]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_lockf.c
Merge branch 'releng/11.3' into releng-CDN/11.3
[FreeBSD/FreeBSD.git] / sys / kern / kern_lockf.c
1 /*-
2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3  * Authors: Doug Rabson <dfr@rabson.org>
4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 /*-
28  * Copyright (c) 1982, 1986, 1989, 1993
29  *      The Regents of the University of California.  All rights reserved.
30  *
31  * This code is derived from software contributed to Berkeley by
32  * Scooter Morris at Genentech Inc.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 4. Neither the name of the University nor the names of its contributors
43  *    may be used to endorse or promote products derived from this software
44  *    without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
59  */
60
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63
64 #include "opt_debug_lockf.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/kernel.h>
70 #include <sys/limits.h>
71 #include <sys/lock.h>
72 #include <sys/mount.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sx.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/fcntl.h>
80 #include <sys/lockf.h>
81 #include <sys/taskqueue.h>
82
83 #ifdef LOCKF_DEBUG
84 #include <sys/sysctl.h>
85
86 #include <ufs/ufs/extattr.h>
87 #include <ufs/ufs/quota.h>
88 #include <ufs/ufs/ufsmount.h>
89 #include <ufs/ufs/inode.h>
90
91 static int      lockf_debug = 0; /* control debug output */
92 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
93 #endif
94
95 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
96
97 struct owner_edge;
98 struct owner_vertex;
99 struct owner_vertex_list;
100 struct owner_graph;
101
102 #define NOLOCKF (struct lockf_entry *)0
103 #define SELF    0x1
104 #define OTHERS  0x2
105 static void      lf_init(void *);
106 static int       lf_hash_owner(caddr_t, struct flock *, int);
107 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
108     int);
109 static struct lockf_entry *
110                  lf_alloc_lock(struct lock_owner *);
111 static int       lf_free_lock(struct lockf_entry *);
112 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
113 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
114 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
115 static void      lf_free_edge(struct lockf_edge *);
116 static struct lockf_edge *
117                  lf_alloc_edge(void);
118 static void      lf_alloc_vertex(struct lockf_entry *);
119 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
120 static void      lf_remove_edge(struct lockf_edge *);
121 static void      lf_remove_outgoing(struct lockf_entry *);
122 static void      lf_remove_incoming(struct lockf_entry *);
123 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
124 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
125 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
126     int);
127 static struct lockf_entry *
128                  lf_getblock(struct lockf *, struct lockf_entry *);
129 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
130 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
131 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
132 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
133     int all, struct lockf_entry_list *);
134 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
135         struct lockf_entry_list*);
136 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
137         struct lockf_entry_list*);
138 static int       lf_setlock(struct lockf *, struct lockf_entry *,
139     struct vnode *, void **cookiep);
140 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
141 static void      lf_split(struct lockf *, struct lockf_entry *,
142     struct lockf_entry *, struct lockf_entry_list *);
143 #ifdef LOCKF_DEBUG
144 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
145     struct owner_vertex_list *path);
146 static void      graph_check(struct owner_graph *g, int checkorder);
147 static void      graph_print_vertices(struct owner_vertex_list *set);
148 #endif
149 static int       graph_delta_forward(struct owner_graph *g,
150     struct owner_vertex *x, struct owner_vertex *y,
151     struct owner_vertex_list *delta);
152 static int       graph_delta_backward(struct owner_graph *g,
153     struct owner_vertex *x, struct owner_vertex *y,
154     struct owner_vertex_list *delta);
155 static int       graph_add_indices(int *indices, int n,
156     struct owner_vertex_list *set);
157 static int       graph_assign_indices(struct owner_graph *g, int *indices,
158     int nextunused, struct owner_vertex_list *set);
159 static int       graph_add_edge(struct owner_graph *g,
160     struct owner_vertex *x, struct owner_vertex *y);
161 static void      graph_remove_edge(struct owner_graph *g,
162     struct owner_vertex *x, struct owner_vertex *y);
163 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
164     struct lock_owner *lo);
165 static void      graph_free_vertex(struct owner_graph *g,
166     struct owner_vertex *v);
167 static struct owner_graph * graph_init(struct owner_graph *g);
168 #ifdef LOCKF_DEBUG
169 static void      lf_print(char *, struct lockf_entry *);
170 static void      lf_printlist(char *, struct lockf_entry *);
171 static void      lf_print_owner(struct lock_owner *);
172 #endif
173
174 /*
175  * This structure is used to keep track of both local and remote lock
176  * owners. The lf_owner field of the struct lockf_entry points back at
177  * the lock owner structure. Each possible lock owner (local proc for
178  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
179  * pair for remote locks) is represented by a unique instance of
180  * struct lock_owner.
181  *
182  * If a lock owner has a lock that blocks some other lock or a lock
183  * that is waiting for some other lock, it also has a vertex in the
184  * owner_graph below.
185  *
186  * Locks:
187  * (s)          locked by state->ls_lock
188  * (S)          locked by lf_lock_states_lock
189  * (l)          locked by lf_lock_owners_lock
190  * (g)          locked by lf_owner_graph_lock
191  * (c)          const until freeing
192  */
193 #define LOCK_OWNER_HASH_SIZE    256
194
195 struct lock_owner {
196         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
197         int     lo_refs;            /* (l) Number of locks referring to this */
198         int     lo_flags;           /* (c) Flags passwd to lf_advlock */
199         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
200         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
201         int     lo_sysid;           /* (c) System Id of the lock owner */
202         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
203 };
204
205 LIST_HEAD(lock_owner_list, lock_owner);
206
207 static struct sx                lf_lock_states_lock;
208 static struct lockf_list        lf_lock_states; /* (S) */
209 static struct sx                lf_lock_owners_lock;
210 static struct lock_owner_list   lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
211
212 /*
213  * Structures for deadlock detection.
214  *
215  * We have two types of directed graph, the first is the set of locks,
216  * both active and pending on a vnode. Within this graph, active locks
217  * are terminal nodes in the graph (i.e. have no out-going
218  * edges). Pending locks have out-going edges to each blocking active
219  * lock that prevents the lock from being granted and also to each
220  * older pending lock that would block them if it was active. The
221  * graph for each vnode is naturally acyclic; new edges are only ever
222  * added to or from new nodes (either new pending locks which only add
223  * out-going edges or new active locks which only add in-coming edges)
224  * therefore they cannot create loops in the lock graph.
225  *
226  * The second graph is a global graph of lock owners. Each lock owner
227  * is a vertex in that graph and an edge is added to the graph
228  * whenever an edge is added to a vnode graph, with end points
229  * corresponding to owner of the new pending lock and the owner of the
230  * lock upon which it waits. In order to prevent deadlock, we only add
231  * an edge to this graph if the new edge would not create a cycle.
232  * 
233  * The lock owner graph is topologically sorted, i.e. if a node has
234  * any outgoing edges, then it has an order strictly less than any
235  * node to which it has an outgoing edge. We preserve this ordering
236  * (and detect cycles) on edge insertion using Algorithm PK from the
237  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
238  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
239  * No. 1.7)
240  */
241 struct owner_vertex;
242
243 struct owner_edge {
244         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
245         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
246         int             e_refs;           /* (g) number of times added */
247         struct owner_vertex *e_from;      /* (c) out-going from here */
248         struct owner_vertex *e_to;        /* (c) in-coming to here */
249 };
250 LIST_HEAD(owner_edge_list, owner_edge);
251
252 struct owner_vertex {
253         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
254         uint32_t        v_gen;            /* (g) workspace for edge insertion */
255         int             v_order;          /* (g) order of vertex in graph */
256         struct owner_edge_list v_outedges;/* (g) list of out-edges */
257         struct owner_edge_list v_inedges; /* (g) list of in-edges */
258         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
259 };
260 TAILQ_HEAD(owner_vertex_list, owner_vertex);
261
262 struct owner_graph {
263         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
264         int             g_size;           /* (g) number of vertices */
265         int             g_space;          /* (g) space allocated for vertices */
266         int             *g_indexbuf;      /* (g) workspace for loop detection */
267         uint32_t        g_gen;            /* (g) increment when re-ordering */
268 };
269
270 static struct sx                lf_owner_graph_lock;
271 static struct owner_graph       lf_owner_graph;
272
273 /*
274  * Initialise various structures and locks.
275  */
276 static void
277 lf_init(void *dummy)
278 {
279         int i;
280
281         sx_init(&lf_lock_states_lock, "lock states lock");
282         LIST_INIT(&lf_lock_states);
283
284         sx_init(&lf_lock_owners_lock, "lock owners lock");
285         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
286                 LIST_INIT(&lf_lock_owners[i]);
287
288         sx_init(&lf_owner_graph_lock, "owner graph lock");
289         graph_init(&lf_owner_graph);
290 }
291 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
292
293 /*
294  * Generate a hash value for a lock owner.
295  */
296 static int
297 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
298 {
299         uint32_t h;
300
301         if (flags & F_REMOTE) {
302                 h = HASHSTEP(0, fl->l_pid);
303                 h = HASHSTEP(h, fl->l_sysid);
304         } else if (flags & F_FLOCK) {
305                 h = ((uintptr_t) id) >> 7;
306         } else {
307                 struct proc *p = (struct proc *) id;
308                 h = HASHSTEP(0, p->p_pid);
309                 h = HASHSTEP(h, 0);
310         }
311
312         return (h % LOCK_OWNER_HASH_SIZE);
313 }
314
315 /*
316  * Return true if a lock owner matches the details passed to
317  * lf_advlock.
