]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_lockf.c
Update to bmake-20200704
[FreeBSD/FreeBSD.git] / sys / kern / kern_lockf.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *      The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
61  */
62
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65
66 #include "opt_debug_lockf.h"
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/kernel.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sx.h>
78 #include <sys/unistd.h>
79 #include <sys/vnode.h>
80 #include <sys/malloc.h>
81 #include <sys/fcntl.h>
82 #include <sys/lockf.h>
83 #include <sys/taskqueue.h>
84
85 #ifdef LOCKF_DEBUG
86 #include <sys/sysctl.h>
87
88 #include <ufs/ufs/extattr.h>
89 #include <ufs/ufs/quota.h>
90 #include <ufs/ufs/ufsmount.h>
91 #include <ufs/ufs/inode.h>
92
93 static int      lockf_debug = 0; /* control debug output */
94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
95 #endif
96
97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
98
99 struct owner_edge;
100 struct owner_vertex;
101 struct owner_vertex_list;
102 struct owner_graph;
103
104 #define NOLOCKF (struct lockf_entry *)0
105 #define SELF    0x1
106 #define OTHERS  0x2
107 static void      lf_init(void *);
108 static int       lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
109 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
110     int);
111 static struct lockf_entry *
112                  lf_alloc_lock(struct lock_owner *);
113 static int       lf_free_lock(struct lockf_entry *);
114 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
115 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
116 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
117 static void      lf_free_edge(struct lockf_edge *);
118 static struct lockf_edge *
119                  lf_alloc_edge(void);
120 static void      lf_alloc_vertex(struct lockf_entry *);
121 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
122 static void      lf_remove_edge(struct lockf_edge *);
123 static void      lf_remove_outgoing(struct lockf_entry *);
124 static void      lf_remove_incoming(struct lockf_entry *);
125 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
126 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
127 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
128     int);
129 static struct lockf_entry *
130                  lf_getblock(struct lockf *, struct lockf_entry *);
131 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
132 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
133 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
134 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
135     int all, struct lockf_entry_list *);
136 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
137         struct lockf_entry_list*);
138 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
139         struct lockf_entry_list*);
140 static int       lf_setlock(struct lockf *, struct lockf_entry *,
141     struct vnode *, void **cookiep);
142 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
143 static void      lf_split(struct lockf *, struct lockf_entry *,
144     struct lockf_entry *, struct lockf_entry_list *);
145 #ifdef LOCKF_DEBUG
146 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
147     struct owner_vertex_list *path);
148 static void      graph_check(struct owner_graph *g, int checkorder);
149 static void      graph_print_vertices(struct owner_vertex_list *set);
150 #endif
151 static int       graph_delta_forward(struct owner_graph *g,
152     struct owner_vertex *x, struct owner_vertex *y,
153     struct owner_vertex_list *delta);
154 static int       graph_delta_backward(struct owner_graph *g,
155     struct owner_vertex *x, struct owner_vertex *y,
156     struct owner_vertex_list *delta);
157 static int       graph_add_indices(int *indices, int n,
158     struct owner_vertex_list *set);
159 static int       graph_assign_indices(struct owner_graph *g, int *indices,
160     int nextunused, struct owner_vertex_list *set);
161 static int       graph_add_edge(struct owner_graph *g,
162     struct owner_vertex *x, struct owner_vertex *y);
163 static void      graph_remove_edge(struct owner_graph *g,
164     struct owner_vertex *x, struct owner_vertex *y);
165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
166     struct lock_owner *lo);
167 static void      graph_free_vertex(struct owner_graph *g,
168     struct owner_vertex *v);
169 static struct owner_graph * graph_init(struct owner_graph *g);
170 #ifdef LOCKF_DEBUG
171 static void      lf_print(char *, struct lockf_entry *);
172 static void      lf_printlist(char *, struct lockf_entry *);
173 static void      lf_print_owner(struct lock_owner *);
174 #endif
175
176 /*
177  * This structure is used to keep track of both local and remote lock
178  * owners. The lf_owner field of the struct lockf_entry points back at
179  * the lock owner structure. Each possible lock owner (local proc for
180  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
181  * pair for remote locks) is represented by a unique instance of
182  * struct lock_owner.
183  *
184  * If a lock owner has a lock that blocks some other lock or a lock
185  * that is waiting for some other lock, it also has a vertex in the
186  * owner_graph below.
187  *
188  * Locks:
189  * (s)          locked by state->ls_lock
190  * (S)          locked by lf_lock_states_lock
191  * (g)          locked by lf_owner_graph_lock
192  * (c)          const until freeing
193  */
194 #define LOCK_OWNER_HASH_SIZE    256
195
196 struct lock_owner {
197         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
198         int     lo_refs;            /* (l) Number of locks referring to this */
199         int     lo_flags;           /* (c) Flags passwd to lf_advlock */
200         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
201         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
202         int     lo_sysid;           /* (c) System Id of the lock owner */
203         int     lo_hash;            /* (c) Used to lock the appropriate chain */
204         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
205 };
206
207 LIST_HEAD(lock_owner_list, lock_owner);
208
209 struct lock_owner_chain {
210         struct sx               lock;
211         struct lock_owner_list  list;
212 };
213
214 static struct sx                lf_lock_states_lock;
215 static struct lockf_list        lf_lock_states; /* (S) */
216 static struct lock_owner_chain  lf_lock_owners[LOCK_OWNER_HASH_SIZE];
217
218 /*
219  * Structures for deadlock detection.
220  *
221  * We have two types of directed graph, the first is the set of locks,
222  * both active and pending on a vnode. Within this graph, active locks
223  * are terminal nodes in the graph (i.e. have no out-going
224  * edges). Pending locks have out-going edges to each blocking active
225  * lock that prevents the lock from being granted and also to each
226  * older pending lock that would block them if it was active. The
227  * graph for each vnode is naturally acyclic; new edges are only ever
228  * added to or from new nodes (either new pending locks which only add
229  * out-going edges or new active locks which only add in-coming edges)
230  * therefore they cannot create loops in the lock graph.
231  *
232  * The second graph is a global graph of lock owners. Each lock owner
233  * is a vertex in that graph and an edge is added to the graph
234  * whenever an edge is added to a vnode graph, with end points
235  * corresponding to owner of the new pending lock and the owner of the
236  * lock upon which it waits. In order to prevent deadlock, we only add
237  * an edge to this graph if the new edge would not create a cycle.
238  * 
239  * The lock owner graph is topologically sorted, i.e. if a node has
240  * any outgoing edges, then it has an order strictly less than any
241  * node to which it has an outgoing edge. We preserve this ordering
242  * (and detect cycles) on edge insertion using Algorithm PK from the
243  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
244  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
245  * No. 1.7)
246  */
247 struct owner_vertex;
248
249 struct owner_edge {
250         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
251         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
252         int             e_refs;           /* (g) number of times added */
253         struct owner_vertex *e_from;      /* (c) out-going from here */
254         struct owner_vertex *e_to;        /* (c) in-coming to here */
255 };
256 LIST_HEAD(owner_edge_list, owner_edge);
257
258 struct owner_vertex {
259         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
260         uint32_t        v_gen;            /* (g) workspace for edge insertion */
261         int             v_order;          /* (g) order of vertex in graph */
262         struct owner_edge_list v_outedges;/* (g) list of out-edges */
263         struct owner_edge_list v_inedges; /* (g) list of in-edges */
264         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
265 };
266 TAILQ_HEAD(owner_vertex_list, owner_vertex);
267
268 struct owner_graph {
269         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
270         int             g_size;           /* (g) number of vertices */
271         int             g_space;          /* (g) space allocated for vertices */
272         int             *g_indexbuf;      /* (g) workspace for loop detection */
273         uint32_t        g_gen;            /* (g) increment when re-ordering */
274 };
275
276 static struct sx                lf_owner_graph_lock;
277 static struct owner_graph       lf_owner_graph;
278
279 /*
280  * Initialise various structures and locks.
281  */
282 static void
283 lf_init(void *dummy)
284 {
285         int i;
286
287         sx_init(&lf_lock_states_lock, "lock states lock");
288         LIST_INIT(&lf_lock_states);
289
290         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
291                 sx_init(&lf_lock_owners[i].lock, "lock owners lock");
292                 LIST_INIT(&lf_lock_owners[i].list);
293         }
294
295         sx_init(&lf_owner_graph_lock, "owner graph lock");
296         graph_init(&lf_owner_graph);
297 }
298 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
299
300 /*
301  * Generate a hash value for a lock owner.
302  */
303 static int
304 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
305 {
306         uint32_t h;
307
308         if (flags & F_REMOTE) {
309                 h = HASHSTEP(0, fl->l_pid);
310                 h = HASHSTEP(h, fl->l_sysid);
311         } else if (flags & F_FLOCK) {
312                 h = ((uintptr_t) id) >> 7;
313         } else {
314                 h = ((uintptr_t) vp) >> 7;
315         }
316
317         return (h % LOCK_OWNER_HASH_SIZE);
318 }
319
320 /*
321  * Return true if a lock owner matches the details passed to
322  * lf_advlock.
323  */
324 static int
325 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
326     int flags)
327 {
328         if (flags & F_REMOTE) {
329                 return lo->lo_pid == fl->l_pid
330                         && lo->lo_sysid == fl->l_sysid;
331         } else {
332                 return lo->lo_id == id;
333         }
334 }
335
336 static struct lockf_entry *
337 lf_alloc_lock(struct lock_owner *lo)
338 {
339         struct lockf_entry *lf;
340
341         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
342
343 #ifdef LOCKF_DEBUG
344         if (lockf_debug & 4)
345                 printf("Allocated lock %p\n", lf);
346 #endif
347         if (lo) {
348                 sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
349                 lo->lo_refs++;
350                 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
351                 lf->lf_owner = lo;
352         }
353
354         return (lf);
355 }
356
357 static int
358 lf_free_lock(struct lockf_entry *lock)
359 {
360         struct sx *chainlock;
361
362         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
363         if (--lock->lf_refs > 0)
364                 return (0);
365         /*
366          * Adjust the lock_owner reference count and
367          * reclaim the entry if this is the last lock
368          * for that owner.
