]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_proc.c
MFV r329760: 7638 Refactor spa_load_impl into several functions
[FreeBSD/FreeBSD.git] / sys / kern / kern_proc.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include "opt_compat.h"
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40 #include "opt_kstack_pages.h"
41 #include "opt_stack.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/elf.h>
46 #include <sys/eventhandler.h>
47 #include <sys/exec.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/limits.h>
51 #include <sys/lock.h>
52 #include <sys/loginclass.h>
53 #include <sys/malloc.h>
54 #include <sys/mman.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/smp.h>
66 #include <sys/stack.h>
67 #include <sys/stat.h>
68 #include <sys/sysctl.h>
69 #include <sys/filedesc.h>
70 #include <sys/tty.h>
71 #include <sys/signalvar.h>
72 #include <sys/sdt.h>
73 #include <sys/sx.h>
74 #include <sys/user.h>
75 #include <sys/vnode.h>
76 #include <sys/wait.h>
77
78 #ifdef DDB
79 #include <ddb/ddb.h>
80 #endif
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_extern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/uma.h>
90
91 #ifdef COMPAT_FREEBSD32
92 #include <compat/freebsd32/freebsd32.h>
93 #include <compat/freebsd32/freebsd32_util.h>
94 #endif
95
96 SDT_PROVIDER_DEFINE(proc);
97 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
98     "int");
99 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
100     "int");
101 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
102     "struct thread *");
103 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
104 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
105 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
106
107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
108 MALLOC_DEFINE(M_SESSION, "session", "session header");
109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
111
112 static void doenterpgrp(struct proc *, struct pgrp *);
113 static void orphanpg(struct pgrp *pg);
114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
117     int preferthread);
118 static void pgadjustjobc(struct pgrp *pgrp, int entering);
119 static void pgdelete(struct pgrp *);
120 static int proc_ctor(void *mem, int size, void *arg, int flags);
121 static void proc_dtor(void *mem, int size, void *arg);
122 static int proc_init(void *mem, int size, int flags);
123 static void proc_fini(void *mem, int size);
124 static void pargs_free(struct pargs *pa);
125 static struct proc *zpfind_locked(pid_t pid);
126
127 /*
128  * Other process lists
129  */
130 struct pidhashhead *pidhashtbl;
131 u_long pidhash;
132 struct pgrphashhead *pgrphashtbl;
133 u_long pgrphash;
134 struct proclist allproc;
135 struct proclist zombproc;
136 struct sx __exclusive_cache_line allproc_lock;
137 struct sx __exclusive_cache_line proctree_lock;
138 struct mtx __exclusive_cache_line ppeers_lock;
139 uma_zone_t proc_zone;
140
141 /*
142  * The offset of various fields in struct proc and struct thread.
143  * These are used by kernel debuggers to enumerate kernel threads and
144  * processes.
145  */
146 const int proc_off_p_pid = offsetof(struct proc, p_pid);
147 const int proc_off_p_comm = offsetof(struct proc, p_comm);
148 const int proc_off_p_list = offsetof(struct proc, p_list);
149 const int proc_off_p_threads = offsetof(struct proc, p_threads);
150 const int thread_off_td_tid = offsetof(struct thread, td_tid);
151 const int thread_off_td_name = offsetof(struct thread, td_name);
152 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
153 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
154 const int thread_off_td_plist = offsetof(struct thread, td_plist);
155
156 EVENTHANDLER_LIST_DEFINE(process_ctor);
157 EVENTHANDLER_LIST_DEFINE(process_dtor);
158 EVENTHANDLER_LIST_DEFINE(process_init);
159 EVENTHANDLER_LIST_DEFINE(process_fini);
160 EVENTHANDLER_LIST_DEFINE(process_exit);
161 EVENTHANDLER_LIST_DEFINE(process_fork);
162 EVENTHANDLER_LIST_DEFINE(process_exec);
163
164 EVENTHANDLER_LIST_DECLARE(thread_ctor);
165 EVENTHANDLER_LIST_DECLARE(thread_dtor);
166
167 int kstack_pages = KSTACK_PAGES;
168 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
169     "Kernel stack size in pages");
170 static int vmmap_skip_res_cnt = 0;
171 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
172     &vmmap_skip_res_cnt, 0,
173     "Skip calculation of the pages resident count in kern.proc.vmmap");
174
175 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
176 #ifdef COMPAT_FREEBSD32
177 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
178 #endif
179
180 /*
181  * Initialize global process hashing structures.
182  */
183 void
184 procinit(void)
185 {
186
187         sx_init(&allproc_lock, "allproc");
188         sx_init(&proctree_lock, "proctree");
189         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
190         LIST_INIT(&allproc);
191         LIST_INIT(&zombproc);
192         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
193         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
194         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
195             proc_ctor, proc_dtor, proc_init, proc_fini,
196             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197         uihashinit();
198 }
199
200 /*
201  * Prepare a proc for use.
202  */
203 static int
204 proc_ctor(void *mem, int size, void *arg, int flags)
205 {
206         struct proc *p;
207         struct thread *td;
208
209         p = (struct proc *)mem;
210         SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
211         EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
212         SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
213         td = FIRST_THREAD_IN_PROC(p);
214         if (td != NULL) {
215                 /* Make sure all thread constructors are executed */
216                 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
217         }
218         return (0);
219 }
220
221 /*
222  * Reclaim a proc after use.
223  */
224 static void
225 proc_dtor(void *mem, int size, void *arg)
226 {
227         struct proc *p;
228         struct thread *td;
229
230         /* INVARIANTS checks go here */
231         p = (struct proc *)mem;
232         td = FIRST_THREAD_IN_PROC(p);
233         SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
234         if (td != NULL) {
235 #ifdef INVARIANTS
236                 KASSERT((p->p_numthreads == 1),
237                     ("bad number of threads in exiting process"));
238                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
239 #endif
240                 /* Free all OSD associated to this thread. */
241                 osd_thread_exit(td);
242                 td_softdep_cleanup(td);
243                 MPASS(td->td_su == NULL);
244
245                 /* Make sure all thread destructors are executed */
246                 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
247         }
248         EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
249         if (p->p_ksi != NULL)
250                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
251         SDT_PROBE3(proc, , dtor, return, p, size, arg);
252 }
253
254 /*
255  * Initialize type-stable parts of a proc (when newly created).
256  */
257 static int
258 proc_init(void *mem, int size, int flags)
259 {
260         struct proc *p;
261
262         p = (struct proc *)mem;
263         SDT_PROBE3(proc, , init, entry, p, size, flags);
264         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
265         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
266         mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
267         mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
268         mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
269         cv_init(&p->p_pwait, "ppwait");
270         cv_init(&p->p_dbgwait, "dbgwait");
271         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
272         EVENTHANDLER_DIRECT_INVOKE(process_init, p);
273         p->p_stats = pstats_alloc();
274         p->p_pgrp = NULL;
275         SDT_PROBE3(proc, , init, return, p, size, flags);
276         return (0);
277 }
278
279 /*
280  * UMA should ensure that this function is never called.
281  * Freeing a proc structure would violate type stability.
282  */
283 static void
284 proc_fini(void *mem, int size)
285 {
286 #ifdef notnow
287         struct proc *p;
288
289         p = (struct proc *)mem;
290         EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
291         pstats_free(p->p_stats);
292         thread_free(FIRST_THREAD_IN_PROC(p));
293         mtx_destroy(&p->p_mtx);
294         if (p->p_ksi != NULL)
295                 ksiginfo_free(p->p_ksi);
296 #else
297         panic("proc reclaimed");
298 #endif
299 }
300
301 /*
302  * Is p an inferior of the current process?
303  */
304 int
305 inferior(struct proc *p)
306 {
307
308         sx_assert(&proctree_lock, SX_LOCKED);
309         PROC_LOCK_ASSERT(p, MA_OWNED);
310         for (; p != curproc; p = proc_realparent(p)) {
311                 if (p->p_pid == 0)
312                         return (0);
313         }
314         return (1);
315 }
316
317 struct proc *
318 pfind_locked(pid_t pid)
319 {
320         struct proc *p;
321
322         sx_assert(&allproc_lock, SX_LOCKED);
323         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
324                 if (p->p_pid == pid) {
325                         PROC_LOCK(p);
326                         if (p->p_state == PRS_NEW) {
327                                 PROC_UNLOCK(p);
328                                 p = NULL;
329                         }
330                         break;
331                 }
332         }
333         return (p);
334 }
335
336 /*
337  * Locate a process by number; return only "live" processes -- i.e., neither
338  * zombies nor newly born but incompletely initialized processes.  By not
339  * returning processes in the PRS_NEW state, we allow callers to avoid
340  * testing for that condition to avoid dereferencing p_ucred, et al.
341  */
342 struct proc *
343 pfind(pid_t pid)
344 {
345         struct proc *p;
346
347         p = curproc;
348         if (p->p_pid == pid) {
349                 PROC_LOCK(p);
350                 return (p);
351         }
352         sx_slock(&allproc_lock);
353         p = pfind_locked(pid);
354         sx_sunlock(&allproc_lock);
355         return (p);
356 }
357
358 /*
359  * Same as pfind but allow zombies.
360  */
361 struct proc *
362 pfind_any(pid_t pid)
363 {
364         struct proc *p;
365
366         sx_slock(&allproc_lock);
367         p = pfind_locked(pid);
368         if (p == NULL)
369                 p = zpfind_locked(pid);
370         sx_sunlock(&allproc_lock);
371
372         return (p);
373 }
374
375 static struct proc *
376 pfind_tid_locked(pid_t tid)
377 {
378         struct proc *p;
379         struct thread *td;
380
381         sx_assert(&allproc_lock, SX_LOCKED);
382         FOREACH_PROC_IN_SYSTEM(p) {
383                 PROC_LOCK(p);
384                 if (p->p_state == PRS_NEW) {
385                         PROC_UNLOCK(p);
386                         continue;
387                 }
388                 FOREACH_THREAD_IN_PROC(p, td) {
389                         if (td->td_tid == tid)
390                                 goto found;
391                 }
392                 PROC_UNLOCK(p);
393         }
394 found:
395         return (p);
396 }
397
398 /*
399  * Locate a process group by number.
400  * The caller must hold proctree_lock.
401  */
402 struct pgrp *
403 pgfind(pid_t pgid)
404 {
405         struct pgrp *pgrp;
406
407         sx_assert(&proctree_lock, SX_LOCKED);
408
409         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
410                 if (pgrp->pg_id == pgid) {
411                         PGRP_LOCK(pgrp);
412                         return (pgrp);
413                 }
414         }
415         return (NULL);
416 }
417
418 /*
419  * Locate process and do additional manipulations, depending on flags.
420  */
421 int
422 pget(pid_t pid, int flags, struct proc **pp)
423 {
424         struct proc *p;
425         int error;
426
427         p = curproc;
428         if (p->p_pid == pid) {
429                 PROC_LOCK(p);
430         } else {
431                 sx_slock(&allproc_lock);
432                 if (pid <= PID_MAX) {
433                         p = pfind_locked(pid);
434                         if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
435                                 p = zpfind_locked(pid);
436                 } else if ((flags & PGET_NOTID) == 0) {
437                         p = pfind_tid_locked(pid);
438                 } else {
439                         p = NULL;
440                 }
441                 sx_sunlock(&allproc_lock);
442                 if (p == NULL)
443                         return (ESRCH);
444                 if ((flags & PGET_CANSEE) != 0) {
445                         error = p_cansee(curthread, p);
446                         if (error != 0)
447                                 goto errout;
448                 }
449         }
450         if ((flags & PGET_CANDEBUG) != 0) {
451                 error = p_candebug(curthread, p);
452                 if (error != 0)
453                         goto errout;
454         }
455         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
456                 error = EPERM;
457                 goto errout;
458         }
459         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
460                 error = ESRCH;
461                 goto errout;
462         }
463         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
464                 /*
465                  * XXXRW: Not clear ESRCH is the right error during proc
466                  * execve().
467                  */
468                 error = ESRCH;
469                 goto errout;
470         }
471         if ((flags & PGET_HOLD) != 0) {
472                 _PHOLD(p);
473                 PROC_UNLOCK(p);
474         }
475         *pp = p;
476         return (0);
477 errout:
478         PROC_UNLOCK(p);
479         return (error);
480 }
481
482 /*
483  * Create a new process group.
