]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
Make linux_ptrace() use linux_msg() instead of printf().
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  * All rights reserved.
13  *
14  * Portions of this software were developed by Julien Ridoux at the University
15  * of Melbourne under sponsorship from the FreeBSD Foundation.
16  *
17  * Portions of this software were developed by Konstantin Belousov
18  * under sponsorship from the FreeBSD Foundation.
19  */
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 #include "opt_ntp.h"
25 #include "opt_ffclock.h"
26
27 #include <sys/param.h>
28 #include <sys/kernel.h>
29 #include <sys/limits.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/proc.h>
33 #include <sys/sbuf.h>
34 #include <sys/sleepqueue.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
37 #include <sys/systm.h>
38 #include <sys/timeffc.h>
39 #include <sys/timepps.h>
40 #include <sys/timetc.h>
41 #include <sys/timex.h>
42 #include <sys/vdso.h>
43
44 /*
45  * A large step happens on boot.  This constant detects such steps.
46  * It is relatively small so that ntp_update_second gets called enough
47  * in the typical 'missed a couple of seconds' case, but doesn't loop
48  * forever when the time step is large.
49  */
50 #define LARGE_STEP      200
51
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57
58 static u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61         static u_int now;
62
63         return (++now);
64 }
65
66 static struct timecounter dummy_timecounter = {
67         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69
70 struct timehands {
71         /* These fields must be initialized by the driver. */
72         struct timecounter      *th_counter;
73         int64_t                 th_adjustment;
74         uint64_t                th_scale;
75         u_int                   th_offset_count;
76         struct bintime          th_offset;
77         struct bintime          th_bintime;
78         struct timeval          th_microtime;
79         struct timespec         th_nanotime;
80         struct bintime          th_boottime;
81         /* Fields not to be copied in tc_windup start with th_generation. */
82         u_int                   th_generation;
83         struct timehands        *th_next;
84 };
85
86 static struct timehands th0;
87 static struct timehands th1 = {
88         .th_next = &th0
89 };
90 static struct timehands th0 = {
91         .th_counter = &dummy_timecounter,
92         .th_scale = (uint64_t)-1 / 1000000,
93         .th_offset = { .sec = 1 },
94         .th_generation = 1,
95         .th_next = &th1
96 };
97
98 static struct timehands *volatile timehands = &th0;
99 struct timecounter *timecounter = &dummy_timecounter;
100 static struct timecounter *timecounters = &dummy_timecounter;
101
102 int tc_min_ticktock_freq = 1;
103
104 volatile time_t time_second = 1;
105 volatile time_t time_uptime = 1;
106
107 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
108 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
109     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
110
111 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
112 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
113
114 static int timestepwarnings;
115 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
116     &timestepwarnings, 0, "Log time steps");
117
118 struct bintime bt_timethreshold;
119 struct bintime bt_tickthreshold;
120 sbintime_t sbt_timethreshold;
121 sbintime_t sbt_tickthreshold;
122 struct bintime tc_tick_bt;
123 sbintime_t tc_tick_sbt;
124 int tc_precexp;
125 int tc_timepercentage = TC_DEFAULTPERC;
126 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
127 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
128     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
129     sysctl_kern_timecounter_adjprecision, "I",
130     "Allowed time interval deviation in percents");
131
132 volatile int rtc_generation = 1;
133
134 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
135
136 static void tc_windup(struct bintime *new_boottimebin);
137 static void cpu_tick_calibrate(int);
138
139 void dtrace_getnanotime(struct timespec *tsp);
140
141 static int
142 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
143 {
144         struct timeval boottime;
145
146         getboottime(&boottime);
147
148 /* i386 is the only arch which uses a 32bits time_t */
149 #ifdef __amd64__
150 #ifdef SCTL_MASK32
151         int tv[2];
152
153         if (req->flags & SCTL_MASK32) {
154                 tv[0] = boottime.tv_sec;
155                 tv[1] = boottime.tv_usec;
156                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
157         }
158 #endif
159 #endif
160         return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
161 }
162
163 static int
164 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
165 {
166         u_int ncount;
167         struct timecounter *tc = arg1;
168
169         ncount = tc->tc_get_timecount(tc);
170         return (sysctl_handle_int(oidp, &ncount, 0, req));
171 }
172
173 static int
174 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
175 {
176         uint64_t freq;
177         struct timecounter *tc = arg1;
178
179         freq = tc->tc_frequency;
180         return (sysctl_handle_64(oidp, &freq, 0, req));
181 }
182
183 /*
184  * Return the difference between the timehands' counter value now and what
185  * was when we copied it to the timehands' offset_count.
186  */
187 static __inline u_int
188 tc_delta(struct timehands *th)
189 {
190         struct timecounter *tc;
191
192         tc = th->th_counter;
193         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
194             tc->tc_counter_mask);
195 }
196
197 /*
198  * Functions for reading the time.  We have to loop until we are sure that
199  * the timehands that we operated on was not updated under our feet.  See
200  * the comment in <sys/time.h> for a description of these 12 functions.
201  */
202
203 #ifdef FFCLOCK
204 void
205 fbclock_binuptime(struct bintime *bt)
206 {
207         struct timehands *th;
208         unsigned int gen;
209
210         do {
211                 th = timehands;
212                 gen = atomic_load_acq_int(&th->th_generation);
213                 *bt = th->th_offset;
214                 bintime_addx(bt, th->th_scale * tc_delta(th));
215                 atomic_thread_fence_acq();
216         } while (gen == 0 || gen != th->th_generation);
217 }
218
219 void
220 fbclock_nanouptime(struct timespec *tsp)
221 {
222         struct bintime bt;
223
224         fbclock_binuptime(&bt);
225         bintime2timespec(&bt, tsp);
226 }
227
228 void
229 fbclock_microuptime(struct timeval *tvp)
230 {
231         struct bintime bt;
232
233         fbclock_binuptime(&bt);
234         bintime2timeval(&bt, tvp);
235 }
236
237 void
238 fbclock_bintime(struct bintime *bt)
239 {
240         struct timehands *th;
241         unsigned int gen;
242
243         do {
244                 th = timehands;
245                 gen = atomic_load_acq_int(&th->th_generation);
246                 *bt = th->th_bintime;
247                 bintime_addx(bt, th->th_scale * tc_delta(th));
248                 atomic_thread_fence_acq();
249         } while (gen == 0 || gen != th->th_generation);
250 }
251
252 void
253 fbclock_nanotime(struct timespec *tsp)
254 {
255         struct bintime bt;
256
257         fbclock_bintime(&bt);
258         bintime2timespec(&bt, tsp);
259 }
260
261 void
262 fbclock_microtime(struct timeval *tvp)
263 {
264         struct bintime bt;
265
266         fbclock_bintime(&bt);
267         bintime2timeval(&bt, tvp);
268 }
269
270 void
271 fbclock_getbinuptime(struct bintime *bt)
272 {
273         struct timehands *th;
274         unsigned int gen;
275
276         do {
277                 th = timehands;
278                 gen = atomic_load_acq_int(&th->th_generation);
279                 *bt = th->th_offset;
280                 atomic_thread_fence_acq();
281         } while (gen == 0 || gen != th->th_generation);
282 }
283
284 void
285 fbclock_getnanouptime(struct timespec *tsp)
286 {
287         struct timehands *th;
288         unsigned int gen;
289
290         do {
291                 th = timehands;
292                 gen = atomic_load_acq_int(&th->th_generation);
293                 bintime2timespec(&th->th_offset, tsp);
294                 atomic_thread_fence_acq();
295         } while (gen == 0 || gen != th->th_generation);
296 }
297
298 void
299 fbclock_getmicrouptime(struct timeval *tvp)
300 {
301         struct timehands *th;
302         unsigned int gen;
303
304         do {
305                 th = timehands;
306                 gen = atomic_load_acq_int(&th->th_generation);
307                 bintime2timeval(&th->th_offset, tvp);
308                 atomic_thread_fence_acq();
309         } while (gen == 0 || gen != th->th_generation);
310 }
311
312 void
313 fbclock_getbintime(struct bintime *bt)
314 {
315         struct timehands *th;
316         unsigned int gen;
317
318         do {
319                 th = timehands;
