]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_lockf.c
MFV r362082:
[FreeBSD/FreeBSD.git] / sys / kern / kern_lockf.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *      The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
61  */
62
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65
66 #include "opt_debug_lockf.h"
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/kernel.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sx.h>
78 #include <sys/unistd.h>
79 #include <sys/vnode.h>
80 #include <sys/malloc.h>
81 #include <sys/fcntl.h>
82 #include <sys/lockf.h>
83 #include <sys/taskqueue.h>
84
85 #ifdef LOCKF_DEBUG
86 #include <sys/sysctl.h>
87
88 #include <ufs/ufs/extattr.h>
89 #include <ufs/ufs/quota.h>
90 #include <ufs/ufs/ufsmount.h>
91 #include <ufs/ufs/inode.h>
92
93 static int      lockf_debug = 0; /* control debug output */
94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
95 #endif
96
97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
98
99 struct owner_edge;
100 struct owner_vertex;
101 struct owner_vertex_list;
102 struct owner_graph;
103
104 #define NOLOCKF (struct lockf_entry *)0
105 #define SELF    0x1
106 #define OTHERS  0x2
107 static void      lf_init(void *);
108 static int       lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
109 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
110     int);
111 static struct lockf_entry *
112                  lf_alloc_lock(struct lock_owner *);
113 static int       lf_free_lock(struct lockf_entry *);
114 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
115 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
116 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
117 static void      lf_free_edge(struct lockf_edge *);
118 static struct lockf_edge *
119                  lf_alloc_edge(void);
120 static void      lf_alloc_vertex(struct lockf_entry *);
121 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
122 static void      lf_remove_edge(struct lockf_edge *);
123 static void      lf_remove_outgoing(struct lockf_entry *);
124 static void      lf_remove_incoming(struct lockf_entry *);
125 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
126 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
127 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
128     int);
129 static struct lockf_entry *
130                  lf_getblock(struct lockf *, struct lockf_entry *);
131 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
132 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
133 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
134 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
135     int all, struct lockf_entry_list *);
136 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
137         struct lockf_entry_list*);
138 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
139         struct lockf_entry_list*);
140 static int       lf_setlock(struct lockf *, struct lockf_entry *,
141     struct vnode *, void **cookiep);
142 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
143 static void      lf_split(struct lockf *, struct lockf_entry *,
144     struct lockf_entry *, struct lockf_entry_list *);
145 #ifdef LOCKF_DEBUG
146 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
147     struct owner_vertex_list *path);
148 static void      graph_check(struct owner_graph *g, int checkorder);
149 static void      graph_print_vertices(struct owner_vertex_list *set);
150 #endif
151 static int       graph_delta_forward(struct owner_graph *g,
152     struct owner_vertex *x, struct owner_vertex *y,
153     struct owner_vertex_list *delta);
154 static int       graph_delta_backward(struct owner_graph *g,
155     struct owner_vertex *x, struct owner_vertex *y,
156     struct owner_vertex_list *delta);
157 static int       graph_add_indices(int *indices, int n,
158     struct owner_vertex_list *set);
159 static int       graph_assign_indices(struct owner_graph *g, int *indices,
160     int nextunused, struct owner_vertex_list *set);
161 static int       graph_add_edge(struct owner_graph *g,
162     struct owner_vertex *x, struct owner_vertex *y);
163 static void      graph_remove_edge(struct owner_graph *g,
164     struct owner_vertex *x, struct owner_vertex *y);
165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
166     struct lock_owner *lo);
167 static void      graph_free_vertex(struct owner_graph *g,
168     struct owner_vertex *v);
169 static struct owner_graph * graph_init(struct owner_graph *g);
170 #ifdef LOCKF_DEBUG
171 static void      lf_print(char *, struct lockf_entry *);
172 static void      lf_printlist(char *, struct lockf_entry *);
173 static void      lf_print_owner(struct lock_owner *);
174 #endif
175
176 /*
177  * This structure is used to keep track of both local and remote lock
178  * owners. The lf_owner field of the struct lockf_entry points back at
179  * the lock owner structure. Each possible lock owner (local proc for
180  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
181  * pair for remote locks) is represented by a unique instance of
182  * struct lock_owner.
183  *
184  * If a lock owner has a lock that blocks some other lock or a lock
185  * that is waiting for some other lock, it also has a vertex in the
186  * owner_graph below.
187  *
188  * Locks:
189  * (s)          locked by state->ls_lock
190  * (S)          locked by lf_lock_states_lock
191  * (g)          locked by lf_owner_graph_lock
192  * (c)          const until freeing
193  */
194 #define LOCK_OWNER_HASH_SIZE    256
195
196 struct lock_owner {
197         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
198         int     lo_refs;            /* (l) Number of locks referring to this */
199         int     lo_flags;           /* (c) Flags passwd to lf_advlock */
200         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
201         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
202         int     lo_sysid;           /* (c) System Id of the lock owner */
203         int     lo_hash;            /* (c) Used to lock the appropriate chain */
204         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
205 };
206
207 LIST_HEAD(lock_owner_list, lock_owner);
208
209 struct lock_owner_chain {
210         struct sx               lock;
211         struct lock_owner_list  list;
212 };
213
214 static struct sx                lf_lock_states_lock;
215 static struct lockf_list        lf_lock_states; /* (S) */
216 static struct lock_owner_chain  lf_lock_owners[LOCK_OWNER_HASH_SIZE];
217
218 /*
219  * Structures for deadlock detection.
220  *
221  * We have two types of directed graph, the first is the set of locks,
222  * both active and pending on a vnode. Within this graph, active locks
223  * are terminal nodes in the graph (i.e. have no out-going
224  * edges). Pending locks have out-going edges to each blocking active
225  * lock that prevents the lock from being granted and also to each
226  * older pending lock that would block them if it was active. The
227  * graph for each vnode is naturally acyclic; new edges are only ever
228  * added to or from new nodes (either new pending locks which only add
229  * out-going edges or new active locks which only add in-coming edges)
230  * therefore they cannot create loops in the lock graph.
231  *
232  * The second graph is a global graph of lock owners. Each lock owner
233  * is a vertex in that graph and an edge is added to the graph
234  * whenever an edge is added to a vnode graph, with end points
235  * corresponding to owner of the new pending lock and the owner of the
236  * lock upon which it waits. In order to prevent deadlock, we only add
237  * an edge to this graph if the new edge would not create a cycle.
238  * 
239  * The lock owner graph is topologically sorted, i.e. if a node has
240  * any outgoing edges, then it has an order strictly less than any
241  * node to which it has an outgoing edge. We preserve this ordering
242  * (and detect cycles) on edge insertion using Algorithm PK from the
243  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
244  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
245  * No. 1.7)
246  */
247 struct owner_vertex;
248
249 struct owner_edge {
250         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
251         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
252         int             e_refs;           /* (g) number of times added */
253         struct owner_vertex *e_from;      /* (c) out-going from here */
254         struct owner_vertex *e_to;        /* (c) in-coming to here */
255 };
256 LIST_HEAD(owner_edge_list, owner_edge);
257
258 struct owner_vertex {
259         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
260         uint32_t        v_gen;            /* (g) workspace for edge insertion */
261         int             v_order;          /* (g) order of vertex in graph */
262         struct owner_edge_list v_outedges;/* (g) list of out-edges */
263         struct owner_edge_list v_inedges; /* (g) list of in-edges */
264         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
265 };
266 TAILQ_HEAD(owner_vertex_list, owner_vertex);
267
268 struct owner_graph {
269         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
270         int             g_size;           /* (g) number of vertices */
271         int             g_space;          /* (g) space allocated for vertices */
272         int             *g_indexbuf;      /* (g) workspace for loop detection */
273         uint32_t        g_gen;            /* (g) increment when re-ordering */
274 };
275
276 static struct sx                lf_owner_graph_lock;
277 static struct owner_graph       lf_owner_graph;
278
279 /*
280  * Initialise various structures and locks.
281  */
282 static void
283 lf_init(void *dummy)
284 {
285         int i;
286
287         sx_init(&lf_lock_states_lock, "lock states lock");
288         LIST_INIT(&lf_lock_states);
289
290         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
291                 sx_init(&lf_lock_owners[i].lock, "lock owners lock");
292                 LIST_INIT(&lf_lock_owners[i].list);
293         }
294
295         sx_init(&lf_owner_graph_lock, "owner graph lock");
296         graph_init(&lf_owner_graph);
297 }
298 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
299
300 /*
301  * Generate a hash value for a lock owner.
302  */
303 static int
304 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
305 {
306         uint32_t h;
307
308         if (flags & F_REMOTE) {
309                 h = HASHSTEP(0, fl->l_pid);
310                 h = HASHSTEP(h, fl->l_sysid);
311         } else if (flags & F_FLOCK) {
312                 h = ((uintptr_t) id) >> 7;
313         } else {
314                 h = ((uintptr_t) vp) >> 7;
315         }
316
317         return (h % LOCK_OWNER_HASH_SIZE);
318 }
319
320 /*
321  * Return true if a lock owner matches the details passed to
322  * lf_advlock.
323  */
324 static int
325 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
326     int flags)
327 {
328         if (flags & F_REMOTE) {
329                 return lo->lo_pid == fl->l_pid
330                         && lo->lo_sysid == fl->l_sysid;
331         } else {
332                 return lo->lo_id == id;
333         }
334 }
335
336 static struct lockf_entry *
337 lf_alloc_lock(struct lock_owner *lo)
338 {
339         struct lockf_entry *lf;
340
341         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
342
343 #ifdef LOCKF_DEBUG
344         if (lockf_debug & 4)
345                 printf("Allocated lock %p\n", lf);
346 #endif
347         if (lo) {
348                 sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
349                 lo->lo_refs++;
350                 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
351                 lf->lf_owner = lo;
352         }
353
354         return (lf);
355 }
356
357 static int
358 lf_free_lock(struct lockf_entry *lock)
359 {
360         struct sx *chainlock;
361
362         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
363         if (--lock->lf_refs > 0)
364                 return (0);
365         /*
366          * Adjust the lock_owner reference count and
367          * reclaim the entry if this is the last lock
368          * for that owner.