484  * pgid must be equal to the pid of p.
485  * Begin a new session if required.
486  */
487 int
488 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
489 {
490
491         sx_assert(&proctree_lock, SX_XLOCKED);
492
493         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
494         KASSERT(p->p_pid == pgid,
495             ("enterpgrp: new pgrp and pid != pgid"));
496         KASSERT(pgfind(pgid) == NULL,
497             ("enterpgrp: pgrp with pgid exists"));
498         KASSERT(!SESS_LEADER(p),
499             ("enterpgrp: session leader attempted setpgrp"));
500
501         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
502
503         if (sess != NULL) {
504                 /*
505                  * new session
506                  */
507                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
508                 PROC_LOCK(p);
509                 p->p_flag &= ~P_CONTROLT;
510                 PROC_UNLOCK(p);
511                 PGRP_LOCK(pgrp);
512                 sess->s_leader = p;
513                 sess->s_sid = p->p_pid;
514                 refcount_init(&sess->s_count, 1);
515                 sess->s_ttyvp = NULL;
516                 sess->s_ttydp = NULL;
517                 sess->s_ttyp = NULL;
518                 bcopy(p->p_session->s_login, sess->s_login,
519                             sizeof(sess->s_login));
520                 pgrp->pg_session = sess;
521                 KASSERT(p == curproc,
522                     ("enterpgrp: mksession and p != curproc"));
523         } else {
524                 pgrp->pg_session = p->p_session;
525                 sess_hold(pgrp->pg_session);
526                 PGRP_LOCK(pgrp);
527         }
528         pgrp->pg_id = pgid;
529         LIST_INIT(&pgrp->pg_members);
530
531         /*
532          * As we have an exclusive lock of proctree_lock,
533          * this should not deadlock.
534          */
535         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
536         pgrp->pg_jobc = 0;
537         SLIST_INIT(&pgrp->pg_sigiolst);
538         PGRP_UNLOCK(pgrp);
539
540         doenterpgrp(p, pgrp);
541
542         return (0);
543 }
544
545 /*
546  * Move p to an existing process group
547  */
548 int
549 enterthispgrp(struct proc *p, struct pgrp *pgrp)
550 {
551
552         sx_assert(&proctree_lock, SX_XLOCKED);
553         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
554         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
555         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
556         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
557         KASSERT(pgrp->pg_session == p->p_session,
558                 ("%s: pgrp's session %p, p->p_session %p.\n",
559                 __func__,
560                 pgrp->pg_session,
561                 p->p_session));
562         KASSERT(pgrp != p->p_pgrp,
563                 ("%s: p belongs to pgrp.", __func__));
564
565         doenterpgrp(p, pgrp);
566
567         return (0);
568 }
569
570 /*
571  * Move p to a process group
572  */
573 static void
574 doenterpgrp(struct proc *p, struct pgrp *pgrp)
575 {
576         struct pgrp *savepgrp;
577
578         sx_assert(&proctree_lock, SX_XLOCKED);
579         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
580         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
581         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
582         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
583
584         savepgrp = p->p_pgrp;
585
586         /*
587          * Adjust eligibility of affected pgrps to participate in job control.
588          * Increment eligibility counts before decrementing, otherwise we
589          * could reach 0 spuriously during the first call.
590          */
591         fixjobc(p, pgrp, 1);
592         fixjobc(p, p->p_pgrp, 0);
593
594         PGRP_LOCK(pgrp);
595         PGRP_LOCK(savepgrp);
596         PROC_LOCK(p);
597         LIST_REMOVE(p, p_pglist);
598         p->p_pgrp = pgrp;
599         PROC_UNLOCK(p);
600         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
601         PGRP_UNLOCK(savepgrp);
602         PGRP_UNLOCK(pgrp);
603         if (LIST_EMPTY(&savepgrp->pg_members))
604                 pgdelete(savepgrp);
605 }
606
607 /*
608  * remove process from process group
609  */
610 int
611 leavepgrp(struct proc *p)
612 {
613         struct pgrp *savepgrp;
614
615         sx_assert(&proctree_lock, SX_XLOCKED);
616         savepgrp = p->p_pgrp;
617         PGRP_LOCK(savepgrp);
618         PROC_LOCK(p);
619         LIST_REMOVE(p, p_pglist);
620         p->p_pgrp = NULL;
621         PROC_UNLOCK(p);
622         PGRP_UNLOCK(savepgrp);
623         if (LIST_EMPTY(&savepgrp->pg_members))
624                 pgdelete(savepgrp);
625         return (0);
626 }
627
628 /*
629  * delete a process group
630  */
631 static void
632 pgdelete(struct pgrp *pgrp)
633 {
634         struct session *savesess;
635         struct tty *tp;
636
637         sx_assert(&proctree_lock, SX_XLOCKED);
638         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
639         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
640
641         /*
642          * Reset any sigio structures pointing to us as a result of
643          * F_SETOWN with our pgid.
644          */
645         funsetownlst(&pgrp->pg_sigiolst);
646
647         PGRP_LOCK(pgrp);
648         tp = pgrp->pg_session->s_ttyp;
649         LIST_REMOVE(pgrp, pg_hash);
650         savesess = pgrp->pg_session;
651         PGRP_UNLOCK(pgrp);
652
653         /* Remove the reference to the pgrp before deallocating it. */
654         if (tp != NULL) {
655                 tty_lock(tp);
656                 tty_rel_pgrp(tp, pgrp);
657         }
658
659         mtx_destroy(&pgrp->pg_mtx);
660         free(pgrp, M_PGRP);
661         sess_release(savesess);
662 }
663
664 static void
665 pgadjustjobc(struct pgrp *pgrp, int entering)
666 {
667
668         PGRP_LOCK(pgrp);
669         if (entering)
670                 pgrp->pg_jobc++;
671         else {
672                 --pgrp->pg_jobc;
673                 if (pgrp->pg_jobc == 0)
674                         orphanpg(pgrp);
675         }
676         PGRP_UNLOCK(pgrp);
677 }
678
679 /*
680  * Adjust pgrp jobc counters when specified process changes process group.
681  * We count the number of processes in each process group that "qualify"
682  * the group for terminal job control (those with a parent in a different
683  * process group of the same session).  If that count reaches zero, the
684  * process group becomes orphaned.  Check both the specified process'
685  * process group and that of its children.
686  * entering == 0 => p is leaving specified group.
687  * entering == 1 => p is entering specified group.
688  */
689 void
690 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
691 {
692         struct pgrp *hispgrp;
693         struct session *mysession;
694         struct proc *q;
695
696         sx_assert(&proctree_lock, SX_LOCKED);
697         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
698         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
699         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
700
701         /*
702          * Check p's parent to see whether p qualifies its own process
703          * group; if so, adjust count for p's process group.
704          */
705         mysession = pgrp->pg_session;
706         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
707             hispgrp->pg_session == mysession)
708                 pgadjustjobc(pgrp, entering);
709
710         /*
711          * Check this process' children to see whether they qualify
712          * their process groups; if so, adjust counts for children's
713          * process groups.
714          */
715         LIST_FOREACH(q, &p->p_children, p_sibling) {
716                 hispgrp = q->p_pgrp;
717                 if (hispgrp == pgrp ||
718                     hispgrp->pg_session != mysession)
719                         continue;
720                 if (q->p_state == PRS_ZOMBIE)
721                         continue;
722                 pgadjustjobc(hispgrp, entering);
723         }
724 }
725
726 void
727 killjobc(void)
728 {
729         struct session *sp;
730         struct tty *tp;
731         struct proc *p;
732         struct vnode *ttyvp;
733
734         p = curproc;
735         MPASS(p->p_flag & P_WEXIT);
736         /*
737          * Do a quick check to see if there is anything to do with the
738          * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
739          */
740         PROC_LOCK(p);
741         if (!SESS_LEADER(p) &&
742             (p->p_pgrp == p->p_pptr->p_pgrp) &&
743             LIST_EMPTY(&p->p_children)) {
744                 PROC_UNLOCK(p);
745                 return;
746         }
747         PROC_UNLOCK(p);
748
749         sx_xlock(&proctree_lock);
750         if (SESS_LEADER(p)) {
751                 sp = p->p_session;
752
753                 /*
754                  * s_ttyp is not zero'd; we use this to indicate that
755                  * the session once had a controlling terminal. (for
756                  * logging and informational purposes)
757                  */
758                 SESS_LOCK(sp);
759                 ttyvp = sp->s_ttyvp;
760                 tp = sp->s_ttyp;
761                 sp->s_ttyvp = NULL;
762                 sp->s_ttydp = NULL;
763                 sp->s_leader = NULL;
764                 SESS_UNLOCK(sp);
765
766                 /*
767                  * Signal foreground pgrp and revoke access to
768                  * controlling terminal if it has not been revoked
769                  * already.
770                  *
771                  * Because the TTY may have been revoked in the mean
772                  * time and could already have a new session associated
773                  * with it, make sure we don't send a SIGHUP to a
774                  * foreground process group that does not belong to this
775                  * session.
776                  */
777
778                 if (tp != NULL) {
779                         tty_lock(tp);
780                         if (tp->t_session == sp)
781                                 tty_signal_pgrp(tp, SIGHUP);
782                         tty_unlock(tp);
783                 }
784
785                 if (ttyvp != NULL) {
786                         sx_xunlock(&proctree_lock);
787                         if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
788                                 VOP_REVOKE(ttyvp, REVOKEALL);
789                                 VOP_UNLOCK(ttyvp, 0);
790                         }
791                         vrele(ttyvp);
792                         sx_xlock(&proctree_lock);
793                 }
794         }
795         fixjobc(p, p->p_pgrp, 0);
796         sx_xunlock(&proctree_lock);
797 }
798
799 /*
800  * A process group has become orphaned;
801  * if there are any stopped processes in the group,
802  * hang-up all process in that group.
803  */
804 static void
805 orphanpg(struct pgrp *pg)
806 {
807         struct proc *p;
808
809         PGRP_LOCK_ASSERT(pg, MA_OWNED);
810
811         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
812                 PROC_LOCK(p);
813                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
814                         PROC_UNLOCK(p);
815                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
816                                 PROC_LOCK(p);
817                                 kern_psignal(p, SIGHUP);
818                                 kern_psignal(p, SIGCONT);
819                                 PROC_UNLOCK(p);
820                         }
821                         return;
822                 }
823                 PROC_UNLOCK(p);
824         }
825 }
826
827 void
828 sess_hold(struct session *s)
829 {
830
831         refcount_acquire(&s->s_count);
832 }
833
834 void
835 sess_release(struct session *s)
836 {
837
838         if (refcount_release(&s->s_count)) {
839                 if (s->s_ttyp != NULL) {
840                         tty_lock(s->s_ttyp);
841                         tty_rel_sess(s->s_ttyp, s);
842                 }
843                 mtx_destroy(&s->s_mtx);
844                 free(s, M_SESSION);
845         }
846 }
847
848 #ifdef DDB
849
850 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
851 {
852         struct pgrp *pgrp;
853         struct proc *p;
854         int i;
855
856         for (i = 0; i <= pgrphash; i++) {
857                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
858                         printf("\tindx %d\n", i);
859                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
860                                 printf(
861                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
862                                     (void *)pgrp, (long)pgrp->pg_id,
863                                     (void *)pgrp->pg_session,
864                                     pgrp->pg_session->s_count,
865                                     (void *)LIST_FIRST(&pgrp->pg_members));
866                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
867                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
868                                             (long)p->p_pid, (void *)p,
869                                             (void *)p->p_pgrp);
870                                 }
871                         }
872                 }
873         }
874 }
875 #endif /* DDB */
876
877 /*
878  * Calculate the kinfo_proc members which contain process-wide
879  * informations.
880  * Must be called with the target process locked.
881  */
882 static void
883 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
884 {
885         struct thread *td;
886
887         PROC_LOCK_ASSERT(p, MA_OWNED);
888
889         kp->ki_estcpu = 0;
890         kp->ki_pctcpu = 0;
891         FOREACH_THREAD_IN_PROC(p, td) {
892                 thread_lock(td);
893                 kp->ki_pctcpu += sched_pctcpu(td);
894                 kp->ki_estcpu += sched_estcpu(td);
895                 thread_unlock(td);
896         }
897 }
898
899 /*
900  * Clear kinfo_proc and fill in any information that is common
901  * to all threads in the process.
