]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_lockf.c
vmware: Fix a typo in a source code comment
[FreeBSD/FreeBSD.git] / sys / kern / kern_lockf.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *      The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
61  */
62
63 #include <sys/cdefs.h>
64 #include "opt_debug_lockf.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/jail.h>
70 #include <sys/kernel.h>
71 #include <sys/limits.h>
72 #include <sys/lock.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/sbuf.h>
77 #include <sys/stat.h>
78 #include <sys/sx.h>
79 #include <sys/unistd.h>
80 #include <sys/user.h>
81 #include <sys/vnode.h>
82 #include <sys/malloc.h>
83 #include <sys/fcntl.h>
84 #include <sys/lockf.h>
85 #include <sys/taskqueue.h>
86
87 #ifdef LOCKF_DEBUG
88 #include <sys/sysctl.h>
89
90 static int      lockf_debug = 0; /* control debug output */
91 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
92 #endif
93
94 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
95
96 struct owner_edge;
97 struct owner_vertex;
98 struct owner_vertex_list;
99 struct owner_graph;
100
101 #define NOLOCKF (struct lockf_entry *)0
102 #define SELF    0x1
103 #define OTHERS  0x2
104 static void      lf_init(void *);
105 static int       lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
106 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
107     int);
108 static struct lockf_entry *
109                  lf_alloc_lock(struct lock_owner *);
110 static int       lf_free_lock(struct lockf_entry *);
111 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
112 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
113 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
114 static void      lf_free_edge(struct lockf_edge *);
115 static struct lockf_edge *
116                  lf_alloc_edge(void);
117 static void      lf_alloc_vertex(struct lockf_entry *);
118 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
119 static void      lf_remove_edge(struct lockf_edge *);
120 static void      lf_remove_outgoing(struct lockf_entry *);
121 static void      lf_remove_incoming(struct lockf_entry *);
122 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
123 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
124 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
125     int);
126 static struct lockf_entry *
127                  lf_getblock(struct lockf *, struct lockf_entry *);
128 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
129 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
130 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
131 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
132     int all, struct lockf_entry_list *);
133 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
134         struct lockf_entry_list*);
135 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
136         struct lockf_entry_list*);
137 static int       lf_setlock(struct lockf *, struct lockf_entry *,
138     struct vnode *, void **cookiep);
139 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
140 static void      lf_split(struct lockf *, struct lockf_entry *,
141     struct lockf_entry *, struct lockf_entry_list *);
142 #ifdef LOCKF_DEBUG
143 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
144     struct owner_vertex_list *path);
145 static void      graph_check(struct owner_graph *g, int checkorder);
146 static void      graph_print_vertices(struct owner_vertex_list *set);
147 #endif
148 static int       graph_delta_forward(struct owner_graph *g,
149     struct owner_vertex *x, struct owner_vertex *y,
150     struct owner_vertex_list *delta);
151 static int       graph_delta_backward(struct owner_graph *g,
152     struct owner_vertex *x, struct owner_vertex *y,
153     struct owner_vertex_list *delta);
154 static int       graph_add_indices(int *indices, int n,
155     struct owner_vertex_list *set);
156 static int       graph_assign_indices(struct owner_graph *g, int *indices,
157     int nextunused, struct owner_vertex_list *set);
158 static int       graph_add_edge(struct owner_graph *g,
159     struct owner_vertex *x, struct owner_vertex *y);
160 static void      graph_remove_edge(struct owner_graph *g,
161     struct owner_vertex *x, struct owner_vertex *y);
162 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
163     struct lock_owner *lo);
164 static void      graph_free_vertex(struct owner_graph *g,
165     struct owner_vertex *v);
166 static struct owner_graph * graph_init(struct owner_graph *g);
167 #ifdef LOCKF_DEBUG
168 static void      lf_print(char *, struct lockf_entry *);
169 static void      lf_printlist(char *, struct lockf_entry *);
170 static void      lf_print_owner(struct lock_owner *);
171 #endif
172
173 /*
174  * This structure is used to keep track of both local and remote lock
175  * owners. The lf_owner field of the struct lockf_entry points back at
176  * the lock owner structure. Each possible lock owner (local proc for
177  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
178  * pair for remote locks) is represented by a unique instance of
179  * struct lock_owner.
180  *
181  * If a lock owner has a lock that blocks some other lock or a lock
182  * that is waiting for some other lock, it also has a vertex in the
183  * owner_graph below.
184  *
185  * Locks:
186  * (s)          locked by state->ls_lock
187  * (S)          locked by lf_lock_states_lock
188  * (g)          locked by lf_owner_graph_lock
189  * (c)          const until freeing
190  */
191 #define LOCK_OWNER_HASH_SIZE    256
192
193 struct lock_owner {
194         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195         int     lo_refs;            /* (l) Number of locks referring to this */
196         int     lo_flags;           /* (c) Flags passed to lf_advlock */
197         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
198         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
199         int     lo_sysid;           /* (c) System Id of the lock owner */
200         int     lo_hash;            /* (c) Used to lock the appropriate chain */
201         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
202 };
203
204 LIST_HEAD(lock_owner_list, lock_owner);
205
206 struct lock_owner_chain {
207         struct sx               lock;
208         struct lock_owner_list  list;
209 };
210
211 static struct sx                lf_lock_states_lock;
212 static struct lockf_list        lf_lock_states; /* (S) */
213 static struct lock_owner_chain  lf_lock_owners[LOCK_OWNER_HASH_SIZE];
214
215 /*
216  * Structures for deadlock detection.
217  *
218  * We have two types of directed graph, the first is the set of locks,
219  * both active and pending on a vnode. Within this graph, active locks
220  * are terminal nodes in the graph (i.e. have no out-going
221  * edges). Pending locks have out-going edges to each blocking active
222  * lock that prevents the lock from being granted and also to each
223  * older pending lock that would block them if it was active. The
224  * graph for each vnode is naturally acyclic; new edges are only ever
225  * added to or from new nodes (either new pending locks which only add
226  * out-going edges or new active locks which only add in-coming edges)
227  * therefore they cannot create loops in the lock graph.
228  *
229  * The second graph is a global graph of lock owners. Each lock owner
230  * is a vertex in that graph and an edge is added to the graph
231  * whenever an edge is added to a vnode graph, with end points
232  * corresponding to owner of the new pending lock and the owner of the
233  * lock upon which it waits. In order to prevent deadlock, we only add
234  * an edge to this graph if the new edge would not create a cycle.
235  * 
236  * The lock owner graph is topologically sorted, i.e. if a node has
237  * any outgoing edges, then it has an order strictly less than any
238  * node to which it has an outgoing edge. We preserve this ordering
239  * (and detect cycles) on edge insertion using Algorithm PK from the
240  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
241  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
242  * No. 1.7)
243  */
244 struct owner_vertex;
245
246 struct owner_edge {
247         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
248         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
249         int             e_refs;           /* (g) number of times added */
250         struct owner_vertex *e_from;      /* (c) out-going from here */
251         struct owner_vertex *e_to;        /* (c) in-coming to here */
252 };
253 LIST_HEAD(owner_edge_list, owner_edge);
254
255 struct owner_vertex {
256         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
257         uint32_t        v_gen;            /* (g) workspace for edge insertion */
258         int             v_order;          /* (g) order of vertex in graph */
259         struct owner_edge_list v_outedges;/* (g) list of out-edges */
260         struct owner_edge_list v_inedges; /* (g) list of in-edges */
261         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
262 };
263 TAILQ_HEAD(owner_vertex_list, owner_vertex);
264
265 struct owner_graph {
266         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
267         int             g_size;           /* (g) number of vertices */
268         int             g_space;          /* (g) space allocated for vertices */
269         int             *g_indexbuf;      /* (g) workspace for loop detection */
270         uint32_t        g_gen;            /* (g) increment when re-ordering */
271 };
272
273 static struct sx                lf_owner_graph_lock;
274 static struct owner_graph       lf_owner_graph;
275
276 /*
277  * Initialise various structures and locks.
278  */
279 static void
280 lf_init(void *dummy)
281 {
282         int i;
283
284         sx_init(&lf_lock_states_lock, "lock states lock");
285         LIST_INIT(&lf_lock_states);
286
287         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
288                 sx_init(&lf_lock_owners[i].lock, "lock owners lock");
289                 LIST_INIT(&lf_lock_owners[i].list);
290         }
291
292         sx_init(&lf_owner_graph_lock, "owner graph lock");
293         graph_init(&lf_owner_graph);
294 }
295 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
296
297 /*
298  * Generate a hash value for a lock owner.
299  */
300 static int
301 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
302 {
303         uint32_t h;
304
305         if (flags & F_REMOTE) {
306                 h = HASHSTEP(0, fl->l_pid);
307                 h = HASHSTEP(h, fl->l_sysid);
308         } else if (flags & F_FLOCK) {
309                 h = ((uintptr_t) id) >> 7;
310         } else {
311                 h = ((uintptr_t) vp) >> 7;
312         }
313
314         return (h % LOCK_OWNER_HASH_SIZE);
315 }
316
317 /*
318  * Return true if a lock owner matches the details passed to
319  * lf_advlock.
320  */
321 static int
322 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
323     int flags)
324 {
325         if (flags & F_REMOTE) {
326                 return lo->lo_pid == fl->l_pid
327                         && lo->lo_sysid == fl->l_sysid;
328         } else {
329                 return lo->lo_id == id;
330         }
331 }
332
333 static struct lockf_entry *
334 lf_alloc_lock(struct lock_owner *lo)
335 {
336         struct lockf_entry *lf;
337
338         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
339
340 #ifdef LOCKF_DEBUG
341         if (lockf_debug & 4)
342                 printf("Allocated lock %p\n", lf);
343 #endif
344         if (lo) {
345                 sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
346                 lo->lo_refs++;
347                 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
348                 lf->lf_owner = lo;
349         }
350
351         return (lf);
352 }
353
354 static int
355 lf_free_lock(struct lockf_entry *lock)
356 {
357         struct sx *chainlock;
358
359         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
360         if (--lock->lf_refs > 0)
361                 return (0);
362         /*
363          * Adjust the lock_owner reference count and
364          * reclaim the entry if this is the last lock
365          * for that owner.