369          */
370         struct lock_owner *lo = lock->lf_owner;
371         if (lo) {
372                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
373                     ("freeing lock with dependencies"));
374                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
375                     ("freeing lock with dependants"));
376                 chainlock = &lf_lock_owners[lo->lo_hash].lock;
377                 sx_xlock(chainlock);
378                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
379                 lo->lo_refs--;
380                 if (lo->lo_refs == 0) {
381 #ifdef LOCKF_DEBUG
382                         if (lockf_debug & 1)
383                                 printf("lf_free_lock: freeing lock owner %p\n",
384                                     lo);
385 #endif
386                         if (lo->lo_vertex) {
387                                 sx_xlock(&lf_owner_graph_lock);
388                                 graph_free_vertex(&lf_owner_graph,
389                                     lo->lo_vertex);
390                                 sx_xunlock(&lf_owner_graph_lock);
391                         }
392                         LIST_REMOVE(lo, lo_link);
393                         free(lo, M_LOCKF);
394 #ifdef LOCKF_DEBUG
395                         if (lockf_debug & 4)
396                                 printf("Freed lock owner %p\n", lo);
397 #endif
398                 }
399                 sx_unlock(chainlock);
400         }
401         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
402                 vrele(lock->lf_vnode);
403                 lock->lf_vnode = NULL;
404         }
405 #ifdef LOCKF_DEBUG
406         if (lockf_debug & 4)
407                 printf("Freed lock %p\n", lock);
408 #endif
409         free(lock, M_LOCKF);
410         return (1);
411 }
412
413 /*
414  * Advisory record locking support
415  */
416 int
417 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
418     u_quad_t size)
419 {
420         struct lockf *state;
421         struct flock *fl = ap->a_fl;
422         struct lockf_entry *lock;
423         struct vnode *vp = ap->a_vp;
424         caddr_t id = ap->a_id;
425         int flags = ap->a_flags;
426         int hash;
427         struct lock_owner *lo;
428         off_t start, end, oadd;
429         int error;
430
431         /*
432          * Handle the F_UNLKSYS case first - no need to mess about
433          * creating a lock owner for this one.
434          */
435         if (ap->a_op == F_UNLCKSYS) {
436                 lf_clearremotesys(fl->l_sysid);
437                 return (0);
438         }
439
440         /*
441          * Convert the flock structure into a start and end.
442          */
443         switch (fl->l_whence) {
444
445         case SEEK_SET:
446         case SEEK_CUR:
447                 /*
448                  * Caller is responsible for adding any necessary offset
449                  * when SEEK_CUR is used.
450                  */
451                 start = fl->l_start;
452                 break;
453
454         case SEEK_END:
455                 if (size > OFF_MAX ||
456                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
457                         return (EOVERFLOW);
458                 start = size + fl->l_start;
459                 break;
460
461         default:
462                 return (EINVAL);
463         }
464         if (start < 0)
465                 return (EINVAL);
466         if (fl->l_len < 0) {
467                 if (start == 0)
468                         return (EINVAL);
469                 end = start - 1;
470                 start += fl->l_len;
471                 if (start < 0)
472                         return (EINVAL);
473         } else if (fl->l_len == 0) {
474                 end = OFF_MAX;
475         } else {
476                 oadd = fl->l_len - 1;
477                 if (oadd > OFF_MAX - start)
478                         return (EOVERFLOW);
479                 end = start + oadd;
480         }
481
482 retry_setlock:
483
484         /*
485          * Avoid the common case of unlocking when inode has no locks.
486          */
487         if (ap->a_op != F_SETLK && (*statep) == NULL) {
488                 VI_LOCK(vp);
489                 if ((*statep) == NULL) {
490                         fl->l_type = F_UNLCK;
491                         VI_UNLOCK(vp);
492                         return (0);
493                 }
494                 VI_UNLOCK(vp);
495         }
496
497         /*
498          * Map our arguments to an existing lock owner or create one
499          * if this is the first time we have seen this owner.
500          */
501         hash = lf_hash_owner(id, vp, fl, flags);
502         sx_xlock(&lf_lock_owners[hash].lock);
503         LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
504                 if (lf_owner_matches(lo, id, fl, flags))
505                         break;
506         if (!lo) {
507                 /*
508                  * We initialise the lock with a reference
509                  * count which matches the new lockf_entry
510                  * structure created below.
511                  */
512                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
513                     M_WAITOK|M_ZERO);
514 #ifdef LOCKF_DEBUG
515                 if (lockf_debug & 4)
516                         printf("Allocated lock owner %p\n", lo);
517 #endif
518
519                 lo->lo_refs = 1;
520                 lo->lo_flags = flags;
521                 lo->lo_id = id;
522                 lo->lo_hash = hash;
523                 if (flags & F_REMOTE) {
524                         lo->lo_pid = fl->l_pid;
525                         lo->lo_sysid = fl->l_sysid;
526                 } else if (flags & F_FLOCK) {
527                         lo->lo_pid = -1;
528                         lo->lo_sysid = 0;
529                 } else {
530                         struct proc *p = (struct proc *) id;
531                         lo->lo_pid = p->p_pid;
532                         lo->lo_sysid = 0;
533                 }
534                 lo->lo_vertex = NULL;
535
536 #ifdef LOCKF_DEBUG
537                 if (lockf_debug & 1) {
538                         printf("lf_advlockasync: new lock owner %p ", lo);
539                         lf_print_owner(lo);
540                         printf("\n");
541                 }
542 #endif
543
544                 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
545         } else {
546                 /*
547                  * We have seen this lock owner before, increase its
548                  * reference count to account for the new lockf_entry
549                  * structure we create below.
550                  */
551                 lo->lo_refs++;
552         }
553         sx_xunlock(&lf_lock_owners[hash].lock);
554
555         /*
556          * Create the lockf structure. We initialise the lf_owner
557          * field here instead of in lf_alloc_lock() to avoid paying
558          * the lf_lock_owners_lock tax twice.
559          */
560         lock = lf_alloc_lock(NULL);
561         lock->lf_refs = 1;
562         lock->lf_start = start;
563         lock->lf_end = end;
564         lock->lf_owner = lo;
565         lock->lf_vnode = vp;
566         if (flags & F_REMOTE) {
567                 /*
568                  * For remote locks, the caller may release its ref to
569                  * the vnode at any time - we have to ref it here to
570                  * prevent it from being recycled unexpectedly.
571                  */
572                 vref(vp);
573         }
574
575         /*
576          * XXX The problem is that VTOI is ufs specific, so it will
577          * break LOCKF_DEBUG for all other FS's other than UFS because
578          * it casts the vnode->data ptr to struct inode *.
579          */
580 /*      lock->lf_inode = VTOI(ap->a_vp); */
581         lock->lf_inode = (struct inode *)0;
582         lock->lf_type = fl->l_type;
583         LIST_INIT(&lock->lf_outedges);
584         LIST_INIT(&lock->lf_inedges);
585         lock->lf_async_task = ap->a_task;
586         lock->lf_flags = ap->a_flags;
587
588         /*
589          * Do the requested operation. First find our state structure
590          * and create a new one if necessary - the caller's *statep
591          * variable and the state's ls_threads count is protected by
592          * the vnode interlock.
593          */
594         VI_LOCK(vp);
595         if (VN_IS_DOOMED(vp)) {
596                 VI_UNLOCK(vp);
597                 lf_free_lock(lock);
598                 return (ENOENT);
599         }
600
601         /*
602          * Allocate a state structure if necessary.
603          */
604         state = *statep;
605         if (state == NULL) {
606                 struct lockf *ls;
607
608                 VI_UNLOCK(vp);
609
610                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
611                 sx_init(&ls->ls_lock, "ls_lock");
612                 LIST_INIT(&ls->ls_active);
613                 LIST_INIT(&ls->ls_pending);
614                 ls->ls_threads = 1;
615
616                 sx_xlock(&lf_lock_states_lock);
617                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
618                 sx_xunlock(&lf_lock_states_lock);
619
620                 /*
621                  * Cope if we lost a race with some other thread while
622                  * trying to allocate memory.
623                  */
624                 VI_LOCK(vp);
625                 if (VN_IS_DOOMED(vp)) {
626                         VI_UNLOCK(vp);
627                         sx_xlock(&lf_lock_states_lock);
628                         LIST_REMOVE(ls, ls_link);
629                         sx_xunlock(&lf_lock_states_lock);
630                         sx_destroy(&ls->ls_lock);
631                         free(ls, M_LOCKF);
632                         lf_free_lock(lock);
633                         return (ENOENT);
634                 }
635                 if ((*statep) == NULL) {
636                         state = *statep = ls;
637                         VI_UNLOCK(vp);
638                 } else {
639                         state = *statep;
640                         state->ls_threads++;
641                         VI_UNLOCK(vp);
642
643                         sx_xlock(&lf_lock_states_lock);
644                         LIST_REMOVE(ls, ls_link);
645                         sx_xunlock(&lf_lock_states_lock);
646                         sx_destroy(&ls->ls_lock);
647                         free(ls, M_LOCKF);
648                 }
649         } else {
650                 state->ls_threads++;
651                 VI_UNLOCK(vp);
652         }
653
654         sx_xlock(&state->ls_lock);
655         /*
656          * Recheck the doomed vnode after state->ls_lock is
657          * locked. lf_purgelocks() requires that no new threads add
658          * pending locks when vnode is marked by VIRF_DOOMED flag.