320                 gen = atomic_load_acq_int(&th->th_generation);
321                 *bt = th->th_bintime;
322                 atomic_thread_fence_acq();
323         } while (gen == 0 || gen != th->th_generation);
324 }
325
326 void
327 fbclock_getnanotime(struct timespec *tsp)
328 {
329         struct timehands *th;
330         unsigned int gen;
331
332         do {
333                 th = timehands;
334                 gen = atomic_load_acq_int(&th->th_generation);
335                 *tsp = th->th_nanotime;
336                 atomic_thread_fence_acq();
337         } while (gen == 0 || gen != th->th_generation);
338 }
339
340 void
341 fbclock_getmicrotime(struct timeval *tvp)
342 {
343         struct timehands *th;
344         unsigned int gen;
345
346         do {
347                 th = timehands;
348                 gen = atomic_load_acq_int(&th->th_generation);
349                 *tvp = th->th_microtime;
350                 atomic_thread_fence_acq();
351         } while (gen == 0 || gen != th->th_generation);
352 }
353 #else /* !FFCLOCK */
354 void
355 binuptime(struct bintime *bt)
356 {
357         struct timehands *th;
358         u_int gen;
359
360         do {
361                 th = timehands;
362                 gen = atomic_load_acq_int(&th->th_generation);
363                 *bt = th->th_offset;
364                 bintime_addx(bt, th->th_scale * tc_delta(th));
365                 atomic_thread_fence_acq();
366         } while (gen == 0 || gen != th->th_generation);
367 }
368
369 void
370 nanouptime(struct timespec *tsp)
371 {
372         struct bintime bt;
373
374         binuptime(&bt);
375         bintime2timespec(&bt, tsp);
376 }
377
378 void
379 microuptime(struct timeval *tvp)
380 {
381         struct bintime bt;
382
383         binuptime(&bt);
384         bintime2timeval(&bt, tvp);
385 }
386
387 void
388 bintime(struct bintime *bt)
389 {
390         struct timehands *th;
391         u_int gen;
392
393         do {
394                 th = timehands;
395                 gen = atomic_load_acq_int(&th->th_generation);
396                 *bt = th->th_bintime;
397                 bintime_addx(bt, th->th_scale * tc_delta(th));
398                 atomic_thread_fence_acq();
399         } while (gen == 0 || gen != th->th_generation);
400 }
401
402 void
403 nanotime(struct timespec *tsp)
404 {
405         struct bintime bt;
406
407         bintime(&bt);
408         bintime2timespec(&bt, tsp);
409 }
410
411 void
412 microtime(struct timeval *tvp)
413 {
414         struct bintime bt;
415
416         bintime(&bt);
417         bintime2timeval(&bt, tvp);
418 }
419
420 void
421 getbinuptime(struct bintime *bt)
422 {
423         struct timehands *th;
424         u_int gen;
425
426         do {
427                 th = timehands;
428                 gen = atomic_load_acq_int(&th->th_generation);
429                 *bt = th->th_offset;
430                 atomic_thread_fence_acq();
431         } while (gen == 0 || gen != th->th_generation);
432 }
433
434 void
435 getnanouptime(struct timespec *tsp)
436 {
437         struct timehands *th;
438         u_int gen;
439
440         do {
441                 th = timehands;
442                 gen = atomic_load_acq_int(&th->th_generation);
443                 bintime2timespec(&th->th_offset, tsp);
444                 atomic_thread_fence_acq();
445         } while (gen == 0 || gen != th->th_generation);
446 }
447
448 void
449 getmicrouptime(struct timeval *tvp)
450 {
451         struct timehands *th;
452         u_int gen;
453
454         do {
455                 th = timehands;
456                 gen = atomic_load_acq_int(&th->th_generation);
457                 bintime2timeval(&th->th_offset, tvp);
458                 atomic_thread_fence_acq();
459         } while (gen == 0 || gen != th->th_generation);
460 }
461
462 void
463 getbintime(struct bintime *bt)
464 {
465         struct timehands *th;
466         u_int gen;
467
468         do {
469                 th = timehands;
470                 gen = atomic_load_acq_int(&th->th_generation);
471                 *bt = th->th_bintime;
472                 atomic_thread_fence_acq();
473         } while (gen == 0 || gen != th->th_generation);
474 }
475
476 void
477 getnanotime(struct timespec *tsp)
478 {
479         struct timehands *th;
480         u_int gen;
481
482         do {
483                 th = timehands;
484                 gen = atomic_load_acq_int(&th->th_generation);
485                 *tsp = th->th_nanotime;
486                 atomic_thread_fence_acq();
487         } while (gen == 0 || gen != th->th_generation);
488 }
489
490 void
491 getmicrotime(struct timeval *tvp)
492 {
493         struct timehands *th;
494         u_int gen;
495
496         do {
497                 th = timehands;
498                 gen = atomic_load_acq_int(&th->th_generation);
499                 *tvp = th->th_microtime;
500                 atomic_thread_fence_acq();
501         } while (gen == 0 || gen != th->th_generation);
502 }
503 #endif /* FFCLOCK */
504
505 void
506 getboottime(struct timeval *boottime)
507 {
508         struct bintime boottimebin;
509
510         getboottimebin(&boottimebin);
511         bintime2timeval(&boottimebin, boottime);
512 }
513
514 void
515 getboottimebin(struct bintime *boottimebin)
516 {
517         struct timehands *th;
518         u_int gen;
519
520         do {
521                 th = timehands;
522                 gen = atomic_load_acq_int(&th->th_generation);
523                 *boottimebin = th->th_boottime;
524                 atomic_thread_fence_acq();
525         } while (gen == 0 || gen != th->th_generation);
526 }
527
528 #ifdef FFCLOCK
529 /*
530  * Support for feed-forward synchronization algorithms. This is heavily inspired
531  * by the timehands mechanism but kept independent from it. *_windup() functions
532  * have some connection to avoid accessing the timecounter hardware more than
533  * necessary.
534  */
535
536 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
537 struct ffclock_estimate ffclock_estimate;
538 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
539 uint32_t ffclock_status;                /* Feed-forward clock status. */
540 int8_t ffclock_updated;                 /* New estimates are available. */
541 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
542
543 struct fftimehands {
544         struct ffclock_estimate cest;
545         struct bintime          tick_time;
546         struct bintime          tick_time_lerp;
547         ffcounter               tick_ffcount;
548         uint64_t                period_lerp;
549         volatile uint8_t        gen;
550         struct fftimehands      *next;
551 };
552
553 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
554
555 static struct fftimehands ffth[10];
556 static struct fftimehands *volatile fftimehands = ffth;
557
558 static void
559 ffclock_init(void)
560 {
561         struct fftimehands *cur;
562         struct fftimehands *last;
563
564         memset(ffth, 0, sizeof(ffth));
565
566         last = ffth + NUM_ELEMENTS(ffth) - 1;
567         for (cur = ffth; cur < last; cur++)
568                 cur->next = cur + 1;
569         last->next = ffth;
570
571         ffclock_updated = 0;
572         ffclock_status = FFCLOCK_STA_UNSYNC;
573         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
574 }
575
576 /*
577  * Reset the feed-forward clock estimates. Called from inittodr() to get things
578  * kick started and uses the timecounter nominal frequency as a first period
579  * estimate. Note: this function may be called several time just after boot.
580  * Note: this is the only function that sets the value of boot time for the
581  * monotonic (i.e. uptime) version of the feed-forward clock.
582  */
583 void
584 ffclock_reset_clock(struct timespec *ts)
585 {
586         struct timecounter *tc;
587         struct ffclock_estimate cest;
588
589         tc = timehands->th_counter;
590         memset(&cest, 0, sizeof(struct ffclock_estimate));
591
592         timespec2bintime(ts, &ffclock_boottime);
593         timespec2bintime(ts, &(cest.update_time));
594         ffclock_read_counter(&cest.update_ffcount);
595         cest.leapsec_next = 0;
596         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
597         cest.errb_abs = 0;
598         cest.errb_rate = 0;
599         cest.status = FFCLOCK_STA_UNSYNC;
600         cest.leapsec_total = 0;
601         cest.leapsec = 0;
602
603         mtx_lock(&ffclock_mtx);
604         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
605         ffclock_updated = INT8_MAX;
606         mtx_unlock(&ffclock_mtx);
607
608         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
609             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
610             (unsigned long)ts->tv_nsec);
611 }
612
613 /*
614  * Sub-routine to convert a time interval measured in RAW counter units to time
615  * in seconds stored in bintime format.
616  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
617  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
618  * extra cycles.