369          */
370         struct lock_owner *lo = lock->lf_owner;
371         if (lo) {
372                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
373                     ("freeing lock with dependencies"));
374                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
375                     ("freeing lock with dependants"));
376                 chainlock = &lf_lock_owners[lo->lo_hash].lock;
377                 sx_xlock(chainlock);
378                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
379                 lo->lo_refs--;
380                 if (lo->lo_refs == 0) {
381 #ifdef LOCKF_DEBUG
382                         if (lockf_debug & 1)
383                                 printf("lf_free_lock: freeing lock owner %p\n",
384                                     lo);
385 #endif
386                         if (lo->lo_vertex) {
387                                 sx_xlock(&lf_owner_graph_lock);
388                                 graph_free_vertex(&lf_owner_graph,
389                                     lo->lo_vertex);
390                                 sx_xunlock(&lf_owner_graph_lock);
391                         }
392                         LIST_REMOVE(lo, lo_link);
393                         free(lo, M_LOCKF);
394 #ifdef LOCKF_DEBUG
395                         if (lockf_debug & 4)
396                                 printf("Freed lock owner %p\n", lo);
397 #endif
398                 }
399                 sx_unlock(chainlock);
400         }
401         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
402                 vrele(lock->lf_vnode);
403                 lock->lf_vnode = NULL;
404         }
405 #ifdef LOCKF_DEBUG
406         if (lockf_debug & 4)
407                 printf("Freed lock %p\n", lock);
408 #endif
409         free(lock, M_LOCKF);
410         return (1);
411 }
412
413 /*
414  * Advisory record locking support
415  */
416 int
417 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
418     u_quad_t size)
419 {
420         struct lockf *state;
421         struct flock *fl = ap->a_fl;
422         struct lockf_entry *lock;
423         struct vnode *vp = ap->a_vp;
424         caddr_t id = ap->a_id;
425         int flags = ap->a_flags;
426         int hash;
427         struct lock_owner *lo;
428         off_t start, end, oadd;
429         int error;
430
431         /*
432          * Handle the F_UNLKSYS case first - no need to mess about
433          * creating a lock owner for this one.
434          */
435         if (ap->a_op == F_UNLCKSYS) {
436                 lf_clearremotesys(fl->l_sysid);
437                 return (0);
438         }
439
440         /*
441          * Convert the flock structure into a start and end.
442          */
443         switch (fl->l_whence) {
444
445         case SEEK_SET:
446         case SEEK_CUR:
447                 /*
448                  * Caller is responsible for adding any necessary offset
449                  * when SEEK_CUR is used.
450                  */
451                 start = fl->l_start;
452                 break;
453
454         case SEEK_END:
455                 if (size > OFF_MAX ||
456                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
457                         return (EOVERFLOW);
458                 start = size + fl->l_start;
459                 break;
460
461         default:
462                 return (EINVAL);
463         }
464         if (start < 0)
465                 return (EINVAL);
466         if (fl->l_len < 0) {
467                 if (start == 0)
468                         return (EINVAL);
469                 end = start - 1;
470                 start += fl->l_len;
471                 if (start < 0)
472                         return (EINVAL);
473         } else if (fl->l_len == 0) {
474                 end = OFF_MAX;
475         } else {
476                 oadd = fl->l_len - 1;
477                 if (oadd > OFF_MAX - start)
478                         return (EOVERFLOW);
479                 end = start + oadd;
480         }
481
482 retry_setlock:
483
484         /*
485          * Avoid the common case of unlocking when inode has no locks.
486          */
487         if (ap->a_op != F_SETLK && (*statep) == NULL) {
488                 VI_LOCK(vp);
489                 if ((*statep) == NULL) {
490                         fl->l_type = F_UNLCK;
491                         VI_UNLOCK(vp);
492                         return (0);
493                 }
494                 VI_UNLOCK(vp);
495         }
496
497         /*
498          * Map our arguments to an existing lock owner or create one
499          * if this is the first time we have seen this owner.
500          */
501         hash = lf_hash_owner(id, vp, fl, flags);
502         sx_xlock(&lf_lock_owners[hash].lock);
503         LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
504                 if (lf_owner_matches(lo, id, fl, flags))
505                         break;
506         if (!lo) {
507                 /*
508                  * We initialise the lock with a reference
509                  * count which matches the new lockf_entry
510                  * structure created below.
511                  */
512                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
513                     M_WAITOK|M_ZERO);
514 #ifdef LOCKF_DEBUG
515                 if (lockf_debug & 4)
516                         printf("Allocated lock owner %p\n", lo);
517 #endif
518
519                 lo->lo_refs = 1;
520                 lo->lo_flags = flags;
521                 lo->lo_id = id;
522                 lo->lo_hash = hash;
523                 if (flags & F_REMOTE) {
524                         lo->lo_pid = fl->l_pid;
525                         lo->lo_sysid = fl->l_sysid;
526                 } else if (flags & F_FLOCK) {
527                         lo->lo_pid = -1;
528                         lo->lo_sysid = 0;
529                 } else {
530                         struct proc *p = (struct proc *) id;
531                         lo->lo_pid = p->p_pid;
532                         lo->lo_sysid = 0;
533                 }
534                 lo->lo_vertex = NULL;
535
536 #ifdef LOCKF_DEBUG
537                 if (lockf_debug & 1) {
538                         printf("lf_advlockasync: new lock owner %p ", lo);
539                         lf_print_owner(lo);
540                         printf("\n");
541                 }
542 #endif
543
544                 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
545         } else {
546                 /*
547                  * We have seen this lock owner before, increase its
548                  * reference count to account for the new lockf_entry
549                  * structure we create below.
550                  */
551                 lo->lo_refs++;
552         }
553         sx_xunlock(&lf_lock_owners[hash].lock);
554
555         /*
556          * Create the lockf structure. We initialise the lf_owner
557          * field here instead of in lf_alloc_lock() to avoid paying
558          * the lf_lock_owners_lock tax twice.
559          */
560         lock = lf_alloc_lock(NULL);
561         lock->lf_refs = 1;
562         lock->lf_start = start;
563         lock->lf_end = end;
564         lock->lf_owner = lo;
565         lock->lf_vnode = vp;
566         if (flags & F_REMOTE) {
567                 /*
568                  * For remote locks, the caller may release its ref to
569                  * the vnode at any time - we have to ref it here to
570                  * prevent it from being recycled unexpectedly.
571                  */
572                 vref(vp);
573         }
574
575         /*
576          * XXX The problem is that VTOI is ufs specific, so it will
577          * break LOCKF_DEBUG for all other FS's other than UFS because
578          * it casts the vnode->data ptr to struct inode *.
579          */
580 /*      lock->lf_inode = VTOI(ap->a_vp); */
581         lock->lf_inode = (struct inode *)0;
582         lock->lf_type = fl->l_type;
583         LIST_INIT(&lock->lf_outedges);
584         LIST_INIT(&lock->lf_inedges);
585         lock->lf_async_task = ap->a_task;
586         lock->lf_flags = ap->a_flags;
587
588         /*
589          * Do the requested operation. First find our state structure
590          * and create a new one if necessary - the caller's *statep
591          * variable and the state's ls_threads count is protected by
592          * the vnode interlock.
593          */
594         VI_LOCK(vp);
595         if (VN_IS_DOOMED(vp)) {
596                 VI_UNLOCK(vp);
597                 lf_free_lock(lock);
598                 return (ENOENT);
599         }
600
601         /*
602          * Allocate a state structure if necessary.
603          */
604         state = *statep;
605         if (state == NULL) {
606                 struct lockf *ls;
607
608                 VI_UNLOCK(vp);
609
610                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
611                 sx_init(&ls->ls_lock, "ls_lock");
612                 LIST_INIT(&ls->ls_active);
613                 LIST_INIT(&ls->ls_pending);
614                 ls->ls_threads = 1;
615
616                 sx_xlock(&lf_lock_states_lock);
617                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
618                 sx_xunlock(&lf_lock_states_lock);
619
620                 /*
621                  * Cope if we lost a race with some other thread while
622                  * trying to allocate memory.
623                  */
624                 VI_LOCK(vp);
625                 if (VN_IS_DOOMED(vp)) {
626                         VI_UNLOCK(vp);
627                         sx_xlock(&lf_lock_states_lock);
628                         LIST_REMOVE(ls, ls_link);
629                         sx_xunlock(&lf_lock_states_lock);
630                         sx_destroy(&ls->ls_lock);
631                         free(ls, M_LOCKF);
632                         lf_free_lock(lock);
633                         return (ENOENT);
634                 }
635                 if ((*statep) == NULL) {
636                         state = *statep = ls;
637                         VI_UNLOCK(vp);
638                 } else {
639                         state = *statep;
640                         MPASS(state->ls_threads >= 0);
641                         state->ls_threads++;
642                         VI_UNLOCK(vp);
643
644                         sx_xlock(&lf_lock_states_lock);
645                         LIST_REMOVE(ls, ls_link);
646                         sx_xunlock(&lf_lock_states_lock);
647                         sx_destroy(&ls->ls_lock);
648                         free(ls, M_LOCKF);
649                 }
650         } else {
651                 MPASS(state->ls_threads >= 0);
652                 state->ls_threads++;
653                 VI_UNLOCK(vp);
654         }
655
656         sx_xlock(&state->ls_lock);
657         /*
658          * Recheck the doomed vnode after state->ls_lock is
659          * locked. lf_purgelocks() requires that no new threads add
660          * pending locks when vnode is marked by VIRF_DOOMED flag.
