]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_rmlock.c
zfs: merge openzfs/zfs@86e115e21
[FreeBSD/FreeBSD.git] / sys / kern / kern_rmlock.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007 Stephan Uphoff <ups@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the author nor the names of any co-contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 /*
33  * Machine independent bits of reader/writer lock implementation.
34  */
35
36 #include <sys/cdefs.h>
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41
42 #include <sys/kernel.h>
43 #include <sys/kdb.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/rmlock.h>
49 #include <sys/sched.h>
50 #include <sys/smp.h>
51 #include <sys/turnstile.h>
52 #include <sys/lock_profile.h>
53 #include <machine/cpu.h>
54 #include <vm/uma.h>
55
56 #ifdef DDB
57 #include <ddb/ddb.h>
58 #endif
59
60 /*
61  * A cookie to mark destroyed rmlocks.  This is stored in the head of
62  * rm_activeReaders.
63  */
64 #define RM_DESTROYED    ((void *)0xdead)
65
66 #define rm_destroyed(rm)                                                \
67         (LIST_FIRST(&(rm)->rm_activeReaders) == RM_DESTROYED)
68
69 #define RMPF_ONQUEUE    1
70 #define RMPF_SIGNAL     2
71
72 #ifndef INVARIANTS
73 #define _rm_assert(c, what, file, line)
74 #endif
75
76 static void     assert_rm(const struct lock_object *lock, int what);
77 #ifdef DDB
78 static void     db_show_rm(const struct lock_object *lock);
79 #endif
80 static void     lock_rm(struct lock_object *lock, uintptr_t how);
81 #ifdef KDTRACE_HOOKS
82 static int      owner_rm(const struct lock_object *lock, struct thread **owner);
83 #endif
84 static uintptr_t unlock_rm(struct lock_object *lock);
85
86 struct lock_class lock_class_rm = {
87         .lc_name = "rm",
88         .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
89         .lc_assert = assert_rm,
90 #ifdef DDB
91         .lc_ddb_show = db_show_rm,
92 #endif
93         .lc_lock = lock_rm,
94         .lc_unlock = unlock_rm,
95 #ifdef KDTRACE_HOOKS
96         .lc_owner = owner_rm,
97 #endif
98 };
99
100 struct lock_class lock_class_rm_sleepable = {
101         .lc_name = "sleepable rm",
102         .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE,
103         .lc_assert = assert_rm,
104 #ifdef DDB
105         .lc_ddb_show = db_show_rm,
106 #endif
107         .lc_lock = lock_rm,
108         .lc_unlock = unlock_rm,
109 #ifdef KDTRACE_HOOKS
110         .lc_owner = owner_rm,
111 #endif
112 };
113
114 static void
115 assert_rm(const struct lock_object *lock, int what)
116 {
117
118         rm_assert((const struct rmlock *)lock, what);
119 }
120
121 static void
122 lock_rm(struct lock_object *lock, uintptr_t how)
123 {
124         struct rmlock *rm;
125         struct rm_priotracker *tracker;
126
127         rm = (struct rmlock *)lock;
128         if (how == 0)
129                 rm_wlock(rm);
130         else {
131                 tracker = (struct rm_priotracker *)how;
132                 rm_rlock(rm, tracker);
133         }
134 }
135
136 static uintptr_t
137 unlock_rm(struct lock_object *lock)
138 {
139         struct thread *td;
140         struct pcpu *pc;
141         struct rmlock *rm;
142         struct rm_queue *queue;
143         struct rm_priotracker *tracker;
144         uintptr_t how;
145
146         rm = (struct rmlock *)lock;
147         tracker = NULL;
148         how = 0;
149         rm_assert(rm, RA_LOCKED | RA_NOTRECURSED);
150         if (rm_wowned(rm))
151                 rm_wunlock(rm);
152         else {
153                 /*
154                  * Find the right rm_priotracker structure for curthread.
155                  * The guarantee about its uniqueness is given by the fact
156                  * we already asserted the lock wasn't recursively acquired.
157                  */
158                 critical_enter();
159                 td = curthread;
160                 pc = get_pcpu();
161                 for (queue = pc->pc_rm_queue.rmq_next;
162                     queue != &pc->pc_rm_queue; queue = queue->rmq_next) {
163                         tracker = (struct rm_priotracker *)queue;
164                                 if ((tracker->rmp_rmlock == rm) &&
165                                     (tracker->rmp_thread == td)) {
166                                         how = (uintptr_t)tracker;
167                                         break;
168                                 }
169                 }
170                 KASSERT(tracker != NULL,
171                     ("rm_priotracker is non-NULL when lock held in read mode"));
172                 critical_exit();
173                 rm_runlock(rm, tracker);
174         }
175         return (how);
176 }
177
178 #ifdef KDTRACE_HOOKS
179 static int
180 owner_rm(const struct lock_object *lock, struct thread **owner)
181 {
182         const struct rmlock *rm;
183         struct lock_class *lc;
184
185         rm = (const struct rmlock *)lock;
186         lc = LOCK_CLASS(&rm->rm_wlock_object);
187         return (lc->lc_owner(&rm->rm_wlock_object, owner));
188 }
189 #endif
190
191 static struct mtx rm_spinlock;
192
193 MTX_SYSINIT(rm_spinlock, &rm_spinlock, "rm_spinlock", MTX_SPIN);
194
195 /*
196  * Add or remove tracker from per-cpu list.