366          */
367         struct lock_owner *lo = lock->lf_owner;
368         if (lo) {
369                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
370                     ("freeing lock with dependencies"));
371                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
372                     ("freeing lock with dependants"));
373                 chainlock = &lf_lock_owners[lo->lo_hash].lock;
374                 sx_xlock(chainlock);
375                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
376                 lo->lo_refs--;
377                 if (lo->lo_refs == 0) {
378 #ifdef LOCKF_DEBUG
379                         if (lockf_debug & 1)
380                                 printf("lf_free_lock: freeing lock owner %p\n",
381                                     lo);
382 #endif
383                         if (lo->lo_vertex) {
384                                 sx_xlock(&lf_owner_graph_lock);
385                                 graph_free_vertex(&lf_owner_graph,
386                                     lo->lo_vertex);
387                                 sx_xunlock(&lf_owner_graph_lock);
388                         }
389                         LIST_REMOVE(lo, lo_link);
390                         free(lo, M_LOCKF);
391 #ifdef LOCKF_DEBUG
392                         if (lockf_debug & 4)
393                                 printf("Freed lock owner %p\n", lo);
394 #endif
395                 }
396                 sx_unlock(chainlock);
397         }
398         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
399                 vrele(lock->lf_vnode);
400                 lock->lf_vnode = NULL;
401         }
402 #ifdef LOCKF_DEBUG
403         if (lockf_debug & 4)
404                 printf("Freed lock %p\n", lock);
405 #endif
406         free(lock, M_LOCKF);
407         return (1);
408 }
409
410 /*
411  * Advisory record locking support
412  */
413 int
414 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
415     u_quad_t size)
416 {
417         struct lockf *state;
418         struct flock *fl = ap->a_fl;
419         struct lockf_entry *lock;
420         struct vnode *vp = ap->a_vp;
421         caddr_t id = ap->a_id;
422         int flags = ap->a_flags;
423         int hash;
424         struct lock_owner *lo;
425         off_t start, end, oadd;
426         int error;
427
428         /*
429          * Handle the F_UNLKSYS case first - no need to mess about
430          * creating a lock owner for this one.
431          */
432         if (ap->a_op == F_UNLCKSYS) {
433                 lf_clearremotesys(fl->l_sysid);
434                 return (0);
435         }
436
437         /*
438          * Convert the flock structure into a start and end.
439          */
440         switch (fl->l_whence) {
441         case SEEK_SET:
442         case SEEK_CUR:
443                 /*
444                  * Caller is responsible for adding any necessary offset
445                  * when SEEK_CUR is used.
446                  */
447                 start = fl->l_start;
448                 break;
449
450         case SEEK_END:
451                 if (size > OFF_MAX ||
452                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
453                         return (EOVERFLOW);
454                 start = size + fl->l_start;
455                 break;
456
457         default:
458                 return (EINVAL);
459         }
460         if (start < 0)
461                 return (EINVAL);
462         if (fl->l_len < 0) {
463                 if (start == 0)
464                         return (EINVAL);
465                 end = start - 1;
466                 start += fl->l_len;
467                 if (start < 0)
468                         return (EINVAL);
469         } else if (fl->l_len == 0) {
470                 end = OFF_MAX;
471         } else {
472                 oadd = fl->l_len - 1;
473                 if (oadd > OFF_MAX - start)
474                         return (EOVERFLOW);
475                 end = start + oadd;
476         }
477
478 retry_setlock:
479
480         /*
481          * Avoid the common case of unlocking when inode has no locks.
482          */
483         if (ap->a_op != F_SETLK && (*statep) == NULL) {
484                 VI_LOCK(vp);
485                 if ((*statep) == NULL) {
486                         fl->l_type = F_UNLCK;
487                         VI_UNLOCK(vp);
488                         return (0);
489                 }
490                 VI_UNLOCK(vp);
491         }
492
493         /*
494          * Map our arguments to an existing lock owner or create one
495          * if this is the first time we have seen this owner.
496          */
497         hash = lf_hash_owner(id, vp, fl, flags);
498         sx_xlock(&lf_lock_owners[hash].lock);
499         LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
500                 if (lf_owner_matches(lo, id, fl, flags))
501                         break;
502         if (!lo) {
503                 /*
504                  * We initialise the lock with a reference
505                  * count which matches the new lockf_entry
506                  * structure created below.
507                  */
508                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
509                     M_WAITOK|M_ZERO);
510 #ifdef LOCKF_DEBUG
511                 if (lockf_debug & 4)
512                         printf("Allocated lock owner %p\n", lo);
513 #endif
514
515                 lo->lo_refs = 1;
516                 lo->lo_flags = flags;
517                 lo->lo_id = id;
518                 lo->lo_hash = hash;
519                 if (flags & F_REMOTE) {
520                         lo->lo_pid = fl->l_pid;
521                         lo->lo_sysid = fl->l_sysid;
522                 } else if (flags & F_FLOCK) {
523                         lo->lo_pid = -1;
524                         lo->lo_sysid = 0;
525                 } else {
526                         struct proc *p = (struct proc *) id;
527                         lo->lo_pid = p->p_pid;
528                         lo->lo_sysid = 0;
529                 }
530                 lo->lo_vertex = NULL;
531
532 #ifdef LOCKF_DEBUG
533                 if (lockf_debug & 1) {
534                         printf("lf_advlockasync: new lock owner %p ", lo);
535                         lf_print_owner(lo);
536                         printf("\n");
537                 }
538 #endif
539
540                 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
541         } else {
542                 /*
543                  * We have seen this lock owner before, increase its
544                  * reference count to account for the new lockf_entry
545                  * structure we create below.
546                  */
547                 lo->lo_refs++;
548         }
549         sx_xunlock(&lf_lock_owners[hash].lock);
550
551         /*
552          * Create the lockf structure. We initialise the lf_owner
553          * field here instead of in lf_alloc_lock() to avoid paying
554          * the lf_lock_owners_lock tax twice.
555          */
556         lock = lf_alloc_lock(NULL);
557         lock->lf_refs = 1;
558         lock->lf_start = start;
559         lock->lf_end = end;
560         lock->lf_owner = lo;
561         lock->lf_vnode = vp;
562         if (flags & F_REMOTE) {
563                 /*
564                  * For remote locks, the caller may release its ref to
565                  * the vnode at any time - we have to ref it here to
566                  * prevent it from being recycled unexpectedly.
567                  */
568                 vref(vp);
569         }
570
571         lock->lf_type = fl->l_type;
572         LIST_INIT(&lock->lf_outedges);
573         LIST_INIT(&lock->lf_inedges);
574         lock->lf_async_task = ap->a_task;
575         lock->lf_flags = ap->a_flags;
576
577         /*
578          * Do the requested operation. First find our state structure
579          * and create a new one if necessary - the caller's *statep
580          * variable and the state's ls_threads count is protected by
581          * the vnode interlock.
582          */
583         VI_LOCK(vp);
584         if (VN_IS_DOOMED(vp)) {
585                 VI_UNLOCK(vp);
586                 lf_free_lock(lock);
587                 return (ENOENT);
588         }
589
590         /*
591          * Allocate a state structure if necessary.
592          */
593         state = *statep;
594         if (state == NULL) {
595                 struct lockf *ls;
596
597                 VI_UNLOCK(vp);
598
599                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
600                 sx_init(&ls->ls_lock, "ls_lock");
601                 LIST_INIT(&ls->ls_active);
602                 LIST_INIT(&ls->ls_pending);
603                 ls->ls_threads = 1;
604
605                 sx_xlock(&lf_lock_states_lock);
606                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
607                 sx_xunlock(&lf_lock_states_lock);
608
609                 /*
610                  * Cope if we lost a race with some other thread while
611                  * trying to allocate memory.
612                  */
613                 VI_LOCK(vp);
614                 if (VN_IS_DOOMED(vp)) {
615                         VI_UNLOCK(vp);
616                         sx_xlock(&lf_lock_states_lock);
617                         LIST_REMOVE(ls, ls_link);
618                         sx_xunlock(&lf_lock_states_lock);
619                         sx_destroy(&ls->ls_lock);
620                         free(ls, M_LOCKF);
621                         lf_free_lock(lock);
622                         return (ENOENT);
623                 }
624                 if ((*statep) == NULL) {
625                         state = *statep = ls;
626                         VI_UNLOCK(vp);
627                 } else {
628                         state = *statep;
629                         MPASS(state->ls_threads >= 0);
630                         state->ls_threads++;
631                         VI_UNLOCK(vp);
632
633                         sx_xlock(&lf_lock_states_lock);
634                         LIST_REMOVE(ls, ls_link);
635                         sx_xunlock(&lf_lock_states_lock);
636                         sx_destroy(&ls->ls_lock);
637                         free(ls, M_LOCKF);
638                 }
639         } else {
640                 MPASS(state->ls_threads >= 0);
641                 state->ls_threads++;
642                 VI_UNLOCK(vp);
643         }
644
645         sx_xlock(&state->ls_lock);
646         /*
647          * Recheck the doomed vnode after state->ls_lock is
648          * locked. lf_purgelocks() requires that no new threads add
649          * pending locks when vnode is marked by VIRF_DOOMED flag.
650          */
651         if (VN_IS_DOOMED(vp)) {
652                 VI_LOCK(vp);
653                 MPASS(state->ls_threads > 0);
654                 state->ls_threads--;
655                 wakeup(state);
656                 VI_UNLOCK(vp);
657                 sx_xunlock(&state->ls_lock);
658                 lf_free_lock(lock);
659                 return (ENOENT);
660         }
661
662         switch (ap->a_op) {
663         case F_SETLK:
664                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
665                 break;
666
667         case F_UNLCK:
668                 error = lf_clearlock(state, lock);
669                 lf_free_lock(lock);
670                 break;
671
672         case F_GETLK:
673                 error = lf_getlock(state, lock, fl);
674                 lf_free_lock(lock);
675                 break;
676
677         case F_CANCEL:
678                 if (ap->a_cookiep)
679                         error = lf_cancel(state, lock, *ap->a_cookiep);
680                 else
681                         error = EINVAL;
682                 lf_free_lock(lock);
683                 break;
684
685         default:
686                 lf_free_lock(lock);
687                 error = EINVAL;
688                 break;
689         }
690
691 #ifdef DIAGNOSTIC
692         /*
693          * Check for some can't happen stuff. In this case, the active
694          * lock list becoming disordered or containing mutually
695          * blocking locks. We also check the pending list for locks
696          * which should be active (i.e. have no out-going edges).
