);
1306         }
1307 }
1308
1309 /*
1310  * Cancel a pending lock request, either as a result of a signal or a
1311  * cancel request for an async lock.
1312  */
1313 static void
1314 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1315 {
1316         struct lockf_entry_list granted;
1317
1318         /*
1319          * Note it is theoretically possible that cancelling this lock
1320          * may allow some other pending lock to become
1321          * active. Consider this case:
1322          *
1323          * Owner        Action          Result          Dependencies
1324          * 
1325          * A:           lock [0..0]     succeeds        
1326          * B:           lock [2..2]     succeeds        
1327          * C:           lock [1..2]     blocked         C->B
1328          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1329          * A:           unlock [0..0]                   C->B,D->C
1330          * C:           cancel [1..2]   
1331          */
1332
1333         LIST_REMOVE(lock, lf_link);
1334
1335         /*
1336          * Removing out-going edges is simple.
1337          */
1338         sx_xlock(&lf_owner_graph_lock);
1339         lf_remove_outgoing(lock);
1340         sx_xunlock(&lf_owner_graph_lock);
1341
1342         /*
1343          * Removing in-coming edges may allow some other lock to
1344          * become active - we use lf_update_dependancies to figure
1345          * this out.
1346          */
1347         LIST_INIT(&granted);
1348         lf_update_dependancies(state, lock, TRUE, &granted);
1349         lf_free_lock(lock);
1350
1351         /*
1352          * Feed any newly active locks to lf_activate_lock.
1353          */
1354         while (!LIST_EMPTY(&granted)) {
1355                 lock = LIST_FIRST(&granted);
1356                 LIST_REMOVE(lock, lf_link);
1357                 lf_activate_lock(state, lock);
1358         }
1359 }
1360
1361 /*
1362  * Set a byte-range lock.
1363  */
1364 static int
1365 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1366     void **cookiep)
1367 {
1368         static char lockstr[] = "lockf";
1369         int error, priority, stops_deferred;
1370
1371 #ifdef LOCKF_DEBUG
1372         if (lockf_debug & 1)
1373                 lf_print("lf_setlock", lock);
1374 #endif /* LOCKF_DEBUG */
1375
1376         /*
1377          * Set the priority
1378          */
1379         priority = PLOCK;
1380         if (lock->lf_type == F_WRLCK)
1381                 priority += 4;
1382         if (!(lock->lf_flags & F_NOINTR))
1383                 priority |= PCATCH;
1384         /*
1385          * Scan lock list for this file looking for locks that would block us.
1386          */
1387         if (lf_getblock(state, lock)) {
1388                 /*
1389                  * Free the structure and return if nonblocking.
1390                  */
1391                 if ((lock->lf_flags & F_WAIT) == 0
1392                     && lock->lf_async_task == NULL) {
1393                         lf_free_lock(lock);
1394                         error = EAGAIN;
1395                         goto out;
1396                 }
1397
1398                 /*
1399                  * For flock type locks, we must first remove
1400                  * any shared locks that we hold before we sleep
1401                  * waiting for an exclusive lock.
1402                  */
1403                 if ((lock->lf_flags & F_FLOCK) &&
1404                     lock->lf_type == F_WRLCK) {
1405                         lock->lf_type = F_UNLCK;
1406                         lf_activate_lock(state, lock);
1407                         lock->lf_type = F_WRLCK;
1408                 }
1409
1410                 /*
1411                  * We are blocked. Create edges to each blocking lock,
1412                  * checking for deadlock using the owner graph. For
1413                  * simplicity, we run deadlock detection for all
1414                  * locks, posix and otherwise.
1415                  */
1416                 sx_xlock(&lf_owner_graph_lock);
1417                 error = lf_add_outgoing(state, lock);
1418                 sx_xunlock(&lf_owner_graph_lock);
1419
1420                 if (error) {
1421 #ifdef LOCKF_DEBUG
1422                         if (lockf_debug & 1)
1423                                 lf_print("lf_setlock: deadlock", lock);
1424 #endif
1425                         lf_free_lock(lock);
1426                         goto out;
1427                 }
1428
1429                 /*
1430                  * We have added edges to everything that blocks
1431                  * us. Sleep until they all go away.
1432                  */
1433                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1434 #ifdef LOCKF_DEBUG
1435                 if (lockf_debug & 1) {
1436                         struct lockf_edge *e;
1437                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1438                                 lf_print("lf_setlock: blocking on", e->le_to);
1439                                 lf_printlist("lf_setlock", e->le_to);
1440                         }
1441                 }
1442 #endif /* LOCKF_DEBUG */
1443
1444                 if ((lock->lf_flags & F_WAIT) == 0) {
1445                         /*
1446                          * The caller requested async notification -
1447                          * this callback happens when the blocking
1448                          * lock is released, allowing the caller to
1449                          * make another attempt to take the lock.
1450                          */
1451                         *cookiep = (void *) lock;
1452                         error = EINPROGRESS;
1453                         goto out;
1454                 }
1455
1456                 lock->lf_refs++;
1457                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1458                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1459                 sigallowstop(stops_deferred);
1460                 if (lf_free_lock(lock)) {
1461                         error = EDOOFUS;
1462                         goto out;
1463                 }
1464
1465                 /*
1466                  * We may have been awakened by a signal and/or by a
1467                  * debugger continuing us (in which cases we must
1468                  * remove our lock graph edges) and/or by another
1469                  * process releasing a lock (in which case our edges
1470                  * have already been removed and we have been moved to
1471                  * the active list). We may also have been woken by
1472                  * lf_purgelocks which we report to the caller as
1473                  * EINTR. In that case, lf_purgelocks will have
1474                  * removed our lock graph edges.