661          */
662         if (VN_IS_DOOMED(vp)) {
663                 VI_LOCK(vp);
664                 MPASS(state->ls_threads > 0);
665                 state->ls_threads--;
666                 wakeup(state);
667                 VI_UNLOCK(vp);
668                 sx_xunlock(&state->ls_lock);
669                 lf_free_lock(lock);
670                 return (ENOENT);
671         }
672
673         switch (ap->a_op) {
674         case F_SETLK:
675                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
676                 break;
677
678         case F_UNLCK:
679                 error = lf_clearlock(state, lock);
680                 lf_free_lock(lock);
681                 break;
682
683         case F_GETLK:
684                 error = lf_getlock(state, lock, fl);
685                 lf_free_lock(lock);
686                 break;
687
688         case F_CANCEL:
689                 if (ap->a_cookiep)
690                         error = lf_cancel(state, lock, *ap->a_cookiep);
691                 else
692                         error = EINVAL;
693                 lf_free_lock(lock);
694                 break;
695
696         default:
697                 lf_free_lock(lock);
698                 error = EINVAL;
699                 break;
700         }
701
702 #ifdef DIAGNOSTIC
703         /*
704          * Check for some can't happen stuff. In this case, the active
705          * lock list becoming disordered or containing mutually
706          * blocking locks. We also check the pending list for locks
707          * which should be active (i.e. have no out-going edges).
708          */
709         LIST_FOREACH(lock, &state->ls_active, lf_link) {
710                 struct lockf_entry *lf;
711                 if (LIST_NEXT(lock, lf_link))
712                         KASSERT((lock->lf_start
713                                 <= LIST_NEXT(lock, lf_link)->lf_start),
714                             ("locks disordered"));
715                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
716                         if (lock == lf)
717                                 break;
718                         KASSERT(!lf_blocks(lock, lf),
719                             ("two conflicting active locks"));
720                         if (lock->lf_owner == lf->lf_owner)
721                                 KASSERT(!lf_overlaps(lock, lf),
722                                     ("two overlapping locks from same owner"));
723                 }
724         }
725         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
726                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
727                     ("pending lock which should be active"));
728         }
729 #endif
730         sx_xunlock(&state->ls_lock);
731
732         VI_LOCK(vp);
733         MPASS(state->ls_threads > 0);
734         state->ls_threads--;
735         if (state->ls_threads != 0) {
736                 wakeup(state);
737         }
738         VI_UNLOCK(vp);
739
740         if (error == EDOOFUS) {
741                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
742                 goto retry_setlock;
743         }
744         return (error);
745 }
746
747 int
748 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
749 {
750         struct vop_advlockasync_args a;
751
752         a.a_vp = ap->a_vp;
753         a.a_id = ap->a_id;
754         a.a_op = ap->a_op;
755         a.a_fl = ap->a_fl;
756         a.a_flags = ap->a_flags;
757         a.a_task = NULL;
758         a.a_cookiep = NULL;
759
760         return (lf_advlockasync(&a, statep, size));
761 }
762
763 void
764 lf_purgelocks(struct vnode *vp, struct lockf **statep)
765 {
766         struct lockf *state;
767         struct lockf_entry *lock, *nlock;
768
769         /*
770          * For this to work correctly, the caller must ensure that no
771          * other threads enter the locking system for this vnode,
772          * e.g. by checking VIRF_DOOMED. We wake up any threads that are
773          * sleeping waiting for locks on this vnode and then free all
774          * the remaining locks.
775          */
776         VI_LOCK(vp);
777         KASSERT(VN_IS_DOOMED(vp),
778             ("lf_purgelocks: vp %p has not vgone yet", vp));
779         state = *statep;
780         if (state == NULL) {
781                 VI_UNLOCK(vp);
782                 return;
783         }
784         *statep = NULL;
785         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
786                 KASSERT(LIST_EMPTY(&state->ls_pending),
787                     ("freeing state with pending locks"));
788                 VI_UNLOCK(vp);
789                 goto out_free;
790         }
791         MPASS(state->ls_threads >= 0);
792         state->ls_threads++;
793         VI_UNLOCK(vp);
794
795         sx_xlock(&state->ls_lock);
796         sx_xlock(&lf_owner_graph_lock);
797         LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
798                 LIST_REMOVE(lock, lf_link);
799                 lf_remove_outgoing(lock);
800                 lf_remove_incoming(lock);
801
802                 /*
803                  * If its an async lock, we can just free it
804                  * here, otherwise we let the sleeping thread
805                  * free it.
806                  */
807                 if (lock->lf_async_task) {
808                         lf_free_lock(lock);
809                 } else {
810                         lock->lf_flags |= F_INTR;
811                         wakeup(lock);
812                 }
813         }
814         sx_xunlock(&lf_owner_graph_lock);
815         sx_xunlock(&state->ls_lock);
816
817         /*
818          * Wait for all other threads, sleeping and otherwise
819          * to leave.
820          */
821         VI_LOCK(vp);
822         while (state->ls_threads > 1)
823                 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
824         VI_UNLOCK(vp);
825
826         /*
827          * We can just free all the active locks since they
828          * will have no dependencies (we removed them all
829          * above). We don't need to bother locking since we
830          * are the last thread using this state structure.
831          */
832         KASSERT(LIST_EMPTY(&state->ls_pending),
833             ("lock pending for %p", state));
834         LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
835                 LIST_REMOVE(lock, lf_link);
836                 lf_free_lock(lock);
837         }
838 out_free:
839         sx_xlock(&lf_lock_states_lock);
840         LIST_REMOVE(state, ls_link);
841         sx_xunlock(&lf_lock_states_lock);
842         sx_destroy(&state->ls_lock);
843         free(state, M_LOCKF);
844 }
845
846 /*
847  * Return non-zero if locks 'x' and 'y' overlap.
848  */
849 static int
850 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
851 {
852
853         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
854 }
855
856 /*
857  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
858  */
859 static int
860 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
861 {
862
863         return x->lf_owner != y->lf_owner
864                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
865                 && lf_overlaps(x, y);
866 }
867
868 /*
869  * Allocate a lock edge from the free list
870  */
871 static struct lockf_edge *
872 lf_alloc_edge(void)
873 {
874
875         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
876 }
877
878 /*
879  * Free a lock edge.
880  */
881 static void
882 lf_free_edge(struct lockf_edge *e)
883 {
884
885         free(e, M_LOCKF);
886 }
887
888 /*
889  * Ensure that the lock's owner has a corresponding vertex in the
890  * owner graph.
891  */
892 static void
893 lf_alloc_vertex(struct lockf_entry *lock)
894 {
895         struct owner_graph *g = &lf_owner_graph;
896
897         if (!lock->lf_owner->lo_vertex)
898                 lock->lf_owner->lo_vertex =
899                         graph_alloc_vertex(g, lock->lf_owner);
900 }
901
902 /*
903  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
904  * the new edge would cause a cycle in the owner graph.
905  */
906 static int
907 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
908 {
909         struct owner_graph *g = &lf_owner_graph;
910         struct lockf_edge *e;
911         int error;
912
913 #ifdef DIAGNOSTIC
914         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
915                 KASSERT(e->le_to != y, ("adding lock edge twice"));
916 #endif
917
918         /*
919          * Make sure the two owners have entries in the owner graph.
920          */
921         lf_alloc_vertex(x);
922         lf_alloc_vertex(y);
923
924         error = graph_add_edge(g, x->lf_owner->lo_vertex,
925             y->lf_owner->lo_vertex);
926         if (error)
927                 return (error);
928
929         e = lf_alloc_edge();
930         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
931         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
932         e->le_from = x;
933         e->le_to = y;
934
935         return (0);
936 }
937
938 /*
939  * Remove an edge from the lock graph.
940  */
941 static void
942 lf_remove_edge(struct lockf_edge *e)
943 {
944         struct owner_graph *g = &lf_owner_graph;
945         struct lockf_entry *x = e->le_from;
946         struct lockf_entry *y = e->le_to;
947
948         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
949         LIST_REMOVE(e, le_outlink);
950         LIST_REMOVE(e, le_inlink);
951         e->le_from = NULL;
952         e->le_to = NULL;
953         lf_free_edge(e);
954 }
955
956 /*
957  * Remove all out-going edges from lock x.
958  */
959 static void
960 lf_remove_outgoing(struct lockf_entry *x)
961 {
962         struct lockf_edge *e;
963
964         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
965                 lf_remove_edge(e);
966         }
967 }
968
969 /*
970  * Remove all in-coming edges from lock x.
971  */
972 static void
973 lf_remove_incoming(struct lockf_entry *x)
974 {
975         struct lockf_edge *e;
976
977         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
978                 lf_remove_edge(e);
979         }
980 }
981
982 /*
983  * Walk the list of locks for the file and create an out-going edge
984  * from lock to each blocking lock.
985  */
986 static int
987 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
988 {
989         struct lockf_entry *overlap;
990         int error;
991
992         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
993                 /*
994                  * We may assume that the active list is sorted by
995                  * lf_start.
996                  */
997                 if (overlap->lf_start > lock->lf_end)
998                         break;
999                 if (!lf_blocks(lock, overlap))
1000                         continue;
1001
1002                 /*
1003                  * We've found a blocking lock. Add the corresponding
1004                  * edge to the graphs and see if it would cause a
1005                  * deadlock.
1006                  */
1007                 error = lf_add_edge(lock, overlap);
1008
1009                 /*
1010                  * The only error that lf_add_edge returns is EDEADLK.
1011                  * Remove any edges we added and return the error.
1012                  */
1013                 if (error) {
1014                         lf_remove_outgoing(lock);
1015                         return (error);
1016                 }
1017         }
1018
1019         /*
1020          * We also need to add edges to sleeping locks that block
1021          * us. This ensures that lf_wakeup_lock cannot grant two
1022          * mutually blocking locks simultaneously and also enforces a
1023          * 'first come, first served' fairness model. Note that this
1024          * only happens if we are blocked by at least one active lock
1025          * due to the call to lf_getblock in lf_setlock below.