697          */
698         LIST_FOREACH(lock, &state->ls_active, lf_link) {
699                 struct lockf_entry *lf;
700                 if (LIST_NEXT(lock, lf_link))
701                         KASSERT((lock->lf_start
702                                 <= LIST_NEXT(lock, lf_link)->lf_start),
703                             ("locks disordered"));
704                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
705                         if (lock == lf)
706                                 break;
707                         KASSERT(!lf_blocks(lock, lf),
708                             ("two conflicting active locks"));
709                         if (lock->lf_owner == lf->lf_owner)
710                                 KASSERT(!lf_overlaps(lock, lf),
711                                     ("two overlapping locks from same owner"));
712                 }
713         }
714         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
715                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
716                     ("pending lock which should be active"));
717         }
718 #endif
719         sx_xunlock(&state->ls_lock);
720
721         VI_LOCK(vp);
722         MPASS(state->ls_threads > 0);
723         state->ls_threads--;
724         if (state->ls_threads != 0) {
725                 wakeup(state);
726         }
727         VI_UNLOCK(vp);
728
729         if (error == EDOOFUS) {
730                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
731                 goto retry_setlock;
732         }
733         return (error);
734 }
735
736 int
737 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
738 {
739         struct vop_advlockasync_args a;
740
741         a.a_vp = ap->a_vp;
742         a.a_id = ap->a_id;
743         a.a_op = ap->a_op;
744         a.a_fl = ap->a_fl;
745         a.a_flags = ap->a_flags;
746         a.a_task = NULL;
747         a.a_cookiep = NULL;
748
749         return (lf_advlockasync(&a, statep, size));
750 }
751
752 void
753 lf_purgelocks(struct vnode *vp, struct lockf **statep)
754 {
755         struct lockf *state;
756         struct lockf_entry *lock, *nlock;
757
758         /*
759          * For this to work correctly, the caller must ensure that no
760          * other threads enter the locking system for this vnode,
761          * e.g. by checking VIRF_DOOMED. We wake up any threads that are
762          * sleeping waiting for locks on this vnode and then free all
763          * the remaining locks.
764          */
765         VI_LOCK(vp);
766         KASSERT(VN_IS_DOOMED(vp),
767             ("lf_purgelocks: vp %p has not vgone yet", vp));
768         state = *statep;
769         if (state == NULL) {
770                 VI_UNLOCK(vp);
771                 return;
772         }
773         *statep = NULL;
774         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
775                 KASSERT(LIST_EMPTY(&state->ls_pending),
776                     ("freeing state with pending locks"));
777                 VI_UNLOCK(vp);
778                 goto out_free;
779         }
780         MPASS(state->ls_threads >= 0);
781         state->ls_threads++;
782         VI_UNLOCK(vp);
783
784         sx_xlock(&state->ls_lock);
785         sx_xlock(&lf_owner_graph_lock);
786         LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
787                 LIST_REMOVE(lock, lf_link);
788                 lf_remove_outgoing(lock);
789                 lf_remove_incoming(lock);
790
791                 /*
792                  * If its an async lock, we can just free it
793                  * here, otherwise we let the sleeping thread
794                  * free it.
795                  */
796                 if (lock->lf_async_task) {
797                         lf_free_lock(lock);
798                 } else {
799                         lock->lf_flags |= F_INTR;
800                         wakeup(lock);
801                 }
802         }
803         sx_xunlock(&lf_owner_graph_lock);
804         sx_xunlock(&state->ls_lock);
805
806         /*
807          * Wait for all other threads, sleeping and otherwise
808          * to leave.
809          */
810         VI_LOCK(vp);
811         while (state->ls_threads > 1)
812                 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
813         VI_UNLOCK(vp);
814
815         /*
816          * We can just free all the active locks since they
817          * will have no dependencies (we removed them all
818          * above). We don't need to bother locking since we
819          * are the last thread using this state structure.
820          */
821         KASSERT(LIST_EMPTY(&state->ls_pending),
822             ("lock pending for %p", state));
823         LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
824                 LIST_REMOVE(lock, lf_link);
825                 lf_free_lock(lock);
826         }
827 out_free:
828         sx_xlock(&lf_lock_states_lock);
829         LIST_REMOVE(state, ls_link);
830         sx_xunlock(&lf_lock_states_lock);
831         sx_destroy(&state->ls_lock);
832         free(state, M_LOCKF);
833 }
834
835 /*
836  * Return non-zero if locks 'x' and 'y' overlap.
837  */
838 static int
839 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
840 {
841
842         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
843 }
844
845 /*
846  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
847  */
848 static int
849 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
850 {
851
852         return x->lf_owner != y->lf_owner
853                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
854                 && lf_overlaps(x, y);
855 }
856
857 /*
858  * Allocate a lock edge from the free list
859  */
860 static struct lockf_edge *
861 lf_alloc_edge(void)
862 {
863
864         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
865 }
866
867 /*
868  * Free a lock edge.
869  */
870 static void
871 lf_free_edge(struct lockf_edge *e)
872 {
873
874         free(e, M_LOCKF);
875 }
876
877 /*
878  * Ensure that the lock's owner has a corresponding vertex in the
879  * owner graph.
880  */
881 static void
882 lf_alloc_vertex(struct lockf_entry *lock)
883 {
884         struct owner_graph *g = &lf_owner_graph;
885
886         if (!lock->lf_owner->lo_vertex)
887                 lock->lf_owner->lo_vertex =
888                         graph_alloc_vertex(g, lock->lf_owner);
889 }
890
891 /*
892  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
893  * the new edge would cause a cycle in the owner graph.
894  */
895 static int
896 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
897 {
898         struct owner_graph *g = &lf_owner_graph;
899         struct lockf_edge *e;
900         int error;
901
902 #ifdef DIAGNOSTIC
903         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
904                 KASSERT(e->le_to != y, ("adding lock edge twice"));
905 #endif
906
907         /*
908          * Make sure the two owners have entries in the owner graph.
909          */
910         lf_alloc_vertex(x);
911         lf_alloc_vertex(y);
912
913         error = graph_add_edge(g, x->lf_owner->lo_vertex,
914             y->lf_owner->lo_vertex);
915         if (error)
916                 return (error);
917
918         e = lf_alloc_edge();
919         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
920         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
921         e->le_from = x;
922         e->le_to = y;
923
924         return (0);
925 }
926
927 /*
928  * Remove an edge from the lock graph.
929  */
930 static void
931 lf_remove_edge(struct lockf_edge *e)
932 {
933         struct owner_graph *g = &lf_owner_graph;
934         struct lockf_entry *x = e->le_from;
935         struct lockf_entry *y = e->le_to;
936
937         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
938         LIST_REMOVE(e, le_outlink);
939         LIST_REMOVE(e, le_inlink);
940         e->le_from = NULL;
941         e->le_to = NULL;
942         lf_free_edge(e);
943 }
944
945 /*
946  * Remove all out-going edges from lock x.
947  */
948 static void
949 lf_remove_outgoing(struct lockf_entry *x)
950 {
951         struct lockf_edge *e;
952
953         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
954                 lf_remove_edge(e);
955         }
956 }
957
958 /*
959  * Remove all in-coming edges from lock x.
960  */
961 static void
962 lf_remove_incoming(struct lockf_entry *x)
963 {
964         struct lockf_edge *e;
965
966         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
967                 lf_remove_edge(e);
968         }
969 }
970
971 /*
972  * Walk the list of locks for the file and create an out-going edge
973  * from lock to each blocking lock.
974  */
975 static int
976 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
977 {
978         struct lockf_entry *overlap;
979         int error;
980
981         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
982                 /*
983                  * We may assume that the active list is sorted by
984                  * lf_start.
985                  */
986                 if (overlap->lf_start > lock->lf_end)
987                         break;
988                 if (!lf_blocks(lock, overlap))
989                         continue;
990
991                 /*
992                  * We've found a blocking lock. Add the corresponding
993                  * edge to the graphs and see if it would cause a
994                  * deadlock.
995                  */
996                 error = lf_add_edge(lock, overlap);
997
998                 /*
999                  * The only error that lf_add_edge returns is EDEADLK.
1000                  * Remove any edges we added and return the error.
1001                  */
1002                 if (error) {
1003                         lf_remove_outgoing(lock);
1004                         return (error);
1005                 }
1006         }
1007
1008         /*
1009          * We also need to add edges to sleeping locks that block
1010          * us. This ensures that lf_wakeup_lock cannot grant two
1011          * mutually blocking locks simultaneously and also enforces a
1012          * 'first come, first served' fairness model. Note that this
1013          * only happens if we are blocked by at least one active lock
1014          * due to the call to lf_getblock in lf_setlock below.
1015          */
1016         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1017                 if (!lf_blocks(lock, overlap))
1018                         continue;
1019                 /*
1020                  * We've found a blocking lock. Add the corresponding
1021                  * edge to the graphs and see if it would cause a
1022                  * deadlock.
1023                  */
1024                 error = lf_add_edge(lock, overlap);
1025
1026                 /*
1027                  * The only error that lf_add_edge returns is EDEADLK.
1028                  * Remove any edges we added and return the error.
1029                  */
1030                 if (error) {
1031                         lf_remove_outgoing(lock);
1032                         return (error);
1033                 }
1034         }
1035
1036         return (0);
1037 }
1038
1039 /*
1040  * Walk the list of pending locks for the file and create an in-coming
1041  * edge from lock to each blocking lock.
1042  */
1043 static int
1044 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1045 {
1046         struct lockf_entry *overlap;
1047         int error;
1048
1049         sx_assert(&state->ls_lock, SX_XLOCKED);
1050         if (LIST_EMPTY(&state->ls_pending))
1051                 return (0);
1052
1053         error = 0;
1054         sx_xlock(&lf_owner_graph_lock);
1055         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1056                 if (!lf_blocks(lock, overlap))
1057                         continue;
1058
1059                 /*
1060                  * We've found a blocking lock. Add the corresponding
1061                  * edge to the graphs and see if it would cause a
1062                  * deadlock.
1063                  */
1064                 error = lf_add_edge(overlap, lock);
1065
1066                 /*
1067                  * The only error that lf_add_edge returns is EDEADLK.
1068                  * Remove any edges we added and return the error.
1069                  */
1070                 if (error) {
1071                         lf_remove_incoming(lock);
1072                         break;
1073                 }
1074         }
1075         sx_xunlock(&lf_owner_graph_lock);
1076         return (error);
1077 }
1078
1079 /*
1080  * Insert lock into the active list, keeping list entries ordered by
1081  * increasing values of lf_start.