619  */
620 static void
621 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
622 {
623         struct bintime bt2;
624         ffcounter delta, delta_max;
625
626         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
627         bintime_clear(bt);
628         do {
629                 if (ffdelta > delta_max)
630                         delta = delta_max;
631                 else
632                         delta = ffdelta;
633                 bt2.sec = 0;
634                 bt2.frac = period;
635                 bintime_mul(&bt2, (unsigned int)delta);
636                 bintime_add(bt, &bt2);
637                 ffdelta -= delta;
638         } while (ffdelta > 0);
639 }
640
641 /*
642  * Update the fftimehands.
643  * Push the tick ffcount and time(s) forward based on current clock estimate.
644  * The conversion from ffcounter to bintime relies on the difference clock
645  * principle, whose accuracy relies on computing small time intervals. If a new
646  * clock estimate has been passed by the synchronisation daemon, make it
647  * current, and compute the linear interpolation for monotonic time if needed.
648  */
649 static void
650 ffclock_windup(unsigned int delta)
651 {
652         struct ffclock_estimate *cest;
653         struct fftimehands *ffth;
654         struct bintime bt, gap_lerp;
655         ffcounter ffdelta;
656         uint64_t frac;
657         unsigned int polling;
658         uint8_t forward_jump, ogen;
659
660         /*
661          * Pick the next timehand, copy current ffclock estimates and move tick
662          * times and counter forward.
663          */
664         forward_jump = 0;
665         ffth = fftimehands->next;
666         ogen = ffth->gen;
667         ffth->gen = 0;
668         cest = &ffth->cest;
669         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
670         ffdelta = (ffcounter)delta;
671         ffth->period_lerp = fftimehands->period_lerp;
672
673         ffth->tick_time = fftimehands->tick_time;
674         ffclock_convert_delta(ffdelta, cest->period, &bt);
675         bintime_add(&ffth->tick_time, &bt);
676
677         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
678         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
679         bintime_add(&ffth->tick_time_lerp, &bt);
680
681         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
682
683         /*
684          * Assess the status of the clock, if the last update is too old, it is
685          * likely the synchronisation daemon is dead and the clock is free
686          * running.
687          */
688         if (ffclock_updated == 0) {
689                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
690                 ffclock_convert_delta(ffdelta, cest->period, &bt);
691                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
692                         ffclock_status |= FFCLOCK_STA_UNSYNC;
693         }
694
695         /*
696          * If available, grab updated clock estimates and make them current.
697          * Recompute time at this tick using the updated estimates. The clock
698          * estimates passed the feed-forward synchronisation daemon may result
699          * in time conversion that is not monotonically increasing (just after
700          * the update). time_lerp is a particular linear interpolation over the
701          * synchronisation algo polling period that ensures monotonicity for the
702          * clock ids requesting it.
703          */
704         if (ffclock_updated > 0) {
705                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
706                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
707                 ffth->tick_time = cest->update_time;
708                 ffclock_convert_delta(ffdelta, cest->period, &bt);
709                 bintime_add(&ffth->tick_time, &bt);
710
711                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
712                 if (ffclock_updated == INT8_MAX)
713                         ffth->tick_time_lerp = ffth->tick_time;
714
715                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
716                         forward_jump = 1;
717                 else
718                         forward_jump = 0;
719
720                 bintime_clear(&gap_lerp);
721                 if (forward_jump) {
722                         gap_lerp = ffth->tick_time;
723                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
724                 } else {
725                         gap_lerp = ffth->tick_time_lerp;
726                         bintime_sub(&gap_lerp, &ffth->tick_time);
727                 }
728
729                 /*
730                  * The reset from the RTC clock may be far from accurate, and
731                  * reducing the gap between real time and interpolated time
732                  * could take a very long time if the interpolated clock insists
733                  * on strict monotonicity. The clock is reset under very strict
734                  * conditions (kernel time is known to be wrong and
735                  * synchronization daemon has been restarted recently.
736                  * ffclock_boottime absorbs the jump to ensure boot time is
737                  * correct and uptime functions stay consistent.
738                  */
739                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
740                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
741                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
742                         if (forward_jump)
743                                 bintime_add(&ffclock_boottime, &gap_lerp);
744                         else
745                                 bintime_sub(&ffclock_boottime, &gap_lerp);
746                         ffth->tick_time_lerp = ffth->tick_time;
747                         bintime_clear(&gap_lerp);
748                 }
749
750                 ffclock_status = cest->status;
751                 ffth->period_lerp = cest->period;
752
753                 /*
754                  * Compute corrected period used for the linear interpolation of
755                  * time. The rate of linear interpolation is capped to 5000PPM
756                  * (5ms/s).
757                  */
758                 if (bintime_isset(&gap_lerp)) {
759                         ffdelta = cest->update_ffcount;
760                         ffdelta -= fftimehands->cest.update_ffcount;
761                         ffclock_convert_delta(ffdelta, cest->period, &bt);
762                         polling = bt.sec;
763                         bt.sec = 0;
764                         bt.frac = 5000000 * (uint64_t)18446744073LL;
765                         bintime_mul(&bt, polling);
766                         if (bintime_cmp(&gap_lerp, &bt, >))
767                                 gap_lerp = bt;
768
769                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
770                         frac = 0;
771                         if (gap_lerp.sec > 0) {
772                                 frac -= 1;
773                                 frac /= ffdelta / gap_lerp.sec;
774                         }
775                         frac += gap_lerp.frac / ffdelta;
776
777                         if (forward_jump)
778                                 ffth->period_lerp += frac;
779                         else
780                                 ffth->period_lerp -= frac;
781                 }
782
783                 ffclock_updated = 0;
784         }
785         if (++ogen == 0)
786                 ogen = 1;
787         ffth->gen = ogen;
788         fftimehands = ffth;
789 }
790
791 /*
792  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
793  * the old and new hardware counter cannot be read simultaneously. tc_windup()
794  * does read the two counters 'back to back', but a few cycles are effectively
795  * lost, and not accumulated in tick_ffcount. This is a fairly radical
796  * operation for a feed-forward synchronization daemon, and it is its job to not
797  * pushing irrelevant data to the kernel. Because there is no locking here,
798  * simply force to ignore pending or next update to give daemon a chance to
799  * realize the counter has changed.
800  */
801 static void
802 ffclock_change_tc(struct timehands *th)
803 {
804         struct fftimehands *ffth;
805         struct ffclock_estimate *cest;
806         struct timecounter *tc;
807         uint8_t ogen;
808
809         tc = th->th_counter;
810         ffth = fftimehands->next;
811         ogen = ffth->gen;
812         ffth->gen = 0;
813
814         cest = &ffth->cest;
815         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
816         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
817         cest->errb_abs = 0;
818         cest->errb_rate = 0;
819         cest->status |= FFCLOCK_STA_UNSYNC;
820
821         ffth->tick_ffcount = fftimehands->tick_ffcount;
822         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
823         ffth->tick_time = fftimehands->tick_time;
824         ffth->period_lerp = cest->period;
825
826         /* Do not lock but ignore next update from synchronization daemon. */
827         ffclock_updated--;
828
829         if (++ogen == 0)
830                 ogen = 1;
831         ffth->gen = ogen;
832         fftimehands = ffth;
833 }
834
835 /*
836  * Retrieve feed-forward counter and time of last kernel tick.
837  */
838 void
839 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
840 {
841         struct fftimehands *ffth;
842         uint8_t gen;
843
844         /*
845          * No locking but check generation has not changed. Also need to make
846          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
847          */
848         do {
849                 ffth = fftimehands;
850                 gen = ffth->gen;
851                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
852                         *bt = ffth->tick_time_lerp;
853                 else
854                         *bt = ffth->tick_time;
855                 *ffcount = ffth->tick_ffcount;
856         } while (gen == 0 || gen != ffth->gen);
857 }
858
859 /*
860  * Absolute clock conversion. Low level function to convert ffcounter to
861  * bintime. The ffcounter is converted using the current ffclock period estimate
862  * or the "interpolated period" to ensure monotonicity.
863  * NOTE: this conversion may have been deferred, and the clock updated since the
864  * hardware counter has been read.