318  */
319 static int
320 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
321     int flags)
322 {
323         if (flags & F_REMOTE) {
324                 return lo->lo_pid == fl->l_pid
325                         && lo->lo_sysid == fl->l_sysid;
326         } else {
327                 return lo->lo_id == id;
328         }
329 }
330
331 static struct lockf_entry *
332 lf_alloc_lock(struct lock_owner *lo)
333 {
334         struct lockf_entry *lf;
335
336         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
337
338 #ifdef LOCKF_DEBUG
339         if (lockf_debug & 4)
340                 printf("Allocated lock %p\n", lf);
341 #endif
342         if (lo) {
343                 sx_xlock(&lf_lock_owners_lock);
344                 lo->lo_refs++;
345                 sx_xunlock(&lf_lock_owners_lock);
346                 lf->lf_owner = lo;
347         }
348
349         return (lf);
350 }
351
352 static int
353 lf_free_lock(struct lockf_entry *lock)
354 {
355
356         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
357         if (--lock->lf_refs > 0)
358                 return (0);
359         /*
360          * Adjust the lock_owner reference count and
361          * reclaim the entry if this is the last lock
362          * for that owner.
363          */
364         struct lock_owner *lo = lock->lf_owner;
365         if (lo) {
366                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
367                     ("freeing lock with dependencies"));
368                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
369                     ("freeing lock with dependants"));
370                 sx_xlock(&lf_lock_owners_lock);
371                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
372                 lo->lo_refs--;
373                 if (lo->lo_refs == 0) {
374 #ifdef LOCKF_DEBUG
375                         if (lockf_debug & 1)
376                                 printf("lf_free_lock: freeing lock owner %p\n",
377                                     lo);
378 #endif
379                         if (lo->lo_vertex) {
380                                 sx_xlock(&lf_owner_graph_lock);
381                                 graph_free_vertex(&lf_owner_graph,
382                                     lo->lo_vertex);
383                                 sx_xunlock(&lf_owner_graph_lock);
384                         }
385                         LIST_REMOVE(lo, lo_link);
386                         free(lo, M_LOCKF);
387 #ifdef LOCKF_DEBUG
388                         if (lockf_debug & 4)
389                                 printf("Freed lock owner %p\n", lo);
390 #endif
391                 }
392                 sx_unlock(&lf_lock_owners_lock);
393         }
394         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
395                 vrele(lock->lf_vnode);
396                 lock->lf_vnode = NULL;
397         }
398 #ifdef LOCKF_DEBUG
399         if (lockf_debug & 4)
400                 printf("Freed lock %p\n", lock);
401 #endif
402         free(lock, M_LOCKF);
403         return (1);
404 }
405
406 /*
407  * Advisory record locking support
408  */
409 int
410 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
411     u_quad_t size)
412 {
413         struct lockf *state, *freestate = NULL;
414         struct flock *fl = ap->a_fl;
415         struct lockf_entry *lock;
416         struct vnode *vp = ap->a_vp;
417         caddr_t id = ap->a_id;
418         int flags = ap->a_flags;
419         int hash;
420         struct lock_owner *lo;
421         off_t start, end, oadd;
422         int error;
423
424         /*
425          * Handle the F_UNLKSYS case first - no need to mess about
426          * creating a lock owner for this one.
427          */
428         if (ap->a_op == F_UNLCKSYS) {
429                 lf_clearremotesys(fl->l_sysid);
430                 return (0);
431         }
432
433         /*
434          * Convert the flock structure into a start and end.
435          */
436         switch (fl->l_whence) {
437
438         case SEEK_SET:
439         case SEEK_CUR:
440                 /*
441                  * Caller is responsible for adding any necessary offset
442                  * when SEEK_CUR is used.
443                  */
444                 start = fl->l_start;
445                 break;
446
447         case SEEK_END:
448                 if (size > OFF_MAX ||
449                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
450                         return (EOVERFLOW);
451                 start = size + fl->l_start;
452                 break;
453
454         default:
455                 return (EINVAL);
456         }
457         if (start < 0)
458                 return (EINVAL);
459         if (fl->l_len < 0) {
460                 if (start == 0)
461                         return (EINVAL);
462                 end = start - 1;
463                 start += fl->l_len;
464                 if (start < 0)
465                         return (EINVAL);
466         } else if (fl->l_len == 0) {
467                 end = OFF_MAX;
468         } else {
469                 oadd = fl->l_len - 1;
470                 if (oadd > OFF_MAX - start)
471                         return (EOVERFLOW);
472                 end = start + oadd;
473         }
474
475 retry_setlock:
476
477         /*
478          * Avoid the common case of unlocking when inode has no locks.
479          */
480         VI_LOCK(vp);
481         if ((*statep) == NULL) {
482                 if (ap->a_op != F_SETLK) {
483                         fl->l_type = F_UNLCK;
484                         VI_UNLOCK(vp);
485                         return (0);
486                 }
487         }
488         VI_UNLOCK(vp);
489
490         /*
491          * Map our arguments to an existing lock owner or create one
492          * if this is the first time we have seen this owner.
493          */
494         hash = lf_hash_owner(id, fl, flags);
495         sx_xlock(&lf_lock_owners_lock);
496         LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
497                 if (lf_owner_matches(lo, id, fl, flags))
498                         break;
499         if (!lo) {
500                 /*
501                  * We initialise the lock with a reference
502                  * count which matches the new lockf_entry
503                  * structure created below.
504                  */
505                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
506                     M_WAITOK|M_ZERO);
507 #ifdef LOCKF_DEBUG
508                 if (lockf_debug & 4)
509                         printf("Allocated lock owner %p\n", lo);
510 #endif
511
512                 lo->lo_refs = 1;
513                 lo->lo_flags = flags;
514                 lo->lo_id = id;
515                 if (flags & F_REMOTE) {
516                         lo->lo_pid = fl->l_pid;
517                         lo->lo_sysid = fl->l_sysid;
518                 } else if (flags & F_FLOCK) {
519                         lo->lo_pid = -1;
520                         lo->lo_sysid = 0;
521                 } else {
522                         struct proc *p = (struct proc *) id;
523                         lo->lo_pid = p->p_pid;
524                         lo->lo_sysid = 0;
525                 }
526                 lo->lo_vertex = NULL;
527
528 #ifdef LOCKF_DEBUG
529                 if (lockf_debug & 1) {
530                         printf("lf_advlockasync: new lock owner %p ", lo);
531                         lf_print_owner(lo);
532                         printf("\n");
533                 }
534 #endif
535
536                 LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
537         } else {
538                 /*
539                  * We have seen this lock owner before, increase its
540                  * reference count to account for the new lockf_entry
541                  * structure we create below.
542                  */
543                 lo->lo_refs++;
544         }
545         sx_xunlock(&lf_lock_owners_lock);
546
547         /*
548          * Create the lockf structure. We initialise the lf_owner
549          * field here instead of in lf_alloc_lock() to avoid paying
550          * the lf_lock_owners_lock tax twice.
551          */
552         lock = lf_alloc_lock(NULL);
553         lock->lf_refs = 1;
554         lock->lf_start = start;
555         lock->lf_end = end;
556         lock->lf_owner = lo;
557         lock->lf_vnode = vp;
558         if (flags & F_REMOTE) {
559                 /*
560                  * For remote locks, the caller may release its ref to
561                  * the vnode at any time - we have to ref it here to
562                  * prevent it from being recycled unexpectedly.
563                  */
564                 vref(vp);
565         }
566
567         /*
568          * XXX The problem is that VTOI is ufs specific, so it will
569          * break LOCKF_DEBUG for all other FS's other than UFS because
570          * it casts the vnode->data ptr to struct inode *.
571          */
572 /*      lock->lf_inode = VTOI(ap->a_vp); */
573         lock->lf_inode = (struct inode *)0;
574         lock->lf_type = fl->l_type;
575         LIST_INIT(&lock->lf_outedges);
576         LIST_INIT(&lock->lf_inedges);
577         lock->lf_async_task = ap->a_task;
578         lock->lf_flags = ap->a_flags;
579
580         /*
581          * Do the requested operation. First find our state structure
582          * and create a new one if necessary - the caller's *statep
583          * variable and the state's ls_threads count is protected by
584          * the vnode interlock.
585          */
586         VI_LOCK(vp);
587         if (vp->v_iflag & VI_DOOMED) {
588                 VI_UNLOCK(vp);
589                 lf_free_lock(lock);
590                 return (ENOENT);
591         }
592
593         /*
594          * Allocate a state structure if necessary.
595          */
596         state = *statep;
597         if (state == NULL) {
598                 struct lockf *ls;
599
600                 VI_UNLOCK(vp);
601
602                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
603                 sx_init(&ls->ls_lock, "ls_lock");
604                 LIST_INIT(&ls->ls_active);
605                 LIST_INIT(&ls->ls_pending);
606                 ls->ls_threads = 1;
607
608                 sx_xlock(&lf_lock_states_lock);
609                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
610                 sx_xunlock(&lf_lock_states_lock);
611
612                 /*
613                  * Cope if we lost a race with some other thread while
614                  * trying to allocate memory.
615                  */
616                 VI_LOCK(vp);
617                 if (vp->v_iflag & VI_DOOMED) {
618                         VI_UNLOCK(vp);
619                         sx_xlock(&lf_lock_states_lock);
620                         LIST_REMOVE(ls, ls_link);
621                         sx_xunlock(&lf_lock_states_lock);
622                         sx_destroy(&ls->ls_lock);
623                         free(ls, M_LOCKF);
624                         lf_free_lock(lock);
625                         return (ENOENT);
626                 }
627                 if ((*statep) == NULL) {
628                         state = *statep = ls;
629                         VI_UNLOCK(vp);
630                 } else {
631                         state = *statep;
632                         state->ls_threads++;
633                         VI_UNLOCK(vp);
634
635                         sx_xlock(&lf_lock_states_lock);
636                         LIST_REMOVE(ls, ls_link);
637                         sx_xunlock(&lf_lock_states_lock);
638                         sx_destroy(&ls->ls_lock);
639                         free(ls, M_LOCKF);
640                 }
641         } else {
642                 state->ls_threads++;
643                 VI_UNLOCK(vp);
644         }
645
646         sx_xlock(&state->ls_lock);
647         /*
648          * Recheck the doomed vnode after state->ls_lock is
649          * locked. lf_purgelocks() requires that no new threads add
650          * pending locks when vnode is marked by VI_DOOMED flag.