1475                  *
1476                  * Note that it is possible to receive a signal after
1477                  * we were successfully woken (and moved to the active
1478                  * list) but before we resumed execution. In this
1479                  * case, our lf_outedges list will be clear. We
1480                  * pretend there was no error.
1481                  *
1482                  * Note also, if we have been sleeping long enough, we
1483                  * may now have incoming edges from some newer lock
1484                  * which is waiting behind us in the queue.
1485                  */
1486                 if (lock->lf_flags & F_INTR) {
1487                         error = EINTR;
1488                         lf_free_lock(lock);
1489                         goto out;
1490                 }
1491                 if (LIST_EMPTY(&lock->lf_outedges)) {
1492                         error = 0;
1493                 } else {
1494                         lf_cancel_lock(state, lock);
1495                         goto out;
1496                 }
1497 #ifdef LOCKF_DEBUG
1498                 if (lockf_debug & 1) {
1499                         lf_print("lf_setlock: granted", lock);
1500                 }
1501 #endif
1502                 goto out;
1503         }
1504         /*
1505          * It looks like we are going to grant the lock. First add
1506          * edges from any currently pending lock that the new lock
1507          * would block.
1508          */
1509         error = lf_add_incoming(state, lock);
1510         if (error) {
1511 #ifdef LOCKF_DEBUG
1512                 if (lockf_debug & 1)
1513                         lf_print("lf_setlock: deadlock", lock);
1514 #endif
1515                 lf_free_lock(lock);
1516                 goto out;
1517         }
1518
1519         /*
1520          * No blocks!!  Add the lock.  Note that we will
1521          * downgrade or upgrade any overlapping locks this
1522          * process already owns.
1523          */
1524         lf_activate_lock(state, lock);
1525         error = 0;
1526 out:
1527         return (error);
1528 }
1529
1530 /*
1531  * Remove a byte-range lock on an inode.
1532  *
1533  * Generally, find the lock (or an overlap to that lock)
1534  * and remove it (or shrink it), then wakeup anyone we can.
1535  */
1536 static int
1537 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1538 {
1539         struct lockf_entry *overlap;
1540
1541         overlap = LIST_FIRST(&state->ls_active);
1542
1543         if (overlap == NOLOCKF)
1544                 return (0);
1545 #ifdef LOCKF_DEBUG
1546         if (unlock->lf_type != F_UNLCK)
1547                 panic("lf_clearlock: bad type");
1548         if (lockf_debug & 1)
1549                 lf_print("lf_clearlock", unlock);
1550 #endif /* LOCKF_DEBUG */
1551
1552         lf_activate_lock(state, unlock);
1553
1554         return (0);
1555 }
1556
1557 /*
1558  * Check whether there is a blocking lock, and if so return its
1559  * details in '*fl'.
1560  */
1561 static int
1562 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1563 {
1564         struct lockf_entry *block;
1565
1566 #ifdef LOCKF_DEBUG
1567         if (lockf_debug & 1)
1568                 lf_print("lf_getlock", lock);
1569 #endif /* LOCKF_DEBUG */
1570
1571         if ((block = lf_getblock(state, lock))) {
1572                 fl->l_type = block->lf_type;
1573                 fl->l_whence = SEEK_SET;
1574                 fl->l_start = block->lf_start;
1575                 if (block->lf_end == OFF_MAX)
1576                         fl->l_len = 0;
1577                 else
1578                         fl->l_len = block->lf_end - block->lf_start + 1;
1579                 fl->l_pid = block->lf_owner->lo_pid;
1580                 fl->l_sysid = block->lf_owner->lo_sysid;
1581         } else {
1582                 fl->l_type = F_UNLCK;
1583         }
1584         return (0);
1585 }
1586
1587 /*
1588  * Cancel an async lock request.
1589  */
1590 static int
1591 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1592 {
1593         struct lockf_entry *reallock;
1594
1595         /*
1596          * We need to match this request with an existing lock
1597          * request.
1598          */
1599         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1600                 if ((void *) reallock == cookie) {
1601                         /*
1602                          * Double-check that this lock looks right
1603                          * (maybe use a rolling ID for the cancel
1604                          * cookie instead?)
1605                          */
1606                         if (!(reallock->lf_vnode == lock->lf_vnode
1607                                 && reallock->lf_start == lock->lf_start
1608                                 && reallock->lf_end == lock->lf_end)) {
1609                                 return (ENOENT);
1610                         }
1611
1612                         /*
1613                          * Make sure this lock was async and then just
1614                          * remove it from its wait lists.
1615                          */
1616                         if (!reallock->lf_async_task) {
1617                                 return (ENOENT);
1618                         }
1619
1620                         /*
1621                          * Note that since any other thread must take
1622                          * state->ls_lock before it can possibly
1623                          * trigger the async callback, we are safe
1624                          * from a race with lf_wakeup_lock, i.e. we
1625                          * can free the lock (actually our caller does
1626                          * this).
1627                          */
1628                         lf_cancel_lock(state, reallock);
1629                         return (0);
1630                 }
1631         }
1632
1633         /*
1634          * We didn't find a matching lock - not much we can do here.
1635          */
1636         return (ENOENT);
1637 }
1638
1639 /*
1640  * Walk the list of locks for an inode and
1641  * return the first blocking lock.
1642  */
1643 static struct lockf_entry *
1644 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1645 {
1646         struct lockf_entry *overlap;
1647
1648         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1649                 /*
1650                  * We may assume that the active list is sorted by
1651                  * lf_start.