1082  */
1083 static void
1084 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1085 {
1086         struct lockf_entry *lf, *lfprev;
1087
1088         if (LIST_EMPTY(&state->ls_active)) {
1089                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1090                 return;
1091         }
1092
1093         lfprev = NULL;
1094         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1095                 if (lf->lf_start > lock->lf_start) {
1096                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1097                         return;
1098                 }
1099                 lfprev = lf;
1100         }
1101         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1102 }
1103
1104 /*
1105  * Wake up a sleeping lock and remove it from the pending list now
1106  * that all its dependencies have been resolved. The caller should
1107  * arrange for the lock to be added to the active list, adjusting any
1108  * existing locks for the same owner as needed.
1109  */
1110 static void
1111 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1112 {
1113
1114         /*
1115          * Remove from ls_pending list and wake up the caller
1116          * or start the async notification, as appropriate.
1117          */
1118         LIST_REMOVE(wakelock, lf_link);
1119 #ifdef LOCKF_DEBUG
1120         if (lockf_debug & 1)
1121                 lf_print("lf_wakeup_lock: awakening", wakelock);
1122 #endif /* LOCKF_DEBUG */
1123         if (wakelock->lf_async_task) {
1124                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1125         } else {
1126                 wakeup(wakelock);
1127         }
1128 }
1129
1130 /*
1131  * Re-check all dependent locks and remove edges to locks that we no
1132  * longer block. If 'all' is non-zero, the lock has been removed and
1133  * we must remove all the dependencies, otherwise it has simply been
1134  * reduced but remains active. Any pending locks which have been been
1135  * unblocked are added to 'granted'
1136  */
1137 static void
1138 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1139         struct lockf_entry_list *granted)
1140 {
1141         struct lockf_edge *e, *ne;
1142         struct lockf_entry *deplock;
1143
1144         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1145                 deplock = e->le_from;
1146                 if (all || !lf_blocks(lock, deplock)) {
1147                         sx_xlock(&lf_owner_graph_lock);
1148                         lf_remove_edge(e);
1149                         sx_xunlock(&lf_owner_graph_lock);
1150                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1151                                 lf_wakeup_lock(state, deplock);
1152                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1153                         }
1154                 }
1155         }
1156 }
1157
1158 /*
1159  * Set the start of an existing active lock, updating dependencies and
1160  * adding any newly woken locks to 'granted'.
1161  */
1162 static void
1163 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1164         struct lockf_entry_list *granted)
1165 {
1166
1167         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1168         lock->lf_start = new_start;
1169         LIST_REMOVE(lock, lf_link);
1170         lf_insert_lock(state, lock);
1171         lf_update_dependancies(state, lock, FALSE, granted);
1172 }
1173
1174 /*
1175  * Set the end of an existing active lock, updating dependencies and
1176  * adding any newly woken locks to 'granted'.
1177  */
1178 static void
1179 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1180         struct lockf_entry_list *granted)
1181 {
1182
1183         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1184         lock->lf_end = new_end;
1185         lf_update_dependancies(state, lock, FALSE, granted);
1186 }
1187
1188 /*
1189  * Add a lock to the active list, updating or removing any current
1190  * locks owned by the same owner and processing any pending locks that
1191  * become unblocked as a result. This code is also used for unlock
1192  * since the logic for updating existing locks is identical.
1193  *
1194  * As a result of processing the new lock, we may unblock existing
1195  * pending locks as a result of downgrading/unlocking. We simply
1196  * activate the newly granted locks by looping.
1197  *
1198  * Since the new lock already has its dependencies set up, we always
1199  * add it to the list (unless its an unlock request). This may
1200  * fragment the lock list in some pathological cases but its probably
1201  * not a real problem.
1202  */
1203 static void
1204 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1205 {
1206         struct lockf_entry *overlap, *lf;
1207         struct lockf_entry_list granted;
1208         int ovcase;
1209
1210         LIST_INIT(&granted);
1211         LIST_INSERT_HEAD(&granted, lock, lf_link);
1212
1213         while (!LIST_EMPTY(&granted)) {
1214                 lock = LIST_FIRST(&granted);
1215                 LIST_REMOVE(lock, lf_link);
1216
1217                 /*
1218                  * Skip over locks owned by other processes.  Handle
1219                  * any locks that overlap and are owned by ourselves.
1220                  */
1221                 overlap = LIST_FIRST(&state->ls_active);
1222                 for (;;) {
1223                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1224
1225 #ifdef LOCKF_DEBUG
1226                         if (ovcase && (lockf_debug & 2)) {
1227                                 printf("lf_setlock: overlap %d", ovcase);
1228                                 lf_print("", overlap);
1229                         }
1230 #endif
1231                         /*
1232                          * Six cases:
1233                          *      0) no overlap
1234                          *      1) overlap == lock
1235                          *      2) overlap contains lock
1236                          *      3) lock contains overlap
1237                          *      4) overlap starts before lock
1238                          *      5) overlap ends after lock
1239                          */
1240                         switch (ovcase) {
1241                         case 0: /* no overlap */
1242                                 break;
1243
1244                         case 1: /* overlap == lock */
1245                                 /*
1246                                  * We have already setup the
1247                                  * dependants for the new lock, taking
1248                                  * into account a possible downgrade
1249                                  * or unlock. Remove the old lock.
1250                                  */
1251                                 LIST_REMOVE(overlap, lf_link);
1252                                 lf_update_dependancies(state, overlap, TRUE,
1253                                         &granted);
1254                                 lf_free_lock(overlap);
1255                                 break;
1256
1257                         case 2: /* overlap contains lock */
1258                                 /*
1259                                  * Just split the existing lock.
1260                                  */
1261                                 lf_split(state, overlap, lock, &granted);
1262                                 break;
1263
1264                         case 3: /* lock contains overlap */
1265                                 /*
1266                                  * Delete the overlap and advance to
1267                                  * the next entry in the list.
1268                                  */
1269                                 lf = LIST_NEXT(overlap, lf_link);
1270                                 LIST_REMOVE(overlap, lf_link);
1271                                 lf_update_dependancies(state, overlap, TRUE,
1272                                         &granted);
1273                                 lf_free_lock(overlap);
1274                                 overlap = lf;
1275                                 continue;
1276
1277                         case 4: /* overlap starts before lock */
1278                                 /*
1279                                  * Just update the overlap end and
1280                                  * move on.
1281                                  */
1282                                 lf_set_end(state, overlap, lock->lf_start - 1,
1283                                     &granted);
1284                                 overlap = LIST_NEXT(overlap, lf_link);
1285                                 continue;
1286
1287                         case 5: /* overlap ends after lock */
1288                                 /*
1289                                  * Change the start of overlap and
1290                                  * re-insert.
1291                                  */
1292                                 lf_set_start(state, overlap, lock->lf_end + 1,
1293                                     &granted);
1294                                 break;
1295                         }
1296                         break;
1297                 }
1298 #ifdef LOCKF_DEBUG
1299                 if (lockf_debug & 1) {
1300                         if (lock->lf_type != F_UNLCK)
1301                                 lf_print("lf_activate_lock: activated", lock);
1302                         else
1303                                 lf_print("lf_activate_lock: unlocked", lock);
1304                         lf_printlist("lf_activate_lock", lock);
1305                 }
1306 #endif /* LOCKF_DEBUG */
1307                 if (lock->lf_type != F_UNLCK)
1308                         lf_insert_lock(state, lock);
1309         }
1310 }
1311
1312 /*
1313  * Cancel a pending lock request, either as a result of a signal or a
1314  * cancel request for an async lock.
1315  */
1316 static void
1317 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1318 {
1319         struct lockf_entry_list granted;
1320
1321         /*
1322          * Note it is theoretically possible that cancelling this lock
1323          * may allow some other pending lock to become
1324          * active. Consider this case:
1325          *
1326          * Owner        Action          Result          Dependencies
1327          * 
1328          * A:           lock [0..0]     succeeds        
1329          * B:           lock [2..2]     succeeds        
1330          * C:           lock [1..2]     blocked         C->B
1331          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1332          * A:           unlock [0..0]                   C->B,D->C
1333          * C:           cancel [1..2]   
1334          */
1335
1336         LIST_REMOVE(lock, lf_link);
1337
1338         /*
1339          * Removing out-going edges is simple.
1340          */
1341         sx_xlock(&lf_owner_graph_lock);
1342         lf_remove_outgoing(lock);
1343         sx_xunlock(&lf_owner_graph_lock);
1344
1345         /*
1346          * Removing in-coming edges may allow some other lock to
1347          * become active - we use lf_update_dependancies to figure
1348          * this out.
1349          */
1350         LIST_INIT(&granted);
1351         lf_update_dependancies(state, lock, TRUE, &granted);
1352         lf_free_lock(lock);
1353
1354         /*
1355          * Feed any newly active locks to lf_activate_lock.
1356          */
1357         while (!LIST_EMPTY(&granted)) {
1358                 lock = LIST_FIRST(&granted);
1359                 LIST_REMOVE(lock, lf_link);
1360                 lf_activate_lock(state, lock);
1361         }
1362 }
1363
1364 /*
1365  * Set a byte-range lock.
1366  */
1367 static int
1368 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1369     void **cookiep)
1370 {
1371         static char lockstr[] = "lockf";
1372         int error, priority, stops_deferred;
1373
1374 #ifdef LOCKF_DEBUG
1375         if (lockf_debug & 1)
1376                 lf_print("lf_setlock", lock);
1377 #endif /* LOCKF_DEBUG */
1378
1379         /*
1380          * Set the priority
1381          */
1382         priority = PLOCK;
1383         if (lock->lf_type == F_WRLCK)
1384                 priority += 4;
1385         if (!(lock->lf_flags & F_NOINTR))
1386                 priority |= PCATCH;
1387         /*
1388          * Scan lock list for this file looking for locks that would block us.
1389          */
1390         if (lf_getblock(state, lock)) {
1391                 /*
1392                  * Free the structure and return if nonblocking.
1393                  */
1394                 if ((lock->lf_flags & F_WAIT) == 0
1395                     && lock->lf_async_task == NULL) {
1396                         lf_free_lock(lock);
1397                         error = EAGAIN;
1398                         goto out;
1399                 }
1400
1401                 /*
1402                  * For flock type locks, we must first remove
1403                  * any shared locks that we hold before we sleep
1404                  * waiting for an exclusive lock.