1026          */
1027         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1028                 if (!lf_blocks(lock, overlap))
1029                         continue;
1030                 /*
1031                  * We've found a blocking lock. Add the corresponding
1032                  * edge to the graphs and see if it would cause a
1033                  * deadlock.
1034                  */
1035                 error = lf_add_edge(lock, overlap);
1036
1037                 /*
1038                  * The only error that lf_add_edge returns is EDEADLK.
1039                  * Remove any edges we added and return the error.
1040                  */
1041                 if (error) {
1042                         lf_remove_outgoing(lock);
1043                         return (error);
1044                 }
1045         }
1046
1047         return (0);
1048 }
1049
1050 /*
1051  * Walk the list of pending locks for the file and create an in-coming
1052  * edge from lock to each blocking lock.
1053  */
1054 static int
1055 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1056 {
1057         struct lockf_entry *overlap;
1058         int error;
1059
1060         sx_assert(&state->ls_lock, SX_XLOCKED);
1061         if (LIST_EMPTY(&state->ls_pending))
1062                 return (0);
1063
1064         error = 0;
1065         sx_xlock(&lf_owner_graph_lock);
1066         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1067                 if (!lf_blocks(lock, overlap))
1068                         continue;
1069
1070                 /*
1071                  * We've found a blocking lock. Add the corresponding
1072                  * edge to the graphs and see if it would cause a
1073                  * deadlock.
1074                  */
1075                 error = lf_add_edge(overlap, lock);
1076
1077                 /*
1078                  * The only error that lf_add_edge returns is EDEADLK.
1079                  * Remove any edges we added and return the error.
1080                  */
1081                 if (error) {
1082                         lf_remove_incoming(lock);
1083                         break;
1084                 }
1085         }
1086         sx_xunlock(&lf_owner_graph_lock);
1087         return (error);
1088 }
1089
1090 /*
1091  * Insert lock into the active list, keeping list entries ordered by
1092  * increasing values of lf_start.
1093  */
1094 static void
1095 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1096 {
1097         struct lockf_entry *lf, *lfprev;
1098
1099         if (LIST_EMPTY(&state->ls_active)) {
1100                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1101                 return;
1102         }
1103
1104         lfprev = NULL;
1105         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1106                 if (lf->lf_start > lock->lf_start) {
1107                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1108                         return;
1109                 }
1110                 lfprev = lf;
1111         }
1112         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1113 }
1114
1115 /*
1116  * Wake up a sleeping lock and remove it from the pending list now
1117  * that all its dependencies have been resolved. The caller should
1118  * arrange for the lock to be added to the active list, adjusting any
1119  * existing locks for the same owner as needed.
1120  */
1121 static void
1122 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1123 {
1124
1125         /*
1126          * Remove from ls_pending list and wake up the caller
1127          * or start the async notification, as appropriate.
1128          */
1129         LIST_REMOVE(wakelock, lf_link);
1130 #ifdef LOCKF_DEBUG
1131         if (lockf_debug & 1)
1132                 lf_print("lf_wakeup_lock: awakening", wakelock);
1133 #endif /* LOCKF_DEBUG */
1134         if (wakelock->lf_async_task) {
1135                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1136         } else {
1137                 wakeup(wakelock);
1138         }
1139 }
1140
1141 /*
1142  * Re-check all dependent locks and remove edges to locks that we no
1143  * longer block. If 'all' is non-zero, the lock has been removed and
1144  * we must remove all the dependencies, otherwise it has simply been
1145  * reduced but remains active. Any pending locks which have been been
1146  * unblocked are added to 'granted'
1147  */
1148 static void
1149 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1150         struct lockf_entry_list *granted)
1151 {
1152         struct lockf_edge *e, *ne;
1153         struct lockf_entry *deplock;
1154
1155         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1156                 deplock = e->le_from;
1157                 if (all || !lf_blocks(lock, deplock)) {
1158                         sx_xlock(&lf_owner_graph_lock);
1159                         lf_remove_edge(e);
1160                         sx_xunlock(&lf_owner_graph_lock);
1161                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1162                                 lf_wakeup_lock(state, deplock);
1163                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1164                         }
1165                 }
1166         }
1167 }
1168
1169 /*
1170  * Set the start of an existing active lock, updating dependencies and
1171  * adding any newly woken locks to 'granted'.
1172  */
1173 static void
1174 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1175         struct lockf_entry_list *granted)
1176 {
1177
1178         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1179         lock->lf_start = new_start;
1180         LIST_REMOVE(lock, lf_link);
1181         lf_insert_lock(state, lock);
1182         lf_update_dependancies(state, lock, FALSE, granted);
1183 }
1184
1185 /*
1186  * Set the end of an existing active lock, updating dependencies and
1187  * adding any newly woken locks to 'granted'.
1188  */
1189 static void
1190 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1191         struct lockf_entry_list *granted)
1192 {
1193
1194         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1195         lock->lf_end = new_end;
1196         lf_update_dependancies(state, lock, FALSE, granted);
1197 }
1198
1199 /*
1200  * Add a lock to the active list, updating or removing any current
1201  * locks owned by the same owner and processing any pending locks that
1202  * become unblocked as a result. This code is also used for unlock
1203  * since the logic for updating existing locks is identical.
1204  *
1205  * As a result of processing the new lock, we may unblock existing
1206  * pending locks as a result of downgrading/unlocking. We simply
1207  * activate the newly granted locks by looping.
1208  *
1209  * Since the new lock already has its dependencies set up, we always
1210  * add it to the list (unless its an unlock request). This may
1211  * fragment the lock list in some pathological cases but its probably
1212  * not a real problem.
1213  */
1214 static void
1215 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1216 {
1217         struct lockf_entry *overlap, *lf;
1218         struct lockf_entry_list granted;
1219         int ovcase;
1220
1221         LIST_INIT(&granted);
1222         LIST_INSERT_HEAD(&granted, lock, lf_link);
1223
1224         while (!LIST_EMPTY(&granted)) {
1225                 lock = LIST_FIRST(&granted);
1226                 LIST_REMOVE(lock, lf_link);
1227
1228                 /*
1229                  * Skip over locks owned by other processes.  Handle
1230                  * any locks that overlap and are owned by ourselves.
1231                  */
1232                 overlap = LIST_FIRST(&state->ls_active);
1233                 for (;;) {
1234                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1235
1236 #ifdef LOCKF_DEBUG
1237                         if (ovcase && (lockf_debug & 2)) {
1238                                 printf("lf_setlock: overlap %d", ovcase);
1239                                 lf_print("", overlap);
1240                         }
1241 #endif
1242                         /*
1243                          * Six cases:
1244                          *      0) no overlap
1245                          *      1) overlap == lock
1246                          *      2) overlap contains lock
1247                          *      3) lock contains overlap
1248                          *      4) overlap starts before lock
1249                          *      5) overlap ends after lock
1250                          */
1251                         switch (ovcase) {
1252                         case 0: /* no overlap */
1253                                 break;
1254
1255                         case 1: /* overlap == lock */
1256                                 /*
1257                                  * We have already setup the
1258                                  * dependants for the new lock, taking
1259                                  * into account a possible downgrade
1260                                  * or unlock. Remove the old lock.
1261                                  */
1262                                 LIST_REMOVE(overlap, lf_link);
1263                                 lf_update_dependancies(state, overlap, TRUE,
1264                                         &granted);
1265                                 lf_free_lock(overlap);
1266                                 break;
1267
1268                         case 2: /* overlap contains lock */
1269                                 /*
1270                                  * Just split the existing lock.
1271                                  */
1272                                 lf_split(state, overlap, lock, &granted);
1273                                 break;
1274
1275                         case 3: /* lock contains overlap */
1276                                 /*
1277                                  * Delete the overlap and advance to
1278                                  * the next entry in the list.
1279                                  */
1280                                 lf = LIST_NEXT(overlap, lf_link);
1281                                 LIST_REMOVE(overlap, lf_link);
1282                                 lf_update_dependancies(state, overlap, TRUE,
1283                                         &granted);
1284                                 lf_free_lock(overlap);
1285                                 overlap = lf;
1286                                 continue;
1287
1288                         case 4: /* overlap starts before lock */
1289                                 /*
1290                                  * Just update the overlap end and
1291                                  * move on.
1292                                  */
1293                                 lf_set_end(state, overlap, lock->lf_start - 1,
1294                                     &granted);
1295                                 overlap = LIST_NEXT(overlap, lf_link);
1296                                 continue;
1297
1298                         case 5: /* overlap ends after lock */
1299                                 /*
1300                                  * Change the start of overlap and
1301                                  * re-insert.
1302                                  */
1303                                 lf_set_start(state, overlap, lock->lf_end + 1,
1304                                     &granted);
1305                                 break;
1306                         }
1307                         break;
1308                 }
1309 #ifdef LOCKF_DEBUG
1310                 if (lockf_debug & 1) {
1311                         if (lock->lf_type != F_UNLCK)
1312                                 lf_print("lf_activate_lock: activated", lock);
1313                         else
1314                                 lf_print("lf_activate_lock: unlocked", lock);
1315                         lf_printlist("lf_activate_lock", lock);
1316                 }
1317 #endif /* LOCKF_DEBUG */
1318                 if (lock->lf_type != F_UNLCK)
1319                         lf_insert_lock(state, lock);
1320         }
1321 }
1322
1323 /*
1324  * Cancel a pending lock request, either as a result of a signal or a
1325  * cancel request for an async lock.