651          */
652         VI_LOCK(vp);
653         if (vp->v_iflag & VI_DOOMED) {
654                 state->ls_threads--;
655                 wakeup(state);
656                 VI_UNLOCK(vp);
657                 sx_xunlock(&state->ls_lock);
658                 lf_free_lock(lock);
659                 return (ENOENT);
660         }
661         VI_UNLOCK(vp);
662
663         switch (ap->a_op) {
664         case F_SETLK:
665                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
666                 break;
667
668         case F_UNLCK:
669                 error = lf_clearlock(state, lock);
670                 lf_free_lock(lock);
671                 break;
672
673         case F_GETLK:
674                 error = lf_getlock(state, lock, fl);
675                 lf_free_lock(lock);
676                 break;
677
678         case F_CANCEL:
679                 if (ap->a_cookiep)
680                         error = lf_cancel(state, lock, *ap->a_cookiep);
681                 else
682                         error = EINVAL;
683                 lf_free_lock(lock);
684                 break;
685
686         default:
687                 lf_free_lock(lock);
688                 error = EINVAL;
689                 break;
690         }
691
692 #ifdef DIAGNOSTIC
693         /*
694          * Check for some can't happen stuff. In this case, the active
695          * lock list becoming disordered or containing mutually
696          * blocking locks. We also check the pending list for locks
697          * which should be active (i.e. have no out-going edges).
698          */
699         LIST_FOREACH(lock, &state->ls_active, lf_link) {
700                 struct lockf_entry *lf;
701                 if (LIST_NEXT(lock, lf_link))
702                         KASSERT((lock->lf_start
703                                 <= LIST_NEXT(lock, lf_link)->lf_start),
704                             ("locks disordered"));
705                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
706                         if (lock == lf)
707                                 break;
708                         KASSERT(!lf_blocks(lock, lf),
709                             ("two conflicting active locks"));
710                         if (lock->lf_owner == lf->lf_owner)
711                                 KASSERT(!lf_overlaps(lock, lf),
712                                     ("two overlapping locks from same owner"));
713                 }
714         }
715         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
716                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
717                     ("pending lock which should be active"));
718         }
719 #endif
720         sx_xunlock(&state->ls_lock);
721
722         /*
723          * If we have removed the last active lock on the vnode and
724          * this is the last thread that was in-progress, we can free
725          * the state structure. We update the caller's pointer inside
726          * the vnode interlock but call free outside.
727          *
728          * XXX alternatively, keep the state structure around until
729          * the filesystem recycles - requires a callback from the
730          * filesystem.
731          */
732         VI_LOCK(vp);
733
734         state->ls_threads--;
735         wakeup(state);
736         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
737                 KASSERT(LIST_EMPTY(&state->ls_pending),
738                     ("freeing state with pending locks"));
739                 freestate = state;
740                 *statep = NULL;
741         }
742
743         VI_UNLOCK(vp);
744
745         if (freestate != NULL) {
746                 sx_xlock(&lf_lock_states_lock);
747                 LIST_REMOVE(freestate, ls_link);
748                 sx_xunlock(&lf_lock_states_lock);
749                 sx_destroy(&freestate->ls_lock);
750                 free(freestate, M_LOCKF);
751                 freestate = NULL;
752         }
753
754         if (error == EDOOFUS) {
755                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
756                 goto retry_setlock;
757         }
758         return (error);
759 }
760
761 int
762 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
763 {
764         struct vop_advlockasync_args a;
765
766         a.a_vp = ap->a_vp;
767         a.a_id = ap->a_id;
768         a.a_op = ap->a_op;
769         a.a_fl = ap->a_fl;
770         a.a_flags = ap->a_flags;
771         a.a_task = NULL;
772         a.a_cookiep = NULL;
773
774         return (lf_advlockasync(&a, statep, size));
775 }
776
777 void
778 lf_purgelocks(struct vnode *vp, struct lockf **statep)
779 {
780         struct lockf *state;
781         struct lockf_entry *lock, *nlock;
782
783         /*
784          * For this to work correctly, the caller must ensure that no
785          * other threads enter the locking system for this vnode,
786          * e.g. by checking VI_DOOMED. We wake up any threads that are
787          * sleeping waiting for locks on this vnode and then free all
788          * the remaining locks.
789          */
790         VI_LOCK(vp);
791         KASSERT(vp->v_iflag & VI_DOOMED,
792             ("lf_purgelocks: vp %p has not vgone yet", vp));
793         state = *statep;
794         if (state) {
795                 *statep = NULL;
796                 state->ls_threads++;
797                 VI_UNLOCK(vp);
798
799                 sx_xlock(&state->ls_lock);
800                 sx_xlock(&lf_owner_graph_lock);
801                 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
802                         LIST_REMOVE(lock, lf_link);
803                         lf_remove_outgoing(lock);
804                         lf_remove_incoming(lock);
805
806                         /*
807                          * If its an async lock, we can just free it
808                          * here, otherwise we let the sleeping thread
809                          * free it.
810                          */
811                         if (lock->lf_async_task) {
812                                 lf_free_lock(lock);
813                         } else {
814                                 lock->lf_flags |= F_INTR;
815                                 wakeup(lock);
816                         }
817                 }
818                 sx_xunlock(&lf_owner_graph_lock);
819                 sx_xunlock(&state->ls_lock);
820
821                 /*
822                  * Wait for all other threads, sleeping and otherwise
823                  * to leave.
824                  */
825                 VI_LOCK(vp);
826                 while (state->ls_threads > 1)
827                         msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
828                 VI_UNLOCK(vp);
829
830                 /*
831                  * We can just free all the active locks since they
832                  * will have no dependencies (we removed them all
833                  * above). We don't need to bother locking since we
834                  * are the last thread using this state structure.
835                  */
836                 KASSERT(LIST_EMPTY(&state->ls_pending),
837                     ("lock pending for %p", state));
838                 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
839                         LIST_REMOVE(lock, lf_link);
840                         lf_free_lock(lock);
841                 }
842                 sx_xlock(&lf_lock_states_lock);
843                 LIST_REMOVE(state, ls_link);
844                 sx_xunlock(&lf_lock_states_lock);
845                 sx_destroy(&state->ls_lock);
846                 free(state, M_LOCKF);
847         } else {
848                 VI_UNLOCK(vp);
849         }
850 }
851
852 /*
853  * Return non-zero if locks 'x' and 'y' overlap.
854  */
855 static int
856 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
857 {
858
859         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
860 }
861
862 /*
863  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
864  */
865 static int
866 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
867 {
868
869         return x->lf_owner != y->lf_owner
870                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
871                 && lf_overlaps(x, y);
872 }
873
874 /*
875  * Allocate a lock edge from the free list
876  */
877 static struct lockf_edge *
878 lf_alloc_edge(void)
879 {
880
881         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
882 }
883
884 /*
885  * Free a lock edge.
886  */
887 static void
888 lf_free_edge(struct lockf_edge *e)
889 {
890
891         free(e, M_LOCKF);
892 }
893
894
895 /*
896  * Ensure that the lock's owner has a corresponding vertex in the
897  * owner graph.
898  */
899 static void
900 lf_alloc_vertex(struct lockf_entry *lock)
901 {
902         struct owner_graph *g = &lf_owner_graph;
903
904         if (!lock->lf_owner->lo_vertex)
905                 lock->lf_owner->lo_vertex =
906                         graph_alloc_vertex(g, lock->lf_owner);
907 }
908
909 /*
910  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
911  * the new edge would cause a cycle in the owner graph.
912  */
913 static int
914 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
915 {
916         struct owner_graph *g = &lf_owner_graph;
917         struct lockf_edge *e;
918         int error;
919
920 #ifdef DIAGNOSTIC
921         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
922                 KASSERT(e->le_to != y, ("adding lock edge twice"));
923 #endif
924
925         /*
926          * Make sure the two owners have entries in the owner graph.
927          */
928         lf_alloc_vertex(x);
929         lf_alloc_vertex(y);
930
931         error = graph_add_edge(g, x->lf_owner->lo_vertex,
932             y->lf_owner->lo_vertex);
933         if (error)
934                 return (error);
935
936         e = lf_alloc_edge();
937         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
938         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
939         e->le_from = x;
940         e->le_to = y;
941
942         return (0);
943 }
944
945 /*
946  * Remove an edge from the lock graph.
947  */
948 static void
949 lf_remove_edge(struct lockf_edge *e)
950 {
951         struct owner_graph *g = &lf_owner_graph;
952         struct lockf_entry *x = e->le_from;
953         struct lockf_entry *y = e->le_to;
954
955         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
956         LIST_REMOVE(e, le_outlink);
957         LIST_REMOVE(e, le_inlink);
958         e->le_from = NULL;
959         e->le_to = NULL;
960         lf_free_edge(e);
961 }
962
963 /*
964  * Remove all out-going edges from lock x.
965  */
966 static void
967 lf_remove_outgoing(struct lockf_entry *x)
968 {
969         struct lockf_edge *e;
970
971         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
972                 lf_remove_edge(e);
973         }
974 }
975
976 /*
977  * Remove all in-coming edges from lock x.
978  */
979 static void
980 lf_remove_incoming(struct lockf_entry *x)
981 {
982         struct lockf_edge *e;
983
984         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
985                 lf_remove_edge(e);
986         }
987 }
988
989 /*
990  * Walk the list of locks for the file and create an out-going edge
991  * from lock to each blocking lock.
992  */
993 static int
994 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
995 {
996         struct lockf_entry *overlap;
997         int error;
998
999         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1000                 /*
1001                  * We may assume that the active list is sorted by
1002                  * lf_start.
1003                  */
1004                 if (overlap->lf_start > lock->lf_end)
1005                         break;
1006                 if (!lf_blocks(lock, overlap))
1007                         continue;
1008
1009                 /*
1010                  * We've found a blocking lock. Add the corresponding
1011                  * edge to the graphs and see if it would cause a
1012                  * deadlock.