865  */
866 void
867 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
868 {
869         struct fftimehands *ffth;
870         struct bintime bt2;
871         ffcounter ffdelta;
872         uint8_t gen;
873
874         /*
875          * No locking but check generation has not changed. Also need to make
876          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
877          */
878         do {
879                 ffth = fftimehands;
880                 gen = ffth->gen;
881                 if (ffcount > ffth->tick_ffcount)
882                         ffdelta = ffcount - ffth->tick_ffcount;
883                 else
884                         ffdelta = ffth->tick_ffcount - ffcount;
885
886                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
887                         *bt = ffth->tick_time_lerp;
888                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
889                 } else {
890                         *bt = ffth->tick_time;
891                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
892                 }
893
894                 if (ffcount > ffth->tick_ffcount)
895                         bintime_add(bt, &bt2);
896                 else
897                         bintime_sub(bt, &bt2);
898         } while (gen == 0 || gen != ffth->gen);
899 }
900
901 /*
902  * Difference clock conversion.
903  * Low level function to Convert a time interval measured in RAW counter units
904  * into bintime. The difference clock allows measuring small intervals much more
905  * reliably than the absolute clock.
906  */
907 void
908 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
909 {
910         struct fftimehands *ffth;
911         uint8_t gen;
912
913         /* No locking but check generation has not changed. */
914         do {
915                 ffth = fftimehands;
916                 gen = ffth->gen;
917                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
918         } while (gen == 0 || gen != ffth->gen);
919 }
920
921 /*
922  * Access to current ffcounter value.
923  */
924 void
925 ffclock_read_counter(ffcounter *ffcount)
926 {
927         struct timehands *th;
928         struct fftimehands *ffth;
929         unsigned int gen, delta;
930
931         /*
932          * ffclock_windup() called from tc_windup(), safe to rely on
933          * th->th_generation only, for correct delta and ffcounter.
934          */
935         do {
936                 th = timehands;
937                 gen = atomic_load_acq_int(&th->th_generation);
938                 ffth = fftimehands;
939                 delta = tc_delta(th);
940                 *ffcount = ffth->tick_ffcount;
941                 atomic_thread_fence_acq();
942         } while (gen == 0 || gen != th->th_generation);
943
944         *ffcount += delta;
945 }
946
947 void
948 binuptime(struct bintime *bt)
949 {
950
951         binuptime_fromclock(bt, sysclock_active);
952 }
953
954 void
955 nanouptime(struct timespec *tsp)
956 {
957
958         nanouptime_fromclock(tsp, sysclock_active);
959 }
960
961 void
962 microuptime(struct timeval *tvp)
963 {
964
965         microuptime_fromclock(tvp, sysclock_active);
966 }
967
968 void
969 bintime(struct bintime *bt)
970 {
971
972         bintime_fromclock(bt, sysclock_active);
973 }
974
975 void
976 nanotime(struct timespec *tsp)
977 {
978
979         nanotime_fromclock(tsp, sysclock_active);
980 }
981
982 void
983 microtime(struct timeval *tvp)
984 {
985
986         microtime_fromclock(tvp, sysclock_active);
987 }
988
989 void
990 getbinuptime(struct bintime *bt)
991 {
992
993         getbinuptime_fromclock(bt, sysclock_active);
994 }
995
996 void
997 getnanouptime(struct timespec *tsp)
998 {
999
1000         getnanouptime_fromclock(tsp, sysclock_active);
1001 }
1002
1003 void
1004 getmicrouptime(struct timeval *tvp)
1005 {
1006
1007         getmicrouptime_fromclock(tvp, sysclock_active);
1008 }
1009
1010 void
1011 getbintime(struct bintime *bt)
1012 {
1013
1014         getbintime_fromclock(bt, sysclock_active);
1015 }
1016
1017 void
1018 getnanotime(struct timespec *tsp)
1019 {
1020
1021         getnanotime_fromclock(tsp, sysclock_active);
1022 }
1023
1024 void
1025 getmicrotime(struct timeval *tvp)
1026 {
1027
1028         getmicrouptime_fromclock(tvp, sysclock_active);
1029 }
1030
1031 #endif /* FFCLOCK */
1032
1033 /*
1034  * This is a clone of getnanotime and used for walltimestamps.
1035  * The dtrace_ prefix prevents fbt from creating probes for
1036  * it so walltimestamp can be safely used in all fbt probes.
1037  */
1038 void
1039 dtrace_getnanotime(struct timespec *tsp)
1040 {
1041         struct timehands *th;
1042         u_int gen;
1043
1044         do {
1045                 th = timehands;
1046                 gen = atomic_load_acq_int(&th->th_generation);
1047                 *tsp = th->th_nanotime;
1048                 atomic_thread_fence_acq();
1049         } while (gen == 0 || gen != th->th_generation);
1050 }
1051
1052 /*
1053  * System clock currently providing time to the system. Modifiable via sysctl
1054  * when the FFCLOCK option is defined.
1055  */
1056 int sysclock_active = SYSCLOCK_FBCK;
1057
1058 /* Internal NTP status and error estimates. */
1059 extern int time_status;
1060 extern long time_esterror;
1061
1062 /*
1063  * Take a snapshot of sysclock data which can be used to compare system clocks
1064  * and generate timestamps after the fact.
1065  */
1066 void
1067 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1068 {
1069         struct fbclock_info *fbi;
1070         struct timehands *th;
1071         struct bintime bt;
1072         unsigned int delta, gen;
1073 #ifdef FFCLOCK
1074         ffcounter ffcount;
1075         struct fftimehands *ffth;
1076         struct ffclock_info *ffi;
1077         struct ffclock_estimate cest;
1078
1079         ffi = &clock_snap->ff_info;
1080 #endif
1081
1082         fbi = &clock_snap->fb_info;
1083         delta = 0;
1084
1085         do {
1086                 th = timehands;
1087                 gen = atomic_load_acq_int(&th->th_generation);
1088                 fbi->th_scale = th->th_scale;
1089                 fbi->tick_time = th->th_offset;
1090 #ifdef FFCLOCK
1091                 ffth = fftimehands;
1092                 ffi->tick_time = ffth->tick_time_lerp;
1093                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1094                 ffi->period = ffth->cest.period;
1095                 ffi->period_lerp = ffth->period_lerp;
1096                 clock_snap->ffcount = ffth->tick_ffcount;
1097                 cest = ffth->cest;
1098 #endif
1099                 if (!fast)
1100                         delta = tc_delta(th);
1101                 atomic_thread_fence_acq();
1102         } while (gen == 0 || gen != th->th_generation);
1103
1104         clock_snap->delta = delta;
1105         clock_snap->sysclock_active = sysclock_active;
1106
1107         /* Record feedback clock status and error. */
1108         clock_snap->fb_info.status = time_status;
1109         /* XXX: Very crude estimate of feedback clock error. */
1110         bt.sec = time_esterror / 1000000;
1111         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1112             (uint64_t)18446744073709ULL;
1113         clock_snap->fb_info.error = bt;
1114
1115 #ifdef FFCLOCK
1116         if (!fast)
1117                 clock_snap->ffcount += delta;
1118
1119         /* Record feed-forward clock leap second adjustment. */
1120         ffi->leapsec_adjustment = cest.leapsec_total;
1121         if (clock_snap->ffcount > cest.leapsec_next)
1122                 ffi->leapsec_adjustment -= cest.leapsec;
1123
1124         /* Record feed-forward clock status and error. */
1125         clock_snap->ff_info.status = cest.status;
1126         ffcount = clock_snap->ffcount - cest.update_ffcount;
1127         ffclock_convert_delta(ffcount, cest.period, &bt);
1128         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1129         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1130         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1131         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1132         clock_snap->ff_info.error = bt;
1133 #endif
1134 }
1135
1136 /*
1137  * Convert a sysclock snapshot into a struct bintime based on the specified
1138  * clock source and flags.