1326  */
1327 static void
1328 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1329 {
1330         struct lockf_entry_list granted;
1331
1332         /*
1333          * Note it is theoretically possible that cancelling this lock
1334          * may allow some other pending lock to become
1335          * active. Consider this case:
1336          *
1337          * Owner        Action          Result          Dependencies
1338          * 
1339          * A:           lock [0..0]     succeeds        
1340          * B:           lock [2..2]     succeeds        
1341          * C:           lock [1..2]     blocked         C->B
1342          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1343          * A:           unlock [0..0]                   C->B,D->C
1344          * C:           cancel [1..2]   
1345          */
1346
1347         LIST_REMOVE(lock, lf_link);
1348
1349         /*
1350          * Removing out-going edges is simple.
1351          */
1352         sx_xlock(&lf_owner_graph_lock);
1353         lf_remove_outgoing(lock);
1354         sx_xunlock(&lf_owner_graph_lock);
1355
1356         /*
1357          * Removing in-coming edges may allow some other lock to
1358          * become active - we use lf_update_dependancies to figure
1359          * this out.
1360          */
1361         LIST_INIT(&granted);
1362         lf_update_dependancies(state, lock, TRUE, &granted);
1363         lf_free_lock(lock);
1364
1365         /*
1366          * Feed any newly active locks to lf_activate_lock.
1367          */
1368         while (!LIST_EMPTY(&granted)) {
1369                 lock = LIST_FIRST(&granted);
1370                 LIST_REMOVE(lock, lf_link);
1371                 lf_activate_lock(state, lock);
1372         }
1373 }
1374
1375 /*
1376  * Set a byte-range lock.
1377  */
1378 static int
1379 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1380     void **cookiep)
1381 {
1382         static char lockstr[] = "lockf";
1383         int error, priority, stops_deferred;
1384
1385 #ifdef LOCKF_DEBUG
1386         if (lockf_debug & 1)
1387                 lf_print("lf_setlock", lock);
1388 #endif /* LOCKF_DEBUG */
1389
1390         /*
1391          * Set the priority
1392          */
1393         priority = PLOCK;
1394         if (lock->lf_type == F_WRLCK)
1395                 priority += 4;
1396         if (!(lock->lf_flags & F_NOINTR))
1397                 priority |= PCATCH;
1398         /*
1399          * Scan lock list for this file looking for locks that would block us.
1400          */
1401         if (lf_getblock(state, lock)) {
1402                 /*
1403                  * Free the structure and return if nonblocking.
1404                  */
1405                 if ((lock->lf_flags & F_WAIT) == 0
1406                     && lock->lf_async_task == NULL) {
1407                         lf_free_lock(lock);
1408                         error = EAGAIN;
1409                         goto out;
1410                 }
1411
1412                 /*
1413                  * For flock type locks, we must first remove
1414                  * any shared locks that we hold before we sleep
1415                  * waiting for an exclusive lock.
1416                  */
1417                 if ((lock->lf_flags & F_FLOCK) &&
1418                     lock->lf_type == F_WRLCK) {
1419                         lock->lf_type = F_UNLCK;
1420                         lf_activate_lock(state, lock);
1421                         lock->lf_type = F_WRLCK;
1422                 }
1423
1424                 /*
1425                  * We are blocked. Create edges to each blocking lock,
1426                  * checking for deadlock using the owner graph. For
1427                  * simplicity, we run deadlock detection for all
1428                  * locks, posix and otherwise.
1429                  */
1430                 sx_xlock(&lf_owner_graph_lock);
1431                 error = lf_add_outgoing(state, lock);
1432                 sx_xunlock(&lf_owner_graph_lock);
1433
1434                 if (error) {
1435 #ifdef LOCKF_DEBUG
1436                         if (lockf_debug & 1)
1437                                 lf_print("lf_setlock: deadlock", lock);
1438 #endif
1439                         lf_free_lock(lock);
1440                         goto out;
1441                 }
1442
1443                 /*
1444                  * We have added edges to everything that blocks
1445                  * us. Sleep until they all go away.
1446                  */
1447                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1448 #ifdef LOCKF_DEBUG
1449                 if (lockf_debug & 1) {
1450                         struct lockf_edge *e;
1451                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1452                                 lf_print("lf_setlock: blocking on", e->le_to);
1453                                 lf_printlist("lf_setlock", e->le_to);
1454                         }
1455                 }
1456 #endif /* LOCKF_DEBUG */
1457
1458                 if ((lock->lf_flags & F_WAIT) == 0) {
1459                         /*
1460                          * The caller requested async notification -
1461                          * this callback happens when the blocking
1462                          * lock is released, allowing the caller to
1463                          * make another attempt to take the lock.
1464                          */
1465                         *cookiep = (void *) lock;
1466                         error = EINPROGRESS;
1467                         goto out;
1468                 }
1469
1470                 lock->lf_refs++;
1471                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1472                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1473                 sigallowstop(stops_deferred);
1474                 if (lf_free_lock(lock)) {
1475                         error = EDOOFUS;
1476                         goto out;
1477                 }
1478
1479                 /*
1480                  * We may have been awakened by a signal and/or by a
1481                  * debugger continuing us (in which cases we must
1482                  * remove our lock graph edges) and/or by another
1483                  * process releasing a lock (in which case our edges
1484                  * have already been removed and we have been moved to
1485                  * the active list). We may also have been woken by
1486                  * lf_purgelocks which we report to the caller as
1487                  * EINTR. In that case, lf_purgelocks will have
1488                  * removed our lock graph edges.
1489                  *
1490                  * Note that it is possible to receive a signal after
1491                  * we were successfully woken (and moved to the active
1492                  * list) but before we resumed execution. In this
1493                  * case, our lf_outedges list will be clear. We
1494                  * pretend there was no error.
1495                  *
1496                  * Note also, if we have been sleeping long enough, we
1497                  * may now have incoming edges from some newer lock
1498                  * which is waiting behind us in the queue.
1499                  */
1500                 if (lock->lf_flags & F_INTR) {
1501                         error = EINTR;
1502                         lf_free_lock(lock);
1503                         goto out;
1504                 }
1505                 if (LIST_EMPTY(&lock->lf_outedges)) {
1506                         error = 0;
1507                 } else {
1508                         lf_cancel_lock(state, lock);
1509                         goto out;
1510                 }
1511 #ifdef LOCKF_DEBUG
1512                 if (lockf_debug & 1) {
1513                         lf_print("lf_setlock: granted", lock);
1514                 }
1515 #endif
1516                 goto out;
1517         }
1518         /*
1519          * It looks like we are going to grant the lock. First add
1520          * edges from any currently pending lock that the new lock
1521          * would block.
1522          */
1523         error = lf_add_incoming(state, lock);
1524         if (error) {
1525 #ifdef LOCKF_DEBUG
1526                 if (lockf_debug & 1)
1527                         lf_print("lf_setlock: deadlock", lock);
1528 #endif
1529                 lf_free_lock(lock);
1530                 goto out;
1531         }
1532
1533         /*
1534          * No blocks!!  Add the lock.  Note that we will
1535          * downgrade or upgrade any overlapping locks this
1536          * process already owns.
1537          */
1538         lf_activate_lock(state, lock);
1539         error = 0;
1540 out:
1541         return (error);
1542 }
1543
1544 /*
1545  * Remove a byte-range lock on an inode.
1546  *
1547  * Generally, find the lock (or an overlap to that lock)
1548  * and remove it (or shrink it), then wakeup anyone we can.
1549  */
1550 static int
1551 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1552 {
1553         struct lockf_entry *overlap;
1554
1555         overlap = LIST_FIRST(&state->ls_active);
1556
1557         if (overlap == NOLOCKF)
1558                 return (0);
1559 #ifdef LOCKF_DEBUG
1560         if (unlock->lf_type != F_UNLCK)
1561                 panic("lf_clearlock: bad type");
1562         if (lockf_debug & 1)
1563                 lf_print("lf_clearlock", unlock);
1564 #endif /* LOCKF_DEBUG */
1565
1566         lf_activate_lock(state, unlock);
1567
1568         return (0);
1569 }
1570
1571 /*
1572  * Check whether there is a blocking lock, and if so return its
1573  * details in '*fl'.
1574  */
1575 static int
1576 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1577 {
1578         struct lockf_entry *block;
1579
1580 #ifdef LOCKF_DEBUG
1581         if (lockf_debug & 1)
1582                 lf_print("lf_getlock", lock);
1583 #endif /* LOCKF_DEBUG */
1584
1585         if ((block = lf_getblock(state, lock))) {
1586                 fl->l_type = block->lf_type;
1587                 fl->l_whence = SEEK_SET;
1588                 fl->l_start = block->lf_start;
1589                 if (block->lf_end == OFF_MAX)
1590                         fl->l_len = 0;
1591                 else
1592                         fl->l_len = block->lf_end - block->lf_start + 1;
1593                 fl->l_pid = block->lf_owner->lo_pid;
1594                 fl->l_sysid = block->lf_owner->lo_sysid;
1595         } else {
1596                 fl->l_type = F_UNLCK;
1597         }
1598         return (0);
1599 }
1600
1601 /*
1602  * Cancel an async lock request.
1603  */
1604 static int
1605 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1606 {
1607         struct lockf_entry *reallock;
1608
1609         /*
1610          * We need to match this request with an existing lock
1611          * request.
1612          */
1613         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1614                 if ((void *) reallock == cookie) {
1615                         /*
1616                          * Double-check that this lock looks right
1617                          * (maybe use a rolling ID for the cancel
1618                          * cookie instead?)
1619                          */
1620                         if (!(reallock->lf_vnode == lock->lf_vnode
1621                                 && reallock->lf_start == lock->lf_start
1622                                 && reallock->lf_end == lock->lf_end)) {
1623                                 return (ENOENT);
1624                         }
1625
1626                         /*
1627                          * Make sure this lock was async and then just
1628                          * remove it from its wait lists.
1629                          */
1630                         if (!reallock->lf_async_task) {
1631                                 return (ENOENT);
1632                         }
1633
1634                         /*
1635                          * Note that since any other thread must take
1636                          * state->ls_lock before it can possibly
1637                          * trigger the async callback, we are safe
1638                          * from a race with lf_wakeup_lock, i.e. we
1639                          * can free the lock (actually our caller does
1640                          * this).