1013                  */
1014                 error = lf_add_edge(lock, overlap);
1015
1016                 /*
1017                  * The only error that lf_add_edge returns is EDEADLK.
1018                  * Remove any edges we added and return the error.
1019                  */
1020                 if (error) {
1021                         lf_remove_outgoing(lock);
1022                         return (error);
1023                 }
1024         }
1025
1026         /*
1027          * We also need to add edges to sleeping locks that block
1028          * us. This ensures that lf_wakeup_lock cannot grant two
1029          * mutually blocking locks simultaneously and also enforces a
1030          * 'first come, first served' fairness model. Note that this
1031          * only happens if we are blocked by at least one active lock
1032          * due to the call to lf_getblock in lf_setlock below.
1033          */
1034         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1035                 if (!lf_blocks(lock, overlap))
1036                         continue;
1037                 /*
1038                  * We've found a blocking lock. Add the corresponding
1039                  * edge to the graphs and see if it would cause a
1040                  * deadlock.
1041                  */
1042                 error = lf_add_edge(lock, overlap);
1043
1044                 /*
1045                  * The only error that lf_add_edge returns is EDEADLK.
1046                  * Remove any edges we added and return the error.
1047                  */
1048                 if (error) {
1049                         lf_remove_outgoing(lock);
1050                         return (error);
1051                 }
1052         }
1053
1054         return (0);
1055 }
1056
1057 /*
1058  * Walk the list of pending locks for the file and create an in-coming
1059  * edge from lock to each blocking lock.
1060  */
1061 static int
1062 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1063 {
1064         struct lockf_entry *overlap;
1065         int error;
1066
1067         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1068                 if (!lf_blocks(lock, overlap))
1069                         continue;
1070
1071                 /*
1072                  * We've found a blocking lock. Add the corresponding
1073                  * edge to the graphs and see if it would cause a
1074                  * deadlock.
1075                  */
1076                 error = lf_add_edge(overlap, lock);
1077
1078                 /*
1079                  * The only error that lf_add_edge returns is EDEADLK.
1080                  * Remove any edges we added and return the error.
1081                  */
1082                 if (error) {
1083                         lf_remove_incoming(lock);
1084                         return (error);
1085                 }
1086         }
1087         return (0);
1088 }
1089
1090 /*
1091  * Insert lock into the active list, keeping list entries ordered by
1092  * increasing values of lf_start.
1093  */
1094 static void
1095 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1096 {
1097         struct lockf_entry *lf, *lfprev;
1098
1099         if (LIST_EMPTY(&state->ls_active)) {
1100                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1101                 return;
1102         }
1103
1104         lfprev = NULL;
1105         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1106                 if (lf->lf_start > lock->lf_start) {
1107                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1108                         return;
1109                 }
1110                 lfprev = lf;
1111         }
1112         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1113 }
1114
1115 /*
1116  * Wake up a sleeping lock and remove it from the pending list now
1117  * that all its dependencies have been resolved. The caller should
1118  * arrange for the lock to be added to the active list, adjusting any
1119  * existing locks for the same owner as needed.
1120  */
1121 static void
1122 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1123 {
1124
1125         /*
1126          * Remove from ls_pending list and wake up the caller
1127          * or start the async notification, as appropriate.
1128          */
1129         LIST_REMOVE(wakelock, lf_link);
1130 #ifdef LOCKF_DEBUG
1131         if (lockf_debug & 1)
1132                 lf_print("lf_wakeup_lock: awakening", wakelock);
1133 #endif /* LOCKF_DEBUG */
1134         if (wakelock->lf_async_task) {
1135                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1136         } else {
1137                 wakeup(wakelock);
1138         }
1139 }
1140
1141 /*
1142  * Re-check all dependent locks and remove edges to locks that we no
1143  * longer block. If 'all' is non-zero, the lock has been removed and
1144  * we must remove all the dependencies, otherwise it has simply been
1145  * reduced but remains active. Any pending locks which have been been
1146  * unblocked are added to 'granted'
1147  */
1148 static void
1149 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1150         struct lockf_entry_list *granted)
1151 {
1152         struct lockf_edge *e, *ne;
1153         struct lockf_entry *deplock;
1154
1155         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1156                 deplock = e->le_from;
1157                 if (all || !lf_blocks(lock, deplock)) {
1158                         sx_xlock(&lf_owner_graph_lock);
1159                         lf_remove_edge(e);
1160                         sx_xunlock(&lf_owner_graph_lock);
1161                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1162                                 lf_wakeup_lock(state, deplock);
1163                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1164                         }
1165                 }
1166         }
1167 }
1168
1169 /*
1170  * Set the start of an existing active lock, updating dependencies and
1171  * adding any newly woken locks to 'granted'.
1172  */
1173 static void
1174 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1175         struct lockf_entry_list *granted)
1176 {
1177
1178         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1179         lock->lf_start = new_start;
1180         LIST_REMOVE(lock, lf_link);
1181         lf_insert_lock(state, lock);
1182         lf_update_dependancies(state, lock, FALSE, granted);
1183 }
1184
1185 /*
1186  * Set the end of an existing active lock, updating dependencies and
1187  * adding any newly woken locks to 'granted'.
1188  */
1189 static void
1190 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1191         struct lockf_entry_list *granted)
1192 {
1193
1194         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1195         lock->lf_end = new_end;
1196         lf_update_dependancies(state, lock, FALSE, granted);
1197 }
1198
1199 /*
1200  * Add a lock to the active list, updating or removing any current
1201  * locks owned by the same owner and processing any pending locks that
1202  * become unblocked as a result. This code is also used for unlock
1203  * since the logic for updating existing locks is identical.
1204  *
1205  * As a result of processing the new lock, we may unblock existing
1206  * pending locks as a result of downgrading/unlocking. We simply
1207  * activate the newly granted locks by looping.
1208  *
1209  * Since the new lock already has its dependencies set up, we always
1210  * add it to the list (unless its an unlock request). This may
1211  * fragment the lock list in some pathological cases but its probably
1212  * not a real problem.
1213  */
1214 static void
1215 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1216 {
1217         struct lockf_entry *overlap, *lf;
1218         struct lockf_entry_list granted;
1219         int ovcase;
1220
1221         LIST_INIT(&granted);
1222         LIST_INSERT_HEAD(&granted, lock, lf_link);
1223
1224         while (!LIST_EMPTY(&granted)) {
1225                 lock = LIST_FIRST(&granted);
1226                 LIST_REMOVE(lock, lf_link);
1227
1228                 /*
1229                  * Skip over locks owned by other processes.  Handle
1230                  * any locks that overlap and are owned by ourselves.
1231                  */
1232                 overlap = LIST_FIRST(&state->ls_active);
1233                 for (;;) {
1234                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1235
1236 #ifdef LOCKF_DEBUG
1237                         if (ovcase && (lockf_debug & 2)) {
1238                                 printf("lf_setlock: overlap %d", ovcase);
1239                                 lf_print("", overlap);
1240                         }
1241 #endif
1242                         /*
1243                          * Six cases:
1244                          *      0) no overlap
1245                          *      1) overlap == lock
1246                          *      2) overlap contains lock
1247                          *      3) lock contains overlap
1248                          *      4) overlap starts before lock
1249                          *      5) overlap ends after lock
1250                          */
1251                         switch (ovcase) {
1252                         case 0: /* no overlap */
1253                                 break;
1254
1255                         case 1: /* overlap == lock */
1256                                 /*
1257                                  * We have already setup the
1258                                  * dependants for the new lock, taking
1259                                  * into account a possible downgrade
1260                                  * or unlock. Remove the old lock.
1261                                  */
1262                                 LIST_REMOVE(overlap, lf_link);
1263                                 lf_update_dependancies(state, overlap, TRUE,
1264                                         &granted);
1265                                 lf_free_lock(overlap);
1266                                 break;
1267
1268                         case 2: /* overlap contains lock */
1269                                 /*
1270                                  * Just split the existing lock.
1271                                  */
1272                                 lf_split(state, overlap, lock, &granted);
1273                                 break;
1274
1275                         case 3: /* lock contains overlap */
1276                                 /*
1277                                  * Delete the overlap and advance to
1278                                  * the next entry in the list.
1279                                  */
1280                                 lf = LIST_NEXT(overlap, lf_link);
1281                                 LIST_REMOVE(overlap, lf_link);
1282                                 lf_update_dependancies(state, overlap, TRUE,
1283                                         &granted);
1284                                 lf_free_lock(overlap);
1285                                 overlap = lf;
1286                                 continue;
1287
1288                         case 4: /* overlap starts before lock */
1289                                 /*
1290                                  * Just update the overlap end and
1291                                  * move on.
1292                                  */
1293                                 lf_set_end(state, overlap, lock->lf_start - 1,
1294                                     &granted);
1295                                 overlap = LIST_NEXT(overlap, lf_link);
1296                                 continue;
1297
1298                         case 5: /* overlap ends after lock */
1299                                 /*
1300                                  * Change the start of overlap and
1301                                  * re-insert.
1302                                  */
1303                                 lf_set_start(state, overlap, lock->lf_end + 1,
1304                                     &granted);
1305                                 break;
1306                         }
1307                         break;
1308                 }
1309 #ifdef LOCKF_DEBUG
1310                 if (lockf_debug & 1) {
1311                         if (lock->lf_type != F_UNLCK)
1312                                 lf_print("lf_activate_lock: activated", lock);
1313                         else
1314                                 lf_print("lf_activate_lock: unlocked", lock);
1315                         lf_printlist("lf_activate_lock", lock);
1316                 }
1317 #endif /* LOCKF_DEBUG */
1318                 if (lock->lf_type != F_UNLCK)
1319                         lf_insert_lock(state, lock);
1320         }
1321 }
1322
1323 /*
1324  * Cancel a pending lock request, either as a result of a signal or a
1325  * cancel request for an async lock.