659          */
660         VI_LOCK(vp);
661         if (VN_IS_DOOMED(vp)) {
662                 state->ls_threads--;
663                 wakeup(state);
664                 VI_UNLOCK(vp);
665                 sx_xunlock(&state->ls_lock);
666                 lf_free_lock(lock);
667                 return (ENOENT);
668         }
669         VI_UNLOCK(vp);
670
671         switch (ap->a_op) {
672         case F_SETLK:
673                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
674                 break;
675
676         case F_UNLCK:
677                 error = lf_clearlock(state, lock);
678                 lf_free_lock(lock);
679                 break;
680
681         case F_GETLK:
682                 error = lf_getlock(state, lock, fl);
683                 lf_free_lock(lock);
684                 break;
685
686         case F_CANCEL:
687                 if (ap->a_cookiep)
688                         error = lf_cancel(state, lock, *ap->a_cookiep);
689                 else
690                         error = EINVAL;
691                 lf_free_lock(lock);
692                 break;
693
694         default:
695                 lf_free_lock(lock);
696                 error = EINVAL;
697                 break;
698         }
699
700 #ifdef DIAGNOSTIC
701         /*
702          * Check for some can't happen stuff. In this case, the active
703          * lock list becoming disordered or containing mutually
704          * blocking locks. We also check the pending list for locks
705          * which should be active (i.e. have no out-going edges).
706          */
707         LIST_FOREACH(lock, &state->ls_active, lf_link) {
708                 struct lockf_entry *lf;
709                 if (LIST_NEXT(lock, lf_link))
710                         KASSERT((lock->lf_start
711                                 <= LIST_NEXT(lock, lf_link)->lf_start),
712                             ("locks disordered"));
713                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
714                         if (lock == lf)
715                                 break;
716                         KASSERT(!lf_blocks(lock, lf),
717                             ("two conflicting active locks"));
718                         if (lock->lf_owner == lf->lf_owner)
719                                 KASSERT(!lf_overlaps(lock, lf),
720                                     ("two overlapping locks from same owner"));
721                 }
722         }
723         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
724                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
725                     ("pending lock which should be active"));
726         }
727 #endif
728         sx_xunlock(&state->ls_lock);
729
730         VI_LOCK(vp);
731
732         state->ls_threads--;
733         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
734                 KASSERT(LIST_EMPTY(&state->ls_pending),
735                     ("freeable state with pending locks"));
736         } else {
737                 wakeup(state);
738         }
739
740         VI_UNLOCK(vp);
741
742         if (error == EDOOFUS) {
743                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
744                 goto retry_setlock;
745         }
746         return (error);
747 }
748
749 int
750 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
751 {
752         struct vop_advlockasync_args a;
753
754         a.a_vp = ap->a_vp;
755         a.a_id = ap->a_id;
756         a.a_op = ap->a_op;
757         a.a_fl = ap->a_fl;
758         a.a_flags = ap->a_flags;
759         a.a_task = NULL;
760         a.a_cookiep = NULL;
761
762         return (lf_advlockasync(&a, statep, size));
763 }
764
765 void
766 lf_purgelocks(struct vnode *vp, struct lockf **statep)
767 {
768         struct lockf *state;
769         struct lockf_entry *lock, *nlock;
770
771         /*
772          * For this to work correctly, the caller must ensure that no
773          * other threads enter the locking system for this vnode,
774          * e.g. by checking VIRF_DOOMED. We wake up any threads that are
775          * sleeping waiting for locks on this vnode and then free all
776          * the remaining locks.
777          */
778         VI_LOCK(vp);
779         KASSERT(VN_IS_DOOMED(vp),
780             ("lf_purgelocks: vp %p has not vgone yet", vp));
781         state = *statep;
782         if (state == NULL) {
783                 VI_UNLOCK(vp);
784                 return;
785         }
786         *statep = NULL;
787         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
788                 KASSERT(LIST_EMPTY(&state->ls_pending),
789                     ("freeing state with pending locks"));
790                 VI_UNLOCK(vp);
791                 goto out_free;
792         }
793         state->ls_threads++;
794         VI_UNLOCK(vp);
795
796         sx_xlock(&state->ls_lock);
797         sx_xlock(&lf_owner_graph_lock);
798         LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
799                 LIST_REMOVE(lock, lf_link);
800                 lf_remove_outgoing(lock);
801                 lf_remove_incoming(lock);
802
803                 /*
804                  * If its an async lock, we can just free it
805                  * here, otherwise we let the sleeping thread
806                  * free it.
807                  */
808                 if (lock->lf_async_task) {
809                         lf_free_lock(lock);
810                 } else {
811                         lock->lf_flags |= F_INTR;
812                         wakeup(lock);
813                 }
814         }
815         sx_xunlock(&lf_owner_graph_lock);
816         sx_xunlock(&state->ls_lock);
817
818         /*
819          * Wait for all other threads, sleeping and otherwise
820          * to leave.
821          */
822         VI_LOCK(vp);
823         while (state->ls_threads > 1)
824                 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
825         VI_UNLOCK(vp);
826
827         /*
828          * We can just free all the active locks since they
829          * will have no dependencies (we removed them all
830          * above). We don't need to bother locking since we
831          * are the last thread using this state structure.
832          */
833         KASSERT(LIST_EMPTY(&state->ls_pending),
834             ("lock pending for %p", state));
835         LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
836                 LIST_REMOVE(lock, lf_link);
837                 lf_free_lock(lock);
838         }
839 out_free:
840         sx_xlock(&lf_lock_states_lock);
841         LIST_REMOVE(state, ls_link);
842         sx_xunlock(&lf_lock_states_lock);
843         sx_destroy(&state->ls_lock);
844         free(state, M_LOCKF);
845 }
846
847 /*
848  * Return non-zero if locks 'x' and 'y' overlap.
849  */
850 static int
851 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
852 {
853
854         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
855 }
856
857 /*
858  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
859  */
860 static int
861 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
862 {
863
864         return x->lf_owner != y->lf_owner
865                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
866                 && lf_overlaps(x, y);
867 }
868
869 /*
870  * Allocate a lock edge from the free list
871  */
872 static struct lockf_edge *
873 lf_alloc_edge(void)
874 {
875
876         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
877 }
878
879 /*
880  * Free a lock edge.
881  */
882 static void
883 lf_free_edge(struct lockf_edge *e)
884 {
885
886         free(e, M_LOCKF);
887 }
888
889 /*
890  * Ensure that the lock's owner has a corresponding vertex in the
891  * owner graph.
892  */
893 static void
894 lf_alloc_vertex(struct lockf_entry *lock)
895 {
896         struct owner_graph *g = &lf_owner_graph;
897
898         if (!lock->lf_owner->lo_vertex)
899                 lock->lf_owner->lo_vertex =
900                         graph_alloc_vertex(g, lock->lf_owner);
901 }
902
903 /*
904  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
905  * the new edge would cause a cycle in the owner graph.
906  */
907 static int
908 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
909 {
910         struct owner_graph *g = &lf_owner_graph;
911         struct lockf_edge *e;
912         int error;
913
914 #ifdef DIAGNOSTIC
915         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
916                 KASSERT(e->le_to != y, ("adding lock edge twice"));
917 #endif
918
919         /*
920          * Make sure the two owners have entries in the owner graph.
921          */
922         lf_alloc_vertex(x);
923         lf_alloc_vertex(y);
924
925         error = graph_add_edge(g, x->lf_owner->lo_vertex,
926             y->lf_owner->lo_vertex);
927         if (error)
928                 return (error);
929
930         e = lf_alloc_edge();
931         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
932         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
933         e->le_from = x;
934         e->le_to = y;
935
936         return (0);
937 }
938
939 /*
940  * Remove an edge from the lock graph.
941  */
942 static void
943 lf_remove_edge(struct lockf_edge *e)
944 {
945         struct owner_graph *g = &lf_owner_graph;
946         struct lockf_entry *x = e->le_from;
947         struct lockf_entry *y = e->le_to;
948
949         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
950         LIST_REMOVE(e, le_outlink);
951         LIST_REMOVE(e, le_inlink);
952         e->le_from = NULL;
953         e->le_to = NULL;
954         lf_free_edge(e);
955 }
956
957 /*
958  * Remove all out-going edges from lock x.
959  */
960 static void
961 lf_remove_outgoing(struct lockf_entry *x)
962 {
963         struct lockf_edge *e;
964
965         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
966                 lf_remove_edge(e);
967         }
968 }
969
970 /*
971  * Remove all in-coming edges from lock x.
972  */
973 static void
974 lf_remove_incoming(struct lockf_entry *x)
975 {
976         struct lockf_edge *e;
977
978         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
979                 lf_remove_edge(e);
980         }
981 }
982
983 /*
984  * Walk the list of locks for the file and create an out-going edge
985  * from lock to each blocking lock.
986  */
987 static int
988 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
989 {
990         struct lockf_entry *overlap;
991         int error;
992
993         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
994                 /*
995                  * We may assume that the active list is sorted by
996                  * lf_start.
997                  */
998                 if (overlap->lf_start > lock->lf_end)
999                         break;
1000                 if (!lf_blocks(lock, overlap))
1001                         continue;
1002
1003                 /*
1004                  * We've found a blocking lock. Add the corresponding
1005                  * edge to the graphs and see if it would cause a
1006                  * deadlock.
1007                  */
1008                 error = lf_add_edge(lock, overlap);
1009
1010                 /*
1011                  * The only error that lf_add_edge returns is EDEADLK.
1012                  * Remove any edges we added and return the error.
1013                  */
1014                 if (error) {
1015                         lf_remove_outgoing(lock);
1016                         return (error);
1017                 }
1018         }
1019
1020         /*
1021          * We also need to add edges to sleeping locks that block
1022          * us. This ensures that lf_wakeup_lock cannot grant two
1023          * mutually blocking locks simultaneously and also enforces a
1024          * 'first come, first served' fairness model. Note that this
1025          * only happens if we are blocked by at least one active lock
1026          * due to the call to lf_getblock in lf_setlock below.