1405                  */
1406                 if ((lock->lf_flags & F_FLOCK) &&
1407                     lock->lf_type == F_WRLCK) {
1408                         lock->lf_type = F_UNLCK;
1409                         lf_activate_lock(state, lock);
1410                         lock->lf_type = F_WRLCK;
1411                 }
1412
1413                 /*
1414                  * We are blocked. Create edges to each blocking lock,
1415                  * checking for deadlock using the owner graph. For
1416                  * simplicity, we run deadlock detection for all
1417                  * locks, posix and otherwise.
1418                  */
1419                 sx_xlock(&lf_owner_graph_lock);
1420                 error = lf_add_outgoing(state, lock);
1421                 sx_xunlock(&lf_owner_graph_lock);
1422
1423                 if (error) {
1424 #ifdef LOCKF_DEBUG
1425                         if (lockf_debug & 1)
1426                                 lf_print("lf_setlock: deadlock", lock);
1427 #endif
1428                         lf_free_lock(lock);
1429                         goto out;
1430                 }
1431
1432                 /*
1433                  * We have added edges to everything that blocks
1434                  * us. Sleep until they all go away.
1435                  */
1436                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1437 #ifdef LOCKF_DEBUG
1438                 if (lockf_debug & 1) {
1439                         struct lockf_edge *e;
1440                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1441                                 lf_print("lf_setlock: blocking on", e->le_to);
1442                                 lf_printlist("lf_setlock", e->le_to);
1443                         }
1444                 }
1445 #endif /* LOCKF_DEBUG */
1446
1447                 if ((lock->lf_flags & F_WAIT) == 0) {
1448                         /*
1449                          * The caller requested async notification -
1450                          * this callback happens when the blocking
1451                          * lock is released, allowing the caller to
1452                          * make another attempt to take the lock.
1453                          */
1454                         *cookiep = (void *) lock;
1455                         error = EINPROGRESS;
1456                         goto out;
1457                 }
1458
1459                 lock->lf_refs++;
1460                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1461                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1462                 sigallowstop(stops_deferred);
1463                 if (lf_free_lock(lock)) {
1464                         error = EDOOFUS;
1465                         goto out;
1466                 }
1467
1468                 /*
1469                  * We may have been awakened by a signal and/or by a
1470                  * debugger continuing us (in which cases we must
1471                  * remove our lock graph edges) and/or by another
1472                  * process releasing a lock (in which case our edges
1473                  * have already been removed and we have been moved to
1474                  * the active list). We may also have been woken by
1475                  * lf_purgelocks which we report to the caller as
1476                  * EINTR. In that case, lf_purgelocks will have
1477                  * removed our lock graph edges.
1478                  *
1479                  * Note that it is possible to receive a signal after
1480                  * we were successfully woken (and moved to the active
1481                  * list) but before we resumed execution. In this
1482                  * case, our lf_outedges list will be clear. We
1483                  * pretend there was no error.
1484                  *
1485                  * Note also, if we have been sleeping long enough, we
1486                  * may now have incoming edges from some newer lock
1487                  * which is waiting behind us in the queue.
1488                  */
1489                 if (lock->lf_flags & F_INTR) {
1490                         error = EINTR;
1491                         lf_free_lock(lock);
1492                         goto out;
1493                 }
1494                 if (LIST_EMPTY(&lock->lf_outedges)) {
1495                         error = 0;
1496                 } else {
1497                         lf_cancel_lock(state, lock);
1498                         goto out;
1499                 }
1500 #ifdef LOCKF_DEBUG
1501                 if (lockf_debug & 1) {
1502                         lf_print("lf_setlock: granted", lock);
1503                 }
1504 #endif
1505                 goto out;
1506         }
1507         /*
1508          * It looks like we are going to grant the lock. First add
1509          * edges from any currently pending lock that the new lock
1510          * would block.
1511          */
1512         error = lf_add_incoming(state, lock);
1513         if (error) {
1514 #ifdef LOCKF_DEBUG
1515                 if (lockf_debug & 1)
1516                         lf_print("lf_setlock: deadlock", lock);
1517 #endif
1518                 lf_free_lock(lock);
1519                 goto out;
1520         }
1521
1522         /*
1523          * No blocks!!  Add the lock.  Note that we will
1524          * downgrade or upgrade any overlapping locks this
1525          * process already owns.
1526          */
1527         lf_activate_lock(state, lock);
1528         error = 0;
1529 out:
1530         return (error);
1531 }
1532
1533 /*
1534  * Remove a byte-range lock on an inode.
1535  *
1536  * Generally, find the lock (or an overlap to that lock)
1537  * and remove it (or shrink it), then wakeup anyone we can.
1538  */
1539 static int
1540 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1541 {
1542         struct lockf_entry *overlap;
1543
1544         overlap = LIST_FIRST(&state->ls_active);
1545
1546         if (overlap == NOLOCKF)
1547                 return (0);
1548 #ifdef LOCKF_DEBUG
1549         if (unlock->lf_type != F_UNLCK)
1550                 panic("lf_clearlock: bad type");
1551         if (lockf_debug & 1)
1552                 lf_print("lf_clearlock", unlock);
1553 #endif /* LOCKF_DEBUG */
1554
1555         lf_activate_lock(state, unlock);
1556
1557         return (0);
1558 }
1559
1560 /*
1561  * Check whether there is a blocking lock, and if so return its
1562  * details in '*fl'.
1563  */
1564 static int
1565 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1566 {
1567         struct lockf_entry *block;
1568
1569 #ifdef LOCKF_DEBUG
1570         if (lockf_debug & 1)
1571                 lf_print("lf_getlock", lock);
1572 #endif /* LOCKF_DEBUG */
1573
1574         if ((block = lf_getblock(state, lock))) {
1575                 fl->l_type = block->lf_type;
1576                 fl->l_whence = SEEK_SET;
1577                 fl->l_start = block->lf_start;
1578                 if (block->lf_end == OFF_MAX)
1579                         fl->l_len = 0;
1580                 else
1581                         fl->l_len = block->lf_end - block->lf_start + 1;
1582                 fl->l_pid = block->lf_owner->lo_pid;
1583                 fl->l_sysid = block->lf_owner->lo_sysid;
1584         } else {
1585                 fl->l_type = F_UNLCK;
1586         }
1587         return (0);
1588 }
1589
1590 /*
1591  * Cancel an async lock request.
1592  */
1593 static int
1594 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1595 {
1596         struct lockf_entry *reallock;
1597
1598         /*
1599          * We need to match this request with an existing lock
1600          * request.
1601          */
1602         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1603                 if ((void *) reallock == cookie) {
1604                         /*
1605                          * Double-check that this lock looks right
1606                          * (maybe use a rolling ID for the cancel
1607                          * cookie instead?)
1608                          */
1609                         if (!(reallock->lf_vnode == lock->lf_vnode
1610                                 && reallock->lf_start == lock->lf_start
1611                                 && reallock->lf_end == lock->lf_end)) {
1612                                 return (ENOENT);
1613                         }
1614
1615                         /*
1616                          * Make sure this lock was async and then just
1617                          * remove it from its wait lists.
1618                          */
1619                         if (!reallock->lf_async_task) {
1620                                 return (ENOENT);
1621                         }
1622
1623                         /*
1624                          * Note that since any other thread must take
1625                          * state->ls_lock before it can possibly
1626                          * trigger the async callback, we are safe
1627                          * from a race with lf_wakeup_lock, i.e. we
1628                          * can free the lock (actually our caller does
1629                          * this).
1630                          */
1631                         lf_cancel_lock(state, reallock);
1632                         return (0);
1633                 }
1634         }
1635
1636         /*
1637          * We didn't find a matching lock - not much we can do here.
1638          */
1639         return (ENOENT);
1640 }
1641
1642 /*
1643  * Walk the list of locks for an inode and
1644  * return the first blocking lock.
1645  */
1646 static struct lockf_entry *
1647 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1648 {
1649         struct lockf_entry *overlap;
1650
1651         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1652                 /*
1653                  * We may assume that the active list is sorted by
1654                  * lf_start.
1655                  */
1656                 if (overlap->lf_start > lock->lf_end)
1657                         break;
1658                 if (!lf_blocks(lock, overlap))
1659                         continue;
1660                 return (overlap);
1661         }
1662         return (NOLOCKF);
1663 }
1664
1665 /*
1666  * Walk the list of locks for an inode to find an overlapping lock (if
1667  * any) and return a classification of that overlap.
1668  *
1669  * Arguments:
1670  *      *overlap        The place in the lock list to start looking
1671  *      lock            The lock which is being tested
1672  *      type            Pass 'SELF' to test only locks with the same
1673  *                      owner as lock, or 'OTHER' to test only locks
1674  *                      with a different owner
1675  *
1676  * Returns one of six values:
1677  *      0) no overlap
1678  *      1) overlap == lock
1679  *      2) overlap contains lock
1680  *      3) lock contains overlap
1681  *      4) overlap starts before lock
1682  *      5) overlap ends after lock
1683  *
1684  * If there is an overlapping lock, '*overlap' is set to point at the
1685  * overlapping lock.
1686  *
1687  * NOTE: this returns only the FIRST overlapping lock.  There
1688  *       may be more than one.