1652                  */
1653                 if (overlap->lf_start > lock->lf_end)
1654                         break;
1655                 if (!lf_blocks(lock, overlap))
1656                         continue;
1657                 return (overlap);
1658         }
1659         return (NOLOCKF);
1660 }
1661
1662 /*
1663  * Walk the list of locks for an inode to find an overlapping lock (if
1664  * any) and return a classification of that overlap.
1665  *
1666  * Arguments:
1667  *      *overlap        The place in the lock list to start looking
1668  *      lock            The lock which is being tested
1669  *      type            Pass 'SELF' to test only locks with the same
1670  *                      owner as lock, or 'OTHER' to test only locks
1671  *                      with a different owner
1672  *
1673  * Returns one of six values:
1674  *      0) no overlap
1675  *      1) overlap == lock
1676  *      2) overlap contains lock
1677  *      3) lock contains overlap
1678  *      4) overlap starts before lock
1679  *      5) overlap ends after lock
1680  *
1681  * If there is an overlapping lock, '*overlap' is set to point at the
1682  * overlapping lock.
1683  *
1684  * NOTE: this returns only the FIRST overlapping lock.  There
1685  *       may be more than one.
1686  */
1687 static int
1688 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1689 {
1690         struct lockf_entry *lf;
1691         off_t start, end;
1692         int res;
1693
1694         if ((*overlap) == NOLOCKF) {
1695                 return (0);
1696         }
1697 #ifdef LOCKF_DEBUG
1698         if (lockf_debug & 2)
1699                 lf_print("lf_findoverlap: looking for overlap in", lock);
1700 #endif /* LOCKF_DEBUG */
1701         start = lock->lf_start;
1702         end = lock->lf_end;
1703         res = 0;
1704         while (*overlap) {
1705                 lf = *overlap;
1706                 if (lf->lf_start > end)
1707                         break;
1708                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1709                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1710                         *overlap = LIST_NEXT(lf, lf_link);
1711                         continue;
1712                 }
1713 #ifdef LOCKF_DEBUG
1714                 if (lockf_debug & 2)
1715                         lf_print("\tchecking", lf);
1716 #endif /* LOCKF_DEBUG */
1717                 /*
1718                  * OK, check for overlap
1719                  *
1720                  * Six cases:
1721                  *      0) no overlap
1722                  *      1) overlap == lock
1723                  *      2) overlap contains lock
1724                  *      3) lock contains overlap
1725                  *      4) overlap starts before lock
1726                  *      5) overlap ends after lock
1727                  */
1728                 if (start > lf->lf_end) {
1729                         /* Case 0 */
1730 #ifdef LOCKF_DEBUG
1731                         if (lockf_debug & 2)
1732                                 printf("no overlap\n");
1733 #endif /* LOCKF_DEBUG */
1734                         *overlap = LIST_NEXT(lf, lf_link);
1735                         continue;
1736                 }
1737                 if (lf->lf_start == start && lf->lf_end == end) {
1738                         /* Case 1 */
1739 #ifdef LOCKF_DEBUG
1740                         if (lockf_debug & 2)
1741                                 printf("overlap == lock\n");
1742 #endif /* LOCKF_DEBUG */
1743                         res = 1;
1744                         break;
1745                 }
1746                 if (lf->lf_start <= start && lf->lf_end >= end) {
1747                         /* Case 2 */
1748 #ifdef LOCKF_DEBUG
1749                         if (lockf_debug & 2)
1750                                 printf("overlap contains lock\n");
1751 #endif /* LOCKF_DEBUG */
1752                         res = 2;
1753                         break;
1754                 }
1755                 if (start <= lf->lf_start && end >= lf->lf_end) {
1756                         /* Case 3 */
1757 #ifdef LOCKF_DEBUG
1758                         if (lockf_debug & 2)
1759                                 printf("lock contains overlap\n");
1760 #endif /* LOCKF_DEBUG */
1761                         res = 3;
1762                         break;
1763                 }
1764                 if (lf->lf_start < start && lf->lf_end >= start) {
1765                         /* Case 4 */
1766 #ifdef LOCKF_DEBUG
1767                         if (lockf_debug & 2)
1768                                 printf("overlap starts before lock\n");
1769 #endif /* LOCKF_DEBUG */
1770                         res = 4;
1771                         break;
1772                 }
1773                 if (lf->lf_start > start && lf->lf_end > end) {
1774                         /* Case 5 */
1775 #ifdef LOCKF_DEBUG
1776                         if (lockf_debug & 2)
1777                                 printf("overlap ends after lock\n");
1778 #endif /* LOCKF_DEBUG */
1779                         res = 5;
1780                         break;
1781                 }
1782                 panic("lf_findoverlap: default");
1783         }
1784         return (res);
1785 }
1786
1787 /*
1788  * Split an the existing 'lock1', based on the extent of the lock
1789  * described by 'lock2'. The existing lock should cover 'lock2'
1790  * entirely.
1791  *
1792  * Any pending locks which have been been unblocked are added to
1793  * 'granted'
1794  */
1795 static void
1796 lf_split(struct lockf *state, struct lockf_entry *lock1,
1797     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1798 {
1799         struct lockf_entry *splitlock;
1800
1801 #ifdef LOCKF_DEBUG
1802         if (lockf_debug & 2) {
1803                 lf_print("lf_split", lock1);
1804                 lf_print("splitting from", lock2);
1805         }
1806 #endif /* LOCKF_DEBUG */
1807         /*
1808          * Check to see if we don't need to split at all.
1809          */
1810         if (lock1->lf_start == lock2->lf_start) {
1811                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1812                 return;
1813         }
1814         if (lock1->lf_end == lock2->lf_end) {
1815                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1816                 return;
1817         }
1818         /*
1819          * Make a new lock consisting of the last part of
1820          * the encompassing lock.