902  * Must be called with the target process locked.
903  */
904 static void
905 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
906 {
907         struct thread *td0;
908         struct tty *tp;
909         struct session *sp;
910         struct ucred *cred;
911         struct sigacts *ps;
912         struct timeval boottime;
913
914         /* For proc_realparent. */
915         sx_assert(&proctree_lock, SX_LOCKED);
916         PROC_LOCK_ASSERT(p, MA_OWNED);
917         bzero(kp, sizeof(*kp));
918
919         kp->ki_structsize = sizeof(*kp);
920         kp->ki_paddr = p;
921         kp->ki_addr =/* p->p_addr; */0; /* XXX */
922         kp->ki_args = p->p_args;
923         kp->ki_textvp = p->p_textvp;
924 #ifdef KTRACE
925         kp->ki_tracep = p->p_tracevp;
926         kp->ki_traceflag = p->p_traceflag;
927 #endif
928         kp->ki_fd = p->p_fd;
929         kp->ki_vmspace = p->p_vmspace;
930         kp->ki_flag = p->p_flag;
931         kp->ki_flag2 = p->p_flag2;
932         cred = p->p_ucred;
933         if (cred) {
934                 kp->ki_uid = cred->cr_uid;
935                 kp->ki_ruid = cred->cr_ruid;
936                 kp->ki_svuid = cred->cr_svuid;
937                 kp->ki_cr_flags = 0;
938                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
939                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
940                 /* XXX bde doesn't like KI_NGROUPS */
941                 if (cred->cr_ngroups > KI_NGROUPS) {
942                         kp->ki_ngroups = KI_NGROUPS;
943                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
944                 } else
945                         kp->ki_ngroups = cred->cr_ngroups;
946                 bcopy(cred->cr_groups, kp->ki_groups,
947                     kp->ki_ngroups * sizeof(gid_t));
948                 kp->ki_rgid = cred->cr_rgid;
949                 kp->ki_svgid = cred->cr_svgid;
950                 /* If jailed(cred), emulate the old P_JAILED flag. */
951                 if (jailed(cred)) {
952                         kp->ki_flag |= P_JAILED;
953                         /* If inside the jail, use 0 as a jail ID. */
954                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
955                                 kp->ki_jid = cred->cr_prison->pr_id;
956                 }
957                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
958                     sizeof(kp->ki_loginclass));
959         }
960         ps = p->p_sigacts;
961         if (ps) {
962                 mtx_lock(&ps->ps_mtx);
963                 kp->ki_sigignore = ps->ps_sigignore;
964                 kp->ki_sigcatch = ps->ps_sigcatch;
965                 mtx_unlock(&ps->ps_mtx);
966         }
967         if (p->p_state != PRS_NEW &&
968             p->p_state != PRS_ZOMBIE &&
969             p->p_vmspace != NULL) {
970                 struct vmspace *vm = p->p_vmspace;
971
972                 kp->ki_size = vm->vm_map.size;
973                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
974                 FOREACH_THREAD_IN_PROC(p, td0) {
975                         if (!TD_IS_SWAPPED(td0))
976                                 kp->ki_rssize += td0->td_kstack_pages;
977                 }
978                 kp->ki_swrss = vm->vm_swrss;
979                 kp->ki_tsize = vm->vm_tsize;
980                 kp->ki_dsize = vm->vm_dsize;
981                 kp->ki_ssize = vm->vm_ssize;
982         } else if (p->p_state == PRS_ZOMBIE)
983                 kp->ki_stat = SZOMB;
984         if (kp->ki_flag & P_INMEM)
985                 kp->ki_sflag = PS_INMEM;
986         else
987                 kp->ki_sflag = 0;
988         /* Calculate legacy swtime as seconds since 'swtick'. */
989         kp->ki_swtime = (ticks - p->p_swtick) / hz;
990         kp->ki_pid = p->p_pid;
991         kp->ki_nice = p->p_nice;
992         kp->ki_fibnum = p->p_fibnum;
993         kp->ki_start = p->p_stats->p_start;
994         getboottime(&boottime);
995         timevaladd(&kp->ki_start, &boottime);
996         PROC_STATLOCK(p);
997         rufetch(p, &kp->ki_rusage);
998         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
999         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1000         PROC_STATUNLOCK(p);
1001         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1002         /* Some callers want child times in a single value. */
1003         kp->ki_childtime = kp->ki_childstime;
1004         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1005
1006         FOREACH_THREAD_IN_PROC(p, td0)
1007                 kp->ki_cow += td0->td_cow;
1008
1009         tp = NULL;
1010         if (p->p_pgrp) {
1011                 kp->ki_pgid = p->p_pgrp->pg_id;
1012                 kp->ki_jobc = p->p_pgrp->pg_jobc;
1013                 sp = p->p_pgrp->pg_session;
1014
1015                 if (sp != NULL) {
1016                         kp->ki_sid = sp->s_sid;
1017                         SESS_LOCK(sp);
1018                         strlcpy(kp->ki_login, sp->s_login,
1019                             sizeof(kp->ki_login));
1020                         if (sp->s_ttyvp)
1021                                 kp->ki_kiflag |= KI_CTTY;
1022                         if (SESS_LEADER(p))
1023                                 kp->ki_kiflag |= KI_SLEADER;
1024                         /* XXX proctree_lock */
1025                         tp = sp->s_ttyp;
1026                         SESS_UNLOCK(sp);
1027                 }
1028         }
1029         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1030                 kp->ki_tdev = tty_udev(tp);
1031                 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1032                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1033                 if (tp->t_session)
1034                         kp->ki_tsid = tp->t_session->s_sid;
1035         } else {
1036                 kp->ki_tdev = NODEV;
1037                 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1038         }
1039         if (p->p_comm[0] != '\0')
1040                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1041         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1042             p->p_sysent->sv_name[0] != '\0')
1043                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1044         kp->ki_siglist = p->p_siglist;
1045         kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1046         kp->ki_acflag = p->p_acflag;
1047         kp->ki_lock = p->p_lock;
1048         if (p->p_pptr) {
1049                 kp->ki_ppid = proc_realparent(p)->p_pid;
1050                 if (p->p_flag & P_TRACED)
1051                         kp->ki_tracer = p->p_pptr->p_pid;
1052         }
1053 }
1054
1055 /*
1056  * Fill in information that is thread specific.  Must be called with
1057  * target process locked.  If 'preferthread' is set, overwrite certain
1058  * process-related fields that are maintained for both threads and
1059  * processes.
1060  */
1061 static void
1062 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1063 {
1064         struct proc *p;
1065
1066         p = td->td_proc;
1067         kp->ki_tdaddr = td;
1068         PROC_LOCK_ASSERT(p, MA_OWNED);
1069
1070         if (preferthread)
1071                 PROC_STATLOCK(p);
1072         thread_lock(td);
1073         if (td->td_wmesg != NULL)
1074                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1075         else
1076                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1077         if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1078             sizeof(kp->ki_tdname)) {
1079                 strlcpy(kp->ki_moretdname,
1080                     td->td_name + sizeof(kp->ki_tdname) - 1,
1081                     sizeof(kp->ki_moretdname));
1082         } else {
1083                 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1084         }
1085         if (TD_ON_LOCK(td)) {
1086                 kp->ki_kiflag |= KI_LOCKBLOCK;
1087                 strlcpy(kp->ki_lockname, td->td_lockname,
1088                     sizeof(kp->ki_lockname));
1089         } else {
1090                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
1091                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1092         }
1093
1094         if (p->p_state == PRS_NORMAL) { /* approximate. */
1095                 if (TD_ON_RUNQ(td) ||
1096                     TD_CAN_RUN(td) ||
1097                     TD_IS_RUNNING(td)) {
1098                         kp->ki_stat = SRUN;
1099                 } else if (P_SHOULDSTOP(p)) {
1100                         kp->ki_stat = SSTOP;
1101                 } else if (TD_IS_SLEEPING(td)) {
1102                         kp->ki_stat = SSLEEP;
1103                 } else if (TD_ON_LOCK(td)) {
1104                         kp->ki_stat = SLOCK;
1105                 } else {
1106                         kp->ki_stat = SWAIT;
1107                 }
1108         } else if (p->p_state == PRS_ZOMBIE) {
1109                 kp->ki_stat = SZOMB;
1110         } else {
1111                 kp->ki_stat = SIDL;
1112         }
1113
1114         /* Things in the thread */
1115         kp->ki_wchan = td->td_wchan;
1116         kp->ki_pri.pri_level = td->td_priority;
1117         kp->ki_pri.pri_native = td->td_base_pri;
1118
1119         /*
1120          * Note: legacy fields; clamp at the old NOCPU value and/or
1121          * the maximum u_char CPU value.
1122          */
1123         if (td->td_lastcpu == NOCPU)
1124                 kp->ki_lastcpu_old = NOCPU_OLD;
1125         else if (td->td_lastcpu > MAXCPU_OLD)
1126                 kp->ki_lastcpu_old = MAXCPU_OLD;
1127         else
1128                 kp->ki_lastcpu_old = td->td_lastcpu;
1129
1130         if (td->td_oncpu == NOCPU)
1131                 kp->ki_oncpu_old = NOCPU_OLD;
1132         else if (td->td_oncpu > MAXCPU_OLD)
1133                 kp->ki_oncpu_old = MAXCPU_OLD;
1134         else
1135                 kp->ki_oncpu_old = td->td_oncpu;
1136
1137         kp->ki_lastcpu = td->td_lastcpu;
1138         kp->ki_oncpu = td->td_oncpu;
1139         kp->ki_tdflags = td->td_flags;
1140         kp->ki_tid = td->td_tid;
1141         kp->ki_numthreads = p->p_numthreads;
1142         kp->ki_pcb = td->td_pcb;
1143         kp->ki_kstack = (void *)td->td_kstack;
1144         kp->ki_slptime = (ticks - td->td_slptick) / hz;
1145         kp->ki_pri.pri_class = td->td_pri_class;
1146         kp->ki_pri.pri_user = td->td_user_pri;
1147
1148         if (preferthread) {
1149                 rufetchtd(td, &kp->ki_rusage);
1150                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1151                 kp->ki_pctcpu = sched_pctcpu(td);
1152                 kp->ki_estcpu = sched_estcpu(td);
1153                 kp->ki_cow = td->td_cow;
1154         }
1155
1156         /* We can't get this anymore but ps etc never used it anyway. */
1157         kp->ki_rqindex = 0;
1158
1159         if (preferthread)
1160                 kp->ki_siglist = td->td_siglist;
1161         kp->ki_sigmask = td->td_sigmask;
1162         thread_unlock(td);
1163         if (preferthread)
1164                 PROC_STATUNLOCK(p);
1165 }
1166
1167 /*
1168  * Fill in a kinfo_proc structure for the specified process.
1169  * Must be called with the target process locked.
1170  */
1171 void
1172 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1173 {
1174
1175         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1176
1177         fill_kinfo_proc_only(p, kp);
1178         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1179         fill_kinfo_aggregate(p, kp);
1180 }
1181
1182 struct pstats *
1183 pstats_alloc(void)
1184 {
1185
1186         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1187 }
1188
1189 /*
1190  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1191  */
1192 void
1193 pstats_fork(struct pstats *src, struct pstats *dst)
1194 {
1195
1196         bzero(&dst->pstat_startzero,
1197             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1198         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1199             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1200 }
1201
1202 void
1203 pstats_free(struct pstats *ps)
1204 {
1205
1206         free(ps, M_SUBPROC);
1207 }
1208
1209 static struct proc *
1210 zpfind_locked(pid_t pid)
1211 {
1212         struct proc *p;
1213
1214         sx_assert(&allproc_lock, SX_LOCKED);
1215         LIST_FOREACH(p, &zombproc, p_list) {
1216                 if (p->p_pid == pid) {
1217                         PROC_LOCK(p);
1218                         break;
1219                 }
1220         }
1221         return (p);
1222 }
1223
1224 /*
1225  * Locate a zombie process by number
1226  */
1227 struct proc *
1228 zpfind(pid_t pid)
1229 {
1230         struct proc *p;
1231
1232         sx_slock(&allproc_lock);
1233         p = zpfind_locked(pid);
1234         sx_sunlock(&allproc_lock);
1235         return (p);
1236 }
1237
1238 #ifdef COMPAT_FREEBSD32
1239
1240 /*
1241  * This function is typically used to copy out the kernel address, so
1242  * it can be replaced by assignment of zero.