1641                          */
1642                         lf_cancel_lock(state, reallock);
1643                         return (0);
1644                 }
1645         }
1646
1647         /*
1648          * We didn't find a matching lock - not much we can do here.
1649          */
1650         return (ENOENT);
1651 }
1652
1653 /*
1654  * Walk the list of locks for an inode and
1655  * return the first blocking lock.
1656  */
1657 static struct lockf_entry *
1658 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1659 {
1660         struct lockf_entry *overlap;
1661
1662         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1663                 /*
1664                  * We may assume that the active list is sorted by
1665                  * lf_start.
1666                  */
1667                 if (overlap->lf_start > lock->lf_end)
1668                         break;
1669                 if (!lf_blocks(lock, overlap))
1670                         continue;
1671                 return (overlap);
1672         }
1673         return (NOLOCKF);
1674 }
1675
1676 /*
1677  * Walk the list of locks for an inode to find an overlapping lock (if
1678  * any) and return a classification of that overlap.
1679  *
1680  * Arguments:
1681  *      *overlap        The place in the lock list to start looking
1682  *      lock            The lock which is being tested
1683  *      type            Pass 'SELF' to test only locks with the same
1684  *                      owner as lock, or 'OTHER' to test only locks
1685  *                      with a different owner
1686  *
1687  * Returns one of six values:
1688  *      0) no overlap
1689  *      1) overlap == lock
1690  *      2) overlap contains lock
1691  *      3) lock contains overlap
1692  *      4) overlap starts before lock
1693  *      5) overlap ends after lock
1694  *
1695  * If there is an overlapping lock, '*overlap' is set to point at the
1696  * overlapping lock.
1697  *
1698  * NOTE: this returns only the FIRST overlapping lock.  There
1699  *       may be more than one.
1700  */
1701 static int
1702 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1703 {
1704         struct lockf_entry *lf;
1705         off_t start, end;
1706         int res;
1707
1708         if ((*overlap) == NOLOCKF) {
1709                 return (0);
1710         }
1711 #ifdef LOCKF_DEBUG
1712         if (lockf_debug & 2)
1713                 lf_print("lf_findoverlap: looking for overlap in", lock);
1714 #endif /* LOCKF_DEBUG */
1715         start = lock->lf_start;
1716         end = lock->lf_end;
1717         res = 0;
1718         while (*overlap) {
1719                 lf = *overlap;
1720                 if (lf->lf_start > end)
1721                         break;
1722                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1723                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1724                         *overlap = LIST_NEXT(lf, lf_link);
1725                         continue;
1726                 }
1727 #ifdef LOCKF_DEBUG
1728                 if (lockf_debug & 2)
1729                         lf_print("\tchecking", lf);
1730 #endif /* LOCKF_DEBUG */
1731                 /*
1732                  * OK, check for overlap
1733                  *
1734                  * Six cases:
1735                  *      0) no overlap
1736                  *      1) overlap == lock
1737                  *      2) overlap contains lock
1738                  *      3) lock contains overlap
1739                  *      4) overlap starts before lock
1740                  *      5) overlap ends after lock
1741                  */
1742                 if (start > lf->lf_end) {
1743                         /* Case 0 */
1744 #ifdef LOCKF_DEBUG
1745                         if (lockf_debug & 2)
1746                                 printf("no overlap\n");
1747 #endif /* LOCKF_DEBUG */
1748                         *overlap = LIST_NEXT(lf, lf_link);
1749                         continue;
1750                 }
1751                 if (lf->lf_start == start && lf->lf_end == end) {
1752                         /* Case 1 */
1753 #ifdef LOCKF_DEBUG
1754                         if (lockf_debug & 2)
1755                                 printf("overlap == lock\n");
1756 #endif /* LOCKF_DEBUG */
1757                         res = 1;
1758                         break;
1759                 }
1760                 if (lf->lf_start <= start && lf->lf_end >= end) {
1761                         /* Case 2 */
1762 #ifdef LOCKF_DEBUG
1763                         if (lockf_debug & 2)
1764                                 printf("overlap contains lock\n");
1765 #endif /* LOCKF_DEBUG */
1766                         res = 2;
1767                         break;
1768                 }
1769                 if (start <= lf->lf_start && end >= lf->lf_end) {
1770                         /* Case 3 */
1771 #ifdef LOCKF_DEBUG
1772                         if (lockf_debug & 2)
1773                                 printf("lock contains overlap\n");
1774 #endif /* LOCKF_DEBUG */
1775                         res = 3;
1776                         break;
1777                 }
1778                 if (lf->lf_start < start && lf->lf_end >= start) {
1779                         /* Case 4 */
1780 #ifdef LOCKF_DEBUG
1781                         if (lockf_debug & 2)
1782                                 printf("overlap starts before lock\n");
1783 #endif /* LOCKF_DEBUG */
1784                         res = 4;
1785                         break;
1786                 }
1787                 if (lf->lf_start > start && lf->lf_end > end) {
1788                         /* Case 5 */
1789 #ifdef LOCKF_DEBUG
1790                         if (lockf_debug & 2)
1791                                 printf("overlap ends after lock\n");
1792 #endif /* LOCKF_DEBUG */
1793                         res = 5;
1794                         break;
1795                 }
1796                 panic("lf_findoverlap: default");
1797         }
1798         return (res);
1799 }
1800
1801 /*
1802  * Split an the existing 'lock1', based on the extent of the lock
1803  * described by 'lock2'. The existing lock should cover 'lock2'
1804  * entirely.
1805  *
1806  * Any pending locks which have been been unblocked are added to
1807  * 'granted'
1808  */
1809 static void
1810 lf_split(struct lockf *state, struct lockf_entry *lock1,
1811     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1812 {
1813         struct lockf_entry *splitlock;
1814
1815 #ifdef LOCKF_DEBUG
1816         if (lockf_debug & 2) {
1817                 lf_print("lf_split", lock1);
1818                 lf_print("splitting from", lock2);
1819         }
1820 #endif /* LOCKF_DEBUG */
1821         /*
1822          * Check to see if we don't need to split at all.
1823          */
1824         if (lock1->lf_start == lock2->lf_start) {
1825                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1826                 return;
1827         }
1828         if (lock1->lf_end == lock2->lf_end) {
1829                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1830                 return;
1831         }
1832         /*
1833          * Make a new lock consisting of the last part of
1834          * the encompassing lock.
1835          */
1836         splitlock = lf_alloc_lock(lock1->lf_owner);
1837         memcpy(splitlock, lock1, sizeof *splitlock);
1838         splitlock->lf_refs = 1;
1839         if (splitlock->lf_flags & F_REMOTE)
1840                 vref(splitlock->lf_vnode);
1841
1842         /*
1843          * This cannot cause a deadlock since any edges we would add
1844          * to splitlock already exist in lock1. We must be sure to add
1845          * necessary dependencies to splitlock before we reduce lock1
1846          * otherwise we may accidentally grant a pending lock that
1847          * was blocked by the tail end of lock1.
1848          */
1849         splitlock->lf_start = lock2->lf_end + 1;
1850         LIST_INIT(&splitlock->lf_outedges);
1851         LIST_INIT(&splitlock->lf_inedges);
1852         lf_add_incoming(state, splitlock);
1853
1854         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1855
1856         /*
1857          * OK, now link it in
1858          */
1859         lf_insert_lock(state, splitlock);
1860 }
1861
1862 struct lockdesc {
1863         STAILQ_ENTRY(lockdesc) link;
1864         struct vnode *vp;
1865         struct flock fl;
1866 };
1867 STAILQ_HEAD(lockdesclist, lockdesc);
1868
1869 int
1870 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1871 {
1872         struct lockf *ls;
1873         struct lockf_entry *lf;
1874         struct lockdesc *ldesc;
1875         struct lockdesclist locks;
1876         int error;
1877
1878         /*
1879          * In order to keep the locking simple, we iterate over the
1880          * active lock lists to build a list of locks that need
1881          * releasing. We then call the iterator for each one in turn.
1882          *
1883          * We take an extra reference to the vnode for the duration to
1884          * make sure it doesn't go away before we are finished.
1885          */
1886         STAILQ_INIT(&locks);
1887         sx_xlock(&lf_lock_states_lock);
1888         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1889                 sx_xlock(&ls->ls_lock);
1890                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1891                         if (lf->lf_owner->lo_sysid != sysid)
1892                                 continue;
1893
1894                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1895                             M_WAITOK);
1896                         ldesc->vp = lf->lf_vnode;
1897                         vref(ldesc->vp);
1898                         ldesc->fl.l_start = lf->lf_start;
1899                         if (lf->lf_end == OFF_MAX)
1900                                 ldesc->fl.l_len = 0;
1901                         else
1902                                 ldesc->fl.l_len =
1903                                         lf->lf_end - lf->lf_start + 1;
1904                         ldesc->fl.l_whence = SEEK_SET;
1905                         ldesc->fl.l_type = F_UNLCK;
1906                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1907                         ldesc->fl.l_sysid = sysid;
1908                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1909                 }
1910                 sx_xunlock(&ls->ls_lock);
1911         }
1912         sx_xunlock(&lf_lock_states_lock);
1913
1914         /*
1915          * Call the iterator function for each lock in turn. If the
1916          * iterator returns an error code, just free the rest of the
1917          * lockdesc structures.
1918          */
1919         error = 0;
1920         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1921                 STAILQ_REMOVE_HEAD(&locks, link);
1922                 if (!error)
1923                         error = fn(ldesc->vp, &ldesc->fl, arg);
1924                 vrele(ldesc->vp);
1925                 free(ldesc, M_LOCKF);
1926         }
1927
1928         return (error);
1929 }
1930
1931 int
1932 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1933 {
1934         struct lockf *ls;
1935         struct lockf_entry *lf;
1936         struct lockdesc *ldesc;
1937         struct lockdesclist locks;
1938         int error;
1939
1940         /*
1941          * In order to keep the locking simple, we iterate over the
1942          * active lock lists to build a list of locks that need
1943          * releasing. We then call the iterator for each one in turn.