1326  */
1327 static void
1328 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1329 {
1330         struct lockf_entry_list granted;
1331
1332         /*
1333          * Note it is theoretically possible that cancelling this lock
1334          * may allow some other pending lock to become
1335          * active. Consider this case:
1336          *
1337          * Owner        Action          Result          Dependencies
1338          * 
1339          * A:           lock [0..0]     succeeds        
1340          * B:           lock [2..2]     succeeds        
1341          * C:           lock [1..2]     blocked         C->B
1342          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1343          * A:           unlock [0..0]                   C->B,D->C
1344          * C:           cancel [1..2]   
1345          */
1346
1347         LIST_REMOVE(lock, lf_link);
1348
1349         /*
1350          * Removing out-going edges is simple.
1351          */
1352         sx_xlock(&lf_owner_graph_lock);
1353         lf_remove_outgoing(lock);
1354         sx_xunlock(&lf_owner_graph_lock);
1355
1356         /*
1357          * Removing in-coming edges may allow some other lock to
1358          * become active - we use lf_update_dependancies to figure
1359          * this out.
1360          */
1361         LIST_INIT(&granted);
1362         lf_update_dependancies(state, lock, TRUE, &granted);
1363         lf_free_lock(lock);
1364
1365         /*
1366          * Feed any newly active locks to lf_activate_lock.
1367          */
1368         while (!LIST_EMPTY(&granted)) {
1369                 lock = LIST_FIRST(&granted);
1370                 LIST_REMOVE(lock, lf_link);
1371                 lf_activate_lock(state, lock);
1372         }
1373 }
1374
1375 /*
1376  * Set a byte-range lock.
1377  */
1378 static int
1379 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1380     void **cookiep)
1381 {
1382         static char lockstr[] = "lockf";
1383         int error, priority, stops_deferred;
1384
1385 #ifdef LOCKF_DEBUG
1386         if (lockf_debug & 1)
1387                 lf_print("lf_setlock", lock);
1388 #endif /* LOCKF_DEBUG */
1389
1390         /*
1391          * Set the priority
1392          */
1393         priority = PLOCK;
1394         if (lock->lf_type == F_WRLCK)
1395                 priority += 4;
1396         if (!(lock->lf_flags & F_NOINTR))
1397                 priority |= PCATCH;
1398         /*
1399          * Scan lock list for this file looking for locks that would block us.
1400          */
1401         if (lf_getblock(state, lock)) {
1402                 /*
1403                  * Free the structure and return if nonblocking.
1404                  */
1405                 if ((lock->lf_flags & F_WAIT) == 0
1406                     && lock->lf_async_task == NULL) {
1407                         lf_free_lock(lock);
1408                         error = EAGAIN;
1409                         goto out;
1410                 }
1411
1412                 /*
1413                  * For flock type locks, we must first remove
1414                  * any shared locks that we hold before we sleep
1415                  * waiting for an exclusive lock.
1416                  */
1417                 if ((lock->lf_flags & F_FLOCK) &&
1418                     lock->lf_type == F_WRLCK) {
1419                         lock->lf_type = F_UNLCK;
1420                         lf_activate_lock(state, lock);
1421                         lock->lf_type = F_WRLCK;
1422                 }
1423
1424                 /*
1425                  * We are blocked. Create edges to each blocking lock,
1426                  * checking for deadlock using the owner graph. For
1427                  * simplicity, we run deadlock detection for all
1428                  * locks, posix and otherwise.
1429                  */
1430                 sx_xlock(&lf_owner_graph_lock);
1431                 error = lf_add_outgoing(state, lock);
1432                 sx_xunlock(&lf_owner_graph_lock);
1433
1434                 if (error) {
1435 #ifdef LOCKF_DEBUG
1436                         if (lockf_debug & 1)
1437                                 lf_print("lf_setlock: deadlock", lock);
1438 #endif
1439                         lf_free_lock(lock);
1440                         goto out;
1441                 }
1442
1443                 /*
1444                  * We have added edges to everything that blocks
1445                  * us. Sleep until they all go away.
1446                  */
1447                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1448 #ifdef LOCKF_DEBUG
1449                 if (lockf_debug & 1) {
1450                         struct lockf_edge *e;
1451                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1452                                 lf_print("lf_setlock: blocking on", e->le_to);
1453                                 lf_printlist("lf_setlock", e->le_to);
1454                         }
1455                 }
1456 #endif /* LOCKF_DEBUG */
1457
1458                 if ((lock->lf_flags & F_WAIT) == 0) {
1459                         /*
1460                          * The caller requested async notification -
1461                          * this callback happens when the blocking
1462                          * lock is released, allowing the caller to
1463                          * make another attempt to take the lock.
1464                          */
1465                         *cookiep = (void *) lock;
1466                         error = EINPROGRESS;
1467                         goto out;
1468                 }
1469
1470                 lock->lf_refs++;
1471                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1472                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1473                 sigallowstop(stops_deferred);
1474                 if (lf_free_lock(lock)) {
1475                         error = EDOOFUS;
1476                         goto out;
1477                 }
1478
1479                 /*
1480                  * We may have been awakened by a signal and/or by a
1481                  * debugger continuing us (in which cases we must
1482                  * remove our lock graph edges) and/or by another
1483                  * process releasing a lock (in which case our edges
1484                  * have already been removed and we have been moved to
1485                  * the active list). We may also have been woken by
1486                  * lf_purgelocks which we report to the caller as
1487                  * EINTR. In that case, lf_purgelocks will have
1488                  * removed our lock graph edges.
1489                  *
1490                  * Note that it is possible to receive a signal after
1491                  * we were successfully woken (and moved to the active
1492                  * list) but before we resumed execution. In this
1493                  * case, our lf_outedges list will be clear. We
1494                  * pretend there was no error.
1495                  *
1496                  * Note also, if we have been sleeping long enough, we
1497                  * may now have incoming edges from some newer lock
1498                  * which is waiting behind us in the queue.
1499                  */
1500                 if (lock->lf_flags & F_INTR) {
1501                         error = EINTR;
1502                         lf_free_lock(lock);
1503                         goto out;
1504                 }
1505                 if (LIST_EMPTY(&lock->lf_outedges)) {
1506                         error = 0;
1507                 } else {
1508                         lf_cancel_lock(state, lock);
1509                         goto out;
1510                 }
1511 #ifdef LOCKF_DEBUG
1512                 if (lockf_debug & 1) {
1513                         lf_print("lf_setlock: granted", lock);
1514                 }
1515 #endif
1516                 goto out;
1517         }
1518         /*
1519          * It looks like we are going to grant the lock. First add
1520          * edges from any currently pending lock that the new lock
1521          * would block.
1522          */
1523         sx_xlock(&lf_owner_graph_lock);
1524         error = lf_add_incoming(state, lock);
1525         sx_xunlock(&lf_owner_graph_lock);
1526         if (error) {
1527 #ifdef LOCKF_DEBUG
1528                 if (lockf_debug & 1)
1529                         lf_print("lf_setlock: deadlock", lock);
1530 #endif
1531                 lf_free_lock(lock);
1532                 goto out;
1533         }
1534
1535         /*
1536          * No blocks!!  Add the lock.  Note that we will
1537          * downgrade or upgrade any overlapping locks this
1538          * process already owns.
1539          */
1540         lf_activate_lock(state, lock);
1541         error = 0;
1542 out:
1543         return (error);
1544 }
1545
1546 /*
1547  * Remove a byte-range lock on an inode.
1548  *
1549  * Generally, find the lock (or an overlap to that lock)
1550  * and remove it (or shrink it), then wakeup anyone we can.
1551  */
1552 static int
1553 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1554 {
1555         struct lockf_entry *overlap;
1556
1557         overlap = LIST_FIRST(&state->ls_active);
1558
1559         if (overlap == NOLOCKF)
1560                 return (0);
1561 #ifdef LOCKF_DEBUG
1562         if (unlock->lf_type != F_UNLCK)
1563                 panic("lf_clearlock: bad type");
1564         if (lockf_debug & 1)
1565                 lf_print("lf_clearlock", unlock);
1566 #endif /* LOCKF_DEBUG */
1567
1568         lf_activate_lock(state, unlock);
1569
1570         return (0);
1571 }
1572
1573 /*
1574  * Check whether there is a blocking lock, and if so return its
1575  * details in '*fl'.
1576  */
1577 static int
1578 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1579 {
1580         struct lockf_entry *block;
1581
1582 #ifdef LOCKF_DEBUG
1583         if (lockf_debug & 1)
1584                 lf_print("lf_getlock", lock);
1585 #endif /* LOCKF_DEBUG */
1586
1587         if ((block = lf_getblock(state, lock))) {
1588                 fl->l_type = block->lf_type;
1589                 fl->l_whence = SEEK_SET;
1590                 fl->l_start = block->lf_start;
1591                 if (block->lf_end == OFF_MAX)
1592                         fl->l_len = 0;
1593                 else
1594                         fl->l_len = block->lf_end - block->lf_start + 1;
1595                 fl->l_pid = block->lf_owner->lo_pid;
1596                 fl->l_sysid = block->lf_owner->lo_sysid;
1597         } else {
1598                 fl->l_type = F_UNLCK;
1599         }
1600         return (0);
1601 }
1602
1603 /*
1604  * Cancel an async lock request.
1605  */
1606 static int
1607 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1608 {
1609         struct lockf_entry *reallock;
1610
1611         /*
1612          * We need to match this request with an existing lock
1613          * request.
1614          */
1615         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1616                 if ((void *) reallock == cookie) {
1617                         /*
1618                          * Double-check that this lock looks right
1619                          * (maybe use a rolling ID for the cancel
1620                          * cookie instead?)
1621                          */
1622                         if (!(reallock->lf_vnode == lock->lf_vnode
1623                                 && reallock->lf_start == lock->lf_start
1624                                 && reallock->lf_end == lock->lf_end)) {
1625                                 return (ENOENT);
1626                         }
1627
1628                         /*
1629                          * Make sure this lock was async and then just
1630                          * remove it from its wait lists.