1243  */
1244 static inline uint32_t
1245 ptr32_trim(void *ptr)
1246 {
1247         uintptr_t uptr;
1248
1249         uptr = (uintptr_t)ptr;
1250         return ((uptr > UINT_MAX) ? 0 : uptr);
1251 }
1252
1253 #define PTRTRIM_CP(src,dst,fld) \
1254         do { (dst).fld = ptr32_trim((src).fld); } while (0)
1255
1256 static void
1257 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1258 {
1259         int i;
1260
1261         bzero(ki32, sizeof(struct kinfo_proc32));
1262         ki32->ki_structsize = sizeof(struct kinfo_proc32);
1263         CP(*ki, *ki32, ki_layout);
1264         PTRTRIM_CP(*ki, *ki32, ki_args);
1265         PTRTRIM_CP(*ki, *ki32, ki_paddr);
1266         PTRTRIM_CP(*ki, *ki32, ki_addr);
1267         PTRTRIM_CP(*ki, *ki32, ki_tracep);
1268         PTRTRIM_CP(*ki, *ki32, ki_textvp);
1269         PTRTRIM_CP(*ki, *ki32, ki_fd);
1270         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1271         PTRTRIM_CP(*ki, *ki32, ki_wchan);
1272         CP(*ki, *ki32, ki_pid);
1273         CP(*ki, *ki32, ki_ppid);
1274         CP(*ki, *ki32, ki_pgid);
1275         CP(*ki, *ki32, ki_tpgid);
1276         CP(*ki, *ki32, ki_sid);
1277         CP(*ki, *ki32, ki_tsid);
1278         CP(*ki, *ki32, ki_jobc);
1279         CP(*ki, *ki32, ki_tdev);
1280         CP(*ki, *ki32, ki_tdev_freebsd11);
1281         CP(*ki, *ki32, ki_siglist);
1282         CP(*ki, *ki32, ki_sigmask);
1283         CP(*ki, *ki32, ki_sigignore);
1284         CP(*ki, *ki32, ki_sigcatch);
1285         CP(*ki, *ki32, ki_uid);
1286         CP(*ki, *ki32, ki_ruid);
1287         CP(*ki, *ki32, ki_svuid);
1288         CP(*ki, *ki32, ki_rgid);
1289         CP(*ki, *ki32, ki_svgid);
1290         CP(*ki, *ki32, ki_ngroups);
1291         for (i = 0; i < KI_NGROUPS; i++)
1292                 CP(*ki, *ki32, ki_groups[i]);
1293         CP(*ki, *ki32, ki_size);
1294         CP(*ki, *ki32, ki_rssize);
1295         CP(*ki, *ki32, ki_swrss);
1296         CP(*ki, *ki32, ki_tsize);
1297         CP(*ki, *ki32, ki_dsize);
1298         CP(*ki, *ki32, ki_ssize);
1299         CP(*ki, *ki32, ki_xstat);
1300         CP(*ki, *ki32, ki_acflag);
1301         CP(*ki, *ki32, ki_pctcpu);
1302         CP(*ki, *ki32, ki_estcpu);
1303         CP(*ki, *ki32, ki_slptime);
1304         CP(*ki, *ki32, ki_swtime);
1305         CP(*ki, *ki32, ki_cow);
1306         CP(*ki, *ki32, ki_runtime);
1307         TV_CP(*ki, *ki32, ki_start);
1308         TV_CP(*ki, *ki32, ki_childtime);
1309         CP(*ki, *ki32, ki_flag);
1310         CP(*ki, *ki32, ki_kiflag);
1311         CP(*ki, *ki32, ki_traceflag);
1312         CP(*ki, *ki32, ki_stat);
1313         CP(*ki, *ki32, ki_nice);
1314         CP(*ki, *ki32, ki_lock);
1315         CP(*ki, *ki32, ki_rqindex);
1316         CP(*ki, *ki32, ki_oncpu);
1317         CP(*ki, *ki32, ki_lastcpu);
1318
1319         /* XXX TODO: wrap cpu value as appropriate */
1320         CP(*ki, *ki32, ki_oncpu_old);
1321         CP(*ki, *ki32, ki_lastcpu_old);
1322
1323         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1324         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1325         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1326         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1327         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1328         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1329         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1330         bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1331         CP(*ki, *ki32, ki_tracer);
1332         CP(*ki, *ki32, ki_flag2);
1333         CP(*ki, *ki32, ki_fibnum);
1334         CP(*ki, *ki32, ki_cr_flags);
1335         CP(*ki, *ki32, ki_jid);
1336         CP(*ki, *ki32, ki_numthreads);
1337         CP(*ki, *ki32, ki_tid);
1338         CP(*ki, *ki32, ki_pri);
1339         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1340         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1341         PTRTRIM_CP(*ki, *ki32, ki_pcb);
1342         PTRTRIM_CP(*ki, *ki32, ki_kstack);
1343         PTRTRIM_CP(*ki, *ki32, ki_udata);
1344         PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1345         CP(*ki, *ki32, ki_sflag);
1346         CP(*ki, *ki32, ki_tdflags);
1347 }
1348 #endif
1349
1350 int
1351 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1352 {
1353         struct thread *td;
1354         struct kinfo_proc ki;
1355 #ifdef COMPAT_FREEBSD32
1356         struct kinfo_proc32 ki32;
1357 #endif
1358         int error;
1359
1360         PROC_LOCK_ASSERT(p, MA_OWNED);
1361         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1362
1363         error = 0;
1364         fill_kinfo_proc(p, &ki);
1365         if ((flags & KERN_PROC_NOTHREADS) != 0) {
1366 #ifdef COMPAT_FREEBSD32
1367                 if ((flags & KERN_PROC_MASK32) != 0) {
1368                         freebsd32_kinfo_proc_out(&ki, &ki32);
1369                         if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1370                                 error = ENOMEM;
1371                 } else
1372 #endif
1373                         if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1374                                 error = ENOMEM;
1375         } else {
1376                 FOREACH_THREAD_IN_PROC(p, td) {
1377                         fill_kinfo_thread(td, &ki, 1);
1378 #ifdef COMPAT_FREEBSD32
1379                         if ((flags & KERN_PROC_MASK32) != 0) {
1380                                 freebsd32_kinfo_proc_out(&ki, &ki32);
1381                                 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1382                                         error = ENOMEM;
1383                         } else
1384 #endif
1385                                 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1386                                         error = ENOMEM;
1387                         if (error != 0)
1388                                 break;
1389                 }
1390         }
1391         PROC_UNLOCK(p);
1392         return (error);
1393 }
1394
1395 static int
1396 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1397 {
1398         struct sbuf sb;
1399         struct kinfo_proc ki;
1400         int error, error2;
1401
1402         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1403         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1404         error = kern_proc_out(p, &sb, flags);
1405         error2 = sbuf_finish(&sb);
1406         sbuf_delete(&sb);
1407         if (error != 0)
1408                 return (error);
1409         else if (error2 != 0)
1410                 return (error2);
1411         return (0);
1412 }
1413
1414 static int
1415 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1416 {
1417         int *name = (int *)arg1;
1418         u_int namelen = arg2;
1419         struct proc *p;
1420         int flags, doingzomb, oid_number;
1421         int error = 0;
1422
1423         oid_number = oidp->oid_number;
1424         if (oid_number != KERN_PROC_ALL &&
1425             (oid_number & KERN_PROC_INC_THREAD) == 0)
1426                 flags = KERN_PROC_NOTHREADS;
1427         else {
1428                 flags = 0;
1429                 oid_number &= ~KERN_PROC_INC_THREAD;
1430         }
1431 #ifdef COMPAT_FREEBSD32
1432         if (req->flags & SCTL_MASK32)
1433                 flags |= KERN_PROC_MASK32;
1434 #endif
1435         if (oid_number == KERN_PROC_PID) {
1436                 if (namelen != 1)
1437                         return (EINVAL);
1438                 error = sysctl_wire_old_buffer(req, 0);
1439                 if (error)
1440                         return (error);
1441                 sx_slock(&proctree_lock);
1442                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
1443                 if (error == 0)
1444                         error = sysctl_out_proc(p, req, flags);
1445                 sx_sunlock(&proctree_lock);
1446                 return (error);
1447         }
1448
1449         switch (oid_number) {
1450         case KERN_PROC_ALL:
1451                 if (namelen != 0)
1452                         return (EINVAL);
1453                 break;
1454         case KERN_PROC_PROC:
1455                 if (namelen != 0 && namelen != 1)
1456                         return (EINVAL);
1457                 break;
1458         default:
1459                 if (namelen != 1)
1460                         return (EINVAL);
1461                 break;
1462         }
1463
1464         if (!req->oldptr) {
1465                 /* overestimate by 5 procs */
1466                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1467                 if (error)
1468                         return (error);
1469         }
1470         error = sysctl_wire_old_buffer(req, 0);
1471         if (error != 0)
1472                 return (error);
1473         sx_slock(&proctree_lock);
1474         sx_slock(&allproc_lock);
1475         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1476                 if (!doingzomb)
1477                         p = LIST_FIRST(&allproc);
1478                 else
1479                         p = LIST_FIRST(&zombproc);
1480                 for (; p != NULL; p = LIST_NEXT(p, p_list)) {
1481                         /*
1482                          * Skip embryonic processes.
1483                          */
1484                         if (p->p_state == PRS_NEW)
1485                                 continue;
1486                         PROC_LOCK(p);
1487                         KASSERT(p->p_ucred != NULL,
1488                             ("process credential is NULL for non-NEW proc"));
1489                         /*
1490                          * Show a user only appropriate processes.
1491                          */
1492                         if (p_cansee(curthread, p)) {
1493                                 PROC_UNLOCK(p);
1494                                 continue;
1495                         }
1496                         /*
1497                          * TODO - make more efficient (see notes below).
1498                          * do by session.
1499                          */
1500                         switch (oid_number) {
1501
1502                         case KERN_PROC_GID:
1503                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1504                                         PROC_UNLOCK(p);
1505                                         continue;
1506                                 }
1507                                 break;
1508
1509                         case KERN_PROC_PGRP:
1510                                 /* could do this by traversing pgrp */
1511                                 if (p->p_pgrp == NULL ||
1512                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
1513                                         PROC_UNLOCK(p);
1514                                         continue;
1515                                 }
1516                                 break;
1517
1518                         case KERN_PROC_RGID:
1519                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1520                                         PROC_UNLOCK(p);
1521                                         continue;
1522                                 }
1523                                 break;
1524
1525                         case KERN_PROC_SESSION:
1526                                 if (p->p_session == NULL ||
1527                                     p->p_session->s_sid != (pid_t)name[0]) {
1528                                         PROC_UNLOCK(p);
1529                                         continue;
1530                                 }
1531                                 break;
1532
1533                         case KERN_PROC_TTY:
1534                                 if ((p->p_flag & P_CONTROLT) == 0 ||
1535                                     p->p_session == NULL) {
1536                                         PROC_UNLOCK(p);
1537                                         continue;
1538                                 }
1539                                 /* XXX proctree_lock */
1540                                 SESS_LOCK(p->p_session);
1541                                 if (p->p_session->s_ttyp == NULL ||
1542                                     tty_udev(p->p_session->s_ttyp) !=
1543                                     (dev_t)name[0]) {
1544                                         SESS_UNLOCK(p->p_session);
1545                                         PROC_UNLOCK(p);
1546                                         continue;
1547                                 }
1548                                 SESS_UNLOCK(p->p_session);
1549                                 break;
1550
1551                         case KERN_PROC_UID:
1552                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1553                                         PROC_UNLOCK(p);
1554                                         continue;
1555                                 }
1556                                 break;
1557
1558                         case KERN_PROC_RUID:
1559                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1560                                         PROC_UNLOCK(p);
1561                                         continue;
1562                                 }
1563                                 break;
1564
1565                         case KERN_PROC_PROC:
1566                                 break;
1567
1568                         default:
1569                                 break;
1570
1571                         }
1572
1573                         error = sysctl_out_proc(p, req, flags);
1574                         if (error) {
1575                                 sx_sunlock(&allproc_lock);
1576                                 sx_sunlock(&proctree_lock);
1577                                 return (error);
1578                         }
1579                 }
1580         }
1581         sx_sunlock(&allproc_lock);
1582         sx_sunlock(&proctree_lock);
1583         return (0);
1584 }
1585
1586 struct pargs *
1587 pargs_alloc(int len)
1588 {
1589         struct pargs *pa;
1590
1591         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1592                 M_WAITOK);
1593         refcount_init(&pa->ar_ref, 1);
1594         pa->ar_length = len;
1595         return (pa);
1596 }
1597
1598 static void
1599 pargs_free(struct pargs *pa)
1600 {
1601
1602         free(pa, M_PARGS);
1603 }
1604
1605 void
1606 pargs_hold(struct pargs *pa)
1607 {
1608
1609         if (pa == NULL)
1610                 return;
1611         refcount_acquire(&pa->ar_ref);
1612 }
1613
1614 void
1615 pargs_drop(struct pargs *pa)
1616 {
1617
1618         if (pa == NULL)
1619                 return;
1620         if (refcount_release(&pa->ar_ref))
1621                 pargs_free(pa);
1622 }
1623
1624 static int
1625 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1626     size_t len)
1627 {
1628         ssize_t n;
1629
1630         /*
1631          * This may return a short read if the string is shorter than the chunk
1632          * and is aligned at the end of the page, and the following page is not
1633          * mapped.