1027          */
1028         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1029                 if (!lf_blocks(lock, overlap))
1030                         continue;
1031                 /*
1032                  * We've found a blocking lock. Add the corresponding
1033                  * edge to the graphs and see if it would cause a
1034                  * deadlock.
1035                  */
1036                 error = lf_add_edge(lock, overlap);
1037
1038                 /*
1039                  * The only error that lf_add_edge returns is EDEADLK.
1040                  * Remove any edges we added and return the error.
1041                  */
1042                 if (error) {
1043                         lf_remove_outgoing(lock);
1044                         return (error);
1045                 }
1046         }
1047
1048         return (0);
1049 }
1050
1051 /*
1052  * Walk the list of pending locks for the file and create an in-coming
1053  * edge from lock to each blocking lock.
1054  */
1055 static int
1056 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1057 {
1058         struct lockf_entry *overlap;
1059         int error;
1060
1061         sx_assert(&state->ls_lock, SX_XLOCKED);
1062         if (LIST_EMPTY(&state->ls_pending))
1063                 return (0);
1064
1065         error = 0;
1066         sx_xlock(&lf_owner_graph_lock);
1067         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1068                 if (!lf_blocks(lock, overlap))
1069                         continue;
1070
1071                 /*
1072                  * We've found a blocking lock. Add the corresponding
1073                  * edge to the graphs and see if it would cause a
1074                  * deadlock.
1075                  */
1076                 error = lf_add_edge(overlap, lock);
1077
1078                 /*
1079                  * The only error that lf_add_edge returns is EDEADLK.
1080                  * Remove any edges we added and return the error.
1081                  */
1082                 if (error) {
1083                         lf_remove_incoming(lock);
1084                         break;
1085                 }
1086         }
1087         sx_xunlock(&lf_owner_graph_lock);
1088         return (error);
1089 }
1090
1091 /*
1092  * Insert lock into the active list, keeping list entries ordered by
1093  * increasing values of lf_start.
1094  */
1095 static void
1096 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1097 {
1098         struct lockf_entry *lf, *lfprev;
1099
1100         if (LIST_EMPTY(&state->ls_active)) {
1101                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1102                 return;
1103         }
1104
1105         lfprev = NULL;
1106         LIST_FOREACH(lf, &state->ls_active, lf_link) {
1107                 if (lf->lf_start > lock->lf_start) {
1108                         LIST_INSERT_BEFORE(lf, lock, lf_link);
1109                         return;
1110                 }
1111                 lfprev = lf;
1112         }
1113         LIST_INSERT_AFTER(lfprev, lock, lf_link);
1114 }
1115
1116 /*
1117  * Wake up a sleeping lock and remove it from the pending list now
1118  * that all its dependencies have been resolved. The caller should
1119  * arrange for the lock to be added to the active list, adjusting any
1120  * existing locks for the same owner as needed.
1121  */
1122 static void
1123 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1124 {
1125
1126         /*
1127          * Remove from ls_pending list and wake up the caller
1128          * or start the async notification, as appropriate.
1129          */
1130         LIST_REMOVE(wakelock, lf_link);
1131 #ifdef LOCKF_DEBUG
1132         if (lockf_debug & 1)
1133                 lf_print("lf_wakeup_lock: awakening", wakelock);
1134 #endif /* LOCKF_DEBUG */
1135         if (wakelock->lf_async_task) {
1136                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1137         } else {
1138                 wakeup(wakelock);
1139         }
1140 }
1141
1142 /*
1143  * Re-check all dependent locks and remove edges to locks that we no
1144  * longer block. If 'all' is non-zero, the lock has been removed and
1145  * we must remove all the dependencies, otherwise it has simply been
1146  * reduced but remains active. Any pending locks which have been been
1147  * unblocked are added to 'granted'
1148  */
1149 static void
1150 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1151         struct lockf_entry_list *granted)
1152 {
1153         struct lockf_edge *e, *ne;
1154         struct lockf_entry *deplock;
1155
1156         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1157                 deplock = e->le_from;
1158                 if (all || !lf_blocks(lock, deplock)) {
1159                         sx_xlock(&lf_owner_graph_lock);
1160                         lf_remove_edge(e);
1161                         sx_xunlock(&lf_owner_graph_lock);
1162                         if (LIST_EMPTY(&deplock->lf_outedges)) {
1163                                 lf_wakeup_lock(state, deplock);
1164                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
1165                         }
1166                 }
1167         }
1168 }
1169
1170 /*
1171  * Set the start of an existing active lock, updating dependencies and
1172  * adding any newly woken locks to 'granted'.
1173  */
1174 static void
1175 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1176         struct lockf_entry_list *granted)
1177 {
1178
1179         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1180         lock->lf_start = new_start;
1181         LIST_REMOVE(lock, lf_link);
1182         lf_insert_lock(state, lock);
1183         lf_update_dependancies(state, lock, FALSE, granted);
1184 }
1185
1186 /*
1187  * Set the end of an existing active lock, updating dependencies and
1188  * adding any newly woken locks to 'granted'.
1189  */
1190 static void
1191 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1192         struct lockf_entry_list *granted)
1193 {
1194
1195         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1196         lock->lf_end = new_end;
1197         lf_update_dependancies(state, lock, FALSE, granted);
1198 }
1199
1200 /*
1201  * Add a lock to the active list, updating or removing any current
1202  * locks owned by the same owner and processing any pending locks that
1203  * become unblocked as a result. This code is also used for unlock
1204  * since the logic for updating existing locks is identical.
1205  *
1206  * As a result of processing the new lock, we may unblock existing
1207  * pending locks as a result of downgrading/unlocking. We simply
1208  * activate the newly granted locks by looping.
1209  *
1210  * Since the new lock already has its dependencies set up, we always
1211  * add it to the list (unless its an unlock request). This may
1212  * fragment the lock list in some pathological cases but its probably
1213  * not a real problem.
1214  */
1215 static void
1216 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1217 {
1218         struct lockf_entry *overlap, *lf;
1219         struct lockf_entry_list granted;
1220         int ovcase;
1221
1222         LIST_INIT(&granted);
1223         LIST_INSERT_HEAD(&granted, lock, lf_link);
1224
1225         while (!LIST_EMPTY(&granted)) {
1226                 lock = LIST_FIRST(&granted);
1227                 LIST_REMOVE(lock, lf_link);
1228
1229                 /*
1230                  * Skip over locks owned by other processes.  Handle
1231                  * any locks that overlap and are owned by ourselves.
1232                  */
1233                 overlap = LIST_FIRST(&state->ls_active);
1234                 for (;;) {
1235                         ovcase = lf_findoverlap(&overlap, lock, SELF);
1236
1237 #ifdef LOCKF_DEBUG
1238                         if (ovcase && (lockf_debug & 2)) {
1239                                 printf("lf_setlock: overlap %d", ovcase);
1240                                 lf_print("", overlap);
1241                         }
1242 #endif
1243                         /*
1244                          * Six cases:
1245                          *      0) no overlap
1246                          *      1) overlap == lock
1247                          *      2) overlap contains lock
1248                          *      3) lock contains overlap
1249                          *      4) overlap starts before lock
1250                          *      5) overlap ends after lock
1251                          */
1252                         switch (ovcase) {
1253                         case 0: /* no overlap */
1254                                 break;
1255
1256                         case 1: /* overlap == lock */
1257                                 /*
1258                                  * We have already setup the
1259                                  * dependants for the new lock, taking
1260                                  * into account a possible downgrade
1261                                  * or unlock. Remove the old lock.
1262                                  */
1263                                 LIST_REMOVE(overlap, lf_link);
1264                                 lf_update_dependancies(state, overlap, TRUE,
1265                                         &granted);
1266                                 lf_free_lock(overlap);
1267                                 break;
1268
1269                         case 2: /* overlap contains lock */
1270                                 /*
1271                                  * Just split the existing lock.
1272                                  */
1273                                 lf_split(state, overlap, lock, &granted);
1274                                 break;
1275
1276                         case 3: /* lock contains overlap */
1277                                 /*
1278                                  * Delete the overlap and advance to
1279                                  * the next entry in the list.
1280                                  */
1281                                 lf = LIST_NEXT(overlap, lf_link);
1282                                 LIST_REMOVE(overlap, lf_link);
1283                                 lf_update_dependancies(state, overlap, TRUE,
1284                                         &granted);
1285                                 lf_free_lock(overlap);
1286                                 overlap = lf;
1287                                 continue;
1288
1289                         case 4: /* overlap starts before lock */
1290                                 /*
1291                                  * Just update the overlap end and
1292                                  * move on.
1293                                  */
1294                                 lf_set_end(state, overlap, lock->lf_start - 1,
1295                                     &granted);
1296                                 overlap = LIST_NEXT(overlap, lf_link);
1297                                 continue;
1298
1299                         case 5: /* overlap ends after lock */
1300                                 /*
1301                                  * Change the start of overlap and
1302                                  * re-insert.
1303                                  */
1304                                 lf_set_start(state, overlap, lock->lf_end + 1,
1305                                     &granted);
1306                                 break;
1307                         }
1308                         break;
1309                 }
1310 #ifdef LOCKF_DEBUG
1311                 if (lockf_debug & 1) {
1312                         if (lock->lf_type != F_UNLCK)
1313                                 lf_print("lf_activate_lock: activated", lock);
1314                         else
1315                                 lf_print("lf_activate_lock: unlocked", lock);
1316                         lf_printlist("lf_activate_lock", lock);
1317                 }
1318 #endif /* LOCKF_DEBUG */
1319                 if (lock->lf_type != F_UNLCK)
1320                         lf_insert_lock(state, lock);
1321         }
1322 }
1323
1324 /*
1325  * Cancel a pending lock request, either as a result of a signal or a
1326  * cancel request for an async lock.