1139  */
1140 int
1141 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1142     int whichclock, uint32_t flags)
1143 {
1144         struct bintime boottimebin;
1145 #ifdef FFCLOCK
1146         struct bintime bt2;
1147         uint64_t period;
1148 #endif
1149
1150         switch (whichclock) {
1151         case SYSCLOCK_FBCK:
1152                 *bt = cs->fb_info.tick_time;
1153
1154                 /* If snapshot was created with !fast, delta will be >0. */
1155                 if (cs->delta > 0)
1156                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1157
1158                 if ((flags & FBCLOCK_UPTIME) == 0) {
1159                         getboottimebin(&boottimebin);
1160                         bintime_add(bt, &boottimebin);
1161                 }
1162                 break;
1163 #ifdef FFCLOCK
1164         case SYSCLOCK_FFWD:
1165                 if (flags & FFCLOCK_LERP) {
1166                         *bt = cs->ff_info.tick_time_lerp;
1167                         period = cs->ff_info.period_lerp;
1168                 } else {
1169                         *bt = cs->ff_info.tick_time;
1170                         period = cs->ff_info.period;
1171                 }
1172
1173                 /* If snapshot was created with !fast, delta will be >0. */
1174                 if (cs->delta > 0) {
1175                         ffclock_convert_delta(cs->delta, period, &bt2);
1176                         bintime_add(bt, &bt2);
1177                 }
1178
1179                 /* Leap second adjustment. */
1180                 if (flags & FFCLOCK_LEAPSEC)
1181                         bt->sec -= cs->ff_info.leapsec_adjustment;
1182
1183                 /* Boot time adjustment, for uptime/monotonic clocks. */
1184                 if (flags & FFCLOCK_UPTIME)
1185                         bintime_sub(bt, &ffclock_boottime);
1186                 break;
1187 #endif
1188         default:
1189                 return (EINVAL);
1190                 break;
1191         }
1192
1193         return (0);
1194 }
1195
1196 /*
1197  * Initialize a new timecounter and possibly use it.
1198  */
1199 void
1200 tc_init(struct timecounter *tc)
1201 {
1202         u_int u;
1203         struct sysctl_oid *tc_root;
1204
1205         u = tc->tc_frequency / tc->tc_counter_mask;
1206         /* XXX: We need some margin here, 10% is a guess */
1207         u *= 11;
1208         u /= 10;
1209         if (u > hz && tc->tc_quality >= 0) {
1210                 tc->tc_quality = -2000;
1211                 if (bootverbose) {
1212                         printf("Timecounter \"%s\" frequency %ju Hz",
1213                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1214                         printf(" -- Insufficient hz, needs at least %u\n", u);
1215                 }
1216         } else if (tc->tc_quality >= 0 || bootverbose) {
1217                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1218                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1219                     tc->tc_quality);
1220         }
1221
1222         tc->tc_next = timecounters;
1223         timecounters = tc;
1224         /*
1225          * Set up sysctl tree for this counter.
1226          */
1227         tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1228             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1229             CTLFLAG_RW, 0, "timecounter description", "timecounter");
1230         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1231             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1232             "mask for implemented bits");
1233         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1234             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1235             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1236         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1237             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1238              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1239         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1240             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1241             "goodness of time counter");
1242         /*
1243          * Do not automatically switch if the current tc was specifically
1244          * chosen.  Never automatically use a timecounter with negative quality.
1245          * Even though we run on the dummy counter, switching here may be
1246          * worse since this timecounter may not be monotonic.
1247          */
1248         if (tc_chosen)
1249                 return;
1250         if (tc->tc_quality < 0)
1251                 return;
1252         if (tc->tc_quality < timecounter->tc_quality)
1253                 return;
1254         if (tc->tc_quality == timecounter->tc_quality &&
1255             tc->tc_frequency < timecounter->tc_frequency)
1256                 return;
1257         (void)tc->tc_get_timecount(tc);
1258         (void)tc->tc_get_timecount(tc);
1259         timecounter = tc;
1260 }
1261
1262 /* Report the frequency of the current timecounter. */
1263 uint64_t
1264 tc_getfrequency(void)
1265 {
1266
1267         return (timehands->th_counter->tc_frequency);
1268 }
1269
1270 static bool
1271 sleeping_on_old_rtc(struct thread *td)
1272 {
1273
1274         /*
1275          * td_rtcgen is modified by curthread when it is running,
1276          * and by other threads in this function.  By finding the thread
1277          * on a sleepqueue and holding the lock on the sleepqueue
1278          * chain, we guarantee that the thread is not running and that
1279          * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1280          * the thread that it was woken due to a real-time clock adjustment.
1281          * (The declaration of td_rtcgen refers to this comment.)
1282          */
1283         if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1284                 td->td_rtcgen = 0;
1285                 return (true);
1286         }
1287         return (false);
1288 }
1289
1290 static struct mtx tc_setclock_mtx;
1291 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1292
1293 /*
1294  * Step our concept of UTC.  This is done by modifying our estimate of
1295  * when we booted.
1296  */
1297 void
1298 tc_setclock(struct timespec *ts)
1299 {
1300         struct timespec tbef, taft;
1301         struct bintime bt, bt2;
1302
1303         timespec2bintime(ts, &bt);
1304         nanotime(&tbef);
1305         mtx_lock_spin(&tc_setclock_mtx);
1306         cpu_tick_calibrate(1);
1307         binuptime(&bt2);
1308         bintime_sub(&bt, &bt2);
1309
1310         /* XXX fiddle all the little crinkly bits around the fiords... */
1311         tc_windup(&bt);
1312         mtx_unlock_spin(&tc_setclock_mtx);
1313
1314         /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1315         atomic_add_rel_int(&rtc_generation, 2);
1316         sleepq_chains_remove_matching(sleeping_on_old_rtc);
1317         if (timestepwarnings) {
1318                 nanotime(&taft);
1319                 log(LOG_INFO,
1320                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1321                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1322                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1323                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1324         }
1325 }
1326
1327 /*
1328  * Initialize the next struct timehands in the ring and make
1329  * it the active timehands.  Along the way we might switch to a different
1330  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1331  */
1332 static void
1333 tc_windup(struct bintime *new_boottimebin)
1334 {
1335         struct bintime bt;
1336         struct timehands *th, *tho;
1337         uint64_t scale;
1338         u_int delta, ncount, ogen;
1339         int i;
1340         time_t t;
1341
1342         /*
1343          * Make the next timehands a copy of the current one, but do
1344          * not overwrite the generation or next pointer.  While we
1345          * update the contents, the generation must be zero.  We need
1346          * to ensure that the zero generation is visible before the
1347          * data updates become visible, which requires release fence.
1348          * For similar reasons, re-reading of the generation after the
1349          * data is read should use acquire fence.
1350          */
1351         tho = timehands;
1352         th = tho->th_next;
1353         ogen = th->th_generation;
1354         th->th_generation = 0;
1355         atomic_thread_fence_rel();
1356         memcpy(th, tho, offsetof(struct timehands, th_generation));
1357         if (new_boottimebin != NULL)
1358                 th->th_boottime = *new_boottimebin;
1359
1360         /*
1361          * Capture a timecounter delta on the current timecounter and if
1362          * changing timecounters, a counter value from the new timecounter.
1363          * Update the offset fields accordingly.
1364          */
1365         delta = tc_delta(th);
1366         if (th->th_counter != timecounter)
1367                 ncount = timecounter->tc_get_timecount(timecounter);
1368         else
1369                 ncount = 0;
1370 #ifdef FFCLOCK
1371         ffclock_windup(delta);
1372 #endif
1373         th->th_offset_count += delta;
1374         th->th_offset_count &= th->th_counter->tc_counter_mask;
1375         while (delta > th->th_counter->tc_frequency) {
1376                 /* Eat complete unadjusted seconds. */
1377                 delta -= th->th_counter->tc_frequency;
1378                 th->th_offset.sec++;
1379         }
1380         if ((delta > th->th_counter->tc_frequency / 2) &&
1381             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1382                 /* The product th_scale * delta just barely overflows. */
1383                 th->th_offset.sec++;
1384         }
1385         bintime_addx(&th->th_offset, th->th_scale * delta);
1386
1387         /*
1388          * Hardware latching timecounters may not generate interrupts on
1389          * PPS events, so instead we poll them.  There is a finite risk that
1390          * the hardware might capture a count which is later than the one we
1391          * got above, and therefore possibly in the next NTP second which might
1392          * have a different rate than the current NTP second.  It doesn't
1393          * matter in practice.
1394          */
1395         if (tho->th_counter->tc_poll_pps)
1396                 tho->th_counter->tc_poll_pps(tho->th_counter);
1397
1398         /*
1399          * Deal with NTP second processing.  The for loop normally
1400          * iterates at most once, but in extreme situations it might
1401          * keep NTP sane if timeouts are not run for several seconds.
1402          * At boot, the time step can be large when the TOD hardware
1403          * has been read, so on really large steps, we call
1404          * ntp_update_second only twice.  We need to call it twice in
1405          * case we missed a leap second.