197  *
198  * The per-cpu list can be traversed at any time in forward direction from an
199  * interrupt on the *local* cpu.
200  */
201 static void inline
202 rm_tracker_add(struct pcpu *pc, struct rm_priotracker *tracker)
203 {
204         struct rm_queue *next;
205
206         /* Initialize all tracker pointers */
207         tracker->rmp_cpuQueue.rmq_prev = &pc->pc_rm_queue;
208         next = pc->pc_rm_queue.rmq_next;
209         tracker->rmp_cpuQueue.rmq_next = next;
210
211         /* rmq_prev is not used during froward traversal. */
212         next->rmq_prev = &tracker->rmp_cpuQueue;
213
214         /* Update pointer to first element. */
215         pc->pc_rm_queue.rmq_next = &tracker->rmp_cpuQueue;
216 }
217
218 /*
219  * Return a count of the number of trackers the thread 'td' already
220  * has on this CPU for the lock 'rm'.
221  */
222 static int
223 rm_trackers_present(const struct pcpu *pc, const struct rmlock *rm,
224     const struct thread *td)
225 {
226         struct rm_queue *queue;
227         struct rm_priotracker *tracker;
228         int count;
229
230         count = 0;
231         for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue;
232             queue = queue->rmq_next) {
233                 tracker = (struct rm_priotracker *)queue;
234                 if ((tracker->rmp_rmlock == rm) && (tracker->rmp_thread == td))
235                         count++;
236         }
237         return (count);
238 }
239
240 static void inline
241 rm_tracker_remove(struct pcpu *pc, struct rm_priotracker *tracker)
242 {
243         struct rm_queue *next, *prev;
244
245         next = tracker->rmp_cpuQueue.rmq_next;
246         prev = tracker->rmp_cpuQueue.rmq_prev;
247
248         /* Not used during forward traversal. */
249         next->rmq_prev = prev;
250
251         /* Remove from list. */
252         prev->rmq_next = next;
253 }
254
255 static void
256 rm_cleanIPI(void *arg)
257 {
258         struct pcpu *pc;
259         struct rmlock *rm = arg;
260         struct rm_priotracker *tracker;
261         struct rm_queue *queue;
262         pc = get_pcpu();
263
264         for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue;
265             queue = queue->rmq_next) {
266                 tracker = (struct rm_priotracker *)queue;
267                 if (tracker->rmp_rmlock == rm && tracker->rmp_flags == 0) {
268                         tracker->rmp_flags = RMPF_ONQUEUE;
269                         mtx_lock_spin(&rm_spinlock);
270                         LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker,
271                             rmp_qentry);
272                         mtx_unlock_spin(&rm_spinlock);
273                 }
274         }
275 }
276
277 void
278 rm_init_flags(struct rmlock *rm, const char *name, int opts)
279 {
280         struct lock_class *lc;
281         int liflags, xflags;
282
283         liflags = 0;
284         if (!(opts & RM_NOWITNESS))
285                 liflags |= LO_WITNESS;
286         if (opts & RM_RECURSE)
287                 liflags |= LO_RECURSABLE;
288         if (opts & RM_NEW)
289                 liflags |= LO_NEW;
290         if (opts & RM_DUPOK)
291                 liflags |= LO_DUPOK;
292         rm->rm_writecpus = all_cpus;
293         LIST_INIT(&rm->rm_activeReaders);
294         if (opts & RM_SLEEPABLE) {
295                 liflags |= LO_SLEEPABLE;
296                 lc = &lock_class_rm_sleepable;
297                 xflags = (opts & RM_NEW ? SX_NEW : 0);
298                 sx_init_flags(&rm->rm_lock_sx, "rmlock_sx",
299                     xflags | SX_NOWITNESS);
300         } else {
301                 lc = &lock_class_rm;
302                 xflags = (opts & RM_NEW ? MTX_NEW : 0);
303                 mtx_init(&rm->rm_lock_mtx, name, "rmlock_mtx",
304                     xflags | MTX_NOWITNESS);
305         }
306         lock_init(&rm->lock_object, lc, name, NULL, liflags);
307 }
308
309 void
310 rm_init(struct rmlock *rm, const char *name)
311 {
312
313         rm_init_flags(rm, name, 0);
314 }
315
316 void
317 rm_destroy(struct rmlock *rm)
318 {
319
320         rm_assert(rm, RA_UNLOCKED);
321         LIST_FIRST(&rm->rm_activeReaders) = RM_DESTROYED;
322         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
323                 sx_destroy(&rm->rm_lock_sx);
324         else
325                 mtx_destroy(&rm->rm_lock_mtx);
326         lock_destroy(&rm->lock_object);
327 }
328
329 int
330 rm_wowned(const struct rmlock *rm)
331 {
332
333         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
334                 return (sx_xlocked(&rm->rm_lock_sx));
335         else
336                 return (mtx_owned(&rm->rm_lock_mtx));
337 }
338
339 void
340 rm_sysinit(void *arg)
341 {
342         struct rm_args *args;
343
344         args = arg;
345         rm_init_flags(args->ra_rm, args->ra_desc, args->ra_flags);
346 }
347
348 static __noinline int
349 _rm_rlock_hard(struct rmlock *rm, struct rm_priotracker *tracker, int trylock)
350 {
351         struct pcpu *pc;
352
353         critical_enter();
354         pc = get_pcpu();
355
356         /* Check if we just need to do a proper critical_exit. */
357         if (!CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus)) {
358                 critical_exit();
359                 return (1);
360         }
361
362         /* Remove our tracker from the per-cpu list. */
363         rm_tracker_remove(pc, tracker);
364
365         /*
366          * Check to see if the IPI granted us the lock after all.  The load of
367          * rmp_flags must happen after the tracker is removed from the list.