1631                          */
1632                         if (!reallock->lf_async_task) {
1633                                 return (ENOENT);
1634                         }
1635
1636                         /*
1637                          * Note that since any other thread must take
1638                          * state->ls_lock before it can possibly
1639                          * trigger the async callback, we are safe
1640                          * from a race with lf_wakeup_lock, i.e. we
1641                          * can free the lock (actually our caller does
1642                          * this).
1643                          */
1644                         lf_cancel_lock(state, reallock);
1645                         return (0);
1646                 }
1647         }
1648
1649         /*
1650          * We didn't find a matching lock - not much we can do here.
1651          */
1652         return (ENOENT);
1653 }
1654
1655 /*
1656  * Walk the list of locks for an inode and
1657  * return the first blocking lock.
1658  */
1659 static struct lockf_entry *
1660 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1661 {
1662         struct lockf_entry *overlap;
1663
1664         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1665                 /*
1666                  * We may assume that the active list is sorted by
1667                  * lf_start.
1668                  */
1669                 if (overlap->lf_start > lock->lf_end)
1670                         break;
1671                 if (!lf_blocks(lock, overlap))
1672                         continue;
1673                 return (overlap);
1674         }
1675         return (NOLOCKF);
1676 }
1677
1678 /*
1679  * Walk the list of locks for an inode to find an overlapping lock (if
1680  * any) and return a classification of that overlap.
1681  *
1682  * Arguments:
1683  *      *overlap        The place in the lock list to start looking
1684  *      lock            The lock which is being tested
1685  *      type            Pass 'SELF' to test only locks with the same
1686  *                      owner as lock, or 'OTHER' to test only locks
1687  *                      with a different owner
1688  *
1689  * Returns one of six values:
1690  *      0) no overlap
1691  *      1) overlap == lock
1692  *      2) overlap contains lock
1693  *      3) lock contains overlap
1694  *      4) overlap starts before lock
1695  *      5) overlap ends after lock
1696  *
1697  * If there is an overlapping lock, '*overlap' is set to point at the
1698  * overlapping lock.
1699  *
1700  * NOTE: this returns only the FIRST overlapping lock.  There
1701  *       may be more than one.
1702  */
1703 static int
1704 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1705 {
1706         struct lockf_entry *lf;
1707         off_t start, end;
1708         int res;
1709
1710         if ((*overlap) == NOLOCKF) {
1711                 return (0);
1712         }
1713 #ifdef LOCKF_DEBUG
1714         if (lockf_debug & 2)
1715                 lf_print("lf_findoverlap: looking for overlap in", lock);
1716 #endif /* LOCKF_DEBUG */
1717         start = lock->lf_start;
1718         end = lock->lf_end;
1719         res = 0;
1720         while (*overlap) {
1721                 lf = *overlap;
1722                 if (lf->lf_start > end)
1723                         break;
1724                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1725                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1726                         *overlap = LIST_NEXT(lf, lf_link);
1727                         continue;
1728                 }
1729 #ifdef LOCKF_DEBUG
1730                 if (lockf_debug & 2)
1731                         lf_print("\tchecking", lf);
1732 #endif /* LOCKF_DEBUG */
1733                 /*
1734                  * OK, check for overlap
1735                  *
1736                  * Six cases:
1737                  *      0) no overlap
1738                  *      1) overlap == lock
1739                  *      2) overlap contains lock
1740                  *      3) lock contains overlap
1741                  *      4) overlap starts before lock
1742                  *      5) overlap ends after lock
1743                  */
1744                 if (start > lf->lf_end) {
1745                         /* Case 0 */
1746 #ifdef LOCKF_DEBUG
1747                         if (lockf_debug & 2)
1748                                 printf("no overlap\n");
1749 #endif /* LOCKF_DEBUG */
1750                         *overlap = LIST_NEXT(lf, lf_link);
1751                         continue;
1752                 }
1753                 if (lf->lf_start == start && lf->lf_end == end) {
1754                         /* Case 1 */
1755 #ifdef LOCKF_DEBUG
1756                         if (lockf_debug & 2)
1757                                 printf("overlap == lock\n");
1758 #endif /* LOCKF_DEBUG */
1759                         res = 1;
1760                         break;
1761                 }
1762                 if (lf->lf_start <= start && lf->lf_end >= end) {
1763                         /* Case 2 */
1764 #ifdef LOCKF_DEBUG
1765                         if (lockf_debug & 2)
1766                                 printf("overlap contains lock\n");
1767 #endif /* LOCKF_DEBUG */
1768                         res = 2;
1769                         break;
1770                 }
1771                 if (start <= lf->lf_start && end >= lf->lf_end) {
1772                         /* Case 3 */
1773 #ifdef LOCKF_DEBUG
1774                         if (lockf_debug & 2)
1775                                 printf("lock contains overlap\n");
1776 #endif /* LOCKF_DEBUG */
1777                         res = 3;
1778                         break;
1779                 }
1780                 if (lf->lf_start < start && lf->lf_end >= start) {
1781                         /* Case 4 */
1782 #ifdef LOCKF_DEBUG
1783                         if (lockf_debug & 2)
1784                                 printf("overlap starts before lock\n");
1785 #endif /* LOCKF_DEBUG */
1786                         res = 4;
1787                         break;
1788                 }
1789                 if (lf->lf_start > start && lf->lf_end > end) {
1790                         /* Case 5 */
1791 #ifdef LOCKF_DEBUG
1792                         if (lockf_debug & 2)
1793                                 printf("overlap ends after lock\n");
1794 #endif /* LOCKF_DEBUG */
1795                         res = 5;
1796                         break;
1797                 }
1798                 panic("lf_findoverlap: default");
1799         }
1800         return (res);
1801 }
1802
1803 /*
1804  * Split an the existing 'lock1', based on the extent of the lock
1805  * described by 'lock2'. The existing lock should cover 'lock2'
1806  * entirely.
1807  *
1808  * Any pending locks which have been been unblocked are added to
1809  * 'granted'
1810  */
1811 static void
1812 lf_split(struct lockf *state, struct lockf_entry *lock1,
1813     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1814 {
1815         struct lockf_entry *splitlock;
1816
1817 #ifdef LOCKF_DEBUG
1818         if (lockf_debug & 2) {
1819                 lf_print("lf_split", lock1);
1820                 lf_print("splitting from", lock2);
1821         }
1822 #endif /* LOCKF_DEBUG */
1823         /*
1824          * Check to see if we don't need to split at all.
1825          */
1826         if (lock1->lf_start == lock2->lf_start) {
1827                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1828                 return;
1829         }
1830         if (lock1->lf_end == lock2->lf_end) {
1831                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1832                 return;
1833         }
1834         /*
1835          * Make a new lock consisting of the last part of
1836          * the encompassing lock.
1837          */
1838         splitlock = lf_alloc_lock(lock1->lf_owner);
1839         memcpy(splitlock, lock1, sizeof *splitlock);
1840         splitlock->lf_refs = 1;
1841         if (splitlock->lf_flags & F_REMOTE)
1842                 vref(splitlock->lf_vnode);
1843
1844         /*
1845          * This cannot cause a deadlock since any edges we would add
1846          * to splitlock already exist in lock1. We must be sure to add
1847          * necessary dependencies to splitlock before we reduce lock1
1848          * otherwise we may accidentally grant a pending lock that
1849          * was blocked by the tail end of lock1.
1850          */
1851         splitlock->lf_start = lock2->lf_end + 1;
1852         LIST_INIT(&splitlock->lf_outedges);
1853         LIST_INIT(&splitlock->lf_inedges);
1854         sx_xlock(&lf_owner_graph_lock);
1855         lf_add_incoming(state, splitlock);
1856         sx_xunlock(&lf_owner_graph_lock);
1857
1858         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1859
1860         /*
1861          * OK, now link it in
1862          */
1863         lf_insert_lock(state, splitlock);
1864 }
1865
1866 struct lockdesc {
1867         STAILQ_ENTRY(lockdesc) link;
1868         struct vnode *vp;
1869         struct flock fl;
1870 };
1871 STAILQ_HEAD(lockdesclist, lockdesc);
1872
1873 int
1874 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1875 {
1876         struct lockf *ls;
1877         struct lockf_entry *lf;
1878         struct lockdesc *ldesc;
1879         struct lockdesclist locks;
1880         int error;
1881
1882         /*
1883          * In order to keep the locking simple, we iterate over the
1884          * active lock lists to build a list of locks that need
1885          * releasing. We then call the iterator for each one in turn.
1886          *
1887          * We take an extra reference to the vnode for the duration to
1888          * make sure it doesn't go away before we are finished.
1889          */
1890         STAILQ_INIT(&locks);
1891         sx_xlock(&lf_lock_states_lock);
1892         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1893                 sx_xlock(&ls->ls_lock);
1894                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1895                         if (lf->lf_owner->lo_sysid != sysid)
1896                                 continue;
1897
1898                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1899                             M_WAITOK);
1900                         ldesc->vp = lf->lf_vnode;
1901                         vref(ldesc->vp);
1902                         ldesc->fl.l_start = lf->lf_start;
1903                         if (lf->lf_end == OFF_MAX)
1904                                 ldesc->fl.l_len = 0;
1905                         else
1906                                 ldesc->fl.l_len =
1907                                         lf->lf_end - lf->lf_start + 1;
1908                         ldesc->fl.l_whence = SEEK_SET;
1909                         ldesc->fl.l_type = F_UNLCK;
1910                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1911                         ldesc->fl.l_sysid = sysid;
1912                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1913                 }
1914                 sx_xunlock(&ls->ls_lock);
1915         }
1916         sx_xunlock(&lf_lock_states_lock);
1917
1918         /*
1919          * Call the iterator function for each lock in turn. If the
1920          * iterator returns an error code, just free the rest of the
1921          * lockdesc structures.