1944          *
1945          * We take an extra reference to the vnode for the duration to
1946          * make sure it doesn't go away before we are finished.
1947          */
1948         STAILQ_INIT(&locks);
1949         VI_LOCK(vp);
1950         ls = vp->v_lockf;
1951         if (!ls) {
1952                 VI_UNLOCK(vp);
1953                 return (0);
1954         }
1955         MPASS(ls->ls_threads >= 0);
1956         ls->ls_threads++;
1957         VI_UNLOCK(vp);
1958
1959         sx_xlock(&ls->ls_lock);
1960         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1961                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1962                     M_WAITOK);
1963                 ldesc->vp = lf->lf_vnode;
1964                 vref(ldesc->vp);
1965                 ldesc->fl.l_start = lf->lf_start;
1966                 if (lf->lf_end == OFF_MAX)
1967                         ldesc->fl.l_len = 0;
1968                 else
1969                         ldesc->fl.l_len =
1970                                 lf->lf_end - lf->lf_start + 1;
1971                 ldesc->fl.l_whence = SEEK_SET;
1972                 ldesc->fl.l_type = F_UNLCK;
1973                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1974                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1975                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1976         }
1977         sx_xunlock(&ls->ls_lock);
1978         VI_LOCK(vp);
1979         MPASS(ls->ls_threads > 0);
1980         ls->ls_threads--;
1981         wakeup(ls);
1982         VI_UNLOCK(vp);
1983
1984         /*
1985          * Call the iterator function for each lock in turn. If the
1986          * iterator returns an error code, just free the rest of the
1987          * lockdesc structures.
1988          */
1989         error = 0;
1990         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1991                 STAILQ_REMOVE_HEAD(&locks, link);
1992                 if (!error)
1993                         error = fn(ldesc->vp, &ldesc->fl, arg);
1994                 vrele(ldesc->vp);
1995                 free(ldesc, M_LOCKF);
1996         }
1997
1998         return (error);
1999 }
2000
2001 static int
2002 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2003 {
2004
2005         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2006         return (0);
2007 }
2008
2009 void
2010 lf_clearremotesys(int sysid)
2011 {
2012
2013         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2014         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2015 }
2016
2017 int
2018 lf_countlocks(int sysid)
2019 {
2020         int i;
2021         struct lock_owner *lo;
2022         int count;
2023
2024         count = 0;
2025         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2026                 sx_xlock(&lf_lock_owners[i].lock);
2027                 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2028                         if (lo->lo_sysid == sysid)
2029                                 count += lo->lo_refs;
2030                 sx_xunlock(&lf_lock_owners[i].lock);
2031         }
2032
2033         return (count);
2034 }
2035
2036 #ifdef LOCKF_DEBUG
2037
2038 /*
2039  * Return non-zero if y is reachable from x using a brute force
2040  * search. If reachable and path is non-null, return the route taken
2041  * in path.
2042  */
2043 static int
2044 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2045     struct owner_vertex_list *path)
2046 {
2047         struct owner_edge *e;
2048
2049         if (x == y) {
2050                 if (path)
2051                         TAILQ_INSERT_HEAD(path, x, v_link);
2052                 return 1;
2053         }
2054
2055         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2056                 if (graph_reaches(e->e_to, y, path)) {
2057                         if (path)
2058                                 TAILQ_INSERT_HEAD(path, x, v_link);
2059                         return 1;
2060                 }
2061         }
2062         return 0;
2063 }
2064
2065 /*
2066  * Perform consistency checks on the graph. Make sure the values of
2067  * v_order are correct. If checkorder is non-zero, check no vertex can
2068  * reach any other vertex with a smaller order.
2069  */
2070 static void
2071 graph_check(struct owner_graph *g, int checkorder)
2072 {
2073         int i, j;
2074
2075         for (i = 0; i < g->g_size; i++) {
2076                 if (!g->g_vertices[i]->v_owner)
2077                         continue;
2078                 KASSERT(g->g_vertices[i]->v_order == i,
2079                     ("lock graph vertices disordered"));
2080                 if (checkorder) {
2081                         for (j = 0; j < i; j++) {
2082                                 if (!g->g_vertices[j]->v_owner)
2083                                         continue;
2084                                 KASSERT(!graph_reaches(g->g_vertices[i],
2085                                         g->g_vertices[j], NULL),
2086                                     ("lock graph vertices disordered"));
2087                         }
2088                 }
2089         }
2090 }
2091
2092 static void
2093 graph_print_vertices(struct owner_vertex_list *set)
2094 {
2095         struct owner_vertex *v;
2096
2097         printf("{ ");
2098         TAILQ_FOREACH(v, set, v_link) {
2099                 printf("%d:", v->v_order);
2100                 lf_print_owner(v->v_owner);
2101                 if (TAILQ_NEXT(v, v_link))
2102                         printf(", ");
2103         }
2104         printf(" }\n");
2105 }
2106
2107 #endif
2108
2109 /*
2110  * Calculate the sub-set of vertices v from the affected region [y..x]
2111  * where v is reachable from y. Return -1 if a loop was detected
2112  * (i.e. x is reachable from y, otherwise the number of vertices in
2113  * this subset.
2114  */
2115 static int
2116 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2117     struct owner_vertex *y, struct owner_vertex_list *delta)
2118 {
2119         uint32_t gen;
2120         struct owner_vertex *v;
2121         struct owner_edge *e;
2122         int n;
2123
2124         /*
2125          * We start with a set containing just y. Then for each vertex
2126          * v in the set so far unprocessed, we add each vertex that v
2127          * has an out-edge to and that is within the affected region
2128          * [y..x]. If we see the vertex x on our travels, stop
2129          * immediately.
2130          */
2131         TAILQ_INIT(delta);
2132         TAILQ_INSERT_TAIL(delta, y, v_link);
2133         v = y;
2134         n = 1;
2135         gen = g->g_gen;
2136         while (v) {
2137                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2138                         if (e->e_to == x)
2139                                 return -1;
2140                         if (e->e_to->v_order < x->v_order
2141                             && e->e_to->v_gen != gen) {
2142                                 e->e_to->v_gen = gen;
2143                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2144                                 n++;
2145                         }
2146                 }
2147                 v = TAILQ_NEXT(v, v_link);
2148         }
2149
2150         return (n);
2151 }
2152
2153 /*
2154  * Calculate the sub-set of vertices v from the affected region [y..x]
2155  * where v reaches x. Return the number of vertices in this subset.
2156  */
2157 static int
2158 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2159     struct owner_vertex *y, struct owner_vertex_list *delta)
2160 {
2161         uint32_t gen;
2162         struct owner_vertex *v;
2163         struct owner_edge *e;
2164         int n;
2165
2166         /*
2167          * We start with a set containing just x. Then for each vertex
2168          * v in the set so far unprocessed, we add each vertex that v
2169          * has an in-edge from and that is within the affected region
2170          * [y..x].
2171          */
2172         TAILQ_INIT(delta);
2173         TAILQ_INSERT_TAIL(delta, x, v_link);
2174         v = x;
2175         n = 1;
2176         gen = g->g_gen;
2177         while (v) {
2178                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2179                         if (e->e_from->v_order > y->v_order
2180                             && e->e_from->v_gen != gen) {
2181                                 e->e_from->v_gen = gen;
2182                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2183                                 n++;
2184                         }
2185                 }
2186                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2187         }
2188
2189         return (n);
2190 }
2191
2192 static int
2193 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2194 {
2195         struct owner_vertex *v;
2196         int i, j;
2197
2198         TAILQ_FOREACH(v, set, v_link) {
2199                 for (i = n;
2200                      i > 0 && indices[i - 1] > v->v_order; i--)
2201                         ;
2202                 for (j = n - 1; j >= i; j--)
2203                         indices[j + 1] = indices[j];
2204                 indices[i] = v->v_order;
2205                 n++;
2206         }
2207
2208         return (n);
2209 }
2210
2211 static int
2212 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2213     struct owner_vertex_list *set)
2214 {
2215         struct owner_vertex *v, *vlowest;
2216
2217         while (!TAILQ_EMPTY(set)) {
2218                 vlowest = NULL;
2219                 TAILQ_FOREACH(v, set, v_link) {
2220                         if (!vlowest || v->v_order < vlowest->v_order)
2221                                 vlowest = v;
2222                 }
2223                 TAILQ_REMOVE(set, vlowest, v_link);
2224                 vlowest->v_order = indices[nextunused];
2225                 g->g_vertices[vlowest->v_order] = vlowest;
2226                 nextunused++;
2227         }
2228
2229         return (nextunused);
2230 }
2231
2232 static int
2233 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2234     struct owner_vertex *y)
2235 {
2236         struct owner_edge *e;
2237         struct owner_vertex_list deltaF, deltaB;
2238         int nF, n, vi, i;
2239         int *indices;
2240         int nB __unused;
2241
2242         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2243
2244         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2245                 if (e->e_to == y) {
2246                         e->e_refs++;
2247                         return (0);
2248                 }
2249         }
2250
2251 #ifdef LOCKF_DEBUG
2252         if (lockf_debug & 8) {
2253                 printf("adding edge %d:", x->v_order);
2254                 lf_print_owner(x->v_owner);
2255                 printf(" -> %d:", y->v_order);
2256                 lf_print_owner(y->v_owner);
2257                 printf("\n");
2258         }
2259 #endif
2260         if (y->v_order < x->v_order) {
2261                 /*
2262                  * The new edge violates the order. First find the set
2263                  * of affected vertices reachable from y (deltaF) and
2264                  * the set of affect vertices affected that reach x
2265                  * (deltaB), using the graph generation number to
2266                  * detect whether we have visited a given vertex
2267                  * already. We re-order the graph so that each vertex
2268                  * in deltaB appears before each vertex in deltaF.