1689  */
1690 static int
1691 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1692 {
1693         struct lockf_entry *lf;
1694         off_t start, end;
1695         int res;
1696
1697         if ((*overlap) == NOLOCKF) {
1698                 return (0);
1699         }
1700 #ifdef LOCKF_DEBUG
1701         if (lockf_debug & 2)
1702                 lf_print("lf_findoverlap: looking for overlap in", lock);
1703 #endif /* LOCKF_DEBUG */
1704         start = lock->lf_start;
1705         end = lock->lf_end;
1706         res = 0;
1707         while (*overlap) {
1708                 lf = *overlap;
1709                 if (lf->lf_start > end)
1710                         break;
1711                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1712                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1713                         *overlap = LIST_NEXT(lf, lf_link);
1714                         continue;
1715                 }
1716 #ifdef LOCKF_DEBUG
1717                 if (lockf_debug & 2)
1718                         lf_print("\tchecking", lf);
1719 #endif /* LOCKF_DEBUG */
1720                 /*
1721                  * OK, check for overlap
1722                  *
1723                  * Six cases:
1724                  *      0) no overlap
1725                  *      1) overlap == lock
1726                  *      2) overlap contains lock
1727                  *      3) lock contains overlap
1728                  *      4) overlap starts before lock
1729                  *      5) overlap ends after lock
1730                  */
1731                 if (start > lf->lf_end) {
1732                         /* Case 0 */
1733 #ifdef LOCKF_DEBUG
1734                         if (lockf_debug & 2)
1735                                 printf("no overlap\n");
1736 #endif /* LOCKF_DEBUG */
1737                         *overlap = LIST_NEXT(lf, lf_link);
1738                         continue;
1739                 }
1740                 if (lf->lf_start == start && lf->lf_end == end) {
1741                         /* Case 1 */
1742 #ifdef LOCKF_DEBUG
1743                         if (lockf_debug & 2)
1744                                 printf("overlap == lock\n");
1745 #endif /* LOCKF_DEBUG */
1746                         res = 1;
1747                         break;
1748                 }
1749                 if (lf->lf_start <= start && lf->lf_end >= end) {
1750                         /* Case 2 */
1751 #ifdef LOCKF_DEBUG
1752                         if (lockf_debug & 2)
1753                                 printf("overlap contains lock\n");
1754 #endif /* LOCKF_DEBUG */
1755                         res = 2;
1756                         break;
1757                 }
1758                 if (start <= lf->lf_start && end >= lf->lf_end) {
1759                         /* Case 3 */
1760 #ifdef LOCKF_DEBUG
1761                         if (lockf_debug & 2)
1762                                 printf("lock contains overlap\n");
1763 #endif /* LOCKF_DEBUG */
1764                         res = 3;
1765                         break;
1766                 }
1767                 if (lf->lf_start < start && lf->lf_end >= start) {
1768                         /* Case 4 */
1769 #ifdef LOCKF_DEBUG
1770                         if (lockf_debug & 2)
1771                                 printf("overlap starts before lock\n");
1772 #endif /* LOCKF_DEBUG */
1773                         res = 4;
1774                         break;
1775                 }
1776                 if (lf->lf_start > start && lf->lf_end > end) {
1777                         /* Case 5 */
1778 #ifdef LOCKF_DEBUG
1779                         if (lockf_debug & 2)
1780                                 printf("overlap ends after lock\n");
1781 #endif /* LOCKF_DEBUG */
1782                         res = 5;
1783                         break;
1784                 }
1785                 panic("lf_findoverlap: default");
1786         }
1787         return (res);
1788 }
1789
1790 /*
1791  * Split an the existing 'lock1', based on the extent of the lock
1792  * described by 'lock2'. The existing lock should cover 'lock2'
1793  * entirely.
1794  *
1795  * Any pending locks which have been been unblocked are added to
1796  * 'granted'
1797  */
1798 static void
1799 lf_split(struct lockf *state, struct lockf_entry *lock1,
1800     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1801 {
1802         struct lockf_entry *splitlock;
1803
1804 #ifdef LOCKF_DEBUG
1805         if (lockf_debug & 2) {
1806                 lf_print("lf_split", lock1);
1807                 lf_print("splitting from", lock2);
1808         }
1809 #endif /* LOCKF_DEBUG */
1810         /*
1811          * Check to see if we don't need to split at all.
1812          */
1813         if (lock1->lf_start == lock2->lf_start) {
1814                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1815                 return;
1816         }
1817         if (lock1->lf_end == lock2->lf_end) {
1818                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1819                 return;
1820         }
1821         /*
1822          * Make a new lock consisting of the last part of
1823          * the encompassing lock.
1824          */
1825         splitlock = lf_alloc_lock(lock1->lf_owner);
1826         memcpy(splitlock, lock1, sizeof *splitlock);
1827         splitlock->lf_refs = 1;
1828         if (splitlock->lf_flags & F_REMOTE)
1829                 vref(splitlock->lf_vnode);
1830
1831         /*
1832          * This cannot cause a deadlock since any edges we would add
1833          * to splitlock already exist in lock1. We must be sure to add
1834          * necessary dependencies to splitlock before we reduce lock1
1835          * otherwise we may accidentally grant a pending lock that
1836          * was blocked by the tail end of lock1.
1837          */
1838         splitlock->lf_start = lock2->lf_end + 1;
1839         LIST_INIT(&splitlock->lf_outedges);
1840         LIST_INIT(&splitlock->lf_inedges);
1841         lf_add_incoming(state, splitlock);
1842
1843         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1844
1845         /*
1846          * OK, now link it in
1847          */
1848         lf_insert_lock(state, splitlock);
1849 }
1850
1851 struct lockdesc {
1852         STAILQ_ENTRY(lockdesc) link;
1853         struct vnode *vp;
1854         struct flock fl;
1855 };
1856 STAILQ_HEAD(lockdesclist, lockdesc);
1857
1858 int
1859 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1860 {
1861         struct lockf *ls;
1862         struct lockf_entry *lf;
1863         struct lockdesc *ldesc;
1864         struct lockdesclist locks;
1865         int error;
1866
1867         /*
1868          * In order to keep the locking simple, we iterate over the
1869          * active lock lists to build a list of locks that need
1870          * releasing. We then call the iterator for each one in turn.
1871          *
1872          * We take an extra reference to the vnode for the duration to
1873          * make sure it doesn't go away before we are finished.
1874          */
1875         STAILQ_INIT(&locks);
1876         sx_xlock(&lf_lock_states_lock);
1877         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1878                 sx_xlock(&ls->ls_lock);
1879                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1880                         if (lf->lf_owner->lo_sysid != sysid)
1881                                 continue;
1882
1883                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1884                             M_WAITOK);
1885                         ldesc->vp = lf->lf_vnode;
1886                         vref(ldesc->vp);
1887                         ldesc->fl.l_start = lf->lf_start;
1888                         if (lf->lf_end == OFF_MAX)
1889                                 ldesc->fl.l_len = 0;
1890                         else
1891                                 ldesc->fl.l_len =
1892                                         lf->lf_end - lf->lf_start + 1;
1893                         ldesc->fl.l_whence = SEEK_SET;
1894                         ldesc->fl.l_type = F_UNLCK;
1895                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1896                         ldesc->fl.l_sysid = sysid;
1897                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1898                 }
1899                 sx_xunlock(&ls->ls_lock);
1900         }
1901         sx_xunlock(&lf_lock_states_lock);
1902
1903         /*
1904          * Call the iterator function for each lock in turn. If the
1905          * iterator returns an error code, just free the rest of the
1906          * lockdesc structures.
1907          */
1908         error = 0;
1909         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1910                 STAILQ_REMOVE_HEAD(&locks, link);
1911                 if (!error)
1912                         error = fn(ldesc->vp, &ldesc->fl, arg);
1913                 vrele(ldesc->vp);
1914                 free(ldesc, M_LOCKF);
1915         }
1916
1917         return (error);
1918 }
1919
1920 int
1921 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1922 {
1923         struct lockf *ls;
1924         struct lockf_entry *lf;
1925         struct lockdesc *ldesc;
1926         struct lockdesclist locks;
1927         int error;
1928
1929         /*
1930          * In order to keep the locking simple, we iterate over the
1931          * active lock lists to build a list of locks that need
1932          * releasing. We then call the iterator for each one in turn.
1933          *
1934          * We take an extra reference to the vnode for the duration to
1935          * make sure it doesn't go away before we are finished.
1936          */
1937         STAILQ_INIT(&locks);
1938         VI_LOCK(vp);
1939         ls = vp->v_lockf;
1940         if (!ls) {
1941                 VI_UNLOCK(vp);
1942                 return (0);
1943         }
1944         MPASS(ls->ls_threads >= 0);
1945         ls->ls_threads++;
1946         VI_UNLOCK(vp);
1947
1948         sx_xlock(&ls->ls_lock);
1949         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1950                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1951                     M_WAITOK);
1952                 ldesc->vp = lf->lf_vnode;
1953                 vref(ldesc->vp);
1954                 ldesc->fl.l_start = lf->lf_start;
1955                 if (lf->lf_end == OFF_MAX)
1956                         ldesc->fl.l_len = 0;
1957                 else
1958                         ldesc->fl.l_len =
1959                                 lf->lf_end - lf->lf_start + 1;
1960                 ldesc->fl.l_whence = SEEK_SET;
1961                 ldesc->fl.l_type = F_UNLCK;
1962                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1963                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1964                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1965         }
1966         sx_xunlock(&ls->ls_lock);
1967         VI_LOCK(vp);
1968         MPASS(ls->ls_threads > 0);
1969         ls->ls_threads--;
1970         wakeup(ls);
1971         VI_UNLOCK(vp);
1972
1973         /*
1974          * Call the iterator function for each lock in turn. If the
1975          * iterator returns an error code, just free the rest of the
1976          * lockdesc structures.
1977          */
1978         error = 0;
1979         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1980                 STAILQ_REMOVE_HEAD(&locks, link);
1981                 if (!error)
1982                         error = fn(ldesc->vp, &ldesc->fl, arg);
1983                 vrele(ldesc->vp);
1984                 free(ldesc, M_LOCKF);
1985         }
1986
1987         return (error);
1988 }
1989
1990 static int
1991 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
1992 {
1993
1994         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
1995         return (0);
1996 }
1997
1998 void
1999 lf_clearremotesys(int sysid)
2000 {
2001
2002         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2003         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2004 }
2005
2006 int
2007 lf_countlocks(int sysid)
2008 {
2009         int i;
2010         struct lock_owner *lo;
2011         int count;
2012
2013         count = 0;
2014         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2015                 sx_xlock(&lf_lock_owners[i].lock);
2016                 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2017                         if (lo->lo_sysid == sysid)
2018                                 count += lo->lo_refs;
2019                 sx_xunlock(&lf_lock_owners[i].lock);
2020         }
2021
2022         return (count);
2023 }
2024
2025 #ifdef LOCKF_DEBUG
2026
2027 /*
2028  * Return non-zero if y is reachable from x using a brute force
2029  * search. If reachable and path is non-null, return the route taken
2030  * in path.
2031  */
2032 static int
2033 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2034     struct owner_vertex_list *path)
2035 {
2036         struct owner_edge *e;
2037
2038         if (x == y) {
2039                 if (path)
2040                         TAILQ_INSERT_HEAD(path, x, v_link);
2041                 return 1;
2042         }
2043
2044         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2045                 if (graph_reaches(e->e_to, y, path)) {
2046                         if (path)
2047                                 TAILQ_INSERT_HEAD(path, x, v_link);
2048                         return 1;
2049                 }
2050         }
2051         return 0;
2052 }
2053
2054 /*
2055  * Perform consistency checks on the graph. Make sure the values of
2056  * v_order are correct. If checkorder is non-zero, check no vertex can
2057  * reach any other vertex with a smaller order.