1922          */
1923         error = 0;
1924         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1925                 STAILQ_REMOVE_HEAD(&locks, link);
1926                 if (!error)
1927                         error = fn(ldesc->vp, &ldesc->fl, arg);
1928                 vrele(ldesc->vp);
1929                 free(ldesc, M_LOCKF);
1930         }
1931
1932         return (error);
1933 }
1934
1935 int
1936 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1937 {
1938         struct lockf *ls;
1939         struct lockf_entry *lf;
1940         struct lockdesc *ldesc;
1941         struct lockdesclist locks;
1942         int error;
1943
1944         /*
1945          * In order to keep the locking simple, we iterate over the
1946          * active lock lists to build a list of locks that need
1947          * releasing. We then call the iterator for each one in turn.
1948          *
1949          * We take an extra reference to the vnode for the duration to
1950          * make sure it doesn't go away before we are finished.
1951          */
1952         STAILQ_INIT(&locks);
1953         VI_LOCK(vp);
1954         ls = vp->v_lockf;
1955         if (!ls) {
1956                 VI_UNLOCK(vp);
1957                 return (0);
1958         }
1959         ls->ls_threads++;
1960         VI_UNLOCK(vp);
1961
1962         sx_xlock(&ls->ls_lock);
1963         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1964                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1965                     M_WAITOK);
1966                 ldesc->vp = lf->lf_vnode;
1967                 vref(ldesc->vp);
1968                 ldesc->fl.l_start = lf->lf_start;
1969                 if (lf->lf_end == OFF_MAX)
1970                         ldesc->fl.l_len = 0;
1971                 else
1972                         ldesc->fl.l_len =
1973                                 lf->lf_end - lf->lf_start + 1;
1974                 ldesc->fl.l_whence = SEEK_SET;
1975                 ldesc->fl.l_type = F_UNLCK;
1976                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1977                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1978                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1979         }
1980         sx_xunlock(&ls->ls_lock);
1981         VI_LOCK(vp);
1982         ls->ls_threads--;
1983         wakeup(ls);
1984         VI_UNLOCK(vp);
1985
1986         /*
1987          * Call the iterator function for each lock in turn. If the
1988          * iterator returns an error code, just free the rest of the
1989          * lockdesc structures.
1990          */
1991         error = 0;
1992         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1993                 STAILQ_REMOVE_HEAD(&locks, link);
1994                 if (!error)
1995                         error = fn(ldesc->vp, &ldesc->fl, arg);
1996                 vrele(ldesc->vp);
1997                 free(ldesc, M_LOCKF);
1998         }
1999
2000         return (error);
2001 }
2002
2003 static int
2004 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2005 {
2006
2007         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2008         return (0);
2009 }
2010
2011 void
2012 lf_clearremotesys(int sysid)
2013 {
2014
2015         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2016         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2017 }
2018
2019 int
2020 lf_countlocks(int sysid)
2021 {
2022         int i;
2023         struct lock_owner *lo;
2024         int count;
2025
2026         count = 0;
2027         sx_xlock(&lf_lock_owners_lock);
2028         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2029                 LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2030                         if (lo->lo_sysid == sysid)
2031                                 count += lo->lo_refs;
2032         sx_xunlock(&lf_lock_owners_lock);
2033
2034         return (count);
2035 }
2036
2037 #ifdef LOCKF_DEBUG
2038
2039 /*
2040  * Return non-zero if y is reachable from x using a brute force
2041  * search. If reachable and path is non-null, return the route taken
2042  * in path.
2043  */
2044 static int
2045 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2046     struct owner_vertex_list *path)
2047 {
2048         struct owner_edge *e;
2049
2050         if (x == y) {
2051                 if (path)
2052                         TAILQ_INSERT_HEAD(path, x, v_link);
2053                 return 1;
2054         }
2055
2056         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2057                 if (graph_reaches(e->e_to, y, path)) {
2058                         if (path)
2059                                 TAILQ_INSERT_HEAD(path, x, v_link);
2060                         return 1;
2061                 }
2062         }
2063         return 0;
2064 }
2065
2066 /*
2067  * Perform consistency checks on the graph. Make sure the values of
2068  * v_order are correct. If checkorder is non-zero, check no vertex can
2069  * reach any other vertex with a smaller order.
2070  */
2071 static void
2072 graph_check(struct owner_graph *g, int checkorder)
2073 {
2074         int i, j;
2075
2076         for (i = 0; i < g->g_size; i++) {
2077                 if (!g->g_vertices[i]->v_owner)
2078                         continue;
2079                 KASSERT(g->g_vertices[i]->v_order == i,
2080                     ("lock graph vertices disordered"));
2081                 if (checkorder) {
2082                         for (j = 0; j < i; j++) {
2083                                 if (!g->g_vertices[j]->v_owner)
2084                                         continue;
2085                                 KASSERT(!graph_reaches(g->g_vertices[i],
2086                                         g->g_vertices[j], NULL),
2087                                     ("lock graph vertices disordered"));
2088                         }
2089                 }
2090         }
2091 }
2092
2093 static void
2094 graph_print_vertices(struct owner_vertex_list *set)
2095 {
2096         struct owner_vertex *v;
2097
2098         printf("{ ");
2099         TAILQ_FOREACH(v, set, v_link) {
2100                 printf("%d:", v->v_order);
2101                 lf_print_owner(v->v_owner);
2102                 if (TAILQ_NEXT(v, v_link))
2103                         printf(", ");
2104         }
2105         printf(" }\n");
2106 }
2107
2108 #endif
2109
2110 /*
2111  * Calculate the sub-set of vertices v from the affected region [y..x]
2112  * where v is reachable from y. Return -1 if a loop was detected
2113  * (i.e. x is reachable from y, otherwise the number of vertices in
2114  * this subset.
2115  */
2116 static int
2117 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2118     struct owner_vertex *y, struct owner_vertex_list *delta)
2119 {
2120         uint32_t gen;
2121         struct owner_vertex *v;
2122         struct owner_edge *e;
2123         int n;
2124
2125         /*
2126          * We start with a set containing just y. Then for each vertex
2127          * v in the set so far unprocessed, we add each vertex that v
2128          * has an out-edge to and that is within the affected region
2129          * [y..x]. If we see the vertex x on our travels, stop
2130          * immediately.
2131          */
2132         TAILQ_INIT(delta);
2133         TAILQ_INSERT_TAIL(delta, y, v_link);
2134         v = y;
2135         n = 1;
2136         gen = g->g_gen;
2137         while (v) {
2138                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2139                         if (e->e_to == x)
2140                                 return -1;
2141                         if (e->e_to->v_order < x->v_order
2142                             && e->e_to->v_gen != gen) {
2143                                 e->e_to->v_gen = gen;
2144                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2145                                 n++;
2146                         }
2147                 }
2148                 v = TAILQ_NEXT(v, v_link);
2149         }
2150
2151         return (n);
2152 }
2153
2154 /*
2155  * Calculate the sub-set of vertices v from the affected region [y..x]
2156  * where v reaches x. Return the number of vertices in this subset.
2157  */
2158 static int
2159 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2160     struct owner_vertex *y, struct owner_vertex_list *delta)
2161 {
2162         uint32_t gen;
2163         struct owner_vertex *v;
2164         struct owner_edge *e;
2165         int n;
2166
2167         /*
2168          * We start with a set containing just x. Then for each vertex
2169          * v in the set so far unprocessed, we add each vertex that v
2170          * has an in-edge from and that is within the affected region
2171          * [y..x].
2172          */
2173         TAILQ_INIT(delta);
2174         TAILQ_INSERT_TAIL(delta, x, v_link);
2175         v = x;
2176         n = 1;
2177         gen = g->g_gen;
2178         while (v) {
2179                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2180                         if (e->e_from->v_order > y->v_order
2181                             && e->e_from->v_gen != gen) {
2182                                 e->e_from->v_gen = gen;
2183                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2184                                 n++;
2185                         }
2186                 }
2187                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2188         }
2189
2190         return (n);
2191 }
2192
2193 static int
2194 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2195 {
2196         struct owner_vertex *v;
2197         int i, j;
2198
2199         TAILQ_FOREACH(v, set, v_link) {
2200                 for (i = n;
2201                      i > 0 && indices[i - 1] > v->v_order; i--)
2202                         ;
2203                 for (j = n - 1; j >= i; j--)
2204                         indices[j + 1] = indices[j];
2205                 indices[i] = v->v_order;
2206                 n++;
2207         }
2208
2209         return (n);
2210 }
2211
2212 static int
2213 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2214     struct owner_vertex_list *set)
2215 {
2216         struct owner_vertex *v, *vlowest;
2217
2218         while (!TAILQ_EMPTY(set)) {
2219                 vlowest = NULL;
2220                 TAILQ_FOREACH(v, set, v_link) {
2221                         if (!vlowest || v->v_order < vlowest->v_order)
2222                                 vlowest = v;
2223                 }
2224                 TAILQ_REMOVE(set, vlowest, v_link);
2225                 vlowest->v_order = indices[nextunused];
2226                 g->g_vertices[vlowest->v_order] = vlowest;
2227                 nextunused++;
2228         }
2229
2230         return (nextunused);
2231 }
2232
2233 static int
2234 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2235     struct owner_vertex *y)
2236 {
2237         struct owner_edge *e;
2238         struct owner_vertex_list deltaF, deltaB;
2239         int nF, nB, n, vi, i;
2240         int *indices;
2241
2242         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2243
2244         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2245                 if (e->e_to == y) {
2246                         e->e_refs++;
2247                         return (0);
2248                 }
2249         }
2250
2251 #ifdef LOCKF_DEBUG
2252         if (lockf_debug & 8) {
2253                 printf("adding edge %d:", x->v_order);
2254                 lf_print_owner(x->v_owner);
2255                 printf(" -> %d:", y->v_order);
2256                 lf_print_owner(y->v_owner);
2257                 printf("\n");
2258         }
2259 #endif
2260         if (y->v_order < x->v_order) {
2261                 /*
2262                  * The new edge violates the order. First find the set
2263                  * of affected vertices reachable from y (deltaF) and
2264                  * the set of affect vertices affected that reach x
2265                  * (deltaB), using the graph generation number to
2266                  * detect whether we have visited a given vertex
2267                  * already. We re-order the graph so that each vertex
2268                  * in deltaB appears before each vertex in deltaF.