368          */
369         atomic_interrupt_fence();
370         if (tracker->rmp_flags) {
371                 /* Just add back tracker - we hold the lock. */
372                 rm_tracker_add(pc, tracker);
373                 critical_exit();
374                 return (1);
375         }
376
377         /*
378          * We allow readers to acquire a lock even if a writer is blocked if
379          * the lock is recursive and the reader already holds the lock.
380          */
381         if ((rm->lock_object.lo_flags & LO_RECURSABLE) != 0) {
382                 /*
383                  * Just grant the lock if this thread already has a tracker
384                  * for this lock on the per-cpu queue.
385                  */
386                 if (rm_trackers_present(pc, rm, curthread) != 0) {
387                         mtx_lock_spin(&rm_spinlock);
388                         LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker,
389                             rmp_qentry);
390                         tracker->rmp_flags = RMPF_ONQUEUE;
391                         mtx_unlock_spin(&rm_spinlock);
392                         rm_tracker_add(pc, tracker);
393                         critical_exit();
394                         return (1);
395                 }
396         }
397
398         sched_unpin();
399         critical_exit();
400
401         if (trylock) {
402                 if (rm->lock_object.lo_flags & LO_SLEEPABLE) {
403                         if (!sx_try_xlock(&rm->rm_lock_sx))
404                                 return (0);
405                 } else {
406                         if (!mtx_trylock(&rm->rm_lock_mtx))
407                                 return (0);
408                 }
409         } else {
410                 if (rm->lock_object.lo_flags & LO_SLEEPABLE) {
411                         THREAD_SLEEPING_OK();
412                         sx_xlock(&rm->rm_lock_sx);
413                         THREAD_NO_SLEEPING();
414                 } else
415                         mtx_lock(&rm->rm_lock_mtx);
416         }
417
418         critical_enter();
419         pc = get_pcpu();
420         CPU_CLR(pc->pc_cpuid, &rm->rm_writecpus);
421         rm_tracker_add(pc, tracker);
422         sched_pin();
423         critical_exit();
424
425         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
426                 sx_xunlock(&rm->rm_lock_sx);
427         else
428                 mtx_unlock(&rm->rm_lock_mtx);
429
430         return (1);
431 }
432
433 int
434 _rm_rlock(struct rmlock *rm, struct rm_priotracker *tracker, int trylock)
435 {
436         struct thread *td = curthread;
437         struct pcpu *pc;
438
439         if (SCHEDULER_STOPPED())
440                 return (1);
441
442         tracker->rmp_flags  = 0;
443         tracker->rmp_thread = td;
444         tracker->rmp_rmlock = rm;
445
446         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
447                 THREAD_NO_SLEEPING();
448
449         td->td_critnest++;      /* critical_enter(); */
450         atomic_interrupt_fence();
451
452         pc = cpuid_to_pcpu[td->td_oncpu];
453         rm_tracker_add(pc, tracker);
454         sched_pin();
455
456         atomic_interrupt_fence();
457         td->td_critnest--;
458
459         /*
460          * Fast path to combine two common conditions into a single
461          * conditional jump.