1634          */
1635         n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1636         if (n <= 0)
1637                 return (ENOMEM);
1638         return (0);
1639 }
1640
1641 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
1642
1643 enum proc_vector_type {
1644         PROC_ARG,
1645         PROC_ENV,
1646         PROC_AUX,
1647 };
1648
1649 #ifdef COMPAT_FREEBSD32
1650 static int
1651 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1652     size_t *vsizep, enum proc_vector_type type)
1653 {
1654         struct freebsd32_ps_strings pss;
1655         Elf32_Auxinfo aux;
1656         vm_offset_t vptr, ptr;
1657         uint32_t *proc_vector32;
1658         char **proc_vector;
1659         size_t vsize, size;
1660         int i, error;
1661
1662         error = 0;
1663         if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1664             sizeof(pss)) != sizeof(pss))
1665                 return (ENOMEM);
1666         switch (type) {
1667         case PROC_ARG:
1668                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1669                 vsize = pss.ps_nargvstr;
1670                 if (vsize > ARG_MAX)
1671                         return (ENOEXEC);
1672                 size = vsize * sizeof(int32_t);
1673                 break;
1674         case PROC_ENV:
1675                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1676                 vsize = pss.ps_nenvstr;
1677                 if (vsize > ARG_MAX)
1678                         return (ENOEXEC);
1679                 size = vsize * sizeof(int32_t);
1680                 break;
1681         case PROC_AUX:
1682                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1683                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
1684                 if (vptr % 4 != 0)
1685                         return (ENOEXEC);
1686                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1687                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1688                             sizeof(aux))
1689                                 return (ENOMEM);
1690                         if (aux.a_type == AT_NULL)
1691                                 break;
1692                         ptr += sizeof(aux);
1693                 }
1694                 if (aux.a_type != AT_NULL)
1695                         return (ENOEXEC);
1696                 vsize = i + 1;
1697                 size = vsize * sizeof(aux);
1698                 break;
1699         default:
1700                 KASSERT(0, ("Wrong proc vector type: %d", type));
1701                 return (EINVAL);
1702         }
1703         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1704         if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1705                 error = ENOMEM;
1706                 goto done;
1707         }
1708         if (type == PROC_AUX) {
1709                 *proc_vectorp = (char **)proc_vector32;
1710                 *vsizep = vsize;
1711                 return (0);
1712         }
1713         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1714         for (i = 0; i < (int)vsize; i++)
1715                 proc_vector[i] = PTRIN(proc_vector32[i]);
1716         *proc_vectorp = proc_vector;
1717         *vsizep = vsize;
1718 done:
1719         free(proc_vector32, M_TEMP);
1720         return (error);
1721 }
1722 #endif
1723
1724 static int
1725 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1726     size_t *vsizep, enum proc_vector_type type)
1727 {
1728         struct ps_strings pss;
1729         Elf_Auxinfo aux;
1730         vm_offset_t vptr, ptr;
1731         char **proc_vector;
1732         size_t vsize, size;
1733         int i;
1734
1735 #ifdef COMPAT_FREEBSD32
1736         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1737                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1738 #endif
1739         if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1740             sizeof(pss)) != sizeof(pss))
1741                 return (ENOMEM);
1742         switch (type) {
1743         case PROC_ARG:
1744                 vptr = (vm_offset_t)pss.ps_argvstr;
1745                 vsize = pss.ps_nargvstr;
1746                 if (vsize > ARG_MAX)
1747                         return (ENOEXEC);
1748                 size = vsize * sizeof(char *);
1749                 break;
1750         case PROC_ENV:
1751                 vptr = (vm_offset_t)pss.ps_envstr;
1752                 vsize = pss.ps_nenvstr;
1753                 if (vsize > ARG_MAX)
1754                         return (ENOEXEC);
1755                 size = vsize * sizeof(char *);
1756                 break;
1757         case PROC_AUX:
1758                 /*
1759                  * The aux array is just above env array on the stack. Check
1760                  * that the address is naturally aligned.
1761                  */
1762                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1763                     * sizeof(char *);
1764 #if __ELF_WORD_SIZE == 64
1765                 if (vptr % sizeof(uint64_t) != 0)
1766 #else
1767                 if (vptr % sizeof(uint32_t) != 0)
1768 #endif
1769                         return (ENOEXEC);
1770                 /*
1771                  * We count the array size reading the aux vectors from the
1772                  * stack until AT_NULL vector is returned.  So (to keep the code
1773                  * simple) we read the process stack twice: the first time here
1774                  * to find the size and the second time when copying the vectors
1775                  * to the allocated proc_vector.
1776                  */
1777                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1778                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1779                             sizeof(aux))
1780                                 return (ENOMEM);
1781                         if (aux.a_type == AT_NULL)
1782                                 break;
1783                         ptr += sizeof(aux);
1784                 }
1785                 /*
1786                  * If the PROC_AUXV_MAX entries are iterated over, and we have
1787                  * not reached AT_NULL, it is most likely we are reading wrong
1788                  * data: either the process doesn't have auxv array or data has
1789                  * been modified. Return the error in this case.
1790                  */
1791                 if (aux.a_type != AT_NULL)
1792                         return (ENOEXEC);
1793                 vsize = i + 1;
1794                 size = vsize * sizeof(aux);
1795                 break;
1796         default:
1797                 KASSERT(0, ("Wrong proc vector type: %d", type));
1798                 return (EINVAL); /* In case we are built without INVARIANTS. */
1799         }
1800         proc_vector = malloc(size, M_TEMP, M_WAITOK);
1801         if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1802                 free(proc_vector, M_TEMP);
1803                 return (ENOMEM);
1804         }
1805         *proc_vectorp = proc_vector;
1806         *vsizep = vsize;
1807
1808         return (0);
1809 }
1810
1811 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
1812
1813 static int
1814 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1815     enum proc_vector_type type)
1816 {
1817         size_t done, len, nchr, vsize;
1818         int error, i;
1819         char **proc_vector, *sptr;
1820         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1821
1822         PROC_ASSERT_HELD(p);
1823
1824         /*
1825          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1826          */
1827         nchr = 2 * (PATH_MAX + ARG_MAX);
1828
1829         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1830         if (error != 0)
1831                 return (error);
1832         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1833                 /*
1834                  * The program may have scribbled into its argv array, e.g. to
1835                  * remove some arguments.  If that has happened, break out
1836                  * before trying to read from NULL.
1837                  */
1838                 if (proc_vector[i] == NULL)
1839                         break;
1840                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1841                         error = proc_read_string(td, p, sptr, pss_string,
1842                             sizeof(pss_string));
1843                         if (error != 0)
1844                                 goto done;
1845                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1846                         if (done + len >= nchr)
1847                                 len = nchr - done - 1;
1848                         sbuf_bcat(sb, pss_string, len);
1849                         if (len != GET_PS_STRINGS_CHUNK_SZ)
1850                                 break;
1851                         done += GET_PS_STRINGS_CHUNK_SZ;
1852                 }
1853                 sbuf_bcat(sb, "", 1);
1854                 done += len + 1;
1855         }
1856 done:
1857         free(proc_vector, M_TEMP);
1858         return (error);
1859 }
1860
1861 int
1862 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1863 {
1864
1865         return (get_ps_strings(curthread, p, sb, PROC_ARG));
1866 }
1867
1868 int
1869 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1870 {
1871
1872         return (get_ps_strings(curthread, p, sb, PROC_ENV));
1873 }
1874
1875 int
1876 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1877 {
1878         size_t vsize, size;
1879         char **auxv;
1880         int error;
1881
1882         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1883         if (error == 0) {
1884 #ifdef COMPAT_FREEBSD32
1885                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1886                         size = vsize * sizeof(Elf32_Auxinfo);
1887                 else
1888 #endif
1889                         size = vsize * sizeof(Elf_Auxinfo);
1890                 if (sbuf_bcat(sb, auxv, size) != 0)
1891                         error = ENOMEM;
1892                 free(auxv, M_TEMP);
1893         }
1894         return (error);
1895 }
1896
1897 /*
1898  * This sysctl allows a process to retrieve the argument list or process
1899  * title for another process without groping around in the address space
1900  * of the other process.  It also allow a process to set its own "process 
1901  * title to a string of its own choice.
1902  */
1903 static int
1904 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1905 {
1906         int *name = (int *)arg1;
1907         u_int namelen = arg2;
1908         struct pargs *newpa, *pa;
1909         struct proc *p;
1910         struct sbuf sb;
1911         int flags, error = 0, error2;
1912         pid_t pid;
1913
1914         if (namelen != 1)
1915                 return (EINVAL);
1916
1917         pid = (pid_t)name[0];
1918         /*
1919          * If the query is for this process and it is single-threaded, there
1920          * is nobody to modify pargs, thus we can just read.
1921          */
1922         p = curproc;
1923         if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
1924             (pa = p->p_args) != NULL)
1925                 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
1926
1927         flags = PGET_CANSEE;
1928         if (req->newptr != NULL)
1929                 flags |= PGET_ISCURRENT;
1930         error = pget(pid, flags, &p);
1931         if (error)
1932                 return (error);
1933
1934         pa = p->p_args;
1935         if (pa != NULL) {
1936                 pargs_hold(pa);
1937                 PROC_UNLOCK(p);
1938                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1939                 pargs_drop(pa);
1940         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1941                 _PHOLD(p);
1942                 PROC_UNLOCK(p);
1943                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1944                 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1945                 error = proc_getargv(curthread, p, &sb);
1946                 error2 = sbuf_finish(&sb);
1947                 PRELE(p);
1948                 sbuf_delete(&sb);
1949                 if (error == 0 && error2 != 0)
1950                         error = error2;
1951         } else {
1952                 PROC_UNLOCK(p);
1953         }
1954         if (error != 0 || req->newptr == NULL)
1955                 return (error);
1956
1957         if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
1958                 return (ENOMEM);
1959         newpa = pargs_alloc(req->newlen);
1960         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1961         if (error != 0) {
1962                 pargs_free(newpa);
1963                 return (error);
1964         }
1965         PROC_LOCK(p);
1966         pa = p->p_args;
1967         p->p_args = newpa;
1968         PROC_UNLOCK(p);
1969         pargs_drop(pa);
1970         return (0);
1971 }
1972
1973 /*
1974  * This sysctl allows a process to retrieve environment of another process.
1975  */
1976 static int
1977 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1978 {
1979         int *name = (int *)arg1;
1980         u_int namelen = arg2;
1981         struct proc *p;
1982         struct sbuf sb;
1983         int error, error2;
1984
1985         if (namelen != 1)
1986                 return (EINVAL);
1987
1988         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1989         if (error != 0)
1990                 return (error);
1991         if ((p->p_flag & P_SYSTEM) != 0) {
1992                 PRELE(p);
1993                 return (0);
1994         }
1995
1996         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1997         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1998         error = proc_getenvv(curthread, p, &sb);
1999         error2 = sbuf_finish(&sb);
2000         PRELE(p);
2001         sbuf_delete(&sb);
2002         return (error != 0 ? error : error2);
2003 }
2004
2005 /*
2006  * This sysctl allows a process to retrieve ELF auxiliary vector of
2007  * another process.