1821          */
1822         splitlock = lf_alloc_lock(lock1->lf_owner);
1823         memcpy(splitlock, lock1, sizeof *splitlock);
1824         splitlock->lf_refs = 1;
1825         if (splitlock->lf_flags & F_REMOTE)
1826                 vref(splitlock->lf_vnode);
1827
1828         /*
1829          * This cannot cause a deadlock since any edges we would add
1830          * to splitlock already exist in lock1. We must be sure to add
1831          * necessary dependencies to splitlock before we reduce lock1
1832          * otherwise we may accidentally grant a pending lock that
1833          * was blocked by the tail end of lock1.
1834          */
1835         splitlock->lf_start = lock2->lf_end + 1;
1836         LIST_INIT(&splitlock->lf_outedges);
1837         LIST_INIT(&splitlock->lf_inedges);
1838         lf_add_incoming(state, splitlock);
1839
1840         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1841
1842         /*
1843          * OK, now link it in
1844          */
1845         lf_insert_lock(state, splitlock);
1846 }
1847
1848 struct lockdesc {
1849         STAILQ_ENTRY(lockdesc) link;
1850         struct vnode *vp;
1851         struct flock fl;
1852 };
1853 STAILQ_HEAD(lockdesclist, lockdesc);
1854
1855 int
1856 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1857 {
1858         struct lockf *ls;
1859         struct lockf_entry *lf;
1860         struct lockdesc *ldesc;
1861         struct lockdesclist locks;
1862         int error;
1863
1864         /*
1865          * In order to keep the locking simple, we iterate over the
1866          * active lock lists to build a list of locks that need
1867          * releasing. We then call the iterator for each one in turn.
1868          *
1869          * We take an extra reference to the vnode for the duration to
1870          * make sure it doesn't go away before we are finished.
1871          */
1872         STAILQ_INIT(&locks);
1873         sx_xlock(&lf_lock_states_lock);
1874         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1875                 sx_xlock(&ls->ls_lock);
1876                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1877                         if (lf->lf_owner->lo_sysid != sysid)
1878                                 continue;
1879
1880                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1881                             M_WAITOK);
1882                         ldesc->vp = lf->lf_vnode;
1883                         vref(ldesc->vp);
1884                         ldesc->fl.l_start = lf->lf_start;
1885                         if (lf->lf_end == OFF_MAX)
1886                                 ldesc->fl.l_len = 0;
1887                         else
1888                                 ldesc->fl.l_len =
1889                                         lf->lf_end - lf->lf_start + 1;
1890                         ldesc->fl.l_whence = SEEK_SET;
1891                         ldesc->fl.l_type = F_UNLCK;
1892                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1893                         ldesc->fl.l_sysid = sysid;
1894                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1895                 }
1896                 sx_xunlock(&ls->ls_lock);
1897         }
1898         sx_xunlock(&lf_lock_states_lock);
1899
1900         /*
1901          * Call the iterator function for each lock in turn. If the
1902          * iterator returns an error code, just free the rest of the
1903          * lockdesc structures.
1904          */
1905         error = 0;
1906         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1907                 STAILQ_REMOVE_HEAD(&locks, link);
1908                 if (!error)
1909                         error = fn(ldesc->vp, &ldesc->fl, arg);
1910                 vrele(ldesc->vp);
1911                 free(ldesc, M_LOCKF);
1912         }
1913
1914         return (error);
1915 }
1916
1917 int
1918 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1919 {
1920         struct lockf *ls;
1921         struct lockf_entry *lf;
1922         struct lockdesc *ldesc;
1923         struct lockdesclist locks;
1924         int error;
1925
1926         /*
1927          * In order to keep the locking simple, we iterate over the
1928          * active lock lists to build a list of locks that need
1929          * releasing. We then call the iterator for each one in turn.
1930          *
1931          * We take an extra reference to the vnode for the duration to
1932          * make sure it doesn't go away before we are finished.
1933          */
1934         STAILQ_INIT(&locks);
1935         VI_LOCK(vp);
1936         ls = vp->v_lockf;
1937         if (!ls) {
1938                 VI_UNLOCK(vp);
1939                 return (0);
1940         }
1941         MPASS(ls->ls_threads >= 0);
1942         ls->ls_threads++;
1943         VI_UNLOCK(vp);
1944
1945         sx_xlock(&ls->ls_lock);
1946         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1947                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1948                     M_WAITOK);
1949                 ldesc->vp = lf->lf_vnode;
1950                 vref(ldesc->vp);
1951                 ldesc->fl.l_start = lf->lf_start;
1952                 if (lf->lf_end == OFF_MAX)
1953                         ldesc->fl.l_len = 0;
1954                 else
1955                         ldesc->fl.l_len =
1956                                 lf->lf_end - lf->lf_start + 1;
1957                 ldesc->fl.l_whence = SEEK_SET;
1958                 ldesc->fl.l_type = F_UNLCK;
1959                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1960                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1961                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1962         }
1963         sx_xunlock(&ls->ls_lock);
1964         VI_LOCK(vp);
1965         MPASS(ls->ls_threads > 0);
1966         ls->ls_threads--;
1967         wakeup(ls);
1968         VI_UNLOCK(vp);
1969
1970         /*
1971          * Call the iterator function for each lock in turn. If the
1972          * iterator returns an error code, just free the rest of the
1973          * lockdesc structures.