462          */
463         if (__predict_true(0 == (td->td_owepreempt |
464             CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus))))
465                 return (1);
466
467         /* We do not have a read token and need to acquire one. */
468         return _rm_rlock_hard(rm, tracker, trylock);
469 }
470
471 static __noinline void
472 _rm_unlock_hard(struct thread *td,struct rm_priotracker *tracker)
473 {
474
475         if (td->td_owepreempt) {
476                 td->td_critnest++;
477                 critical_exit();
478         }
479
480         if (!tracker->rmp_flags)
481                 return;
482
483         mtx_lock_spin(&rm_spinlock);
484         LIST_REMOVE(tracker, rmp_qentry);
485
486         if (tracker->rmp_flags & RMPF_SIGNAL) {
487                 struct rmlock *rm;
488                 struct turnstile *ts;
489
490                 rm = tracker->rmp_rmlock;
491
492                 turnstile_chain_lock(&rm->lock_object);
493                 mtx_unlock_spin(&rm_spinlock);
494
495                 ts = turnstile_lookup(&rm->lock_object);
496
497                 turnstile_signal(ts, TS_EXCLUSIVE_QUEUE);
498                 turnstile_unpend(ts);
499                 turnstile_chain_unlock(&rm->lock_object);
500         } else
501                 mtx_unlock_spin(&rm_spinlock);
502 }
503
504 void
505 _rm_runlock(struct rmlock *rm, struct rm_priotracker *tracker)
506 {
507         struct pcpu *pc;
508         struct thread *td = tracker->rmp_thread;
509
510         if (SCHEDULER_STOPPED())
511                 return;
512
513         td->td_critnest++;      /* critical_enter(); */
514         atomic_interrupt_fence();
515
516         pc = cpuid_to_pcpu[td->td_oncpu];
517         rm_tracker_remove(pc, tracker);
518
519         atomic_interrupt_fence();
520         td->td_critnest--;
521         sched_unpin();
522
523         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
524                 THREAD_SLEEPING_OK();
525
526         if (__predict_true(0 == (td->td_owepreempt | tracker->rmp_flags)))
527                 return;
528
529         _rm_unlock_hard(td, tracker);
530 }
531
532 void
533 _rm_wlock(struct rmlock *rm)
534 {
535         struct rm_priotracker *prio;
536         struct turnstile *ts;
537         cpuset_t readcpus;
538
539         if (SCHEDULER_STOPPED())
540                 return;
541
542         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
543                 sx_xlock(&rm->rm_lock_sx);
544         else
545                 mtx_lock(&rm->rm_lock_mtx);
546
547         if (CPU_CMP(&rm->rm_writecpus, &all_cpus)) {
548                 /* Get all read tokens back */
549                 readcpus = all_cpus;
550                 CPU_ANDNOT(&readcpus, &readcpus, &rm->rm_writecpus);
551                 rm->rm_writecpus = all_cpus;
552
553                 /*
554                  * Assumes rm->rm_writecpus update is visible on other CPUs
555                  * before rm_cleanIPI is called.
556                  */
557 #ifdef SMP
558                 smp_rendezvous_cpus(readcpus,
559                     smp_no_rendezvous_barrier,
560                     rm_cleanIPI,
561                     smp_no_rendezvous_barrier,
562                     rm);
563
564 #else
565                 rm_cleanIPI(rm);
566 #endif
567
568                 mtx_lock_spin(&rm_spinlock);
569                 while ((prio = LIST_FIRST(&rm->rm_activeReaders)) != NULL) {
570                         ts = turnstile_trywait(&rm->lock_object);
571                         prio->rmp_flags = RMPF_ONQUEUE | RMPF_SIGNAL;
572                         mtx_unlock_spin(&rm_spinlock);
573                         turnstile_wait(ts, prio->rmp_thread,
574                             TS_EXCLUSIVE_QUEUE);
575                         mtx_lock_spin(&rm_spinlock);
576                 }
577                 mtx_unlock_spin(&rm_spinlock);
578         }
579 }
580
581 void
582 _rm_wunlock(struct rmlock *rm)
583 {
584
585         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
586                 sx_xunlock(&rm->rm_lock_sx);
587         else
588                 mtx_unlock(&rm->rm_lock_mtx);
589 }
590
591 #if LOCK_DEBUG > 0
592
593 void
594 _rm_wlock_debug(struct rmlock *rm, const char *file, int line)
595 {
596
597         if (SCHEDULER_STOPPED())
598                 return;
599
600         KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
601             ("rm_wlock() by idle thread %p on rmlock %s @ %s:%d",
602             curthread, rm->lock_object.lo_name, file, line));
603         KASSERT(!rm_destroyed(rm),
604             ("rm_wlock() of destroyed rmlock @ %s:%d", file, line));
605         _rm_assert(rm, RA_UNLOCKED, file, line);
606
607         WITNESS_CHECKORDER(&rm->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE,
608             file, line, NULL);
609
610         _rm_wlock(rm);
611
612         LOCK_LOG_LOCK("RMWLOCK", &rm->lock_object, 0, 0, file, line);
613         WITNESS_LOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line);
614         TD_LOCKS_INC(curthread);
615 }
616
617 void
618 _rm_wunlock_debug(struct rmlock *rm, const char *file, int line)
619 {
620
621         if (SCHEDULER_STOPPED())
622                 return;
623
624         KASSERT(!rm_destroyed(rm),
625             ("rm_wunlock() of destroyed rmlock @ %s:%d", file, line));