2008  */
2009 static int
2010 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2011 {
2012         int *name = (int *)arg1;
2013         u_int namelen = arg2;
2014         struct proc *p;
2015         struct sbuf sb;
2016         int error, error2;
2017
2018         if (namelen != 1)
2019                 return (EINVAL);
2020
2021         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2022         if (error != 0)
2023                 return (error);
2024         if ((p->p_flag & P_SYSTEM) != 0) {
2025                 PRELE(p);
2026                 return (0);
2027         }
2028         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2029         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2030         error = proc_getauxv(curthread, p, &sb);
2031         error2 = sbuf_finish(&sb);
2032         PRELE(p);
2033         sbuf_delete(&sb);
2034         return (error != 0 ? error : error2);
2035 }
2036
2037 /*
2038  * This sysctl allows a process to retrieve the path of the executable for
2039  * itself or another process.
2040  */
2041 static int
2042 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2043 {
2044         pid_t *pidp = (pid_t *)arg1;
2045         unsigned int arglen = arg2;
2046         struct proc *p;
2047         struct vnode *vp;
2048         char *retbuf, *freebuf;
2049         int error;
2050
2051         if (arglen != 1)
2052                 return (EINVAL);
2053         if (*pidp == -1) {      /* -1 means this process */
2054                 p = req->td->td_proc;
2055         } else {
2056                 error = pget(*pidp, PGET_CANSEE, &p);
2057                 if (error != 0)
2058                         return (error);
2059         }
2060
2061         vp = p->p_textvp;
2062         if (vp == NULL) {
2063                 if (*pidp != -1)
2064                         PROC_UNLOCK(p);
2065                 return (0);
2066         }
2067         vref(vp);
2068         if (*pidp != -1)
2069                 PROC_UNLOCK(p);
2070         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
2071         vrele(vp);
2072         if (error)
2073                 return (error);
2074         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2075         free(freebuf, M_TEMP);
2076         return (error);
2077 }
2078
2079 static int
2080 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2081 {
2082         struct proc *p;
2083         char *sv_name;
2084         int *name;
2085         int namelen;
2086         int error;
2087
2088         namelen = arg2;
2089         if (namelen != 1)
2090                 return (EINVAL);
2091
2092         name = (int *)arg1;
2093         error = pget((pid_t)name[0], PGET_CANSEE, &p);
2094         if (error != 0)
2095                 return (error);
2096         sv_name = p->p_sysent->sv_name;
2097         PROC_UNLOCK(p);
2098         return (sysctl_handle_string(oidp, sv_name, 0, req));
2099 }
2100
2101 #ifdef KINFO_OVMENTRY_SIZE
2102 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2103 #endif
2104
2105 #ifdef COMPAT_FREEBSD7
2106 static int
2107 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2108 {
2109         vm_map_entry_t entry, tmp_entry;
2110         unsigned int last_timestamp;
2111         char *fullpath, *freepath;
2112         struct kinfo_ovmentry *kve;
2113         struct vattr va;
2114         struct ucred *cred;
2115         int error, *name;
2116         struct vnode *vp;
2117         struct proc *p;
2118         vm_map_t map;
2119         struct vmspace *vm;
2120
2121         name = (int *)arg1;
2122         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2123         if (error != 0)
2124                 return (error);
2125         vm = vmspace_acquire_ref(p);
2126         if (vm == NULL) {
2127                 PRELE(p);
2128                 return (ESRCH);
2129         }
2130         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2131
2132         map = &vm->vm_map;
2133         vm_map_lock_read(map);
2134         for (entry = map->header.next; entry != &map->header;
2135             entry = entry->next) {
2136                 vm_object_t obj, tobj, lobj;
2137                 vm_offset_t addr;
2138
2139                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2140                         continue;
2141
2142                 bzero(kve, sizeof(*kve));
2143                 kve->kve_structsize = sizeof(*kve);
2144
2145                 kve->kve_private_resident = 0;
2146                 obj = entry->object.vm_object;
2147                 if (obj != NULL) {
2148                         VM_OBJECT_RLOCK(obj);
2149                         if (obj->shadow_count == 1)
2150                                 kve->kve_private_resident =
2151                                     obj->resident_page_count;
2152                 }
2153                 kve->kve_resident = 0;
2154                 addr = entry->start;
2155                 while (addr < entry->end) {
2156                         if (pmap_extract(map->pmap, addr))
2157                                 kve->kve_resident++;
2158                         addr += PAGE_SIZE;
2159                 }
2160
2161                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2162                         if (tobj != obj) {
2163                                 VM_OBJECT_RLOCK(tobj);
2164                                 kve->kve_offset += tobj->backing_object_offset;
2165                         }
2166                         if (lobj != obj)
2167                                 VM_OBJECT_RUNLOCK(lobj);
2168                         lobj = tobj;
2169                 }
2170
2171                 kve->kve_start = (void*)entry->start;
2172                 kve->kve_end = (void*)entry->end;
2173                 kve->kve_offset += (off_t)entry->offset;
2174
2175                 if (entry->protection & VM_PROT_READ)
2176                         kve->kve_protection |= KVME_PROT_READ;
2177                 if (entry->protection & VM_PROT_WRITE)
2178                         kve->kve_protection |= KVME_PROT_WRITE;
2179                 if (entry->protection & VM_PROT_EXECUTE)
2180                         kve->kve_protection |= KVME_PROT_EXEC;
2181
2182                 if (entry->eflags & MAP_ENTRY_COW)
2183                         kve->kve_flags |= KVME_FLAG_COW;
2184                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2185                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2186                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2187                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2188
2189                 last_timestamp = map->timestamp;
2190                 vm_map_unlock_read(map);
2191
2192                 kve->kve_fileid = 0;
2193                 kve->kve_fsid = 0;
2194                 freepath = NULL;
2195                 fullpath = "";
2196                 if (lobj) {
2197                         vp = NULL;
2198                         switch (lobj->type) {
2199                         case OBJT_DEFAULT:
2200                                 kve->kve_type = KVME_TYPE_DEFAULT;
2201                                 break;
2202                         case OBJT_VNODE:
2203                                 kve->kve_type = KVME_TYPE_VNODE;
2204                                 vp = lobj->handle;
2205                                 vref(vp);
2206                                 break;
2207                         case OBJT_SWAP:
2208                                 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2209                                         kve->kve_type = KVME_TYPE_VNODE;
2210                                         if ((lobj->flags & OBJ_TMPFS) != 0) {
2211                                                 vp = lobj->un_pager.swp.swp_tmpfs;
2212                                                 vref(vp);
2213                                         }
2214                                 } else {
2215                                         kve->kve_type = KVME_TYPE_SWAP;
2216                                 }
2217                                 break;
2218                         case OBJT_DEVICE:
2219                                 kve->kve_type = KVME_TYPE_DEVICE;
2220                                 break;
2221                         case OBJT_PHYS:
2222                                 kve->kve_type = KVME_TYPE_PHYS;
2223                                 break;
2224                         case OBJT_DEAD:
2225                                 kve->kve_type = KVME_TYPE_DEAD;
2226                                 break;
2227                         case OBJT_SG:
2228                                 kve->kve_type = KVME_TYPE_SG;
2229                                 break;
2230                         default:
2231                                 kve->kve_type = KVME_TYPE_UNKNOWN;
2232                                 break;
2233                         }
2234                         if (lobj != obj)
2235                                 VM_OBJECT_RUNLOCK(lobj);
2236
2237                         kve->kve_ref_count = obj->ref_count;
2238                         kve->kve_shadow_count = obj->shadow_count;
2239                         VM_OBJECT_RUNLOCK(obj);
2240                         if (vp != NULL) {
2241                                 vn_fullpath(curthread, vp, &fullpath,
2242                                     &freepath);
2243                                 cred = curthread->td_ucred;
2244                                 vn_lock(vp, LK_SHARED | LK_RETRY);
2245                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
2246                                         kve->kve_fileid = va.va_fileid;
2247                                         /* truncate */
2248                                         kve->kve_fsid = va.va_fsid;
2249                                 }
2250                                 vput(vp);
2251                         }
2252                 } else {
2253                         kve->kve_type = KVME_TYPE_NONE;
2254                         kve->kve_ref_count = 0;
2255                         kve->kve_shadow_count = 0;
2256                 }
2257
2258                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2259                 if (freepath != NULL)
2260                         free(freepath, M_TEMP);
2261
2262                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
2263                 vm_map_lock_read(map);
2264                 if (error)
2265                         break;
2266                 if (last_timestamp != map->timestamp) {
2267                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2268                         entry = tmp_entry;
2269                 }
2270         }
2271         vm_map_unlock_read(map);
2272         vmspace_free(vm);
2273         PRELE(p);
2274         free(kve, M_TEMP);
2275         return (error);
2276 }
2277 #endif  /* COMPAT_FREEBSD7 */
2278
2279 #ifdef KINFO_VMENTRY_SIZE
2280 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2281 #endif
2282
2283 void
2284 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2285     int *resident_count, bool *super)
2286 {
2287         vm_object_t obj, tobj;
2288         vm_page_t m, m_adv;
2289         vm_offset_t addr;
2290         vm_paddr_t locked_pa;
2291         vm_pindex_t pi, pi_adv, pindex;
2292
2293         *super = false;
2294         *resident_count = 0;
2295         if (vmmap_skip_res_cnt)
2296                 return;
2297
2298         locked_pa = 0;
2299         obj = entry->object.vm_object;
2300         addr = entry->start;
2301         m_adv = NULL;
2302         pi = OFF_TO_IDX(entry->offset);
2303         for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2304                 if (m_adv != NULL) {
2305                         m = m_adv;
2306                 } else {
2307                         pi_adv = atop(entry->end - addr);
2308                         pindex = pi;
2309                         for (tobj = obj;; tobj = tobj->backing_object) {
2310                                 m = vm_page_find_least(tobj, pindex);
2311                                 if (m != NULL) {
2312                                         if (m->pindex == pindex)
2313                                                 break;
2314                                         if (pi_adv > m->pindex - pindex) {
2315                                                 pi_adv = m->pindex - pindex;
2316                                                 m_adv = m;
2317                                         }
2318                                 }
2319                                 if (tobj->backing_object == NULL)
2320                                         goto next;
2321                                 pindex += OFF_TO_IDX(tobj->
2322                                     backing_object_offset);
2323                         }
2324                 }
2325                 m_adv = NULL;
2326                 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2327                     (addr & (pagesizes[1] - 1)) == 0 &&
2328                     (pmap_mincore(map->pmap, addr, &locked_pa) &
2329                     MINCORE_SUPER) != 0) {
2330                         *super = true;
2331                         pi_adv = atop(pagesizes[1]);
2332                 } else {
2333                         /*
2334                          * We do not test the found page on validity.
2335                          * Either the page is busy and being paged in,
2336                          * or it was invalidated.  The first case
2337                          * should be counted as resident, the second
2338                          * is not so clear; we do account both.
2339                          */
2340                         pi_adv = 1;
2341                 }
2342                 *resident_count += pi_adv;
2343 next:;
2344         }
2345         PA_UNLOCK_COND(locked_pa);
2346 }
2347
2348 /*
2349  * Must be called with the process locked and will return unlocked.