1327  */
1328 static void
1329 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1330 {
1331         struct lockf_entry_list granted;
1332
1333         /*
1334          * Note it is theoretically possible that cancelling this lock
1335          * may allow some other pending lock to become
1336          * active. Consider this case:
1337          *
1338          * Owner        Action          Result          Dependencies
1339          * 
1340          * A:           lock [0..0]     succeeds        
1341          * B:           lock [2..2]     succeeds        
1342          * C:           lock [1..2]     blocked         C->B
1343          * D:           lock [0..1]     blocked         C->B,D->A,D->C
1344          * A:           unlock [0..0]                   C->B,D->C
1345          * C:           cancel [1..2]   
1346          */
1347
1348         LIST_REMOVE(lock, lf_link);
1349
1350         /*
1351          * Removing out-going edges is simple.
1352          */
1353         sx_xlock(&lf_owner_graph_lock);
1354         lf_remove_outgoing(lock);
1355         sx_xunlock(&lf_owner_graph_lock);
1356
1357         /*
1358          * Removing in-coming edges may allow some other lock to
1359          * become active - we use lf_update_dependancies to figure
1360          * this out.
1361          */
1362         LIST_INIT(&granted);
1363         lf_update_dependancies(state, lock, TRUE, &granted);
1364         lf_free_lock(lock);
1365
1366         /*
1367          * Feed any newly active locks to lf_activate_lock.
1368          */
1369         while (!LIST_EMPTY(&granted)) {
1370                 lock = LIST_FIRST(&granted);
1371                 LIST_REMOVE(lock, lf_link);
1372                 lf_activate_lock(state, lock);
1373         }
1374 }
1375
1376 /*
1377  * Set a byte-range lock.
1378  */
1379 static int
1380 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1381     void **cookiep)
1382 {
1383         static char lockstr[] = "lockf";
1384         int error, priority, stops_deferred;
1385
1386 #ifdef LOCKF_DEBUG
1387         if (lockf_debug & 1)
1388                 lf_print("lf_setlock", lock);
1389 #endif /* LOCKF_DEBUG */
1390
1391         /*
1392          * Set the priority
1393          */
1394         priority = PLOCK;
1395         if (lock->lf_type == F_WRLCK)
1396                 priority += 4;
1397         if (!(lock->lf_flags & F_NOINTR))
1398                 priority |= PCATCH;
1399         /*
1400          * Scan lock list for this file looking for locks that would block us.
1401          */
1402         if (lf_getblock(state, lock)) {
1403                 /*
1404                  * Free the structure and return if nonblocking.
1405                  */
1406                 if ((lock->lf_flags & F_WAIT) == 0
1407                     && lock->lf_async_task == NULL) {
1408                         lf_free_lock(lock);
1409                         error = EAGAIN;
1410                         goto out;
1411                 }
1412
1413                 /*
1414                  * For flock type locks, we must first remove
1415                  * any shared locks that we hold before we sleep
1416                  * waiting for an exclusive lock.
1417                  */
1418                 if ((lock->lf_flags & F_FLOCK) &&
1419                     lock->lf_type == F_WRLCK) {
1420                         lock->lf_type = F_UNLCK;
1421                         lf_activate_lock(state, lock);
1422                         lock->lf_type = F_WRLCK;
1423                 }
1424
1425                 /*
1426                  * We are blocked. Create edges to each blocking lock,
1427                  * checking for deadlock using the owner graph. For
1428                  * simplicity, we run deadlock detection for all
1429                  * locks, posix and otherwise.
1430                  */
1431                 sx_xlock(&lf_owner_graph_lock);
1432                 error = lf_add_outgoing(state, lock);
1433                 sx_xunlock(&lf_owner_graph_lock);
1434
1435                 if (error) {
1436 #ifdef LOCKF_DEBUG
1437                         if (lockf_debug & 1)
1438                                 lf_print("lf_setlock: deadlock", lock);
1439 #endif
1440                         lf_free_lock(lock);
1441                         goto out;
1442                 }
1443
1444                 /*
1445                  * We have added edges to everything that blocks
1446                  * us. Sleep until they all go away.
1447                  */
1448                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1449 #ifdef LOCKF_DEBUG
1450                 if (lockf_debug & 1) {
1451                         struct lockf_edge *e;
1452                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1453                                 lf_print("lf_setlock: blocking on", e->le_to);
1454                                 lf_printlist("lf_setlock", e->le_to);
1455                         }
1456                 }
1457 #endif /* LOCKF_DEBUG */
1458
1459                 if ((lock->lf_flags & F_WAIT) == 0) {
1460                         /*
1461                          * The caller requested async notification -
1462                          * this callback happens when the blocking
1463                          * lock is released, allowing the caller to
1464                          * make another attempt to take the lock.
1465                          */
1466                         *cookiep = (void *) lock;
1467                         error = EINPROGRESS;
1468                         goto out;
1469                 }
1470
1471                 lock->lf_refs++;
1472                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1473                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1474                 sigallowstop(stops_deferred);
1475                 if (lf_free_lock(lock)) {
1476                         error = EDOOFUS;
1477                         goto out;
1478                 }
1479
1480                 /*
1481                  * We may have been awakened by a signal and/or by a
1482                  * debugger continuing us (in which cases we must
1483                  * remove our lock graph edges) and/or by another
1484                  * process releasing a lock (in which case our edges
1485                  * have already been removed and we have been moved to
1486                  * the active list). We may also have been woken by
1487                  * lf_purgelocks which we report to the caller as
1488                  * EINTR. In that case, lf_purgelocks will have
1489                  * removed our lock graph edges.
1490                  *
1491                  * Note that it is possible to receive a signal after
1492                  * we were successfully woken (and moved to the active
1493                  * list) but before we resumed execution. In this
1494                  * case, our lf_outedges list will be clear. We
1495                  * pretend there was no error.
1496                  *
1497                  * Note also, if we have been sleeping long enough, we
1498                  * may now have incoming edges from some newer lock
1499                  * which is waiting behind us in the queue.
1500                  */
1501                 if (lock->lf_flags & F_INTR) {
1502                         error = EINTR;
1503                         lf_free_lock(lock);
1504                         goto out;
1505                 }
1506                 if (LIST_EMPTY(&lock->lf_outedges)) {
1507                         error = 0;
1508                 } else {
1509                         lf_cancel_lock(state, lock);
1510                         goto out;
1511                 }
1512 #ifdef LOCKF_DEBUG
1513                 if (lockf_debug & 1) {
1514                         lf_print("lf_setlock: granted", lock);
1515                 }
1516 #endif
1517                 goto out;
1518         }
1519         /*
1520          * It looks like we are going to grant the lock. First add
1521          * edges from any currently pending lock that the new lock
1522          * would block.
1523          */
1524         error = lf_add_incoming(state, lock);
1525         if (error) {
1526 #ifdef LOCKF_DEBUG
1527                 if (lockf_debug & 1)
1528                         lf_print("lf_setlock: deadlock", lock);
1529 #endif
1530                 lf_free_lock(lock);
1531                 goto out;
1532         }
1533
1534         /*
1535          * No blocks!!  Add the lock.  Note that we will
1536          * downgrade or upgrade any overlapping locks this
1537          * process already owns.
1538          */
1539         lf_activate_lock(state, lock);
1540         error = 0;
1541 out:
1542         return (error);
1543 }
1544
1545 /*
1546  * Remove a byte-range lock on an inode.
1547  *
1548  * Generally, find the lock (or an overlap to that lock)
1549  * and remove it (or shrink it), then wakeup anyone we can.
1550  */
1551 static int
1552 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1553 {
1554         struct lockf_entry *overlap;
1555
1556         overlap = LIST_FIRST(&state->ls_active);
1557
1558         if (overlap == NOLOCKF)
1559                 return (0);
1560 #ifdef LOCKF_DEBUG
1561         if (unlock->lf_type != F_UNLCK)
1562                 panic("lf_clearlock: bad type");
1563         if (lockf_debug & 1)
1564                 lf_print("lf_clearlock", unlock);
1565 #endif /* LOCKF_DEBUG */
1566
1567         lf_activate_lock(state, unlock);
1568
1569         return (0);
1570 }
1571
1572 /*
1573  * Check whether there is a blocking lock, and if so return its
1574  * details in '*fl'.
1575  */
1576 static int
1577 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1578 {
1579         struct lockf_entry *block;
1580
1581 #ifdef LOCKF_DEBUG
1582         if (lockf_debug & 1)
1583                 lf_print("lf_getlock", lock);
1584 #endif /* LOCKF_DEBUG */
1585
1586         if ((block = lf_getblock(state, lock))) {
1587                 fl->l_type = block->lf_type;
1588                 fl->l_whence = SEEK_SET;
1589                 fl->l_start = block->lf_start;
1590                 if (block->lf_end == OFF_MAX)
1591                         fl->l_len = 0;
1592                 else
1593                         fl->l_len = block->lf_end - block->lf_start + 1;
1594                 fl->l_pid = block->lf_owner->lo_pid;
1595                 fl->l_sysid = block->lf_owner->lo_sysid;
1596         } else {
1597                 fl->l_type = F_UNLCK;
1598         }
1599         return (0);
1600 }
1601
1602 /*
1603  * Cancel an async lock request.
1604  */
1605 static int
1606 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1607 {
1608         struct lockf_entry *reallock;
1609
1610         /*
1611          * We need to match this request with an existing lock
1612          * request.
1613          */
1614         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1615                 if ((void *) reallock == cookie) {
1616                         /*
1617                          * Double-check that this lock looks right
1618                          * (maybe use a rolling ID for the cancel
1619                          * cookie instead?)
1620                          */
1621                         if (!(reallock->lf_vnode == lock->lf_vnode
1622                                 && reallock->lf_start == lock->lf_start
1623                                 && reallock->lf_end == lock->lf_end)) {
1624                                 return (ENOENT);
1625                         }
1626
1627                         /*
1628                          * Make sure this lock was async and then just
1629                          * remove it from its wait lists.