626         _rm_assert(rm, RA_WLOCKED, file, line);
627         WITNESS_UNLOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line);
628         LOCK_LOG_LOCK("RMWUNLOCK", &rm->lock_object, 0, 0, file, line);
629         _rm_wunlock(rm);
630         TD_LOCKS_DEC(curthread);
631 }
632
633 int
634 _rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
635     int trylock, const char *file, int line)
636 {
637
638         if (SCHEDULER_STOPPED())
639                 return (1);
640
641 #ifdef INVARIANTS
642         if (!(rm->lock_object.lo_flags & LO_RECURSABLE) && !trylock) {
643                 critical_enter();
644                 KASSERT(rm_trackers_present(get_pcpu(), rm,
645                     curthread) == 0,
646                     ("rm_rlock: recursed on non-recursive rmlock %s @ %s:%d\n",
647                     rm->lock_object.lo_name, file, line));
648                 critical_exit();
649         }
650 #endif
651         KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
652             ("rm_rlock() by idle thread %p on rmlock %s @ %s:%d",
653             curthread, rm->lock_object.lo_name, file, line));
654         KASSERT(!rm_destroyed(rm),
655             ("rm_rlock() of destroyed rmlock @ %s:%d", file, line));
656         if (!trylock) {
657                 KASSERT(!rm_wowned(rm),
658                     ("rm_rlock: wlock already held for %s @ %s:%d",
659                     rm->lock_object.lo_name, file, line));
660                 WITNESS_CHECKORDER(&rm->lock_object,
661                     LOP_NEWORDER | LOP_NOSLEEP, file, line, NULL);
662         }
663
664         if (_rm_rlock(rm, tracker, trylock)) {
665                 if (trylock)
666                         LOCK_LOG_TRY("RMRLOCK", &rm->lock_object, 0, 1, file,
667                             line);
668                 else
669                         LOCK_LOG_LOCK("RMRLOCK", &rm->lock_object, 0, 0, file,
670                             line);
671                 WITNESS_LOCK(&rm->lock_object, LOP_NOSLEEP, file, line);
672                 TD_LOCKS_INC(curthread);
673                 return (1);
674         } else if (trylock)
675                 LOCK_LOG_TRY("RMRLOCK", &rm->lock_object, 0, 0, file, line);
676
677         return (0);
678 }
679
680 void
681 _rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
682     const char *file, int line)
683 {
684
685         if (SCHEDULER_STOPPED())
686                 return;
687
688         KASSERT(!rm_destroyed(rm),
689             ("rm_runlock() of destroyed rmlock @ %s:%d", file, line));
690         _rm_assert(rm, RA_RLOCKED, file, line);
691         WITNESS_UNLOCK(&rm->lock_object, 0, file, line);
692         LOCK_LOG_LOCK("RMRUNLOCK", &rm->lock_object, 0, 0, file, line);
693         _rm_runlock(rm, tracker);
694         TD_LOCKS_DEC(curthread);
695 }
696
697 #else
698
699 /*
700  * Just strip out file and line arguments if no lock debugging is enabled in
701  * the kernel - we are called from a kernel module.
702  */
703 void
704 _rm_wlock_debug(struct rmlock *rm, const char *file, int line)
705 {
706
707         _rm_wlock(rm);
708 }
709
710 void
711 _rm_wunlock_debug(struct rmlock *rm, const char *file, int line)
712 {
713
714         _rm_wunlock(rm);
715 }
716
717 int
718 _rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
719     int trylock, const char *file, int line)
720 {
721
722         return _rm_rlock(rm, tracker, trylock);
723 }
724
725 void
726 _rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
727     const char *file, int line)
728 {
729
730         _rm_runlock(rm, tracker);
731 }
732
733 #endif
734
735 #ifdef INVARIANT_SUPPORT
736 #ifndef INVARIANTS
737 #undef _rm_assert
738 #endif
739
740 /*
741  * Note that this does not need to use witness_assert() for read lock
742  * assertions since an exact count of read locks held by this thread
743  * is computable.
744  */
745 void
746 _rm_assert(const struct rmlock *rm, int what, const char *file, int line)
747 {
748         int count;
749
750         if (SCHEDULER_STOPPED())
751                 return;
752         switch (what) {
753         case RA_LOCKED:
754         case RA_LOCKED | RA_RECURSED:
755         case RA_LOCKED | RA_NOTRECURSED:
756         case RA_RLOCKED:
757         case RA_RLOCKED | RA_RECURSED:
758         case RA_RLOCKED | RA_NOTRECURSED:
759                 /*
760                  * Handle the write-locked case.  Unlike other
761                  * primitives, writers can never recurse.
762                  */
763                 if (rm_wowned(rm)) {
764                         if (what & RA_RLOCKED)
765                                 panic("Lock %s exclusively locked @ %s:%d\n",
766                                     rm->lock_object.lo_name, file, line);
767                         if (what & RA_RECURSED)
768                                 panic("Lock %s not recursed @ %s:%d\n",
769                                     rm->lock_object.lo_name, file, line);
770                         break;
771                 }
772
773                 critical_enter();
774                 count = rm_trackers_present(get_pcpu(), rm, curthread);
775                 critical_exit();
776
777                 if (count == 0)
778                         panic("Lock %s not %slocked @ %s:%d\n",
779                             rm->lock_object.lo_name, (what & RA_RLOCKED) ?