1974          */
1975         error = 0;
1976         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1977                 STAILQ_REMOVE_HEAD(&locks, link);
1978                 if (!error)
1979                         error = fn(ldesc->vp, &ldesc->fl, arg);
1980                 vrele(ldesc->vp);
1981                 free(ldesc, M_LOCKF);
1982         }
1983
1984         return (error);
1985 }
1986
1987 static int
1988 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
1989 {
1990
1991         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
1992         return (0);
1993 }
1994
1995 void
1996 lf_clearremotesys(int sysid)
1997 {
1998
1999         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2000         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2001 }
2002
2003 int
2004 lf_countlocks(int sysid)
2005 {
2006         int i;
2007         struct lock_owner *lo;
2008         int count;
2009
2010         count = 0;
2011         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2012                 sx_xlock(&lf_lock_owners[i].lock);
2013                 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2014                         if (lo->lo_sysid == sysid)
2015                                 count += lo->lo_refs;
2016                 sx_xunlock(&lf_lock_owners[i].lock);
2017         }
2018
2019         return (count);
2020 }
2021
2022 #ifdef LOCKF_DEBUG
2023
2024 /*
2025  * Return non-zero if y is reachable from x using a brute force
2026  * search. If reachable and path is non-null, return the route taken
2027  * in path.
2028  */
2029 static int
2030 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2031     struct owner_vertex_list *path)
2032 {
2033         struct owner_edge *e;
2034
2035         if (x == y) {
2036                 if (path)
2037                         TAILQ_INSERT_HEAD(path, x, v_link);
2038                 return 1;
2039         }
2040
2041         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2042                 if (graph_reaches(e->e_to, y, path)) {
2043                         if (path)
2044                                 TAILQ_INSERT_HEAD(path, x, v_link);
2045                         return 1;
2046                 }
2047         }
2048         return 0;
2049 }
2050
2051 /*
2052  * Perform consistency checks on the graph. Make sure the values of
2053  * v_order are correct. If checkorder is non-zero, check no vertex can
2054  * reach any other vertex with a smaller order.
2055  */
2056 static void
2057 graph_check(struct owner_graph *g, int checkorder)
2058 {
2059         int i, j;
2060
2061         for (i = 0; i < g->g_size; i++) {
2062                 if (!g->g_vertices[i]->v_owner)
2063                         continue;
2064                 KASSERT(g->g_vertices[i]->v_order == i,
2065                     ("lock graph vertices disordered"));
2066                 if (checkorder) {
2067                         for (j = 0; j < i; j++) {
2068                                 if (!g->g_vertices[j]->v_owner)
2069                                         continue;
2070                                 KASSERT(!graph_reaches(g->g_vertices[i],
2071                                         g->g_vertices[j], NULL),
2072                                     ("lock graph vertices disordered"));
2073                         }
2074                 }
2075         }
2076 }
2077
2078 static void
2079 graph_print_vertices(struct owner_vertex_list *set)
2080 {
2081         struct owner_vertex *v;
2082
2083         printf("{ ");
2084         TAILQ_FOREACH(v, set, v_link) {
2085                 printf("%d:", v->v_order);
2086                 lf_print_owner(v->v_owner);
2087                 if (TAILQ_NEXT(v, v_link))
2088                         printf(", ");
2089         }
2090         printf(" }\n");
2091 }
2092
2093 #endif
2094
2095 /*
2096  * Calculate the sub-set of vertices v from the affected region [y..x]
2097  * where v is reachable from y. Return -1 if a loop was detected
2098  * (i.e. x is reachable from y, otherwise the number of vertices in
2099  * this subset.
2100  */
2101 static int
2102 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2103     struct owner_vertex *y, struct owner_vertex_list *delta)
2104 {
2105         uint32_t gen;
2106         struct owner_vertex *v;
2107         struct owner_edge *e;
2108         int n;
2109
2110         /*
2111          * We start with a set containing just y. Then for each vertex
2112          * v in the set so far unprocessed, we add each vertex that v
2113          * has an out-edge to and that is within the affected region
2114          * [y..x]. If we see the vertex x on our travels, stop
2115          * immediately.
2116          */
2117         TAILQ_INIT(delta);
2118         TAILQ_INSERT_TAIL(delta, y, v_link);
2119         v = y;
2120         n = 1;
2121         gen = g->g_gen;
2122         while (v) {
2123                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2124                         if (e->e_to == x)
2125                                 return -1;
2126                         if (e->e_to->v_order < x->v_order
2127                             && e->e_to->v_gen != gen) {
2128                                 e->e_to->v_gen = gen;
2129                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2130                                 n++;
2131                         }
2132                 }
2133                 v = TAILQ_NEXT(v, v_link);
2134         }
2135
2136         return (n);
2137 }
2138
2139 /*
2140  * Calculate the sub-set of vertices v from the affected region [y..x]
2141  * where v reaches x. Return the number of vertices in this subset.
2142  */
2143 static int
2144 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2145     struct owner_vertex *y, struct owner_vertex_list *delta)
2146 {
2147         uint32_t gen;
2148         struct owner_vertex *v;
2149         struct owner_edge *e;
2150         int n;
2151
2152         /*
2153          * We start with a set containing just x. Then for each vertex
2154          * v in the set so far unprocessed, we add each vertex that v
2155          * has an in-edge from and that is within the affected region
2156          * [y..x].