2350  */
2351 int
2352 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2353 {
2354         vm_map_entry_t entry, tmp_entry;
2355         struct vattr va;
2356         vm_map_t map;
2357         vm_object_t obj, tobj, lobj;
2358         char *fullpath, *freepath;
2359         struct kinfo_vmentry *kve;
2360         struct ucred *cred;
2361         struct vnode *vp;
2362         struct vmspace *vm;
2363         vm_offset_t addr;
2364         unsigned int last_timestamp;
2365         int error;
2366         bool super;
2367
2368         PROC_LOCK_ASSERT(p, MA_OWNED);
2369
2370         _PHOLD(p);
2371         PROC_UNLOCK(p);
2372         vm = vmspace_acquire_ref(p);
2373         if (vm == NULL) {
2374                 PRELE(p);
2375                 return (ESRCH);
2376         }
2377         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2378
2379         error = 0;
2380         map = &vm->vm_map;
2381         vm_map_lock_read(map);
2382         for (entry = map->header.next; entry != &map->header;
2383             entry = entry->next) {
2384                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2385                         continue;
2386
2387                 addr = entry->end;
2388                 bzero(kve, sizeof(*kve));
2389                 obj = entry->object.vm_object;
2390                 if (obj != NULL) {
2391                         for (tobj = obj; tobj != NULL;
2392                             tobj = tobj->backing_object) {
2393                                 VM_OBJECT_RLOCK(tobj);
2394                                 kve->kve_offset += tobj->backing_object_offset;
2395                                 lobj = tobj;
2396                         }
2397                         if (obj->backing_object == NULL)
2398                                 kve->kve_private_resident =
2399                                     obj->resident_page_count;
2400                         kern_proc_vmmap_resident(map, entry,
2401                             &kve->kve_resident, &super);
2402                         if (super)
2403                                 kve->kve_flags |= KVME_FLAG_SUPER;
2404                         for (tobj = obj; tobj != NULL;
2405                             tobj = tobj->backing_object) {
2406                                 if (tobj != obj && tobj != lobj)
2407                                         VM_OBJECT_RUNLOCK(tobj);
2408                         }
2409                 } else {
2410                         lobj = NULL;
2411                 }
2412
2413                 kve->kve_start = entry->start;
2414                 kve->kve_end = entry->end;
2415                 kve->kve_offset += entry->offset;
2416
2417                 if (entry->protection & VM_PROT_READ)
2418                         kve->kve_protection |= KVME_PROT_READ;
2419                 if (entry->protection & VM_PROT_WRITE)
2420                         kve->kve_protection |= KVME_PROT_WRITE;
2421                 if (entry->protection & VM_PROT_EXECUTE)
2422                         kve->kve_protection |= KVME_PROT_EXEC;
2423
2424                 if (entry->eflags & MAP_ENTRY_COW)
2425                         kve->kve_flags |= KVME_FLAG_COW;
2426                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2427                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2428                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2429                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2430                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
2431                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
2432                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2433                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2434
2435                 last_timestamp = map->timestamp;
2436                 vm_map_unlock_read(map);
2437
2438                 freepath = NULL;
2439                 fullpath = "";
2440                 if (lobj != NULL) {
2441                         vp = NULL;
2442                         switch (lobj->type) {
2443                         case OBJT_DEFAULT:
2444                                 kve->kve_type = KVME_TYPE_DEFAULT;
2445                                 break;
2446                         case OBJT_VNODE:
2447                                 kve->kve_type = KVME_TYPE_VNODE;
2448                                 vp = lobj->handle;
2449                                 vref(vp);
2450                                 break;
2451                         case OBJT_SWAP:
2452                                 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2453                                         kve->kve_type = KVME_TYPE_VNODE;
2454                                         if ((lobj->flags & OBJ_TMPFS) != 0) {
2455                                                 vp = lobj->un_pager.swp.swp_tmpfs;
2456                                                 vref(vp);
2457                                         }
2458                                 } else {
2459                                         kve->kve_type = KVME_TYPE_SWAP;
2460                                 }
2461                                 break;
2462                         case OBJT_DEVICE:
2463                                 kve->kve_type = KVME_TYPE_DEVICE;
2464                                 break;
2465                         case OBJT_PHYS:
2466                                 kve->kve_type = KVME_TYPE_PHYS;
2467                                 break;
2468                         case OBJT_DEAD:
2469                                 kve->kve_type = KVME_TYPE_DEAD;
2470                                 break;
2471                         case OBJT_SG:
2472                                 kve->kve_type = KVME_TYPE_SG;
2473                                 break;
2474                         case OBJT_MGTDEVICE:
2475                                 kve->kve_type = KVME_TYPE_MGTDEVICE;
2476                                 break;
2477                         default:
2478                                 kve->kve_type = KVME_TYPE_UNKNOWN;
2479                                 break;
2480                         }
2481                         if (lobj != obj)
2482                                 VM_OBJECT_RUNLOCK(lobj);
2483
2484                         kve->kve_ref_count = obj->ref_count;
2485                         kve->kve_shadow_count = obj->shadow_count;
2486                         VM_OBJECT_RUNLOCK(obj);
2487                         if (vp != NULL) {
2488                                 vn_fullpath(curthread, vp, &fullpath,
2489                                     &freepath);
2490                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2491                                 cred = curthread->td_ucred;
2492                                 vn_lock(vp, LK_SHARED | LK_RETRY);
2493                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
2494                                         kve->kve_vn_fileid = va.va_fileid;
2495                                         kve->kve_vn_fsid = va.va_fsid;
2496                                         kve->kve_vn_fsid_freebsd11 =
2497                                             kve->kve_vn_fsid; /* truncate */
2498                                         kve->kve_vn_mode =
2499                                             MAKEIMODE(va.va_type, va.va_mode);
2500                                         kve->kve_vn_size = va.va_size;
2501                                         kve->kve_vn_rdev = va.va_rdev;
2502                                         kve->kve_vn_rdev_freebsd11 =
2503                                             kve->kve_vn_rdev; /* truncate */
2504                                         kve->kve_status = KF_ATTR_VALID;
2505                                 }
2506                                 vput(vp);
2507                         }
2508                 } else {
2509                         kve->kve_type = KVME_TYPE_NONE;
2510                         kve->kve_ref_count = 0;
2511                         kve->kve_shadow_count = 0;
2512                 }
2513
2514                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2515                 if (freepath != NULL)
2516                         free(freepath, M_TEMP);
2517
2518                 /* Pack record size down */
2519                 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2520                         kve->kve_structsize =
2521                             offsetof(struct kinfo_vmentry, kve_path) +
2522                             strlen(kve->kve_path) + 1;
2523                 else
2524                         kve->kve_structsize = sizeof(*kve);
2525                 kve->kve_structsize = roundup(kve->kve_structsize,
2526                     sizeof(uint64_t));
2527
2528                 /* Halt filling and truncate rather than exceeding maxlen */
2529                 if (maxlen != -1 && maxlen < kve->kve_structsize) {
2530                         error = 0;
2531                         vm_map_lock_read(map);
2532                         break;
2533                 } else if (maxlen != -1)
2534                         maxlen -= kve->kve_structsize;
2535
2536                 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2537                         error = ENOMEM;
2538                 vm_map_lock_read(map);
2539                 if (error != 0)
2540                         break;
2541                 if (last_timestamp != map->timestamp) {
2542                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2543                         entry = tmp_entry;
2544                 }
2545         }
2546         vm_map_unlock_read(map);
2547         vmspace_free(vm);
2548         PRELE(p);
2549         free(kve, M_TEMP);
2550         return (error);
2551 }
2552
2553 static int
2554 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2555 {
2556         struct proc *p;
2557         struct sbuf sb;
2558         int error, error2, *name;
2559
2560         name = (int *)arg1;
2561         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2562         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2563         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2564         if (error != 0) {
2565                 sbuf_delete(&sb);
2566                 return (error);
2567         }
2568         error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2569         error2 = sbuf_finish(&sb);
2570         sbuf_delete(&sb);
2571         return (error != 0 ? error : error2);
2572 }
2573
2574 #if defined(STACK) || defined(DDB)
2575 static int
2576 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2577 {
2578         struct kinfo_kstack *kkstp;
2579         int error, i, *name, numthreads;
2580         lwpid_t *lwpidarray;
2581         struct thread *td;
2582         struct stack *st;
2583         struct sbuf sb;
2584         struct proc *p;
2585
2586         name = (int *)arg1;
2587         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2588         if (error != 0)
2589                 return (error);
2590
2591         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2592         st = stack_create(M_WAITOK);
2593
2594         lwpidarray = NULL;
2595         PROC_LOCK(p);
2596         do {
2597                 if (lwpidarray != NULL) {
2598                         free(lwpidarray, M_TEMP);
2599                         lwpidarray = NULL;
2600                 }
2601                 numthreads = p->p_numthreads;
2602                 PROC_UNLOCK(p);
2603                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2604                     M_WAITOK | M_ZERO);
2605                 PROC_LOCK(p);
2606         } while (numthreads < p->p_numthreads);
2607
2608         /*
2609          * XXXRW: During the below loop, execve(2) and countless other sorts
2610          * of changes could have taken place.  Should we check to see if the
2611          * vmspace has been replaced, or the like, in order to prevent
2612          * giving a snapshot that spans, say, execve(2), with some threads
2613          * before and some after?  Among other things, the credentials could
2614          * have changed, in which case the right to extract debug info might
2615          * no longer be assured.
2616          */
2617         i = 0;
2618         FOREACH_THREAD_IN_PROC(p, td) {
2619                 KASSERT(i < numthreads,
2620                     ("sysctl_kern_proc_kstack: numthreads"));
2621                 lwpidarray[i] = td->td_tid;
2622                 i++;
2623         }
2624         numthreads = i;
2625         for (i = 0; i < numthreads; i++) {
2626                 td = thread_find(p, lwpidarray[i]);
2627                 if (td == NULL) {
2628                         continue;
2629                 }
2630                 bzero(kkstp, sizeof(*kkstp));
2631                 (void)sbuf_new(&sb, kkstp->kkst_trace,
2632                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2633                 thread_lock(td);
2634                 kkstp->kkst_tid = td->td_tid;
2635                 if (TD_IS_SWAPPED(td)) {
2636                         kkstp->kkst_state = KKST_STATE_SWAPPED;
2637                 } else if (TD_IS_RUNNING(td)) {
2638                         if (stack_save_td_running(st, td) == 0)
2639                                 kkstp->kkst_state = KKST_STATE_STACKOK;
2640                         else
2641                                 kkstp->kkst_state = KKST_STATE_RUNNING;
2642                 } else {
2643                         kkstp->kkst_state = KKST_STATE_STACKOK;
2644                         stack_save_td(st, td);
2645                 }
2646                 thread_unlock(td);
2647                 PROC_UNLOCK(p);
2648                 stack_sbuf_print(&sb, st);
2649                 sbuf_finish(&sb);
2650                 sbuf_delete(&sb);
2651                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2652                 PROC_LOCK(p);
2653                 if (error)
2654                         break;
2655         }
2656         _PRELE(p);
2657         PROC_UNLOCK(p);
2658         if (lwpidarray != NULL)
2659                 free(lwpidarray, M_TEMP);
2660         stack_destroy(st);
2661         free(kkstp, M_TEMP);
2662         return (error);
2663 }
2664 #endif
2665
2666 /*
2667  * This sysctl allows a process to retrieve the full list of groups from
2668  * itself or another process.
2669  */
2670 static int
2671 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2672 {
2673         pid_t *pidp = (pid_t *)arg1;
2674         unsigned int arglen = arg2;
2675         struct proc *p;
2676         struct ucred *cred;
2677         int error;
2678
2679         if (arglen != 1)
2680                 return (EINVAL);
2681         if (*pidp == -1) {      /* -1 means this process */
2682                 p = req->td->td_proc;
2683                 PROC_LOCK(p);
2684         } else {
2685                 error = pget(*pidp, PGET_CANSEE, &p);
2686                 if (error != 0)
2687                         return (error);
2688         }
2689
2690         cred = crhold(p->p_ucred);
2691         PROC_UNLOCK(p);
2692
2693         error = SYSCTL_OUT(req, cred->cr_groups,
2694             cred->cr_ngroups * sizeof(gid_t));
2695         crfree(cred);
2696         return (error);
2697 }
2698
2699 /*
2700  * This sysctl allows a process to retrieve or/and set the resource limit for
2701  * another process.
2702  */
2703 static int
2704 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2705 {
2706         int *name = (int *)arg1;
2707         u_int namelen = arg2;
2708         struct rlimit rlim;
2709         struct proc *p;
2710         u_int which;
2711         int flags, error;
2712
2713         if (namelen != 2)
2714                 return (EINVAL);
2715
2716         which = (u_int)name[1];
2717         if (which >= RLIM_NLIMITS)
2718                 return (EINVAL);
2719
2720         if (req->newptr != NULL && req->newlen != sizeof(rlim))
2721                 return (EINVAL);
2722
2723         flags = PGET_HOLD | PGET_NOTWEXIT;
2724         if (req->newptr != NULL)
2725                 flags |= PGET_CANDEBUG;
2726         else
2727                 flags |= PGET_CANSEE;
2728         error = pget((pid_t)name[0], flags, &p);
2729         if (error != 0)
2730                 return (error);
2731
2732         /*
2733          * Retrieve limit.