780                             "read " : "", file, line);
781                 if (count > 1) {
782                         if (what & RA_NOTRECURSED)
783                                 panic("Lock %s recursed @ %s:%d\n",
784                                     rm->lock_object.lo_name, file, line);
785                 } else if (what & RA_RECURSED)
786                         panic("Lock %s not recursed @ %s:%d\n",
787                             rm->lock_object.lo_name, file, line);
788                 break;
789         case RA_WLOCKED:
790                 if (!rm_wowned(rm))
791                         panic("Lock %s not exclusively locked @ %s:%d\n",
792                             rm->lock_object.lo_name, file, line);
793                 break;
794         case RA_UNLOCKED:
795                 if (rm_wowned(rm))
796                         panic("Lock %s exclusively locked @ %s:%d\n",
797                             rm->lock_object.lo_name, file, line);
798
799                 critical_enter();
800                 count = rm_trackers_present(get_pcpu(), rm, curthread);
801                 critical_exit();
802
803                 if (count != 0)
804                         panic("Lock %s read locked @ %s:%d\n",
805                             rm->lock_object.lo_name, file, line);
806                 break;
807         default:
808                 panic("Unknown rm lock assertion: %d @ %s:%d", what, file,
809                     line);
810         }
811 }
812 #endif /* INVARIANT_SUPPORT */
813
814 #ifdef DDB
815 static void
816 print_tracker(struct rm_priotracker *tr)
817 {
818         struct thread *td;
819
820         td = tr->rmp_thread;
821         db_printf("   thread %p (tid %d, pid %d, \"%s\") {", td, td->td_tid,
822             td->td_proc->p_pid, td->td_name);
823         if (tr->rmp_flags & RMPF_ONQUEUE) {
824                 db_printf("ONQUEUE");
825                 if (tr->rmp_flags & RMPF_SIGNAL)
826                         db_printf(",SIGNAL");
827         } else
828                 db_printf("0");
829         db_printf("}\n");
830 }
831
832 static void
833 db_show_rm(const struct lock_object *lock)
834 {
835         struct rm_priotracker *tr;
836         struct rm_queue *queue;
837         const struct rmlock *rm;
838         struct lock_class *lc;
839         struct pcpu *pc;
840
841         rm = (const struct rmlock *)lock;
842         db_printf(" writecpus: ");
843         ddb_display_cpuset(__DEQUALIFY(const cpuset_t *, &rm->rm_writecpus));
844         db_printf("\n");
845         db_printf(" per-CPU readers:\n");
846         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu)
847                 for (queue = pc->pc_rm_queue.rmq_next;
848                     queue != &pc->pc_rm_queue; queue = queue->rmq_next) {
849                         tr = (struct rm_priotracker *)queue;
850                         if (tr->rmp_rmlock == rm)
851                                 print_tracker(tr);
852                 }
853         db_printf(" active readers:\n");
854         LIST_FOREACH(tr, &rm->rm_activeReaders, rmp_qentry)
855                 print_tracker(tr);
856         lc = LOCK_CLASS(&rm->rm_wlock_object);
857         db_printf("Backing write-lock (%s):\n", lc->lc_name);
858         lc->lc_ddb_show(&rm->rm_wlock_object);
859 }
860 #endif
861
862 /*
863  * Read-mostly sleepable locks.
864  *
865  * These primitives allow both readers and writers to sleep. However, neither
866  * readers nor writers are tracked and subsequently there is no priority
867  * propagation.
868  *
869  * They are intended to be only used when write-locking is almost never needed
870  * (e.g., they can guard against unloading a kernel module) while read-locking
871  * happens all the time.
872  *
873  * Concurrent writers take turns taking the lock while going off cpu. If this is
874  * of concern for your usecase, this is not the right primitive.
875  *
876  * Neither rms_rlock nor rms_runlock use thread fences. Instead interrupt
877  * fences are inserted to ensure ordering with the code executed in the IPI
878  * handler.
879  *
880  * No attempt is made to track which CPUs read locked at least once,
881  * consequently write locking sends IPIs to all of them. This will become a
882  * problem at some point. The easiest way to lessen it is to provide a bitmap.
883  */
884
885 #define RMS_NOOWNER     ((void *)0x1)
886 #define RMS_TRANSIENT   ((void *)0x2)
887 #define RMS_FLAGMASK    0xf
888
889 struct rmslock_pcpu {
890         int influx;
891         int readers;
892 };
893
894 _Static_assert(sizeof(struct rmslock_pcpu) == 8, "bad size");
895
896 /*
897  * Internal routines
898  */
899 static struct rmslock_pcpu *
900 rms_int_pcpu(struct rmslock *rms)
901 {
902
903         CRITICAL_ASSERT(curthread);
904         return (zpcpu_get(rms->pcpu));
905 }
906
907 static struct rmslock_pcpu *
908 rms_int_remote_pcpu(struct rmslock *rms, int cpu)
909 {
910
911         return (zpcpu_get_cpu(rms->pcpu, cpu));