1406          */
1407         bt = th->th_offset;
1408         bintime_add(&bt, &th->th_boottime);
1409         i = bt.sec - tho->th_microtime.tv_sec;
1410         if (i > LARGE_STEP)
1411                 i = 2;
1412         for (; i > 0; i--) {
1413                 t = bt.sec;
1414                 ntp_update_second(&th->th_adjustment, &bt.sec);
1415                 if (bt.sec != t)
1416                         th->th_boottime.sec += bt.sec - t;
1417         }
1418         /* Update the UTC timestamps used by the get*() functions. */
1419         th->th_bintime = bt;
1420         bintime2timeval(&bt, &th->th_microtime);
1421         bintime2timespec(&bt, &th->th_nanotime);
1422
1423         /* Now is a good time to change timecounters. */
1424         if (th->th_counter != timecounter) {
1425 #ifndef __arm__
1426                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1427                         cpu_disable_c2_sleep++;
1428                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1429                         cpu_disable_c2_sleep--;
1430 #endif
1431                 th->th_counter = timecounter;
1432                 th->th_offset_count = ncount;
1433                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1434                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1435 #ifdef FFCLOCK
1436                 ffclock_change_tc(th);
1437 #endif
1438         }
1439
1440         /*-
1441          * Recalculate the scaling factor.  We want the number of 1/2^64
1442          * fractions of a second per period of the hardware counter, taking
1443          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1444          * processing provides us with.
1445          *
1446          * The th_adjustment is nanoseconds per second with 32 bit binary
1447          * fraction and we want 64 bit binary fraction of second:
1448          *
1449          *       x = a * 2^32 / 10^9 = a * 4.294967296
1450          *
1451          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1452          * we can only multiply by about 850 without overflowing, that
1453          * leaves no suitably precise fractions for multiply before divide.
1454          *
1455          * Divide before multiply with a fraction of 2199/512 results in a
1456          * systematic undercompensation of 10PPM of th_adjustment.  On a
1457          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1458          *
1459          * We happily sacrifice the lowest of the 64 bits of our result
1460          * to the goddess of code clarity.
1461          *
1462          */
1463         scale = (uint64_t)1 << 63;
1464         scale += (th->th_adjustment / 1024) * 2199;
1465         scale /= th->th_counter->tc_frequency;
1466         th->th_scale = scale * 2;
1467
1468         /*
1469          * Now that the struct timehands is again consistent, set the new
1470          * generation number, making sure to not make it zero.
1471          */
1472         if (++ogen == 0)
1473                 ogen = 1;
1474         atomic_store_rel_int(&th->th_generation, ogen);
1475
1476         /* Go live with the new struct timehands. */
1477 #ifdef FFCLOCK
1478         switch (sysclock_active) {
1479         case SYSCLOCK_FBCK:
1480 #endif
1481                 time_second = th->th_microtime.tv_sec;
1482                 time_uptime = th->th_offset.sec;
1483 #ifdef FFCLOCK
1484                 break;
1485         case SYSCLOCK_FFWD:
1486                 time_second = fftimehands->tick_time_lerp.sec;
1487                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1488                 break;
1489         }
1490 #endif
1491
1492         timehands = th;
1493         timekeep_push_vdso();
1494 }
1495
1496 /* Report or change the active timecounter hardware. */
1497 static int
1498 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1499 {
1500         char newname[32];
1501         struct timecounter *newtc, *tc;
1502         int error;
1503
1504         tc = timecounter;
1505         strlcpy(newname, tc->tc_name, sizeof(newname));
1506
1507         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1508         if (error != 0 || req->newptr == NULL)
1509                 return (error);
1510         /* Record that the tc in use now was specifically chosen. */
1511         tc_chosen = 1;
1512         if (strcmp(newname, tc->tc_name) == 0)
1513                 return (0);
1514         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1515                 if (strcmp(newname, newtc->tc_name) != 0)
1516                         continue;
1517
1518                 /* Warm up new timecounter. */
1519                 (void)newtc->tc_get_timecount(newtc);
1520                 (void)newtc->tc_get_timecount(newtc);
1521
1522                 timecounter = newtc;
1523
1524                 /*
1525                  * The vdso timehands update is deferred until the next
1526                  * 'tc_windup()'.
1527                  *
1528                  * This is prudent given that 'timekeep_push_vdso()' does not
1529                  * use any locking and that it can be called in hard interrupt
1530                  * context via 'tc_windup()'.
1531                  */
1532                 return (0);
1533         }
1534         return (EINVAL);
1535 }
1536
1537 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1538     0, 0, sysctl_kern_timecounter_hardware, "A",
1539     "Timecounter hardware selected");
1540
1541
1542 /* Report the available timecounter hardware. */
1543 static int
1544 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1545 {
1546         struct sbuf sb;
1547         struct timecounter *tc;
1548         int error;
1549
1550         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1551         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1552                 if (tc != timecounters)
1553                         sbuf_putc(&sb, ' ');
1554                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1555         }
1556         error = sbuf_finish(&sb);
1557         sbuf_delete(&sb);
1558         return (error);
1559 }
1560
1561 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1562     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1563
1564 /*
1565  * RFC 2783 PPS-API implementation.
1566  */
1567
1568 /*
1569  *  Return true if the driver is aware of the abi version extensions in the
1570  *  pps_state structure, and it supports at least the given abi version number.
1571  */
1572 static inline int
1573 abi_aware(struct pps_state *pps, int vers)
1574 {
1575
1576         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1577 }
1578
1579 static int
1580 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1581 {
1582         int err, timo;
1583         pps_seq_t aseq, cseq;
1584         struct timeval tv;
1585
1586         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1587                 return (EINVAL);
1588
1589         /*
1590          * If no timeout is requested, immediately return whatever values were
1591          * most recently captured.  If timeout seconds is -1, that's a request
1592          * to block without a timeout.  WITNESS won't let us sleep forever
1593          * without a lock (we really don't need a lock), so just repeatedly
1594          * sleep a long time.
1595          */
1596         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1597                 if (fapi->timeout.tv_sec == -1)
1598                         timo = 0x7fffffff;
1599                 else {
1600                         tv.tv_sec = fapi->timeout.tv_sec;
1601                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1602                         timo = tvtohz(&tv);
1603                 }
1604                 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1605                 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1606                 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1607                     cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1608                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1609                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1610                                         err = msleep_spin(pps, pps->driver_mtx,
1611                                             "ppsfch", timo);
1612                                 } else {
1613                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1614                                             "ppsfch", timo);
1615                                 }
1616                         } else {
1617                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1618                         }
1619                         if (err == EWOULDBLOCK) {
1620                                 if (fapi->timeout.tv_sec == -1) {
1621                                         continue;
1622                                 } else {
1623                                         return (ETIMEDOUT);
1624                                 }
1625                         } else if (err != 0) {
1626                                 return (err);
1627                         }
1628                 }
1629         }
1630
1631         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1632         fapi->pps_info_buf = pps->ppsinfo;
1633
1634         return (0);
1635 }
1636
1637 int
1638 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1639 {
1640         pps_params_t *app;
1641         struct pps_fetch_args *fapi;
1642 #ifdef FFCLOCK
1643         struct pps_fetch_ffc_args *fapi_ffc;
1644 #endif
1645 #ifdef PPS_SYNC
1646         struct pps_kcbind_args *kapi;
1647 #endif
1648
1649         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1650         switch (cmd) {
1651         case PPS_IOC_CREATE:
1652                 return (0);
1653         case PPS_IOC_DESTROY:
1654                 return (0);
1655         case PPS_IOC_SETPARAMS:
1656                 app = (pps_params_t *)data;
1657                 if (app->mode & ~pps->ppscap)
1658                         return (EINVAL);
1659 #ifdef FFCLOCK
1660                 /* Ensure only a single clock is selected for ffc timestamp. */
1661                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1662                         return (EINVAL);
1663 #endif
1664                 pps->ppsparam = *app;
1665                 return (0);
1666         case PPS_IOC_GETPARAMS:
1667                 app = (pps_params_t *)data;
1668                 *app = pps->ppsparam;
1669                 app->api_version = PPS_API_VERS_1;
1670                 return (0);
1671         case PPS_IOC_GETCAP:
1672                 *(int*)data = pps->ppscap;
1673                 return (0);
1674         case PPS_IOC_FETCH:
1675                 fapi = (struct pps_fetch_args *)data;
1676                 return (pps_fetch(fapi, pps));
1677 #ifdef FFCLOCK
1678         case PPS_IOC_FETCH_FFCOUNTER:
1679                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1680                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1681                     PPS_TSFMT_TSPEC)
1682                         return (EINVAL);
1683                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1684                         return (EOPNOTSUPP);
1685                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1686                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1687                 /* Overwrite timestamps if feedback clock selected. */
1688                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1689                 case PPS_TSCLK_FBCK:
1690                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1691                             pps->ppsinfo.assert_timestamp;
1692                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1693                             pps->ppsinfo.clear_timestamp;
1694                         break;
1695                 case PPS_TSCLK_FFWD:
1696                         break;
1697                 default:
1698                         break;
1699                 }
1700                 return (0);
1701 #endif /* FFCLOCK */
1702         case PPS_IOC_KCBIND:
1703 #ifdef PPS_SYNC
1704                 kapi = (struct pps_kcbind_args *)data;
1705                 /* XXX Only root should be able to do this */
1706                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1707                         return (EINVAL);
1708                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1709                         return (EINVAL);
1710                 if (kapi->edge & ~pps->ppscap)
1711                         return (EINVAL);
1712                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1713                     (pps->kcmode & KCMODE_ABIFLAG);
1714                 return (0);
1715 #else
1716                 return (EOPNOTSUPP);
1717 #endif
1718         default:
1719                 return (ENOIOCTL);
1720         }
1721 }
1722
1723 void
1724 pps_init(struct pps_state *pps)
1725 {
1726         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1727         if (pps->ppscap & PPS_CAPTUREASSERT)
1728                 pps->ppscap |= PPS_OFFSETASSERT;
1729         if (pps->ppscap & PPS_CAPTURECLEAR)
1730                 pps->ppscap |= PPS_OFFSETCLEAR;
1731 #ifdef FFCLOCK
1732         pps->ppscap |= PPS_TSCLK_MASK;
1733 #endif
1734         pps->kcmode &= ~KCMODE_ABIFLAG;
1735 }
1736
1737 void
1738 pps_init_abi(struct pps_state *pps)
1739 {
1740
1741         pps_init(pps);
1742         if (pps->driver_abi > 0) {
1743                 pps->kcmode |= KCMODE_ABIFLAG;
1744                 pps->kernel_abi = PPS_ABI_VERSION;
1745         }
1746 }
1747
1748 void
1749 pps_capture(struct pps_state *pps)
1750 {
1751         struct timehands *th;
1752
1753         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1754         th = timehands;
1755         pps->capgen = atomic_load_acq_int(&th->th_generation);
1756         pps->capth = th;
1757 #ifdef FFCLOCK
1758         pps->capffth = fftimehands;
1759 #endif
1760         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1761         atomic_thread_fence_acq();
1762         if (pps->capgen != th->th_generation)
1763                 pps->capgen = 0;
1764 }
1765
1766 void
1767 pps_event(struct pps_state *pps, int event)
1768 {
1769         struct bintime bt;
1770         struct timespec ts, *tsp, *osp;
1771         u_int tcount, *pcount;
1772         int foff;
1773         pps_seq_t *pseq;
1774 #ifdef FFCLOCK
1775         struct timespec *tsp_ffc;
1776         pps_seq_t *pseq_ffc;
1777         ffcounter *ffcount;
1778 #endif
1779 #ifdef PPS_SYNC
1780         int fhard;
1781 #endif
1782
1783         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1784         /* Nothing to do if not currently set to capture this event type. */
1785         if ((event & pps->ppsparam.mode) == 0)
1786                 return;
1787         /* If the timecounter was wound up underneath us, bail out. */
1788         if (pps->capgen == 0 || pps->capgen !=
1789             atomic_load_acq_int(&pps->capth->th_generation))
1790                 return;
1791
1792         /* Things would be easier with arrays. */
1793         if (event == PPS_CAPTUREASSERT) {
1794                 tsp = &pps->ppsinfo.assert_timestamp;
1795                 osp = &pps->ppsparam.assert_offset;
1796                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1797 #ifdef PPS_SYNC
1798                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1799 #endif
1800                 pcount = &pps->ppscount[0];
1801                 pseq = &pps->ppsinfo.assert_sequence;
1802 #ifdef FFCLOCK
1803                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1804                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1805                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1806 #endif
1807         } else {
1808                 tsp = &pps->ppsinfo.clear_timestamp;
1809                 osp = &pps->ppsparam.clear_offset;
1810                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1811 #ifdef PPS_SYNC
1812                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1813 #endif
1814                 pcount = &pps->ppscount[1];
1815                 pseq = &pps->ppsinfo.clear_sequence;
1816 #ifdef FFCLOCK
1817                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1818                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1819                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1820 #endif
1821         }
1822
1823         /*
1824          * If the timecounter changed, we cannot compare the count values, so
1825          * we have to drop the rest of the PPS-stuff until the next event.
1826          */
1827         if (pps->ppstc != pps->capth->th_counter) {
1828                 pps->ppstc = pps->capth->th_counter;
1829                 *pcount = pps->capcount;
1830                 pps->ppscount[2] = pps->capcount;
1831                 return;
1832         }
1833
1834         /* Convert the count to a timespec. */
1835         tcount = pps->capcount - pps->capth->th_offset_count;
1836         tcount &= pps->capth->th_counter->tc_counter_mask;
1837         bt = pps->capth->th_bintime;
1838         bintime_addx(&bt, pps->capth->th_scale * tcount);
1839         bintime2timespec(&bt, &ts);
1840
1841         /* If the timecounter was wound up underneath us, bail out. */
1842         atomic_thread_fence_acq();
1843         if (pps->capgen != pps->capth->th_generation)
1844                 return;
1845
1846         *pcount = pps->capcount;
1847         (*pseq)++;
1848         *tsp = ts;
1849
1850         if (foff) {
1851                 timespecadd(tsp, osp, tsp);
1852                 if (tsp->tv_nsec < 0) {
1853                         tsp->tv_nsec += 1000000000;
1854                         tsp->tv_sec -= 1;
1855                 }
1856         }
1857
1858 #ifdef FFCLOCK
1859         *ffcount = pps->capffth->tick_ffcount + tcount;
1860         bt = pps->capffth->tick_time;
1861         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1862         bintime_add(&bt, &pps->capffth->tick_time);
1863         bintime2timespec(&bt, &ts);
1864         (*pseq_ffc)++;
1865         *tsp_ffc = ts;
1866 #endif
1867
1868 #ifdef PPS_SYNC
1869         if (fhard) {
1870                 uint64_t scale;
1871
1872                 /*
1873                  * Feed the NTP PLL/FLL.
1874                  * The FLL wants to know how many (hardware) nanoseconds
1875                  * elapsed since the previous event.
1876                  */
1877                 tcount = pps->capcount - pps->ppscount[2];
1878                 pps->ppscount[2] = pps->capcount;
1879                 tcount &= pps->capth->th_counter->tc_counter_mask;
1880                 scale = (uint64_t)1 << 63;
1881                 scale /= pps->capth->th_counter->tc_frequency;
1882                 scale *= 2;
1883                 bt.sec = 0;
1884                 bt.frac = 0;
1885                 bintime_addx(&bt, scale * tcount);
1886                 bintime2timespec(&bt, &ts);
1887                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1888         }
1889 #endif
1890
1891         /* Wakeup anyone sleeping in pps_fetch().  */
1892         wakeup(pps);
1893 }
1894
1895 /*
1896  * Timecounters need to be updated every so often to prevent the hardware
1897  * counter from overflowing.  Updating also recalculates the cached values
1898  * used by the get*() family of functions, so their precision depends on
1899  * the update frequency.