1630                          */
1631                         if (!reallock->lf_async_task) {
1632                                 return (ENOENT);
1633                         }
1634
1635                         /*
1636                          * Note that since any other thread must take
1637                          * state->ls_lock before it can possibly
1638                          * trigger the async callback, we are safe
1639                          * from a race with lf_wakeup_lock, i.e. we
1640                          * can free the lock (actually our caller does
1641                          * this).
1642                          */
1643                         lf_cancel_lock(state, reallock);
1644                         return (0);
1645                 }
1646         }
1647
1648         /*
1649          * We didn't find a matching lock - not much we can do here.
1650          */
1651         return (ENOENT);
1652 }
1653
1654 /*
1655  * Walk the list of locks for an inode and
1656  * return the first blocking lock.
1657  */
1658 static struct lockf_entry *
1659 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1660 {
1661         struct lockf_entry *overlap;
1662
1663         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1664                 /*
1665                  * We may assume that the active list is sorted by
1666                  * lf_start.
1667                  */
1668                 if (overlap->lf_start > lock->lf_end)
1669                         break;
1670                 if (!lf_blocks(lock, overlap))
1671                         continue;
1672                 return (overlap);
1673         }
1674         return (NOLOCKF);
1675 }
1676
1677 /*
1678  * Walk the list of locks for an inode to find an overlapping lock (if
1679  * any) and return a classification of that overlap.
1680  *
1681  * Arguments:
1682  *      *overlap        The place in the lock list to start looking
1683  *      lock            The lock which is being tested
1684  *      type            Pass 'SELF' to test only locks with the same
1685  *                      owner as lock, or 'OTHER' to test only locks
1686  *                      with a different owner
1687  *
1688  * Returns one of six values:
1689  *      0) no overlap
1690  *      1) overlap == lock
1691  *      2) overlap contains lock
1692  *      3) lock contains overlap
1693  *      4) overlap starts before lock
1694  *      5) overlap ends after lock
1695  *
1696  * If there is an overlapping lock, '*overlap' is set to point at the
1697  * overlapping lock.
1698  *
1699  * NOTE: this returns only the FIRST overlapping lock.  There
1700  *       may be more than one.
1701  */
1702 static int
1703 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1704 {
1705         struct lockf_entry *lf;
1706         off_t start, end;
1707         int res;
1708
1709         if ((*overlap) == NOLOCKF) {
1710                 return (0);
1711         }
1712 #ifdef LOCKF_DEBUG
1713         if (lockf_debug & 2)
1714                 lf_print("lf_findoverlap: looking for overlap in", lock);
1715 #endif /* LOCKF_DEBUG */
1716         start = lock->lf_start;
1717         end = lock->lf_end;
1718         res = 0;
1719         while (*overlap) {
1720                 lf = *overlap;
1721                 if (lf->lf_start > end)
1722                         break;
1723                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1724                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1725                         *overlap = LIST_NEXT(lf, lf_link);
1726                         continue;
1727                 }
1728 #ifdef LOCKF_DEBUG
1729                 if (lockf_debug & 2)
1730                         lf_print("\tchecking", lf);
1731 #endif /* LOCKF_DEBUG */
1732                 /*
1733                  * OK, check for overlap
1734                  *
1735                  * Six cases:
1736                  *      0) no overlap
1737                  *      1) overlap == lock
1738                  *      2) overlap contains lock
1739                  *      3) lock contains overlap
1740                  *      4) overlap starts before lock
1741                  *      5) overlap ends after lock
1742                  */
1743                 if (start > lf->lf_end) {
1744                         /* Case 0 */
1745 #ifdef LOCKF_DEBUG
1746                         if (lockf_debug & 2)
1747                                 printf("no overlap\n");
1748 #endif /* LOCKF_DEBUG */
1749                         *overlap = LIST_NEXT(lf, lf_link);
1750                         continue;
1751                 }
1752                 if (lf->lf_start == start && lf->lf_end == end) {
1753                         /* Case 1 */
1754 #ifdef LOCKF_DEBUG
1755                         if (lockf_debug & 2)
1756                                 printf("overlap == lock\n");
1757 #endif /* LOCKF_DEBUG */
1758                         res = 1;
1759                         break;
1760                 }
1761                 if (lf->lf_start <= start && lf->lf_end >= end) {
1762                         /* Case 2 */
1763 #ifdef LOCKF_DEBUG
1764                         if (lockf_debug & 2)
1765                                 printf("overlap contains lock\n");
1766 #endif /* LOCKF_DEBUG */
1767                         res = 2;
1768                         break;
1769                 }
1770                 if (start <= lf->lf_start && end >= lf->lf_end) {
1771                         /* Case 3 */
1772 #ifdef LOCKF_DEBUG
1773                         if (lockf_debug & 2)
1774                                 printf("lock contains overlap\n");
1775 #endif /* LOCKF_DEBUG */
1776                         res = 3;
1777                         break;
1778                 }
1779                 if (lf->lf_start < start && lf->lf_end >= start) {
1780                         /* Case 4 */
1781 #ifdef LOCKF_DEBUG
1782                         if (lockf_debug & 2)
1783                                 printf("overlap starts before lock\n");
1784 #endif /* LOCKF_DEBUG */
1785                         res = 4;
1786                         break;
1787                 }
1788                 if (lf->lf_start > start && lf->lf_end > end) {
1789                         /* Case 5 */
1790 #ifdef LOCKF_DEBUG
1791                         if (lockf_debug & 2)
1792                                 printf("overlap ends after lock\n");
1793 #endif /* LOCKF_DEBUG */
1794                         res = 5;
1795                         break;
1796                 }
1797                 panic("lf_findoverlap: default");
1798         }
1799         return (res);
1800 }
1801
1802 /*
1803  * Split an the existing 'lock1', based on the extent of the lock
1804  * described by 'lock2'. The existing lock should cover 'lock2'
1805  * entirely.
1806  *
1807  * Any pending locks which have been been unblocked are added to
1808  * 'granted'
1809  */
1810 static void
1811 lf_split(struct lockf *state, struct lockf_entry *lock1,
1812     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1813 {
1814         struct lockf_entry *splitlock;
1815
1816 #ifdef LOCKF_DEBUG
1817         if (lockf_debug & 2) {
1818                 lf_print("lf_split", lock1);
1819                 lf_print("splitting from", lock2);
1820         }
1821 #endif /* LOCKF_DEBUG */
1822         /*
1823          * Check to see if we don't need to split at all.
1824          */
1825         if (lock1->lf_start == lock2->lf_start) {
1826                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1827                 return;
1828         }
1829         if (lock1->lf_end == lock2->lf_end) {
1830                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1831                 return;
1832         }
1833         /*
1834          * Make a new lock consisting of the last part of
1835          * the encompassing lock.
1836          */
1837         splitlock = lf_alloc_lock(lock1->lf_owner);
1838         memcpy(splitlock, lock1, sizeof *splitlock);
1839         splitlock->lf_refs = 1;
1840         if (splitlock->lf_flags & F_REMOTE)
1841                 vref(splitlock->lf_vnode);
1842
1843         /*
1844          * This cannot cause a deadlock since any edges we would add
1845          * to splitlock already exist in lock1. We must be sure to add
1846          * necessary dependencies to splitlock before we reduce lock1
1847          * otherwise we may accidentally grant a pending lock that
1848          * was blocked by the tail end of lock1.
1849          */
1850         splitlock->lf_start = lock2->lf_end + 1;
1851         LIST_INIT(&splitlock->lf_outedges);
1852         LIST_INIT(&splitlock->lf_inedges);
1853         lf_add_incoming(state, splitlock);
1854
1855         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1856
1857         /*
1858          * OK, now link it in
1859          */
1860         lf_insert_lock(state, splitlock);
1861 }
1862
1863 struct lockdesc {
1864         STAILQ_ENTRY(lockdesc) link;
1865         struct vnode *vp;
1866         struct flock fl;
1867 };
1868 STAILQ_HEAD(lockdesclist, lockdesc);
1869
1870 int
1871 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1872 {
1873         struct lockf *ls;
1874         struct lockf_entry *lf;
1875         struct lockdesc *ldesc;
1876         struct lockdesclist locks;
1877         int error;
1878
1879         /*
1880          * In order to keep the locking simple, we iterate over the
1881          * active lock lists to build a list of locks that need
1882          * releasing. We then call the iterator for each one in turn.
1883          *
1884          * We take an extra reference to the vnode for the duration to
1885          * make sure it doesn't go away before we are finished.
1886          */
1887         STAILQ_INIT(&locks);
1888         sx_xlock(&lf_lock_states_lock);
1889         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1890                 sx_xlock(&ls->ls_lock);
1891                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1892                         if (lf->lf_owner->lo_sysid != sysid)
1893                                 continue;
1894
1895                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1896                             M_WAITOK);
1897                         ldesc->vp = lf->lf_vnode;
1898                         vref(ldesc->vp);
1899                         ldesc->fl.l_start = lf->lf_start;
1900                         if (lf->lf_end == OFF_MAX)
1901                                 ldesc->fl.l_len = 0;
1902                         else
1903                                 ldesc->fl.l_len =
1904                                         lf->lf_end - lf->lf_start + 1;
1905                         ldesc->fl.l_whence = SEEK_SET;
1906                         ldesc->fl.l_type = F_UNLCK;
1907                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1908                         ldesc->fl.l_sysid = sysid;
1909                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
1910                 }
1911                 sx_xunlock(&ls->ls_lock);
1912         }
1913         sx_xunlock(&lf_lock_states_lock);
1914
1915         /*
1916          * Call the iterator function for each lock in turn. If the
1917          * iterator returns an error code, just free the rest of the
1918          * lockdesc structures.