2058  */
2059 static void
2060 graph_check(struct owner_graph *g, int checkorder)
2061 {
2062         int i, j;
2063
2064         for (i = 0; i < g->g_size; i++) {
2065                 if (!g->g_vertices[i]->v_owner)
2066                         continue;
2067                 KASSERT(g->g_vertices[i]->v_order == i,
2068                     ("lock graph vertices disordered"));
2069                 if (checkorder) {
2070                         for (j = 0; j < i; j++) {
2071                                 if (!g->g_vertices[j]->v_owner)
2072                                         continue;
2073                                 KASSERT(!graph_reaches(g->g_vertices[i],
2074                                         g->g_vertices[j], NULL),
2075                                     ("lock graph vertices disordered"));
2076                         }
2077                 }
2078         }
2079 }
2080
2081 static void
2082 graph_print_vertices(struct owner_vertex_list *set)
2083 {
2084         struct owner_vertex *v;
2085
2086         printf("{ ");
2087         TAILQ_FOREACH(v, set, v_link) {
2088                 printf("%d:", v->v_order);
2089                 lf_print_owner(v->v_owner);
2090                 if (TAILQ_NEXT(v, v_link))
2091                         printf(", ");
2092         }
2093         printf(" }\n");
2094 }
2095
2096 #endif
2097
2098 /*
2099  * Calculate the sub-set of vertices v from the affected region [y..x]
2100  * where v is reachable from y. Return -1 if a loop was detected
2101  * (i.e. x is reachable from y, otherwise the number of vertices in
2102  * this subset.
2103  */
2104 static int
2105 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2106     struct owner_vertex *y, struct owner_vertex_list *delta)
2107 {
2108         uint32_t gen;
2109         struct owner_vertex *v;
2110         struct owner_edge *e;
2111         int n;
2112
2113         /*
2114          * We start with a set containing just y. Then for each vertex
2115          * v in the set so far unprocessed, we add each vertex that v
2116          * has an out-edge to and that is within the affected region
2117          * [y..x]. If we see the vertex x on our travels, stop
2118          * immediately.
2119          */
2120         TAILQ_INIT(delta);
2121         TAILQ_INSERT_TAIL(delta, y, v_link);
2122         v = y;
2123         n = 1;
2124         gen = g->g_gen;
2125         while (v) {
2126                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2127                         if (e->e_to == x)
2128                                 return -1;
2129                         if (e->e_to->v_order < x->v_order
2130                             && e->e_to->v_gen != gen) {
2131                                 e->e_to->v_gen = gen;
2132                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2133                                 n++;
2134                         }
2135                 }
2136                 v = TAILQ_NEXT(v, v_link);
2137         }
2138
2139         return (n);
2140 }
2141
2142 /*
2143  * Calculate the sub-set of vertices v from the affected region [y..x]
2144  * where v reaches x. Return the number of vertices in this subset.
2145  */
2146 static int
2147 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2148     struct owner_vertex *y, struct owner_vertex_list *delta)
2149 {
2150         uint32_t gen;
2151         struct owner_vertex *v;
2152         struct owner_edge *e;
2153         int n;
2154
2155         /*
2156          * We start with a set containing just x. Then for each vertex
2157          * v in the set so far unprocessed, we add each vertex that v
2158          * has an in-edge from and that is within the affected region
2159          * [y..x].
2160          */
2161         TAILQ_INIT(delta);
2162         TAILQ_INSERT_TAIL(delta, x, v_link);
2163         v = x;
2164         n = 1;
2165         gen = g->g_gen;
2166         while (v) {
2167                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2168                         if (e->e_from->v_order > y->v_order
2169                             && e->e_from->v_gen != gen) {
2170                                 e->e_from->v_gen = gen;
2171                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2172                                 n++;
2173                         }
2174                 }
2175                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2176         }
2177
2178         return (n);
2179 }
2180
2181 static int
2182 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2183 {
2184         struct owner_vertex *v;
2185         int i, j;
2186
2187         TAILQ_FOREACH(v, set, v_link) {
2188                 for (i = n;
2189                      i > 0 && indices[i - 1] > v->v_order; i--)
2190                         ;
2191                 for (j = n - 1; j >= i; j--)
2192                         indices[j + 1] = indices[j];
2193                 indices[i] = v->v_order;
2194                 n++;
2195         }
2196
2197         return (n);
2198 }
2199
2200 static int
2201 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2202     struct owner_vertex_list *set)
2203 {
2204         struct owner_vertex *v, *vlowest;
2205
2206         while (!TAILQ_EMPTY(set)) {
2207                 vlowest = NULL;
2208                 TAILQ_FOREACH(v, set, v_link) {
2209                         if (!vlowest || v->v_order < vlowest->v_order)
2210                                 vlowest = v;
2211                 }
2212                 TAILQ_REMOVE(set, vlowest, v_link);
2213                 vlowest->v_order = indices[nextunused];
2214                 g->g_vertices[vlowest->v_order] = vlowest;
2215                 nextunused++;
2216         }
2217
2218         return (nextunused);
2219 }
2220
2221 static int
2222 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2223     struct owner_vertex *y)
2224 {
2225         struct owner_edge *e;
2226         struct owner_vertex_list deltaF, deltaB;
2227         int nF, n, vi, i;
2228         int *indices;
2229         int nB __unused;
2230
2231         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2232
2233         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2234                 if (e->e_to == y) {
2235                         e->e_refs++;
2236                         return (0);
2237                 }
2238         }
2239
2240 #ifdef LOCKF_DEBUG
2241         if (lockf_debug & 8) {
2242                 printf("adding edge %d:", x->v_order);
2243                 lf_print_owner(x->v_owner);
2244                 printf(" -> %d:", y->v_order);
2245                 lf_print_owner(y->v_owner);
2246                 printf("\n");
2247         }
2248 #endif
2249         if (y->v_order < x->v_order) {
2250                 /*
2251                  * The new edge violates the order. First find the set
2252                  * of affected vertices reachable from y (deltaF) and
2253                  * the set of affect vertices affected that reach x
2254                  * (deltaB), using the graph generation number to
2255                  * detect whether we have visited a given vertex
2256                  * already. We re-order the graph so that each vertex
2257                  * in deltaB appears before each vertex in deltaF.
2258                  *
2259                  * If x is a member of deltaF, then the new edge would
2260                  * create a cycle. Otherwise, we may assume that
2261                  * deltaF and deltaB are disjoint.
2262                  */
2263                 g->g_gen++;
2264                 if (g->g_gen == 0) {
2265                         /*
2266                          * Generation wrap.
2267                          */
2268                         for (vi = 0; vi < g->g_size; vi++) {
2269                                 g->g_vertices[vi]->v_gen = 0;
2270                         }
2271                         g->g_gen++;
2272                 }
2273                 nF = graph_delta_forward(g, x, y, &deltaF);
2274                 if (nF < 0) {
2275 #ifdef LOCKF_DEBUG
2276                         if (lockf_debug & 8) {
2277                                 struct owner_vertex_list path;
2278                                 printf("deadlock: ");
2279                                 TAILQ_INIT(&path);
2280                                 graph_reaches(y, x, &path);
2281                                 graph_print_vertices(&path);
2282                         }
2283 #endif
2284                         return (EDEADLK);
2285                 }
2286
2287 #ifdef LOCKF_DEBUG
2288                 if (lockf_debug & 8) {
2289                         printf("re-ordering graph vertices\n");
2290                         printf("deltaF = ");
2291                         graph_print_vertices(&deltaF);
2292                 }
2293 #endif
2294
2295                 nB = graph_delta_backward(g, x, y, &deltaB);
2296
2297 #ifdef LOCKF_DEBUG
2298                 if (lockf_debug & 8) {
2299                         printf("deltaB = ");
2300                         graph_print_vertices(&deltaB);
2301                 }
2302 #endif
2303
2304                 /*
2305                  * We first build a set of vertex indices (vertex
2306                  * order values) that we may use, then we re-assign
2307                  * orders first to those vertices in deltaB, then to
2308                  * deltaF. Note that the contents of deltaF and deltaB
2309                  * may be partially disordered - we perform an
2310                  * insertion sort while building our index set.
2311                  */
2312                 indices = g->g_indexbuf;
2313                 n = graph_add_indices(indices, 0, &deltaF);
2314                 graph_add_indices(indices, n, &deltaB);
2315
2316                 /*
2317                  * We must also be sure to maintain the relative
2318                  * ordering of deltaF and deltaB when re-assigning
2319                  * vertices. We do this by iteratively removing the
2320                  * lowest ordered element from the set and assigning
2321                  * it the next value from our new ordering.
2322                  */
2323                 i = graph_assign_indices(g, indices, 0, &deltaB);
2324                 graph_assign_indices(g, indices, i, &deltaF);
2325
2326 #ifdef LOCKF_DEBUG
2327                 if (lockf_debug & 8) {
2328                         struct owner_vertex_list set;
2329                         TAILQ_INIT(&set);
2330                         for (i = 0; i < nB + nF; i++)
2331                                 TAILQ_INSERT_TAIL(&set,
2332                                     g->g_vertices[indices[i]], v_link);
2333                         printf("new ordering = ");
2334                         graph_print_vertices(&set);
2335                 }
2336 #endif
2337         }
2338
2339         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2340
2341 #ifdef LOCKF_DEBUG
2342         if (lockf_debug & 8) {
2343                 graph_check(g, TRUE);
2344         }
2345 #endif
2346
2347         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2348
2349         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2350         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2351         e->e_refs = 1;
2352         e->e_from = x;
2353         e->e_to = y;
2354
2355         return (0);
2356 }
2357
2358 /*
2359  * Remove an edge x->y from the graph.
2360  */
2361 static void
2362 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2363     struct owner_vertex *y)
2364 {
2365         struct owner_edge *e;
2366
2367         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2368
2369         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2370                 if (e->e_to == y)
2371                         break;
2372         }
2373         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2374
2375         e->e_refs--;
2376         if (e->e_refs == 0) {
2377 #ifdef LOCKF_DEBUG
2378                 if (lockf_debug & 8) {
2379                         printf("removing edge %d:", x->v_order);
2380                         lf_print_owner(x->v_owner);
2381                         printf(" -> %d:", y->v_order);
2382                         lf_print_owner(y->v_owner);
2383                         printf("\n");
2384                 }
2385 #endif
2386                 LIST_REMOVE(e, e_outlink);
2387                 LIST_REMOVE(e, e_inlink);
2388                 free(e, M_LOCKF);
2389         }
2390 }
2391
2392 /*
2393  * Allocate a vertex from the free list. Return ENOMEM if there are
2394  * none.