912 }
913
914 static void
915 rms_int_influx_enter(struct rmslock *rms, struct rmslock_pcpu *pcpu)
916 {
917
918         CRITICAL_ASSERT(curthread);
919         MPASS(pcpu->influx == 0);
920         pcpu->influx = 1;
921 }
922
923 static void
924 rms_int_influx_exit(struct rmslock *rms, struct rmslock_pcpu *pcpu)
925 {
926
927         CRITICAL_ASSERT(curthread);
928         MPASS(pcpu->influx == 1);
929         pcpu->influx = 0;
930 }
931
932 #ifdef INVARIANTS
933 static void
934 rms_int_debug_readers_inc(struct rmslock *rms)
935 {
936         int old;
937         old = atomic_fetchadd_int(&rms->debug_readers, 1);
938         KASSERT(old >= 0, ("%s: bad readers count %d\n", __func__, old));
939 }
940
941 static void
942 rms_int_debug_readers_dec(struct rmslock *rms)
943 {
944         int old;
945
946         old = atomic_fetchadd_int(&rms->debug_readers, -1);
947         KASSERT(old > 0, ("%s: bad readers count %d\n", __func__, old));
948 }
949 #else
950 static void
951 rms_int_debug_readers_inc(struct rmslock *rms)
952 {
953 }
954
955 static void
956 rms_int_debug_readers_dec(struct rmslock *rms)
957 {
958 }
959 #endif
960
961 static void
962 rms_int_readers_inc(struct rmslock *rms, struct rmslock_pcpu *pcpu)
963 {
964
965         CRITICAL_ASSERT(curthread);
966         rms_int_debug_readers_inc(rms);
967         pcpu->readers++;
968 }
969
970 static void
971 rms_int_readers_dec(struct rmslock *rms, struct rmslock_pcpu *pcpu)
972 {
973
974         CRITICAL_ASSERT(curthread);
975         rms_int_debug_readers_dec(rms);
976         pcpu->readers--;
977 }
978
979 /*
980  * Public API
981  */
982 void
983 rms_init(struct rmslock *rms, const char *name)
984 {
985
986         rms->owner = RMS_NOOWNER;
987         rms->writers = 0;
988         rms->readers = 0;
989         rms->debug_readers = 0;
990         mtx_init(&rms->mtx, name, NULL, MTX_DEF | MTX_NEW);
991         rms->pcpu = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK | M_ZERO);
992 }
993
994 void
995 rms_destroy(struct rmslock *rms)
996 {
997
998         MPASS(rms->writers == 0);
999         MPASS(rms->readers == 0);
1000         mtx_destroy(&rms->mtx);
1001         uma_zfree_pcpu(pcpu_zone_8, rms->pcpu);
1002 }
1003
1004 static void __noinline
1005 rms_rlock_fallback(struct rmslock *rms)
1006 {
1007
1008         rms_int_influx_exit(rms, rms_int_pcpu(rms));
1009         critical_exit();
1010
1011         mtx_lock(&rms->mtx);
1012         while (rms->writers > 0)
1013                 msleep(&rms->readers, &rms->mtx, PUSER - 1, mtx_name(&rms->mtx), 0);
1014         critical_enter();
1015         rms_int_readers_inc(rms, rms_int_pcpu(rms));
1016         mtx_unlock(&rms->mtx);
1017         critical_exit();
1018         TD_LOCKS_INC(curthread);
1019 }
1020
1021 void
1022 rms_rlock(struct rmslock *rms)
1023 {
1024         struct rmslock_pcpu *pcpu;
1025
1026         rms_assert_rlock_ok(rms);
1027         MPASS(atomic_load_ptr(&rms->owner) != curthread);
1028
1029         critical_enter();
1030         pcpu = rms_int_pcpu(rms);
1031         rms_int_influx_enter(rms, pcpu);
1032         atomic_interrupt_fence();
1033         if (__predict_false(rms->writers > 0)) {
1034                 rms_rlock_fallback(rms);
1035                 return;
1036         }
1037         atomic_interrupt_fence();
1038         rms_int_readers_inc(rms, pcpu);
1039         atomic_interrupt_fence();
1040         rms_int_influx_exit(rms, pcpu);
1041         critical_exit();
1042         TD_LOCKS_INC(curthread);
1043 }
1044
1045 int
1046 rms_try_rlock(struct rmslock *rms)
1047 {
1048         struct rmslock_pcpu *pcpu;
1049
1050         MPASS(atomic_load_ptr(&rms->owner) != curthread);
1051
1052         critical_enter();
1053         pcpu = rms_int_pcpu(rms);
1054         rms_int_influx_enter(rms, pcpu);
1055         atomic_interrupt_fence();
1056         if (__predict_false(rms->writers > 0)) {
1057                 rms_int_influx_exit(rms, pcpu);
1058                 critical_exit();
1059                 return (0);
1060         }
1061         atomic_interrupt_fence();
1062         rms_int_readers_inc(rms, pcpu);
1063         atomic_interrupt_fence();
1064         rms_int_influx_exit(rms, pcpu);
1065         critical_exit();
1066         TD_LOCKS_INC(curthread);
1067         return (1);
1068 }
1069
1070 static void __noinline
1071 rms_runlock_fallback(struct rmslock *rms)
1072 {
1073
1074         rms_int_influx_exit(rms, rms_int_pcpu(rms));
1075         critical_exit();
1076
1077         mtx_lock(&rms->mtx);
1078         MPASS(rms->writers > 0);
1079         MPASS(rms->readers > 0);
1080         MPASS(rms->debug_readers == rms->readers);
1081         rms_int_debug_readers_dec(rms);
1082         rms->readers--;
1083         if (rms->readers == 0)
1084                 wakeup_one(&rms->writers);
1085         mtx_unlock(&rms->mtx);
1086         TD_LOCKS_DEC(curthread);
1087 }
1088
1089 void
1090 rms_runlock(struct rmslock *rms)
1091 {