2157          */
2158         TAILQ_INIT(delta);
2159         TAILQ_INSERT_TAIL(delta, x, v_link);
2160         v = x;
2161         n = 1;
2162         gen = g->g_gen;
2163         while (v) {
2164                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2165                         if (e->e_from->v_order > y->v_order
2166                             && e->e_from->v_gen != gen) {
2167                                 e->e_from->v_gen = gen;
2168                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2169                                 n++;
2170                         }
2171                 }
2172                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2173         }
2174
2175         return (n);
2176 }
2177
2178 static int
2179 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2180 {
2181         struct owner_vertex *v;
2182         int i, j;
2183
2184         TAILQ_FOREACH(v, set, v_link) {
2185                 for (i = n;
2186                      i > 0 && indices[i - 1] > v->v_order; i--)
2187                         ;
2188                 for (j = n - 1; j >= i; j--)
2189                         indices[j + 1] = indices[j];
2190                 indices[i] = v->v_order;
2191                 n++;
2192         }
2193
2194         return (n);
2195 }
2196
2197 static int
2198 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2199     struct owner_vertex_list *set)
2200 {
2201         struct owner_vertex *v, *vlowest;
2202
2203         while (!TAILQ_EMPTY(set)) {
2204                 vlowest = NULL;
2205                 TAILQ_FOREACH(v, set, v_link) {
2206                         if (!vlowest || v->v_order < vlowest->v_order)
2207                                 vlowest = v;
2208                 }
2209                 TAILQ_REMOVE(set, vlowest, v_link);
2210                 vlowest->v_order = indices[nextunused];
2211                 g->g_vertices[vlowest->v_order] = vlowest;
2212                 nextunused++;
2213         }
2214
2215         return (nextunused);
2216 }
2217
2218 static int
2219 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2220     struct owner_vertex *y)
2221 {
2222         struct owner_edge *e;
2223         struct owner_vertex_list deltaF, deltaB;
2224         int nF, n, vi, i;
2225         int *indices;
2226         int nB __unused;
2227
2228         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2229
2230         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2231                 if (e->e_to == y) {
2232                         e->e_refs++;
2233                         return (0);
2234                 }
2235         }
2236
2237 #ifdef LOCKF_DEBUG
2238         if (lockf_debug & 8) {
2239                 printf("adding edge %d:", x->v_order);
2240                 lf_print_owner(x->v_owner);
2241                 printf(" -> %d:", y->v_order);
2242                 lf_print_owner(y->v_owner);
2243                 printf("\n");
2244         }
2245 #endif
2246         if (y->v_order < x->v_order) {
2247                 /*
2248                  * The new edge violates the order. First find the set
2249                  * of affected vertices reachable from y (deltaF) and
2250                  * the set of affect vertices affected that reach x
2251                  * (deltaB), using the graph generation number to
2252                  * detect whether we have visited a given vertex
2253                  * already. We re-order the graph so that each vertex
2254                  * in deltaB appears before each vertex in deltaF.
2255                  *
2256                  * If x is a member of deltaF, then the new edge would
2257                  * create a cycle. Otherwise, we may assume that
2258                  * deltaF and deltaB are disjoint.
2259                  */
2260                 g->g_gen++;
2261                 if (g->g_gen == 0) {
2262                         /*
2263                          * Generation wrap.
2264                          */
2265                         for (vi = 0; vi < g->g_size; vi++) {
2266                                 g->g_vertices[vi]->v_gen = 0;
2267                         }
2268                         g->g_gen++;
2269                 }
2270                 nF = graph_delta_forward(g, x, y, &deltaF);
2271                 if (nF < 0) {
2272 #ifdef LOCKF_DEBUG
2273                         if (lockf_debug & 8) {
2274                                 struct owner_vertex_list path;
2275                                 printf("deadlock: ");
2276                                 TAILQ_INIT(&path);
2277                                 graph_reaches(y, x, &path);
2278                                 graph_print_vertices(&path);
2279                         }
2280 #endif
2281                         return (EDEADLK);
2282                 }
2283
2284 #ifdef LOCKF_DEBUG
2285                 if (lockf_debug & 8) {
2286                         printf("re-ordering graph vertices\n");
2287                         printf("deltaF = ");
2288                         graph_print_vertices(&deltaF);
2289                 }
2290 #endif
2291
2292                 nB = graph_delta_backward(g, x, y, &deltaB);
2293
2294 #ifdef LOCKF_DEBUG
2295                 if (lockf_debug & 8) {
2296                         printf("deltaB = ");
2297                         graph_print_vertices(&deltaB);
2298                 }
2299 #endif
2300
2301                 /*
2302                  * We first build a set of vertex indices (vertex
2303                  * order values) that we may use, then we re-assign
2304                  * orders first to those vertices in deltaB, then to
2305                  * deltaF. Note that the contents of deltaF and deltaB
2306                  * may be partially disordered - we perform an
2307                  * insertion sort while building our index set.
2308                  */
2309                 indices = g->g_indexbuf;
2310                 n = graph_add_indices(indices, 0, &deltaF);
2311                 graph_add_indices(indices, n, &deltaB);
2312
2313                 /*
2314                  * We must also be sure to maintain the relative
2315                  * ordering of deltaF and deltaB when re-assigning
2316                  * vertices. We do this by iteratively removing the
2317                  * lowest ordered element from the set and assigning
2318                  * it the next value from our new ordering.
2319                  */
2320                 i = graph_assign_indices(g, indices, 0, &deltaB);
2321                 graph_assign_indices(g, indices, i, &deltaF);
2322
2323 #ifdef LOCKF_DEBUG
2324                 if (lockf_debug & 8) {
2325                         struct owner_vertex_list set;
2326                         TAILQ_INIT(&set);
2327                         for (i = 0; i < nB + nF; i++)
2328                                 TAILQ_INSERT_TAIL(&set,
2329                                     g->g_vertices[indices[i]], v_link);
2330                         printf("new ordering = ");
2331                         graph_print_vertices(&set);
2332                 }
2333 #endif
2334         }
2335
2336         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2337
2338 #ifdef LOCKF_DEBUG
2339         if (lockf_debug & 8) {
2340                 graph_check(g, TRUE);
2341         }
2342 #endif
2343
2344         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2345
2346         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2347         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2348         e->e_refs = 1;
2349         e->e_from = x;
2350         e->e_to = y;
2351
2352         return (0);
2353 }
2354
2355 /*
2356  * Remove an edge x->y from the graph.