1919          */
1920         error = 0;
1921         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1922                 STAILQ_REMOVE_HEAD(&locks, link);
1923                 if (!error)
1924                         error = fn(ldesc->vp, &ldesc->fl, arg);
1925                 vrele(ldesc->vp);
1926                 free(ldesc, M_LOCKF);
1927         }
1928
1929         return (error);
1930 }
1931
1932 int
1933 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1934 {
1935         struct lockf *ls;
1936         struct lockf_entry *lf;
1937         struct lockdesc *ldesc;
1938         struct lockdesclist locks;
1939         int error;
1940
1941         /*
1942          * In order to keep the locking simple, we iterate over the
1943          * active lock lists to build a list of locks that need
1944          * releasing. We then call the iterator for each one in turn.
1945          *
1946          * We take an extra reference to the vnode for the duration to
1947          * make sure it doesn't go away before we are finished.
1948          */
1949         STAILQ_INIT(&locks);
1950         VI_LOCK(vp);
1951         ls = vp->v_lockf;
1952         if (!ls) {
1953                 VI_UNLOCK(vp);
1954                 return (0);
1955         }
1956         ls->ls_threads++;
1957         VI_UNLOCK(vp);
1958
1959         sx_xlock(&ls->ls_lock);
1960         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1961                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1962                     M_WAITOK);
1963                 ldesc->vp = lf->lf_vnode;
1964                 vref(ldesc->vp);
1965                 ldesc->fl.l_start = lf->lf_start;
1966                 if (lf->lf_end == OFF_MAX)
1967                         ldesc->fl.l_len = 0;
1968                 else
1969                         ldesc->fl.l_len =
1970                                 lf->lf_end - lf->lf_start + 1;
1971                 ldesc->fl.l_whence = SEEK_SET;
1972                 ldesc->fl.l_type = F_UNLCK;
1973                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1974                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1975                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
1976         }
1977         sx_xunlock(&ls->ls_lock);
1978         VI_LOCK(vp);
1979         ls->ls_threads--;
1980         wakeup(ls);
1981         VI_UNLOCK(vp);
1982
1983         /*
1984          * Call the iterator function for each lock in turn. If the
1985          * iterator returns an error code, just free the rest of the
1986          * lockdesc structures.
1987          */
1988         error = 0;
1989         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1990                 STAILQ_REMOVE_HEAD(&locks, link);
1991                 if (!error)
1992                         error = fn(ldesc->vp, &ldesc->fl, arg);
1993                 vrele(ldesc->vp);
1994                 free(ldesc, M_LOCKF);
1995         }
1996
1997         return (error);
1998 }
1999
2000 static int
2001 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2002 {
2003
2004         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2005         return (0);
2006 }
2007
2008 void
2009 lf_clearremotesys(int sysid)
2010 {
2011
2012         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2013         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2014 }
2015
2016 int
2017 lf_countlocks(int sysid)
2018 {
2019         int i;
2020         struct lock_owner *lo;
2021         int count;
2022
2023         count = 0;
2024         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2025                 sx_xlock(&lf_lock_owners[i].lock);
2026                 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2027                         if (lo->lo_sysid == sysid)
2028                                 count += lo->lo_refs;
2029                 sx_xunlock(&lf_lock_owners[i].lock);
2030         }
2031
2032         return (count);
2033 }
2034
2035 #ifdef LOCKF_DEBUG
2036
2037 /*
2038  * Return non-zero if y is reachable from x using a brute force
2039  * search. If reachable and path is non-null, return the route taken
2040  * in path.
2041  */
2042 static int
2043 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2044     struct owner_vertex_list *path)
2045 {
2046         struct owner_edge *e;
2047
2048         if (x == y) {
2049                 if (path)
2050                         TAILQ_INSERT_HEAD(path, x, v_link);
2051                 return 1;
2052         }
2053
2054         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2055                 if (graph_reaches(e->e_to, y, path)) {
2056                         if (path)
2057                                 TAILQ_INSERT_HEAD(path, x, v_link);
2058                         return 1;
2059                 }
2060         }
2061         return 0;
2062 }
2063
2064 /*
2065  * Perform consistency checks on the graph. Make sure the values of
2066  * v_order are correct. If checkorder is non-zero, check no vertex can
2067  * reach any other vertex with a smaller order.
2068  */
2069 static void
2070 graph_check(struct owner_graph *g, int checkorder)
2071 {
2072         int i, j;
2073
2074         for (i = 0; i < g->g_size; i++) {
2075                 if (!g->g_vertices[i]->v_owner)
2076                         continue;
2077                 KASSERT(g->g_vertices[i]->v_order == i,
2078                     ("lock graph vertices disordered"));
2079                 if (checkorder) {
2080                         for (j = 0; j < i; j++) {
2081                                 if (!g->g_vertices[j]->v_owner)
2082                                         continue;
2083                                 KASSERT(!graph_reaches(g->g_vertices[i],
2084                                         g->g_vertices[j], NULL),
2085                                     ("lock graph vertices disordered"));
2086                         }
2087                 }
2088         }
2089 }
2090
2091 static void
2092 graph_print_vertices(struct owner_vertex_list *set)
2093 {
2094         struct owner_vertex *v;
2095
2096         printf("{ ");
2097         TAILQ_FOREACH(v, set, v_link) {
2098                 printf("%d:", v->v_order);
2099                 lf_print_owner(v->v_owner);
2100                 if (TAILQ_NEXT(v, v_link))
2101                         printf(", ");
2102         }
2103         printf(" }\n");
2104 }
2105
2106 #endif
2107
2108 /*
2109  * Calculate the sub-set of vertices v from the affected region [y..x]
2110  * where v is reachable from y. Return -1 if a loop was detected
2111  * (i.e. x is reachable from y, otherwise the number of vertices in
2112  * this subset.
2113  */
2114 static int
2115 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2116     struct owner_vertex *y, struct owner_vertex_list *delta)
2117 {
2118         uint32_t gen;
2119         struct owner_vertex *v;
2120         struct owner_edge *e;
2121         int n;
2122
2123         /*
2124          * We start with a set containing just y. Then for each vertex
2125          * v in the set so far unprocessed, we add each vertex that v
2126          * has an out-edge to and that is within the affected region
2127          * [y..x]. If we see the vertex x on our travels, stop
2128          * immediately.
2129          */
2130         TAILQ_INIT(delta);
2131         TAILQ_INSERT_TAIL(delta, y, v_link);
2132         v = y;
2133         n = 1;
2134         gen = g->g_gen;
2135         while (v) {
2136                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2137                         if (e->e_to == x)
2138                                 return -1;
2139                         if (e->e_to->v_order < x->v_order
2140                             && e->e_to->v_gen != gen) {
2141                                 e->e_to->v_gen = gen;
2142                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2143                                 n++;
2144                         }
2145                 }
2146                 v = TAILQ_NEXT(v, v_link);
2147         }
2148
2149         return (n);
2150 }
2151
2152 /*
2153  * Calculate the sub-set of vertices v from the affected region [y..x]
2154  * where v reaches x. Return the number of vertices in this subset.
2155  */
2156 static int
2157 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2158     struct owner_vertex *y, struct owner_vertex_list *delta)
2159 {
2160         uint32_t gen;
2161         struct owner_vertex *v;
2162         struct owner_edge *e;
2163         int n;
2164
2165         /*
2166          * We start with a set containing just x. Then for each vertex
2167          * v in the set so far unprocessed, we add each vertex that v
2168          * has an in-edge from and that is within the affected region
2169          * [y..x].
2170          */
2171         TAILQ_INIT(delta);
2172         TAILQ_INSERT_TAIL(delta, x, v_link);
2173         v = x;
2174         n = 1;
2175         gen = g->g_gen;
2176         while (v) {
2177                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2178                         if (e->e_from->v_order > y->v_order
2179                             && e->e_from->v_gen != gen) {
2180                                 e->e_from->v_gen = gen;
2181                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2182                                 n++;
2183                         }
2184                 }
2185                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
2186         }
2187
2188         return (n);
2189 }
2190
2191 static int
2192 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2193 {
2194         struct owner_vertex *v;
2195         int i, j;
2196
2197         TAILQ_FOREACH(v, set, v_link) {
2198                 for (i = n;
2199                      i > 0 && indices[i - 1] > v->v_order; i--)
2200                         ;
2201                 for (j = n - 1; j >= i; j--)
2202                         indices[j + 1] = indices[j];
2203                 indices[i] = v->v_order;
2204                 n++;
2205         }
2206
2207         return (n);
2208 }
2209
2210 static int
2211 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2212     struct owner_vertex_list *set)
2213 {
2214         struct owner_vertex *v, *vlowest;
2215
2216         while (!TAILQ_EMPTY(set)) {
2217                 vlowest = NULL;
2218                 TAILQ_FOREACH(v, set, v_link) {
2219                         if (!vlowest || v->v_order < vlowest->v_order)
2220                                 vlowest = v;
2221                 }
2222                 TAILQ_REMOVE(set, vlowest, v_link);
2223                 vlowest->v_order = indices[nextunused];
2224                 g->g_vertices[vlowest->v_order] = vlowest;
2225                 nextunused++;
2226         }
2227
2228         return (nextunused);
2229 }
2230
2231 static int
2232 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2233     struct owner_vertex *y)
2234 {
2235         struct owner_edge *e;
2236         struct owner_vertex_list deltaF, deltaB;
2237         int nF, n, vi, i;
2238         int *indices;
2239         int nB __unused;
2240
2241         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2242
2243         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2244                 if (e->e_to == y) {
2245                         e->e_refs++;
2246                         return (0);
2247                 }
2248         }
2249
2250 #ifdef LOCKF_DEBUG
2251         if (lockf_debug & 8) {
2252                 printf("adding edge %d:", x->v_order);
2253                 lf_print_owner(x->v_owner);
2254                 printf(" -> %d:", y->v_order);
2255                 lf_print_owner(y->v_owner);
2256                 printf("\n");
2257         }
2258 #endif
2259         if (y->v_order < x->v_order) {
2260                 /*
2261                  * The new edge violates the order. First find the set
2262                  * of affected vertices reachable from y (deltaF) and
2263                  * the set of affect vertices affected that reach x
2264                  * (deltaB), using the graph generation number to
2265                  * detect whether we have visited a given vertex
2266                  * already. We re-order the graph so that each vertex
2267                  * in deltaB appears before each vertex in deltaF.