2269                  *
2270                  * If x is a member of deltaF, then the new edge would
2271                  * create a cycle. Otherwise, we may assume that
2272                  * deltaF and deltaB are disjoint.
2273                  */
2274                 g->g_gen++;
2275                 if (g->g_gen == 0) {
2276                         /*
2277                          * Generation wrap.
2278                          */
2279                         for (vi = 0; vi < g->g_size; vi++) {
2280                                 g->g_vertices[vi]->v_gen = 0;
2281                         }
2282                         g->g_gen++;
2283                 }
2284                 nF = graph_delta_forward(g, x, y, &deltaF);
2285                 if (nF < 0) {
2286 #ifdef LOCKF_DEBUG
2287                         if (lockf_debug & 8) {
2288                                 struct owner_vertex_list path;
2289                                 printf("deadlock: ");
2290                                 TAILQ_INIT(&path);
2291                                 graph_reaches(y, x, &path);
2292                                 graph_print_vertices(&path);
2293                         }
2294 #endif
2295                         return (EDEADLK);
2296                 }
2297
2298 #ifdef LOCKF_DEBUG
2299                 if (lockf_debug & 8) {
2300                         printf("re-ordering graph vertices\n");
2301                         printf("deltaF = ");
2302                         graph_print_vertices(&deltaF);
2303                 }
2304 #endif
2305
2306                 nB = graph_delta_backward(g, x, y, &deltaB);
2307
2308 #ifdef LOCKF_DEBUG
2309                 if (lockf_debug & 8) {
2310                         printf("deltaB = ");
2311                         graph_print_vertices(&deltaB);
2312                 }
2313 #endif
2314
2315                 /*
2316                  * We first build a set of vertex indices (vertex
2317                  * order values) that we may use, then we re-assign
2318                  * orders first to those vertices in deltaB, then to
2319                  * deltaF. Note that the contents of deltaF and deltaB
2320                  * may be partially disordered - we perform an
2321                  * insertion sort while building our index set.
2322                  */
2323                 indices = g->g_indexbuf;
2324                 n = graph_add_indices(indices, 0, &deltaF);
2325                 graph_add_indices(indices, n, &deltaB);
2326
2327                 /*
2328                  * We must also be sure to maintain the relative
2329                  * ordering of deltaF and deltaB when re-assigning
2330                  * vertices. We do this by iteratively removing the
2331                  * lowest ordered element from the set and assigning
2332                  * it the next value from our new ordering.
2333                  */
2334                 i = graph_assign_indices(g, indices, 0, &deltaB);
2335                 graph_assign_indices(g, indices, i, &deltaF);
2336
2337 #ifdef LOCKF_DEBUG
2338                 if (lockf_debug & 8) {
2339                         struct owner_vertex_list set;
2340                         TAILQ_INIT(&set);
2341                         for (i = 0; i < nB + nF; i++)
2342                                 TAILQ_INSERT_TAIL(&set,
2343                                     g->g_vertices[indices[i]], v_link);
2344                         printf("new ordering = ");
2345                         graph_print_vertices(&set);
2346                 }
2347 #endif
2348         }
2349
2350         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2351
2352 #ifdef LOCKF_DEBUG
2353         if (lockf_debug & 8) {
2354                 graph_check(g, TRUE);
2355         }
2356 #endif
2357
2358         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2359
2360         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2361         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2362         e->e_refs = 1;
2363         e->e_from = x;
2364         e->e_to = y;
2365
2366         return (0);
2367 }
2368
2369 /*
2370  * Remove an edge x->y from the graph.
2371  */
2372 static void
2373 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2374     struct owner_vertex *y)
2375 {
2376         struct owner_edge *e;
2377
2378         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2379
2380         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2381                 if (e->e_to == y)
2382                         break;
2383         }
2384         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2385
2386         e->e_refs--;
2387         if (e->e_refs == 0) {
2388 #ifdef LOCKF_DEBUG
2389                 if (lockf_debug & 8) {
2390                         printf("removing edge %d:", x->v_order);
2391                         lf_print_owner(x->v_owner);
2392                         printf(" -> %d:", y->v_order);
2393                         lf_print_owner(y->v_owner);
2394                         printf("\n");
2395                 }
2396 #endif
2397                 LIST_REMOVE(e, e_outlink);
2398                 LIST_REMOVE(e, e_inlink);
2399                 free(e, M_LOCKF);
2400         }
2401 }
2402
2403 /*
2404  * Allocate a vertex from the free list. Return ENOMEM if there are
2405  * none.
2406  */
2407 static struct owner_vertex *
2408 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2409 {
2410         struct owner_vertex *v;
2411
2412         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2413
2414         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2415         if (g->g_size == g->g_space) {
2416                 g->g_vertices = realloc(g->g_vertices,
2417                     2 * g->g_space * sizeof(struct owner_vertex *),
2418                     M_LOCKF, M_WAITOK);
2419                 free(g->g_indexbuf, M_LOCKF);
2420                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2421                     M_LOCKF, M_WAITOK);
2422                 g->g_space = 2 * g->g_space;
2423         }
2424         v->v_order = g->g_size;
2425         v->v_gen = g->g_gen;
2426         g->g_vertices[g->g_size] = v;
2427         g->g_size++;
2428
2429         LIST_INIT(&v->v_outedges);
2430         LIST_INIT(&v->v_inedges);
2431         v->v_owner = lo;
2432
2433         return (v);
2434 }
2435
2436 static void
2437 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2438 {
2439         struct owner_vertex *w;
2440         int i;
2441
2442         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2443         
2444         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2445         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2446
2447         /*
2448          * Remove from the graph's array and close up the gap,
2449          * renumbering the other vertices.
2450          */
2451         for (i = v->v_order + 1; i < g->g_size; i++) {
2452                 w = g->g_vertices[i];
2453                 w->v_order--;
2454                 g->g_vertices[i - 1] = w;
2455         }
2456         g->g_size--;
2457
2458         free(v, M_LOCKF);
2459 }
2460
2461 static struct owner_graph *
2462 graph_init(struct owner_graph *g)
2463 {
2464
2465         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2466             M_LOCKF, M_WAITOK);
2467         g->g_size = 0;
2468         g->g_space = 10;
2469         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2470         g->g_gen = 0;
2471
2472         return (g);
2473 }
2474
2475 #ifdef LOCKF_DEBUG
2476 /*
2477  * Print description of a lock owner
2478  */
2479 static void
2480 lf_print_owner(struct lock_owner *lo)
2481 {
2482
2483         if (lo->lo_flags & F_REMOTE) {
2484                 printf("remote pid %d, system %d",
2485                     lo->lo_pid, lo->lo_sysid);
2486         } else if (lo->lo_flags & F_FLOCK) {
2487                 printf("file %p", lo->lo_id);
2488         } else {
2489                 printf("local pid %d", lo->lo_pid);
2490         }
2491 }
2492
2493 /*
2494  * Print out a lock.
2495  */
2496 static void
2497 lf_print(char *tag, struct lockf_entry *lock)
2498 {
2499
2500         printf("%s: lock %p for ", tag, (void *)lock);
2501         lf_print_owner(lock->lf_owner);
2502         if (lock->lf_inode != (struct inode *)0)
2503                 printf(" in ino %ju on dev <%s>,",
2504                     (uintmax_t)lock->lf_inode->i_number,
2505                     devtoname(ITODEV(lock->lf_inode)));
2506         printf(" %s, start %jd, end ",
2507             lock->lf_type == F_RDLCK ? "shared" :
2508             lock->lf_type == F_WRLCK ? "exclusive" :
2509             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2510             (intmax_t)lock->lf_start);
2511         if (lock->lf_end == OFF_MAX)
2512                 printf("EOF");
2513         else
2514                 printf("%jd", (intmax_t)lock->lf_end);
2515         if (!LIST_EMPTY(&lock->lf_outedges))
2516                 printf(" block %p\n",
2517                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2518         else
2519                 printf("\n");
2520 }
2521
2522 static void
2523 lf_printlist(char *tag, struct lockf_entry *lock)
2524 {
2525         struct lockf_entry *lf, *blk;
2526         struct lockf_edge *e;
2527
2528         if (lock->lf_inode == (struct inode *)0)
2529                 return;
2530
2531         printf("%s: Lock list for ino %ju on dev <%s>:\n",
2532             tag, (uintmax_t)lock->lf_inode->i_number,
2533             devtoname(ITODEV(lock->lf_inode)));
2534         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2535                 printf("\tlock %p for ",(void *)lf);
2536                 lf_print_owner(lock->lf_owner);
2537                 printf(", %s, start %jd, end %jd",
2538                     lf->lf_type == F_RDLCK ? "shared" :
2539                     lf->lf_type == F_WRLCK ? "exclusive" :
2540                     lf->lf_type == F_UNLCK ? "unlock" :
2541                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2542                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2543                         blk = e->le_to;
2544                         printf("\n\t\tlock request %p for ", (void *)blk);
2545                         lf_print_owner(blk->lf_owner);
2546                         printf(", %s, start %jd, end %jd",
2547                             blk->lf_type == F_RDLCK ? "shared" :
2548                             blk->lf_type == F_WRLCK ? "exclusive" :
2549                             blk->lf_type == F_UNLCK ? "unlock" :
2550                             "unknown", (intmax_t)blk->lf_start,
2551                             (intmax_t)blk->lf_end);
2552                         if (!LIST_EMPTY(&blk->lf_inedges))
2553                                 panic("lf_printlist: bad list");
2554                 }
2555                 printf("\n");
2556         }
2557 }
2558 #endif /* LOCKF_DEBUG */