2357  */
2358 static void
2359 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2360     struct owner_vertex *y)
2361 {
2362         struct owner_edge *e;
2363
2364         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2365
2366         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2367                 if (e->e_to == y)
2368                         break;
2369         }
2370         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2371
2372         e->e_refs--;
2373         if (e->e_refs == 0) {
2374 #ifdef LOCKF_DEBUG
2375                 if (lockf_debug & 8) {
2376                         printf("removing edge %d:", x->v_order);
2377                         lf_print_owner(x->v_owner);
2378                         printf(" -> %d:", y->v_order);
2379                         lf_print_owner(y->v_owner);
2380                         printf("\n");
2381                 }
2382 #endif
2383                 LIST_REMOVE(e, e_outlink);
2384                 LIST_REMOVE(e, e_inlink);
2385                 free(e, M_LOCKF);
2386         }
2387 }
2388
2389 /*
2390  * Allocate a vertex from the free list. Return ENOMEM if there are
2391  * none.
2392  */
2393 static struct owner_vertex *
2394 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2395 {
2396         struct owner_vertex *v;
2397
2398         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2399
2400         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2401         if (g->g_size == g->g_space) {
2402                 g->g_vertices = realloc(g->g_vertices,
2403                     2 * g->g_space * sizeof(struct owner_vertex *),
2404                     M_LOCKF, M_WAITOK);
2405                 free(g->g_indexbuf, M_LOCKF);
2406                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2407                     M_LOCKF, M_WAITOK);
2408                 g->g_space = 2 * g->g_space;
2409         }
2410         v->v_order = g->g_size;
2411         v->v_gen = g->g_gen;
2412         g->g_vertices[g->g_size] = v;
2413         g->g_size++;
2414
2415         LIST_INIT(&v->v_outedges);
2416         LIST_INIT(&v->v_inedges);
2417         v->v_owner = lo;
2418
2419         return (v);
2420 }
2421
2422 static void
2423 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2424 {
2425         struct owner_vertex *w;
2426         int i;
2427
2428         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2429
2430         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2431         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2432
2433         /*
2434          * Remove from the graph's array and close up the gap,
2435          * renumbering the other vertices.
2436          */
2437         for (i = v->v_order + 1; i < g->g_size; i++) {
2438                 w = g->g_vertices[i];
2439                 w->v_order--;
2440                 g->g_vertices[i - 1] = w;
2441         }
2442         g->g_size--;
2443
2444         free(v, M_LOCKF);
2445 }
2446
2447 static struct owner_graph *
2448 graph_init(struct owner_graph *g)
2449 {
2450
2451         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2452             M_LOCKF, M_WAITOK);
2453         g->g_size = 0;
2454         g->g_space = 10;
2455         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2456         g->g_gen = 0;
2457
2458         return (g);
2459 }
2460
2461 struct kinfo_lockf_linked {
2462         struct kinfo_lockf kl;
2463         struct vnode *vp;
2464         STAILQ_ENTRY(kinfo_lockf_linked) link;
2465 };
2466
2467 int
2468 vfs_report_lockf(struct mount *mp, struct sbuf *sb)
2469 {
2470         struct lockf *ls;
2471         struct lockf_entry *lf;
2472         struct kinfo_lockf_linked *klf;
2473         struct vnode *vp;
2474         struct ucred *ucred;
2475         char *fullpath, *freepath;
2476         struct stat stt;
2477         STAILQ_HEAD(, kinfo_lockf_linked) locks;
2478         int error, gerror;
2479
2480         STAILQ_INIT(&locks);
2481         sx_slock(&lf_lock_states_lock);
2482         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
2483                 sx_slock(&ls->ls_lock);
2484                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
2485                         vp = lf->lf_vnode;
2486                         if (VN_IS_DOOMED(vp) || vp->v_mount != mp)
2487                                 continue;
2488                         vhold(vp);
2489                         klf = malloc(sizeof(struct kinfo_lockf_linked),
2490                             M_LOCKF, M_WAITOK | M_ZERO);
2491                         klf->vp = vp;
2492                         klf->kl.kl_structsize = sizeof(struct kinfo_lockf);
2493                         klf->kl.kl_start = lf->lf_start;
2494                         klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 :
2495                             lf->lf_end - lf->lf_start + 1;
2496                         klf->kl.kl_rw = lf->lf_type == F_RDLCK ?