2268                  *
2269                  * If x is a member of deltaF, then the new edge would
2270                  * create a cycle. Otherwise, we may assume that
2271                  * deltaF and deltaB are disjoint.
2272                  */
2273                 g->g_gen++;
2274                 if (g->g_gen == 0) {
2275                         /*
2276                          * Generation wrap.
2277                          */
2278                         for (vi = 0; vi < g->g_size; vi++) {
2279                                 g->g_vertices[vi]->v_gen = 0;
2280                         }
2281                         g->g_gen++;
2282                 }
2283                 nF = graph_delta_forward(g, x, y, &deltaF);
2284                 if (nF < 0) {
2285 #ifdef LOCKF_DEBUG
2286                         if (lockf_debug & 8) {
2287                                 struct owner_vertex_list path;
2288                                 printf("deadlock: ");
2289                                 TAILQ_INIT(&path);
2290                                 graph_reaches(y, x, &path);
2291                                 graph_print_vertices(&path);
2292                         }
2293 #endif
2294                         return (EDEADLK);
2295                 }
2296
2297 #ifdef LOCKF_DEBUG
2298                 if (lockf_debug & 8) {
2299                         printf("re-ordering graph vertices\n");
2300                         printf("deltaF = ");
2301                         graph_print_vertices(&deltaF);
2302                 }
2303 #endif
2304
2305                 nB = graph_delta_backward(g, x, y, &deltaB);
2306
2307 #ifdef LOCKF_DEBUG
2308                 if (lockf_debug & 8) {
2309                         printf("deltaB = ");
2310                         graph_print_vertices(&deltaB);
2311                 }
2312 #endif
2313
2314                 /*
2315                  * We first build a set of vertex indices (vertex
2316                  * order values) that we may use, then we re-assign
2317                  * orders first to those vertices in deltaB, then to
2318                  * deltaF. Note that the contents of deltaF and deltaB
2319                  * may be partially disordered - we perform an
2320                  * insertion sort while building our index set.
2321                  */
2322                 indices = g->g_indexbuf;
2323                 n = graph_add_indices(indices, 0, &deltaF);
2324                 graph_add_indices(indices, n, &deltaB);
2325
2326                 /*
2327                  * We must also be sure to maintain the relative
2328                  * ordering of deltaF and deltaB when re-assigning
2329                  * vertices. We do this by iteratively removing the
2330                  * lowest ordered element from the set and assigning
2331                  * it the next value from our new ordering.
2332                  */
2333                 i = graph_assign_indices(g, indices, 0, &deltaB);
2334                 graph_assign_indices(g, indices, i, &deltaF);
2335
2336 #ifdef LOCKF_DEBUG
2337                 if (lockf_debug & 8) {
2338                         struct owner_vertex_list set;
2339                         TAILQ_INIT(&set);
2340                         for (i = 0; i < nB + nF; i++)
2341                                 TAILQ_INSERT_TAIL(&set,
2342                                     g->g_vertices[indices[i]], v_link);
2343                         printf("new ordering = ");
2344                         graph_print_vertices(&set);
2345                 }
2346 #endif
2347         }
2348
2349         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2350
2351 #ifdef LOCKF_DEBUG
2352         if (lockf_debug & 8) {
2353                 graph_check(g, TRUE);
2354         }
2355 #endif
2356
2357         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2358
2359         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2360         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2361         e->e_refs = 1;
2362         e->e_from = x;
2363         e->e_to = y;
2364
2365         return (0);
2366 }
2367
2368 /*
2369  * Remove an edge x->y from the graph.
2370  */
2371 static void
2372 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2373     struct owner_vertex *y)
2374 {
2375         struct owner_edge *e;
2376
2377         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2378
2379         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2380                 if (e->e_to == y)
2381                         break;
2382         }
2383         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2384
2385         e->e_refs--;
2386         if (e->e_refs == 0) {
2387 #ifdef LOCKF_DEBUG
2388                 if (lockf_debug & 8) {
2389                         printf("removing edge %d:", x->v_order);
2390                         lf_print_owner(x->v_owner);
2391                         printf(" -> %d:", y->v_order);
2392                         lf_print_owner(y->v_owner);
2393                         printf("\n");
2394                 }
2395 #endif
2396                 LIST_REMOVE(e, e_outlink);
2397                 LIST_REMOVE(e, e_inlink);
2398                 free(e, M_LOCKF);
2399         }
2400 }
2401
2402 /*
2403  * Allocate a vertex from the free list. Return ENOMEM if there are
2404  * none.
2405  */
2406 static struct owner_vertex *
2407 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2408 {
2409         struct owner_vertex *v;
2410
2411         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2412
2413         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2414         if (g->g_size == g->g_space) {
2415                 g->g_vertices = realloc(g->g_vertices,
2416                     2 * g->g_space * sizeof(struct owner_vertex *),
2417                     M_LOCKF, M_WAITOK);
2418                 free(g->g_indexbuf, M_LOCKF);
2419                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2420                     M_LOCKF, M_WAITOK);
2421                 g->g_space = 2 * g->g_space;
2422         }
2423         v->v_order = g->g_size;
2424         v->v_gen = g->g_gen;
2425         g->g_vertices[g->g_size] = v;
2426         g->g_size++;
2427
2428         LIST_INIT(&v->v_outedges);
2429         LIST_INIT(&v->v_inedges);
2430         v->v_owner = lo;
2431
2432         return (v);
2433 }
2434
2435 static void
2436 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2437 {
2438         struct owner_vertex *w;
2439         int i;
2440
2441         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2442         
2443         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2444         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2445
2446         /*
2447          * Remove from the graph's array and close up the gap,
2448          * renumbering the other vertices.
2449          */
2450         for (i = v->v_order + 1; i < g->g_size; i++) {
2451                 w = g->g_vertices[i];
2452                 w->v_order--;
2453                 g->g_vertices[i - 1] = w;
2454         }
2455         g->g_size--;
2456
2457         free(v, M_LOCKF);
2458 }
2459
2460 static struct owner_graph *
2461 graph_init(struct owner_graph *g)
2462 {
2463
2464         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2465             M_LOCKF, M_WAITOK);
2466         g->g_size = 0;
2467         g->g_space = 10;
2468         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2469         g->g_gen = 0;
2470
2471         return (g);
2472 }
2473
2474 #ifdef LOCKF_DEBUG
2475 /*
2476  * Print description of a lock owner
2477  */
2478 static void
2479 lf_print_owner(struct lock_owner *lo)
2480 {
2481
2482         if (lo->lo_flags & F_REMOTE) {
2483                 printf("remote pid %d, system %d",
2484                     lo->lo_pid, lo->lo_sysid);
2485         } else if (lo->lo_flags & F_FLOCK) {
2486                 printf("file %p", lo->lo_id);
2487         } else {
2488                 printf("local pid %d", lo->lo_pid);
2489         }
2490 }
2491
2492 /*
2493  * Print out a lock.
2494  */
2495 static void
2496 lf_print(char *tag, struct lockf_entry *lock)
2497 {
2498
2499         printf("%s: lock %p for ", tag, (void *)lock);
2500         lf_print_owner(lock->lf_owner);
2501         if (lock->lf_inode != (struct inode *)0)
2502                 printf(" in ino %ju on dev <%s>,",
2503                     (uintmax_t)lock->lf_inode->i_number,
2504                     devtoname(ITODEV(lock->lf_inode)));
2505         printf(" %s, start %jd, end ",
2506             lock->lf_type == F_RDLCK ? "shared" :
2507             lock->lf_type == F_WRLCK ? "exclusive" :
2508             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2509             (intmax_t)lock->lf_start);
2510         if (lock->lf_end == OFF_MAX)
2511                 printf("EOF");
2512         else
2513                 printf("%jd", (intmax_t)lock->lf_end);
2514         if (!LIST_EMPTY(&lock->lf_outedges))
2515                 printf(" block %p\n",
2516                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2517         else
2518                 printf("\n");
2519 }
2520
2521 static void
2522 lf_printlist(char *tag, struct lockf_entry *lock)
2523 {
2524         struct lockf_entry *lf, *blk;
2525         struct lockf_edge *e;
2526
2527         if (lock->lf_inode == (struct inode *)0)
2528                 return;
2529
2530         printf("%s: Lock list for ino %ju on dev <%s>:\n",
2531             tag, (uintmax_t)lock->lf_inode->i_number,
2532             devtoname(ITODEV(lock->lf_inode)));
2533         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2534                 printf("\tlock %p for ",(void *)lf);
2535                 lf_print_owner(lock->lf_owner);
2536                 printf(", %s, start %jd, end %jd",
2537                     lf->lf_type == F_RDLCK ? "shared" :
2538                     lf->lf_type == F_WRLCK ? "exclusive" :
2539                     lf->lf_type == F_UNLCK ? "unlock" :
2540                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2541                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2542                         blk = e->le_to;
2543                         printf("\n\t\tlock request %p for ", (void *)blk);
2544                         lf_print_owner(blk->lf_owner);
2545                         printf(", %s, start %jd, end %jd",
2546                             blk->lf_type == F_RDLCK ? "shared" :
2547                             blk->lf_type == F_WRLCK ? "exclusive" :
2548                             blk->lf_type == F_UNLCK ? "unlock" :
2549                             "unknown", (intmax_t)blk->lf_start,
2550                             (intmax_t)blk->lf_end);
2551                         if (!LIST_EMPTY(&blk->lf_inedges))
2552                                 panic("lf_printlist: bad list");
2553                 }
2554                 printf("\n");
2555         }
2556 }
2557 #endif /* LOCKF_DEBUG */