1900  */
1901
1902 static int tc_tick;
1903 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1904     "Approximate number of hardclock ticks in a millisecond");
1905
1906 void
1907 tc_ticktock(int cnt)
1908 {
1909         static int count;
1910
1911         if (mtx_trylock_spin(&tc_setclock_mtx)) {
1912                 count += cnt;
1913                 if (count >= tc_tick) {
1914                         count = 0;
1915                         tc_windup(NULL);
1916                 }
1917                 mtx_unlock_spin(&tc_setclock_mtx);
1918         }
1919 }
1920
1921 static void __inline
1922 tc_adjprecision(void)
1923 {
1924         int t;
1925
1926         if (tc_timepercentage > 0) {
1927                 t = (99 + tc_timepercentage) / tc_timepercentage;
1928                 tc_precexp = fls(t + (t >> 1)) - 1;
1929                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1930                 FREQ2BT(hz, &bt_tickthreshold);
1931                 bintime_shift(&bt_timethreshold, tc_precexp);
1932                 bintime_shift(&bt_tickthreshold, tc_precexp);
1933         } else {
1934                 tc_precexp = 31;
1935                 bt_timethreshold.sec = INT_MAX;
1936                 bt_timethreshold.frac = ~(uint64_t)0;
1937                 bt_tickthreshold = bt_timethreshold;
1938         }
1939         sbt_timethreshold = bttosbt(bt_timethreshold);
1940         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1941 }
1942
1943 static int
1944 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1945 {
1946         int error, val;
1947
1948         val = tc_timepercentage;
1949         error = sysctl_handle_int(oidp, &val, 0, req);
1950         if (error != 0 || req->newptr == NULL)
1951                 return (error);
1952         tc_timepercentage = val;
1953         if (cold)
1954                 goto done;
1955         tc_adjprecision();
1956 done:
1957         return (0);
1958 }
1959
1960 static void
1961 inittimecounter(void *dummy)
1962 {
1963         u_int p;
1964         int tick_rate;
1965
1966         /*
1967          * Set the initial timeout to
1968          * max(1, <approx. number of hardclock ticks in a millisecond>).
1969          * People should probably not use the sysctl to set the timeout
1970          * to smaller than its initial value, since that value is the
1971          * smallest reasonable one.  If they want better timestamps they
1972          * should use the non-"get"* functions.
1973          */
1974         if (hz > 1000)
1975                 tc_tick = (hz + 500) / 1000;
1976         else
1977                 tc_tick = 1;
1978         tc_adjprecision();
1979         FREQ2BT(hz, &tick_bt);
1980         tick_sbt = bttosbt(tick_bt);
1981         tick_rate = hz / tc_tick;
1982         FREQ2BT(tick_rate, &tc_tick_bt);
1983         tc_tick_sbt = bttosbt(tc_tick_bt);
1984         p = (tc_tick * 1000000) / hz;
1985         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1986
1987 #ifdef FFCLOCK
1988         ffclock_init();
1989 #endif
1990         /* warm up new timecounter (again) and get rolling. */
1991         (void)timecounter->tc_get_timecount(timecounter);
1992         (void)timecounter->tc_get_timecount(timecounter);
1993         mtx_lock_spin(&tc_setclock_mtx);
1994         tc_windup(NULL);
1995         mtx_unlock_spin(&tc_setclock_mtx);
1996 }
1997
1998 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1999
2000 /* Cpu tick handling -------------------------------------------------*/
2001
2002 static int cpu_tick_variable;
2003 static uint64_t cpu_tick_frequency;
2004
2005 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
2006 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
2007
2008 static uint64_t
2009 tc_cpu_ticks(void)
2010 {
2011         struct timecounter *tc;
2012         uint64_t res, *base;
2013         unsigned u, *last;
2014
2015         critical_enter();
2016         base = DPCPU_PTR(tc_cpu_ticks_base);
2017         last = DPCPU_PTR(tc_cpu_ticks_last);
2018         tc = timehands->th_counter;
2019         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2020         if (u < *last)
2021                 *base += (uint64_t)tc->tc_counter_mask + 1;
2022         *last = u;
2023         res = u + *base;
2024         critical_exit();
2025         return (res);
2026 }
2027
2028 void
2029 cpu_tick_calibration(void)
2030 {
2031         static time_t last_calib;
2032
2033         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2034                 cpu_tick_calibrate(0);
2035                 last_calib = time_uptime;
2036         }
2037 }
2038
2039 /*
2040  * This function gets called every 16 seconds on only one designated
2041  * CPU in the system from hardclock() via cpu_tick_calibration()().
2042  *
2043  * Whenever the real time clock is stepped we get called with reset=1
2044  * to make sure we handle suspend/resume and similar events correctly.
2045  */
2046
2047 static void
2048 cpu_tick_calibrate(int reset)
2049 {
2050         static uint64_t c_last;
2051         uint64_t c_this, c_delta;
2052         static struct bintime  t_last;
2053         struct bintime t_this, t_delta;
2054         uint32_t divi;
2055
2056         if (reset) {
2057                 /* The clock was stepped, abort & reset */
2058                 t_last.sec = 0;
2059                 return;
2060         }
2061
2062         /* we don't calibrate fixed rate cputicks */
2063         if (!cpu_tick_variable)
2064                 return;
2065
2066         getbinuptime(&t_this);
2067         c_this = cpu_ticks();
2068         if (t_last.sec != 0) {
2069                 c_delta = c_this - c_last;
2070                 t_delta = t_this;
2071                 bintime_sub(&t_delta, &t_last);
2072                 /*
2073                  * Headroom:
2074                  *      2^(64-20) / 16[s] =
2075                  *      2^(44) / 16[s] =
2076                  *      17.592.186.044.416 / 16 =
2077                  *      1.099.511.627.776 [Hz]
2078                  */
2079                 divi = t_delta.sec << 20;
2080                 divi |= t_delta.frac >> (64 - 20);
2081                 c_delta <<= 20;
2082                 c_delta /= divi;
2083                 if (c_delta > cpu_tick_frequency) {
2084                         if (0 && bootverbose)
2085                                 printf("cpu_tick increased to %ju Hz\n",
2086                                     c_delta);
2087                         cpu_tick_frequency = c_delta;
2088                 }
2089         }
2090         c_last = c_this;
2091         t_last = t_this;
2092 }
2093
2094 void
2095 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2096 {
2097
2098         if (func == NULL) {
2099                 cpu_ticks = tc_cpu_ticks;
2100         } else {
2101                 cpu_tick_frequency = freq;
2102                 cpu_tick_variable = var;
2103                 cpu_ticks = func;
2104         }
2105 }
2106
2107 uint64_t
2108 cpu_tickrate(void)
2109 {
2110
2111         if (cpu_ticks == tc_cpu_ticks) 
2112                 return (tc_getfrequency());
2113         return (cpu_tick_frequency);
2114 }
2115
2116 /*
2117  * We need to be slightly careful converting cputicks to microseconds.
2118  * There is plenty of margin in 64 bits of microseconds (half a million
2119  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2120  * before divide conversion (to retain precision) we find that the
2121  * margin shrinks to 1.5 hours (one millionth of 146y).
2122  * With a three prong approach we never lose significant bits, no
2123  * matter what the cputick rate and length of timeinterval is.
2124  */
2125
2126 uint64_t
2127 cputick2usec(uint64_t tick)
2128 {
2129
2130         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2131                 return (tick / (cpu_tickrate() / 1000000LL));
2132         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2133                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2134         else
2135                 return ((tick * 1000000LL) / cpu_tickrate());
2136 }
2137
2138 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2139
2140 static int vdso_th_enable = 1;
2141 static int
2142 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2143 {
2144         int old_vdso_th_enable, error;
2145
2146         old_vdso_th_enable = vdso_th_enable;
2147         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2148         if (error != 0)
2149                 return (error);
2150         vdso_th_enable = old_vdso_th_enable;
2151         return (0);
2152 }
2153 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2154     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2155     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2156
2157 uint32_t
2158 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2159 {
2160         struct timehands *th;
2161         uint32_t enabled;
2162
2163         th = timehands;
2164         vdso_th->th_scale = th->th_scale;
2165         vdso_th->th_offset_count = th->th_offset_count;
2166         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2167         vdso_th->th_offset = th->th_offset;
2168         vdso_th->th_boottime = th->th_boottime;
2169         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2170                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2171                     th->th_counter);
2172         } else
2173                 enabled = 0;
2174         if (!vdso_th_enable)
2175                 enabled = 0;
2176         return (enabled);
2177 }
2178
2179 #ifdef COMPAT_FREEBSD32
2180 uint32_t
2181 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2182 {
2183         struct timehands *th;
2184         uint32_t enabled;
2185
2186         th = timehands;
2187         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2188         vdso_th32->th_offset_count = th->th_offset_count;
2189         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2190         vdso_th32->th_offset.sec = th->th_offset.sec;
2191         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2192         vdso_th32->th_boottime.sec = th->th_boottime.sec;
2193         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2194         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2195                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2196                     th->th_counter);
2197         } else
2198                 enabled = 0;
2199         if (!vdso_th_enable)
2200                 enabled = 0;
2201         return (enabled);
2202 }
2203 #endif