2497                             KLOCKF_RW_READ : KLOCKF_RW_WRITE;
2498                         if (lf->lf_owner->lo_sysid != 0) {
2499                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
2500                                 klf->kl.kl_sysid = lf->lf_owner->lo_sysid;
2501                                 klf->kl.kl_type = KLOCKF_TYPE_REMOTE;
2502                         } else if (lf->lf_owner->lo_pid == -1) {
2503                                 klf->kl.kl_pid = -1;
2504                                 klf->kl.kl_sysid = 0;
2505                                 klf->kl.kl_type = KLOCKF_TYPE_FLOCK;
2506                         } else {
2507                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
2508                                 klf->kl.kl_sysid = 0;
2509                                 klf->kl.kl_type = KLOCKF_TYPE_PID;
2510                         }
2511                         STAILQ_INSERT_TAIL(&locks, klf, link);
2512                 }
2513                 sx_sunlock(&ls->ls_lock);
2514         }
2515         sx_sunlock(&lf_lock_states_lock);
2516
2517         gerror = 0;
2518         ucred = curthread->td_ucred;
2519         while ((klf = STAILQ_FIRST(&locks)) != NULL) {
2520                 STAILQ_REMOVE_HEAD(&locks, link);
2521                 vp = klf->vp;
2522                 if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) {
2523                         error = prison_canseemount(ucred, vp->v_mount);
2524                         if (error == 0)
2525                                 error = VOP_STAT(vp, &stt, ucred, NOCRED);
2526                         VOP_UNLOCK(vp);
2527                         if (error == 0) {
2528                                 klf->kl.kl_file_fsid = stt.st_dev;
2529                                 klf->kl.kl_file_rdev = stt.st_rdev;
2530                                 klf->kl.kl_file_fileid = stt.st_ino;
2531                                 freepath = NULL;
2532                                 fullpath = "-";
2533                                 error = vn_fullpath(vp, &fullpath, &freepath);
2534                                 if (error == 0)
2535                                         strlcpy(klf->kl.kl_path, fullpath,
2536                                             sizeof(klf->kl.kl_path));
2537                                 free(freepath, M_TEMP);
2538                                 if (sbuf_bcat(sb, &klf->kl,
2539                                     klf->kl.kl_structsize) != 0) {
2540                                         gerror = sbuf_error(sb);
2541                                 }
2542                         }
2543                 }
2544                 vdrop(vp);
2545                 free(klf, M_LOCKF);
2546         }
2547
2548         return (gerror);
2549 }
2550
2551 static int
2552 sysctl_kern_lockf_run(struct sbuf *sb)
2553 {
2554         struct mount *mp;
2555         int error;
2556
2557         error = 0;
2558         mtx_lock(&mountlist_mtx);
2559         TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2560                 error = vfs_busy(mp, MBF_MNTLSTLOCK);
2561                 if (error != 0)
2562                         continue;
2563                 error = mp->mnt_op->vfs_report_lockf(mp, sb);
2564                 mtx_lock(&mountlist_mtx);
2565                 vfs_unbusy(mp);
2566                 if (error != 0)
2567                         break;
2568         }
2569         mtx_unlock(&mountlist_mtx);
2570         return (error);
2571 }
2572
2573 static int
2574 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS)
2575 {
2576         struct sbuf sb;
2577         int error, error2;
2578
2579         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req);
2580         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2581         error = sysctl_kern_lockf_run(&sb);
2582         error2 = sbuf_finish(&sb);
2583         sbuf_delete(&sb);
2584         return (error != 0 ? error : error2);
2585 }
2586 SYSCTL_PROC(_kern, KERN_LOCKF, lockf,
2587     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2588     0, 0, sysctl_kern_lockf, "S,lockf",
2589     "Advisory locks table");
2590
2591 #ifdef LOCKF_DEBUG
2592 /*
2593  * Print description of a lock owner
2594  */
2595 static void
2596 lf_print_owner(struct lock_owner *lo)
2597 {
2598
2599         if (lo->lo_flags & F_REMOTE) {
2600                 printf("remote pid %d, system %d",
2601                     lo->lo_pid, lo->lo_sysid);
2602         } else if (lo->lo_flags & F_FLOCK) {
2603                 printf("file %p", lo->lo_id);
2604         } else {
2605                 printf("local pid %d", lo->lo_pid);
2606         }
2607 }
2608
2609 /*
2610  * Print out a lock.
2611  */
2612 static void
2613 lf_print(char *tag, struct lockf_entry *lock)
2614 {
2615
2616         printf("%s: lock %p for ", tag, (void *)lock);
2617         lf_print_owner(lock->lf_owner);
2618         printf("\nvnode %p", lock->lf_vnode);
2619         VOP_PRINT(lock->lf_vnode);
2620         printf(" %s, start %jd, end ",
2621             lock->lf_type == F_RDLCK ? "shared" :
2622             lock->lf_type == F_WRLCK ? "exclusive" :
2623             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2624             (intmax_t)lock->lf_start);
2625         if (lock->lf_end == OFF_MAX)
2626                 printf("EOF");
2627         else
2628                 printf("%jd", (intmax_t)lock->lf_end);
2629         if (!LIST_EMPTY(&lock->lf_outedges))
2630                 printf(" block %p\n",
2631                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2632         else
2633                 printf("\n");
2634 }
2635
2636 static void
2637 lf_printlist(char *tag, struct lockf_entry *lock)
2638 {
2639         struct lockf_entry *lf, *blk;
2640         struct lockf_edge *e;
2641
2642         printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode);
2643         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2644                 printf("\tlock %p for ",(void *)lf);
2645                 lf_print_owner(lock->lf_owner);
2646                 printf(", %s, start %jd, end %jd",
2647                     lf->lf_type == F_RDLCK ? "shared" :
2648                     lf->lf_type == F_WRLCK ? "exclusive" :
2649                     lf->lf_type == F_UNLCK ? "unlock" :
2650                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2651                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2652                         blk = e->le_to;
2653                         printf("\n\t\tlock request %p for ", (void *)blk);
2654                         lf_print_owner(blk->lf_owner);
2655                         printf(", %s, start %jd, end %jd",
2656                             blk->lf_type == F_RDLCK ? "shared" :
2657                             blk->lf_type == F_WRLCK ? "exclusive" :
2658                             blk->lf_type == F_UNLCK ? "unlock" :
2659                             "unknown", (intmax_t)blk->lf_start,
2660                             (intmax_t)blk->lf_end);
2661                         if (!LIST_EMPTY(&blk->lf_inedges))
2662                                 panic("lf_printlist: bad list");
2663                 }
2664                 printf("\n");
2665         }
2666 }
2667 #endif /* LOCKF_DEBUG */