1092         struct rmslock_pcpu *pcpu;
1093
1094         critical_enter();
1095         pcpu = rms_int_pcpu(rms);
1096         rms_int_influx_enter(rms, pcpu);
1097         atomic_interrupt_fence();
1098         if (__predict_false(rms->writers > 0)) {
1099                 rms_runlock_fallback(rms);
1100                 return;
1101         }
1102         atomic_interrupt_fence();
1103         rms_int_readers_dec(rms, pcpu);
1104         atomic_interrupt_fence();
1105         rms_int_influx_exit(rms, pcpu);
1106         critical_exit();
1107         TD_LOCKS_DEC(curthread);
1108 }
1109
1110 struct rmslock_ipi {
1111         struct rmslock *rms;
1112         struct smp_rendezvous_cpus_retry_arg srcra;
1113 };
1114
1115 static void
1116 rms_action_func(void *arg)
1117 {
1118         struct rmslock_ipi *rmsipi;
1119         struct rmslock_pcpu *pcpu;
1120         struct rmslock *rms;
1121
1122         rmsipi = __containerof(arg, struct rmslock_ipi, srcra);
1123         rms = rmsipi->rms;
1124         pcpu = rms_int_pcpu(rms);
1125
1126         if (pcpu->influx)
1127                 return;
1128         if (pcpu->readers != 0) {
1129                 atomic_add_int(&rms->readers, pcpu->readers);
1130                 pcpu->readers = 0;
1131         }
1132         smp_rendezvous_cpus_done(arg);
1133 }
1134
1135 static void
1136 rms_wait_func(void *arg, int cpu)
1137 {
1138         struct rmslock_ipi *rmsipi;
1139         struct rmslock_pcpu *pcpu;
1140         struct rmslock *rms;
1141
1142         rmsipi = __containerof(arg, struct rmslock_ipi, srcra);
1143         rms = rmsipi->rms;
1144         pcpu = rms_int_remote_pcpu(rms, cpu);
1145
1146         while (atomic_load_int(&pcpu->influx))
1147                 cpu_spinwait();
1148 }
1149
1150 #ifdef INVARIANTS
1151 static void
1152 rms_assert_no_pcpu_readers(struct rmslock *rms)
1153 {
1154         struct rmslock_pcpu *pcpu;
1155         int cpu;
1156
1157         CPU_FOREACH(cpu) {
1158                 pcpu = rms_int_remote_pcpu(rms, cpu);
1159                 if (pcpu->readers != 0) {
1160                         panic("%s: got %d readers on cpu %d\n", __func__,
1161                             pcpu->readers, cpu);
1162                 }
1163         }
1164 }
1165 #else
1166 static void
1167 rms_assert_no_pcpu_readers(struct rmslock *rms)
1168 {
1169 }
1170 #endif
1171
1172 static void
1173 rms_wlock_switch(struct rmslock *rms)
1174 {
1175         struct rmslock_ipi rmsipi;
1176
1177         MPASS(rms->readers == 0);
1178         MPASS(rms->writers == 1);
1179
1180         rmsipi.rms = rms;
1181
1182         smp_rendezvous_cpus_retry(all_cpus,
1183             smp_no_rendezvous_barrier,
1184             rms_action_func,
1185             smp_no_rendezvous_barrier,
1186             rms_wait_func,
1187             &rmsipi.srcra);
1188 }
1189
1190 void
1191 rms_wlock(struct rmslock *rms)
1192 {
1193
1194         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
1195         MPASS(atomic_load_ptr(&rms->owner) != curthread);
1196
1197         mtx_lock(&rms->mtx);
1198         rms->writers++;
1199         if (rms->writers > 1) {
1200                 msleep(&rms->owner, &rms->mtx, (PUSER - 1),
1201                     mtx_name(&rms->mtx), 0);
1202                 MPASS(rms->readers == 0);
1203                 KASSERT(rms->owner == RMS_TRANSIENT,
1204                     ("%s: unexpected owner value %p\n", __func__,
1205                     rms->owner));
1206                 goto out_grab;
1207         }
1208
1209         KASSERT(rms->owner == RMS_NOOWNER,
1210             ("%s: unexpected owner value %p\n", __func__, rms->owner));
1211
1212         rms_wlock_switch(rms);
1213         rms_assert_no_pcpu_readers(rms);
1214
1215         if (rms->readers > 0) {
1216                 msleep(&rms->writers, &rms->mtx, (PUSER - 1),
1217                     mtx_name(&rms->mtx), 0);
1218         }
1219
1220 out_grab:
1221         rms->owner = curthread;
1222         rms_assert_no_pcpu_readers(rms);
1223         mtx_unlock(&rms->mtx);
1224         MPASS(rms->readers == 0);
1225         TD_LOCKS_INC(curthread);
1226 }
1227
1228 void
1229 rms_wunlock(struct rmslock *rms)
1230 {
1231
1232         mtx_lock(&rms->mtx);
1233         KASSERT(rms->owner == curthread,
1234             ("%s: unexpected owner value %p\n", __func__, rms->owner));
1235         MPASS(rms->writers >= 1);
1236         MPASS(rms->readers == 0);
1237         rms->writers--;
1238         if (rms->writers > 0) {
1239                 wakeup_one(&rms->owner);
1240                 rms->owner = RMS_TRANSIENT;
1241         } else {
1242                 wakeup(&rms->readers);
1243                 rms->owner = RMS_NOOWNER;
1244         }
1245         mtx_unlock(&rms->mtx);
1246         TD_LOCKS_DEC(curthread);
1247 }
1248
1249 void
1250 rms_unlock(struct rmslock *rms)
1251 {
1252
1253         if (rms_wowned(rms))
1254                 rms_wunlock(rms);
1255         else
1256                 rms_runlock(rms);
1257 }