2734          */
2735         if (req->oldptr != NULL) {
2736                 PROC_LOCK(p);
2737                 lim_rlimit_proc(p, which, &rlim);
2738                 PROC_UNLOCK(p);
2739         }
2740         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2741         if (error != 0)
2742                 goto errout;
2743
2744         /*
2745          * Set limit.
2746          */
2747         if (req->newptr != NULL) {
2748                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2749                 if (error == 0)
2750                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
2751         }
2752
2753 errout:
2754         PRELE(p);
2755         return (error);
2756 }
2757
2758 /*
2759  * This sysctl allows a process to retrieve ps_strings structure location of
2760  * another process.
2761  */
2762 static int
2763 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2764 {
2765         int *name = (int *)arg1;
2766         u_int namelen = arg2;
2767         struct proc *p;
2768         vm_offset_t ps_strings;
2769         int error;
2770 #ifdef COMPAT_FREEBSD32
2771         uint32_t ps_strings32;
2772 #endif
2773
2774         if (namelen != 1)
2775                 return (EINVAL);
2776
2777         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2778         if (error != 0)
2779                 return (error);
2780 #ifdef COMPAT_FREEBSD32
2781         if ((req->flags & SCTL_MASK32) != 0) {
2782                 /*
2783                  * We return 0 if the 32 bit emulation request is for a 64 bit
2784                  * process.
2785                  */
2786                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2787                     PTROUT(p->p_sysent->sv_psstrings) : 0;
2788                 PROC_UNLOCK(p);
2789                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2790                 return (error);
2791         }
2792 #endif
2793         ps_strings = p->p_sysent->sv_psstrings;
2794         PROC_UNLOCK(p);
2795         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2796         return (error);
2797 }
2798
2799 /*
2800  * This sysctl allows a process to retrieve umask of another process.
2801  */
2802 static int
2803 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2804 {
2805         int *name = (int *)arg1;
2806         u_int namelen = arg2;
2807         struct proc *p;
2808         int error;
2809         u_short fd_cmask;
2810         pid_t pid;
2811
2812         if (namelen != 1)
2813                 return (EINVAL);
2814
2815         pid = (pid_t)name[0];
2816         p = curproc;
2817         if (pid == p->p_pid || pid == 0) {
2818                 fd_cmask = p->p_fd->fd_cmask;
2819                 goto out;
2820         }
2821
2822         error = pget(pid, PGET_WANTREAD, &p);
2823         if (error != 0)
2824                 return (error);
2825
2826         fd_cmask = p->p_fd->fd_cmask;
2827         PRELE(p);
2828 out:
2829         error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2830         return (error);
2831 }
2832
2833 /*
2834  * This sysctl allows a process to set and retrieve binary osreldate of
2835  * another process.
2836  */
2837 static int
2838 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2839 {
2840         int *name = (int *)arg1;
2841         u_int namelen = arg2;
2842         struct proc *p;
2843         int flags, error, osrel;
2844
2845         if (namelen != 1)
2846                 return (EINVAL);
2847
2848         if (req->newptr != NULL && req->newlen != sizeof(osrel))
2849                 return (EINVAL);
2850
2851         flags = PGET_HOLD | PGET_NOTWEXIT;
2852         if (req->newptr != NULL)
2853                 flags |= PGET_CANDEBUG;
2854         else
2855                 flags |= PGET_CANSEE;
2856         error = pget((pid_t)name[0], flags, &p);
2857         if (error != 0)
2858                 return (error);
2859
2860         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2861         if (error != 0)
2862                 goto errout;
2863
2864         if (req->newptr != NULL) {
2865                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2866                 if (error != 0)
2867                         goto errout;
2868                 if (osrel < 0) {
2869                         error = EINVAL;
2870                         goto errout;
2871                 }
2872                 p->p_osrel = osrel;
2873         }
2874 errout:
2875         PRELE(p);
2876         return (error);
2877 }
2878
2879 static int
2880 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2881 {
2882         int *name = (int *)arg1;
2883         u_int namelen = arg2;
2884         struct proc *p;
2885         struct kinfo_sigtramp kst;
2886         const struct sysentvec *sv;
2887         int error;
2888 #ifdef COMPAT_FREEBSD32
2889         struct kinfo_sigtramp32 kst32;
2890 #endif
2891
2892         if (namelen != 1)
2893                 return (EINVAL);
2894
2895         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2896         if (error != 0)
2897                 return (error);
2898         sv = p->p_sysent;
2899 #ifdef COMPAT_FREEBSD32
2900         if ((req->flags & SCTL_MASK32) != 0) {
2901                 bzero(&kst32, sizeof(kst32));
2902                 if (SV_PROC_FLAG(p, SV_ILP32)) {
2903                         if (sv->sv_sigcode_base != 0) {
2904                                 kst32.ksigtramp_start = sv->sv_sigcode_base;
2905                                 kst32.ksigtramp_end = sv->sv_sigcode_base +
2906                                     *sv->sv_szsigcode;
2907                         } else {
2908                                 kst32.ksigtramp_start = sv->sv_psstrings -
2909                                     *sv->sv_szsigcode;
2910                                 kst32.ksigtramp_end = sv->sv_psstrings;
2911                         }
2912                 }
2913                 PROC_UNLOCK(p);
2914                 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2915                 return (error);
2916         }
2917 #endif
2918         bzero(&kst, sizeof(kst));
2919         if (sv->sv_sigcode_base != 0) {
2920                 kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2921                 kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2922                     *sv->sv_szsigcode;
2923         } else {
2924                 kst.ksigtramp_start = (char *)sv->sv_psstrings -
2925                     *sv->sv_szsigcode;
2926                 kst.ksigtramp_end = (char *)sv->sv_psstrings;
2927         }
2928         PROC_UNLOCK(p);
2929         error = SYSCTL_OUT(req, &kst, sizeof(kst));
2930         return (error);
2931 }
2932
2933 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2934
2935 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2936         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2937         "Return entire process table");
2938
2939 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2940         sysctl_kern_proc, "Process table");
2941
2942 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2943         sysctl_kern_proc, "Process table");
2944
2945 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2946         sysctl_kern_proc, "Process table");
2947
2948 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2949         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2950
2951 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2952         sysctl_kern_proc, "Process table");
2953
2954 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2955         sysctl_kern_proc, "Process table");
2956
2957 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2958         sysctl_kern_proc, "Process table");
2959
2960 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2961         sysctl_kern_proc, "Process table");
2962
2963 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2964         sysctl_kern_proc, "Return process table, no threads");
2965
2966 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2967         CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2968         sysctl_kern_proc_args, "Process argument list");
2969
2970 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2971         sysctl_kern_proc_env, "Process environment");
2972
2973 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2974         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2975
2976 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2977         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2978
2979 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2980         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2981         "Process syscall vector name (ABI type)");
2982
2983 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2984         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2985
2986 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2987         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2988
2989 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2990         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2991
2992 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2993         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2994
2995 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2996         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2997
2998 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2999         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3000
3001 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3002         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3003
3004 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3005         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3006
3007 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3008         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3009         "Return process table, no threads");
3010
3011 #ifdef COMPAT_FREEBSD7
3012 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3013         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3014 #endif
3015
3016 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3017         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3018
3019 #if defined(STACK) || defined(DDB)
3020 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3021         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3022 #endif
3023
3024 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3025         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3026
3027 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3028         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3029         "Process resource limits");
3030
3031 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3032         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3033         "Process ps_strings location");
3034
3035 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3036         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3037
3038 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3039         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3040         "Process binary osreldate");
3041
3042 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3043         CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3044         "Process signal trampoline location");
3045
3046 int allproc_gen;
3047
3048 /*
3049  * stop_all_proc() purpose is to stop all process which have usermode,
3050  * except current process for obvious reasons.  This makes it somewhat
3051  * unreliable when invoked from multithreaded process.  The service
3052  * must not be user-callable anyway.
3053  */
3054 void
3055 stop_all_proc(void)
3056 {
3057         struct proc *cp, *p;
3058         int r, gen;
3059         bool restart, seen_stopped, seen_exiting, stopped_some;
3060
3061         cp = curproc;
3062 allproc_loop:
3063         sx_xlock(&allproc_lock);
3064         gen = allproc_gen;
3065         seen_exiting = seen_stopped = stopped_some = restart = false;
3066         LIST_REMOVE(cp, p_list);
3067         LIST_INSERT_HEAD(&allproc, cp, p_list);
3068         for (;;) {
3069                 p = LIST_NEXT(cp, p_list);
3070                 if (p == NULL)
3071                         break;
3072                 LIST_REMOVE(cp, p_list);
3073                 LIST_INSERT_AFTER(p, cp, p_list);
3074                 PROC_LOCK(p);
3075                 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3076                         PROC_UNLOCK(p);
3077                         continue;
3078                 }
3079                 if ((p->p_flag & P_WEXIT) != 0) {
3080                         seen_exiting = true;
3081                         PROC_UNLOCK(p);
3082                         continue;
3083                 }
3084                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3085                         /*
3086                          * Stopped processes are tolerated when there
3087                          * are no other processes which might continue
3088                          * them.  P_STOPPED_SINGLE but not
3089                          * P_TOTAL_STOP process still has at least one
3090                          * thread running.
3091                          */
3092                         seen_stopped = true;
3093                         PROC_UNLOCK(p);
3094                         continue;
3095                 }
3096                 _PHOLD(p);
3097                 sx_xunlock(&allproc_lock);
3098                 r = thread_single(p, SINGLE_ALLPROC);
3099                 if (r != 0)
3100                         restart = true;
3101                 else
3102                         stopped_some = true;
3103                 _PRELE(p);
3104                 PROC_UNLOCK(p);
3105                 sx_xlock(&allproc_lock);
3106         }
3107         /* Catch forked children we did not see in iteration. */
3108         if (gen != allproc_gen)
3109                 restart = true;
3110         sx_xunlock(&allproc_lock);
3111         if (restart || stopped_some || seen_exiting || seen_stopped) {
3112                 kern_yield(PRI_USER);
3113                 goto allproc_loop;
3114         }
3115 }
3116
3117 void
3118 resume_all_proc(void)
3119 {
3120         struct proc *cp, *p;
3121
3122         cp = curproc;
3123         sx_xlock(&allproc_lock);
3124 again:
3125         LIST_REMOVE(cp, p_list);
3126         LIST_INSERT_HEAD(&allproc, cp, p_list);
3127         for (;;) {
3128                 p = LIST_NEXT(cp, p_list);
3129                 if (p == NULL)
3130                         break;
3131                 LIST_REMOVE(cp, p_list);
3132                 LIST_INSERT_AFTER(p, cp, p_list);
3133                 PROC_LOCK(p);
3134                 if ((p->p_flag & P_TOTAL_STOP) != 0) {
3135                         sx_xunlock(&allproc_lock);
3136                         _PHOLD(p);
3137                         thread_single_end(p, SINGLE_ALLPROC);
3138                         _PRELE(p);
3139                         PROC_UNLOCK(p);
3140                         sx_xlock(&allproc_lock);
3141                 } else {
3142                         PROC_UNLOCK(p);
3143                 }
3144         }
3145         /*  Did the loop above missed any stopped process ? */
3146         LIST_FOREACH(p, &allproc, p_list) {
3147                 /* No need for proc lock. */
3148                 if ((p->p_flag & P_TOTAL_STOP) != 0)
3149                         goto again;
3150         }
3151         sx_xunlock(&allproc_lock);
3152 }
3153
3154 /* #define      TOTAL_STOP_DEBUG        1 */
3155 #ifdef TOTAL_STOP_DEBUG
3156 volatile static int ap_resume;
3157 #include <sys/mount.h>
3158
3159 static int
3160 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3161 {
3162         int error, val;
3163
3164         val = 0;
3165         ap_resume = 0;
3166         error = sysctl_handle_int(oidp, &val, 0, req);
3167         if (error != 0 || req->newptr == NULL)
3168                 return (error);
3169         if (val != 0) {
3170                 stop_all_proc();
3171                 syncer_suspend();
3172                 while (ap_resume == 0)
3173                         ;
3174                 syncer_resume();
3175                 resume_all_proc();
3176         }
3177         return (0);
3178 }
3179
3180 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3181     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3182     sysctl_debug_stop_all_proc, "I",
3183     "");
3184 #endif