2269                  *
2270                  * If x is a member of deltaF, then the new edge would
2271                  * create a cycle. Otherwise, we may assume that
2272                  * deltaF and deltaB are disjoint.
2273                  */
2274                 g->g_gen++;
2275                 if (g->g_gen == 0) {
2276                         /*
2277                          * Generation wrap.
2278                          */
2279                         for (vi = 0; vi < g->g_size; vi++) {
2280                                 g->g_vertices[vi]->v_gen = 0;
2281                         }
2282                         g->g_gen++;
2283                 }
2284                 nF = graph_delta_forward(g, x, y, &deltaF);
2285                 if (nF < 0) {
2286 #ifdef LOCKF_DEBUG
2287                         if (lockf_debug & 8) {
2288                                 struct owner_vertex_list path;
2289                                 printf("deadlock: ");
2290                                 TAILQ_INIT(&path);
2291                                 graph_reaches(y, x, &path);
2292                                 graph_print_vertices(&path);
2293                         }
2294 #endif
2295                         return (EDEADLK);
2296                 }
2297
2298 #ifdef LOCKF_DEBUG
2299                 if (lockf_debug & 8) {
2300                         printf("re-ordering graph vertices\n");
2301                         printf("deltaF = ");
2302                         graph_print_vertices(&deltaF);
2303                 }
2304 #endif
2305
2306                 nB = graph_delta_backward(g, x, y, &deltaB);
2307
2308 #ifdef LOCKF_DEBUG
2309                 if (lockf_debug & 8) {
2310                         printf("deltaB = ");
2311                         graph_print_vertices(&deltaB);
2312                 }
2313 #endif
2314
2315                 /*
2316                  * We first build a set of vertex indices (vertex
2317                  * order values) that we may use, then we re-assign
2318                  * orders first to those vertices in deltaB, then to
2319                  * deltaF. Note that the contents of deltaF and deltaB
2320                  * may be partially disordered - we perform an
2321                  * insertion sort while building our index set.
2322                  */
2323                 indices = g->g_indexbuf;
2324                 n = graph_add_indices(indices, 0, &deltaF);
2325                 graph_add_indices(indices, n, &deltaB);
2326
2327                 /*
2328                  * We must also be sure to maintain the relative
2329                  * ordering of deltaF and deltaB when re-assigning
2330                  * vertices. We do this by iteratively removing the
2331                  * lowest ordered element from the set and assigning
2332                  * it the next value from our new ordering.
2333                  */
2334                 i = graph_assign_indices(g, indices, 0, &deltaB);
2335                 graph_assign_indices(g, indices, i, &deltaF);
2336
2337 #ifdef LOCKF_DEBUG
2338                 if (lockf_debug & 8) {
2339                         struct owner_vertex_list set;
2340                         TAILQ_INIT(&set);
2341                         for (i = 0; i < nB + nF; i++)
2342                                 TAILQ_INSERT_TAIL(&set,
2343                                     g->g_vertices[indices[i]], v_link);
2344                         printf("new ordering = ");
2345                         graph_print_vertices(&set);
2346                 }
2347 #endif
2348         }
2349
2350         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2351
2352 #ifdef LOCKF_DEBUG
2353         if (lockf_debug & 8) {
2354                 graph_check(g, TRUE);
2355         }
2356 #endif
2357
2358         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2359
2360         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2361         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2362         e->e_refs = 1;
2363         e->e_from = x;
2364         e->e_to = y;
2365
2366         return (0);
2367 }
2368
2369 /*
2370  * Remove an edge x->y from the graph.
2371  */
2372 static void
2373 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2374     struct owner_vertex *y)
2375 {
2376         struct owner_edge *e;
2377
2378         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2379
2380         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2381                 if (e->e_to == y)
2382                         break;
2383         }
2384         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2385
2386         e->e_refs--;
2387         if (e->e_refs == 0) {
2388 #ifdef LOCKF_DEBUG
2389                 if (lockf_debug & 8) {
2390                         printf("removing edge %d:", x->v_order);
2391                         lf_print_owner(x->v_owner);
2392                         printf(" -> %d:", y->v_order);
2393                         lf_print_owner(y->v_owner);
2394                         printf("\n");
2395                 }
2396 #endif
2397                 LIST_REMOVE(e, e_outlink);
2398                 LIST_REMOVE(e, e_inlink);
2399                 free(e, M_LOCKF);
2400         }
2401 }
2402
2403 /*
2404  * Allocate a vertex from the free list. Return ENOMEM if there are
2405  * none.
2406  */
2407 static struct owner_vertex *
2408 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2409 {
2410         struct owner_vertex *v;
2411
2412         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2413
2414         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2415         if (g->g_size == g->g_space) {
2416                 g->g_vertices = realloc(g->g_vertices,
2417                     2 * g->g_space * sizeof(struct owner_vertex *),
2418                     M_LOCKF, M_WAITOK);
2419                 free(g->g_indexbuf, M_LOCKF);
2420                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2421                     M_LOCKF, M_WAITOK);
2422                 g->g_space = 2 * g->g_space;
2423         }
2424         v->v_order = g->g_size;
2425         v->v_gen = g->g_gen;
2426         g->g_vertices[g->g_size] = v;
2427         g->g_size++;
2428
2429         LIST_INIT(&v->v_outedges);
2430         LIST_INIT(&v->v_inedges);
2431         v->v_owner = lo;
2432
2433         return (v);
2434 }
2435
2436 static void
2437 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2438 {
2439         struct owner_vertex *w;
2440         int i;
2441
2442         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2443         
2444         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2445         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2446
2447         /*
2448          * Remove from the graph's array and close up the gap,
2449          * renumbering the other vertices.
2450          */
2451         for (i = v->v_order + 1; i < g->g_size; i++) {
2452                 w = g->g_vertices[i];
2453                 w->v_order--;
2454                 g->g_vertices[i - 1] = w;
2455         }
2456         g->g_size--;
2457
2458         free(v, M_LOCKF);
2459 }
2460
2461 static struct owner_graph *
2462 graph_init(struct owner_graph *g)
2463 {
2464
2465         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2466             M_LOCKF, M_WAITOK);
2467         g->g_size = 0;
2468         g->g_space = 10;
2469         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2470         g->g_gen = 0;
2471
2472         return (g);
2473 }
2474
2475 #ifdef LOCKF_DEBUG
2476 /*
2477  * Print description of a lock owner
2478  */
2479 static void
2480 lf_print_owner(struct lock_owner *lo)
2481 {
2482
2483         if (lo->lo_flags & F_REMOTE) {
2484                 printf("remote pid %d, system %d",
2485                     lo->lo_pid, lo->lo_sysid);
2486         } else if (lo->lo_flags & F_FLOCK) {
2487                 printf("file %p", lo->lo_id);
2488         } else {
2489                 printf("local pid %d", lo->lo_pid);
2490         }
2491 }
2492
2493 /*
2494  * Print out a lock.
2495  */
2496 static void
2497 lf_print(char *tag, struct lockf_entry *lock)
2498 {
2499
2500         printf("%s: lock %p for ", tag, (void *)lock);
2501         lf_print_owner(lock->lf_owner);
2502         if (lock->lf_inode != (struct inode *)0)
2503                 printf(" in ino %ju on dev <%s>,",
2504                     (uintmax_t)lock->lf_inode->i_number,
2505                     devtoname(ITODEV(lock->lf_inode)));
2506         printf(" %s, start %jd, end ",
2507             lock->lf_type == F_RDLCK ? "shared" :
2508             lock->lf_type == F_WRLCK ? "exclusive" :
2509             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2510             (intmax_t)lock->lf_start);
2511         if (lock->lf_end == OFF_MAX)
2512                 printf("EOF");
2513         else
2514                 printf("%jd", (intmax_t)lock->lf_end);
2515         if (!LIST_EMPTY(&lock->lf_outedges))
2516                 printf(" block %p\n",
2517                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2518         else
2519                 printf("\n");
2520 }
2521
2522 static void
2523 lf_printlist(char *tag, struct lockf_entry *lock)
2524 {
2525         struct lockf_entry *lf, *blk;
2526         struct lockf_edge *e;
2527
2528         if (lock->lf_inode == (struct inode *)0)
2529                 return;
2530
2531         printf("%s: Lock list for ino %ju on dev <%s>:\n",
2532             tag, (uintmax_t)lock->lf_inode->i_number,
2533             devtoname(ITODEV(lock->lf_inode)));
2534         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2535                 printf("\tlock %p for ",(void *)lf);
2536                 lf_print_owner(lock->lf_owner);
2537                 printf(", %s, start %jd, end %jd",
2538                     lf->lf_type == F_RDLCK ? "shared" :
2539                     lf->lf_type == F_WRLCK ? "exclusive" :
2540                     lf->lf_type == F_UNLCK ? "unlock" :
2541                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2542                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2543                         blk = e->le_to;
2544                         printf("\n\t\tlock request %p for ", (void *)blk);
2545                         lf_print_owner(blk->lf_owner);
2546                         printf(", %s, start %jd, end %jd",
2547                             blk->lf_type == F_RDLCK ? "shared" :
2548                             blk->lf_type == F_WRLCK ? "exclusive" :
2549                             blk->lf_type == F_UNLCK ? "unlock" :
2550                             "unknown", (intmax_t)blk->lf_start,
2551                             (intmax_t)blk->lf_end);
2552                         if (!LIST_EMPTY(&blk->lf_inedges))
2553                                 panic("lf_printlist: bad list");
2554                 }
2555                 printf("\n");
2556         }
2557 }
2558 #endif /* LOCKF_DEBUG */