2395  */
2396 static struct owner_vertex *
2397 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2398 {
2399         struct owner_vertex *v;
2400
2401         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2402
2403         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2404         if (g->g_size == g->g_space) {
2405                 g->g_vertices = realloc(g->g_vertices,
2406                     2 * g->g_space * sizeof(struct owner_vertex *),
2407                     M_LOCKF, M_WAITOK);
2408                 free(g->g_indexbuf, M_LOCKF);
2409                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2410                     M_LOCKF, M_WAITOK);
2411                 g->g_space = 2 * g->g_space;
2412         }
2413         v->v_order = g->g_size;
2414         v->v_gen = g->g_gen;
2415         g->g_vertices[g->g_size] = v;
2416         g->g_size++;
2417
2418         LIST_INIT(&v->v_outedges);
2419         LIST_INIT(&v->v_inedges);
2420         v->v_owner = lo;
2421
2422         return (v);
2423 }
2424
2425 static void
2426 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2427 {
2428         struct owner_vertex *w;
2429         int i;
2430
2431         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2432
2433         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2434         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2435
2436         /*
2437          * Remove from the graph's array and close up the gap,
2438          * renumbering the other vertices.
2439          */
2440         for (i = v->v_order + 1; i < g->g_size; i++) {
2441                 w = g->g_vertices[i];
2442                 w->v_order--;
2443                 g->g_vertices[i - 1] = w;
2444         }
2445         g->g_size--;
2446
2447         free(v, M_LOCKF);
2448 }
2449
2450 static struct owner_graph *
2451 graph_init(struct owner_graph *g)
2452 {
2453
2454         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2455             M_LOCKF, M_WAITOK);
2456         g->g_size = 0;
2457         g->g_space = 10;
2458         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2459         g->g_gen = 0;
2460
2461         return (g);
2462 }
2463
2464 struct kinfo_lockf_linked {
2465         struct kinfo_lockf kl;
2466         struct vnode *vp;
2467         STAILQ_ENTRY(kinfo_lockf_linked) link;
2468 };
2469
2470 int
2471 vfs_report_lockf(struct mount *mp, struct sbuf *sb)
2472 {
2473         struct lockf *ls;
2474         struct lockf_entry *lf;
2475         struct kinfo_lockf_linked *klf;
2476         struct vnode *vp;
2477         struct ucred *ucred;
2478         char *fullpath, *freepath;
2479         struct stat stt;
2480         STAILQ_HEAD(, kinfo_lockf_linked) locks;
2481         int error, gerror;
2482
2483         STAILQ_INIT(&locks);
2484         sx_slock(&lf_lock_states_lock);
2485         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
2486                 sx_slock(&ls->ls_lock);
2487                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
2488                         vp = lf->lf_vnode;
2489                         if (VN_IS_DOOMED(vp) || vp->v_mount != mp)
2490                                 continue;
2491                         vhold(vp);
2492                         klf = malloc(sizeof(struct kinfo_lockf_linked),
2493                             M_LOCKF, M_WAITOK | M_ZERO);
2494                         klf->vp = vp;
2495                         klf->kl.kl_structsize = sizeof(struct kinfo_lockf);
2496                         klf->kl.kl_start = lf->lf_start;
2497                         klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 :
2498                             lf->lf_end - lf->lf_start + 1;
2499                         klf->kl.kl_rw = lf->lf_type == F_RDLCK ?
2500                             KLOCKF_RW_READ : KLOCKF_RW_WRITE;
2501                         if (lf->lf_owner->lo_sysid != 0) {
2502                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
2503                                 klf->kl.kl_sysid = lf->lf_owner->lo_sysid;
2504                                 klf->kl.kl_type = KLOCKF_TYPE_REMOTE;
2505                         } else if (lf->lf_owner->lo_pid == -1) {
2506                                 klf->kl.kl_pid = -1;
2507                                 klf->kl.kl_sysid = 0;
2508                                 klf->kl.kl_type = KLOCKF_TYPE_FLOCK;
2509                         } else {
2510                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
2511                                 klf->kl.kl_sysid = 0;
2512                                 klf->kl.kl_type = KLOCKF_TYPE_PID;
2513                         }
2514                         STAILQ_INSERT_TAIL(&locks, klf, link);
2515                 }
2516                 sx_sunlock(&ls->ls_lock);
2517         }
2518         sx_sunlock(&lf_lock_states_lock);
2519
2520         gerror = 0;
2521         ucred = curthread->td_ucred;
2522         while ((klf = STAILQ_FIRST(&locks)) != NULL) {
2523                 STAILQ_REMOVE_HEAD(&locks, link);
2524                 vp = klf->vp;
2525                 if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) {
2526                         error = prison_canseemount(ucred, vp->v_mount);
2527                         if (error == 0)
2528                                 error = VOP_STAT(vp, &stt, ucred, NOCRED,
2529                                     curthread);
2530                         VOP_UNLOCK(vp);
2531                         if (error == 0) {
2532                                 klf->kl.kl_file_fsid = stt.st_dev;
2533                                 klf->kl.kl_file_rdev = stt.st_rdev;
2534                                 klf->kl.kl_file_fileid = stt.st_ino;
2535                                 freepath = NULL;
2536                                 fullpath = "-";
2537                                 error = vn_fullpath(vp, &fullpath, &freepath);
2538                                 if (error == 0)
2539                                         strlcpy(klf->kl.kl_path, fullpath,
2540                                             sizeof(klf->kl.kl_path));
2541                                 free(freepath, M_TEMP);
2542                                 if (sbuf_bcat(sb, &klf->kl,
2543                                     klf->kl.kl_structsize) != 0) {
2544                                         gerror = sbuf_error(sb);
2545                                 }
2546                         }
2547                 }
2548                 vdrop(vp);
2549                 free(klf, M_LOCKF);
2550         }
2551
2552         return (gerror);
2553 }
2554
2555 static int
2556 sysctl_kern_lockf_run(struct sbuf *sb)
2557 {
2558         struct mount *mp;
2559         int error;
2560
2561         error = 0;
2562         mtx_lock(&mountlist_mtx);
2563         TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2564                 error = vfs_busy(mp, MBF_MNTLSTLOCK);
2565                 if (error != 0)
2566                         continue;
2567                 error = mp->mnt_op->vfs_report_lockf(mp, sb);
2568                 mtx_lock(&mountlist_mtx);
2569                 vfs_unbusy(mp);
2570                 if (error != 0)
2571                         break;
2572         }
2573         mtx_unlock(&mountlist_mtx);
2574         return (error);
2575 }
2576
2577 static int
2578 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS)
2579 {
2580         struct sbuf sb;
2581         int error, error2;
2582
2583         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req);
2584         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2585         error = sysctl_kern_lockf_run(&sb);
2586         error2 = sbuf_finish(&sb);
2587         sbuf_delete(&sb);
2588         return (error != 0 ? error : error2);
2589 }
2590 SYSCTL_PROC(_kern, KERN_LOCKF, lockf,
2591     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2592     0, 0, sysctl_kern_lockf, "S,lockf",
2593     "Advisory locks table");
2594
2595 #ifdef LOCKF_DEBUG
2596 /*
2597  * Print description of a lock owner
2598  */
2599 static void
2600 lf_print_owner(struct lock_owner *lo)
2601 {
2602
2603         if (lo->lo_flags & F_REMOTE) {
2604                 printf("remote pid %d, system %d",
2605                     lo->lo_pid, lo->lo_sysid);
2606         } else if (lo->lo_flags & F_FLOCK) {
2607                 printf("file %p", lo->lo_id);
2608         } else {
2609                 printf("local pid %d", lo->lo_pid);
2610         }
2611 }
2612
2613 /*
2614  * Print out a lock.
2615  */
2616 static void
2617 lf_print(char *tag, struct lockf_entry *lock)
2618 {
2619
2620         printf("%s: lock %p for ", tag, (void *)lock);
2621         lf_print_owner(lock->lf_owner);
2622         printf("\nvnode %p", lock->lf_vnode);
2623         VOP_PRINT(lock->lf_vnode);
2624         printf(" %s, start %jd, end ",
2625             lock->lf_type == F_RDLCK ? "shared" :
2626             lock->lf_type == F_WRLCK ? "exclusive" :
2627             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2628             (intmax_t)lock->lf_start);
2629         if (lock->lf_end == OFF_MAX)
2630                 printf("EOF");
2631         else
2632                 printf("%jd", (intmax_t)lock->lf_end);
2633         if (!LIST_EMPTY(&lock->lf_outedges))
2634                 printf(" block %p\n",
2635                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2636         else
2637                 printf("\n");
2638 }
2639
2640 static void
2641 lf_printlist(char *tag, struct lockf_entry *lock)
2642 {
2643         struct lockf_entry *lf, *blk;
2644         struct lockf_edge *e;
2645
2646         printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode);
2647         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2648                 printf("\tlock %p for ",(void *)lf);
2649                 lf_print_owner(lock->lf_owner);
2650                 printf(", %s, start %jd, end %jd",
2651                     lf->lf_type == F_RDLCK ? "shared" :
2652                     lf->lf_type == F_WRLCK ? "exclusive" :
2653                     lf->lf_type == F_UNLCK ? "unlock" :
2654                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2655                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2656                         blk = e->le_to;
2657                         printf("\n\t\tlock request %p for ", (void *)blk);
2658                         lf_print_owner(blk->lf_owner);
2659                         printf(", %s, start %jd, end %jd",
2660                             blk->lf_type == F_RDLCK ? "shared" :
2661                             blk->lf_type == F_WRLCK ? "exclusive" :
2662                             blk->lf_type == F_UNLCK ? "unlock" :
2663                             "unknown", (intmax_t)blk->lf_start,
2664                             (intmax_t)blk->lf_end);
2665                         if (!LIST_EMPTY(&blk->lf_inedges))
2666                                 panic("lf_printlist: bad list");
2667                 }
2668                 printf("\n");
2669         }
2670 }
2671 #endif /* LOCKF_DEBUG */