]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
Make vfs_unmountall() unmount /dev after /, not before. The only
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  */
15
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18
19 #include "opt_compat.h"
20 #include "opt_ntp.h"
21 #include "opt_ffclock.h"
22
23 #include <sys/param.h>
24 #include <sys/kernel.h>
25 #include <sys/limits.h>
26 #include <sys/lock.h>
27 #include <sys/mutex.h>
28 #include <sys/sbuf.h>
29 #include <sys/sysctl.h>
30 #include <sys/syslog.h>
31 #include <sys/systm.h>
32 #include <sys/timeffc.h>
33 #include <sys/timepps.h>
34 #include <sys/timetc.h>
35 #include <sys/timex.h>
36 #include <sys/vdso.h>
37
38 /*
39  * A large step happens on boot.  This constant detects such steps.
40  * It is relatively small so that ntp_update_second gets called enough
41  * in the typical 'missed a couple of seconds' case, but doesn't loop
42  * forever when the time step is large.
43  */
44 #define LARGE_STEP      200
45
46 /*
47  * Implement a dummy timecounter which we can use until we get a real one
48  * in the air.  This allows the console and other early stuff to use
49  * time services.
50  */
51
52 static u_int
53 dummy_get_timecount(struct timecounter *tc)
54 {
55         static u_int now;
56
57         return (++now);
58 }
59
60 static struct timecounter dummy_timecounter = {
61         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
62 };
63
64 struct timehands {
65         /* These fields must be initialized by the driver. */
66         struct timecounter      *th_counter;
67         int64_t                 th_adjustment;
68         uint64_t                th_scale;
69         u_int                   th_offset_count;
70         struct bintime          th_offset;
71         struct timeval          th_microtime;
72         struct timespec         th_nanotime;
73         /* Fields not to be copied in tc_windup start with th_generation. */
74         u_int                   th_generation;
75         struct timehands        *th_next;
76 };
77
78 static struct timehands th0;
79 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
80 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
81 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
82 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
83 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
84 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
85 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
86 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
87 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
88 static struct timehands th0 = {
89         &dummy_timecounter,
90         0,
91         (uint64_t)-1 / 1000000,
92         0,
93         {1, 0},
94         {0, 0},
95         {0, 0},
96         1,
97         &th1
98 };
99
100 static struct timehands *volatile timehands = &th0;
101 struct timecounter *timecounter = &dummy_timecounter;
102 static struct timecounter *timecounters = &dummy_timecounter;
103
104 int tc_min_ticktock_freq = 1;
105
106 volatile time_t time_second = 1;
107 volatile time_t time_uptime = 1;
108
109 struct bintime boottimebin;
110 struct timeval boottime;
111 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
112 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
113     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
114
115 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
116 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
117
118 static int timestepwarnings;
119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
120     &timestepwarnings, 0, "Log time steps");
121
122 struct bintime bt_timethreshold;
123 struct bintime bt_tickthreshold;
124 sbintime_t sbt_timethreshold;
125 sbintime_t sbt_tickthreshold;
126 struct bintime tc_tick_bt;
127 sbintime_t tc_tick_sbt;
128 int tc_precexp;
129 int tc_timepercentage = TC_DEFAULTPERC;
130 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
131 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
132     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
133     sysctl_kern_timecounter_adjprecision, "I",
134     "Allowed time interval deviation in percents");
135
136 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
137
138 static void tc_windup(void);
139 static void cpu_tick_calibrate(int);
140
141 void dtrace_getnanotime(struct timespec *tsp);
142
143 static int
144 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
145 {
146 #ifndef __mips__
147 #ifdef SCTL_MASK32
148         int tv[2];
149
150         if (req->flags & SCTL_MASK32) {
151                 tv[0] = boottime.tv_sec;
152                 tv[1] = boottime.tv_usec;
153                 return SYSCTL_OUT(req, tv, sizeof(tv));
154         } else
155 #endif
156 #endif
157                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
158 }
159
160 static int
161 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
162 {
163         u_int ncount;
164         struct timecounter *tc = arg1;
165
166         ncount = tc->tc_get_timecount(tc);
167         return sysctl_handle_int(oidp, &ncount, 0, req);
168 }
169
170 static int
171 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
172 {
173         uint64_t freq;
174         struct timecounter *tc = arg1;
175
176         freq = tc->tc_frequency;
177         return sysctl_handle_64(oidp, &freq, 0, req);
178 }
179
180 /*
181  * Return the difference between the timehands' counter value now and what
182  * was when we copied it to the timehands' offset_count.
183  */
184 static __inline u_int
185 tc_delta(struct timehands *th)
186 {
187         struct timecounter *tc;
188
189         tc = th->th_counter;
190         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
191             tc->tc_counter_mask);
192 }
193
194 /*
195  * Functions for reading the time.  We have to loop until we are sure that
196  * the timehands that we operated on was not updated under our feet.  See
197  * the comment in <sys/time.h> for a description of these 12 functions.
198  */
199
200 #ifdef FFCLOCK
201 void
202 fbclock_binuptime(struct bintime *bt)
203 {
204         struct timehands *th;
205         unsigned int gen;
206
207         do {
208                 th = timehands;
209                 gen = atomic_load_acq_int(&th->th_generation);
210                 *bt = th->th_offset;
211                 bintime_addx(bt, th->th_scale * tc_delta(th));
212                 atomic_thread_fence_acq();
213         } while (gen == 0 || gen != th->th_generation);
214 }
215
216 void
217 fbclock_nanouptime(struct timespec *tsp)
218 {
219         struct bintime bt;
220
221         fbclock_binuptime(&bt);
222         bintime2timespec(&bt, tsp);
223 }
224
225 void
226 fbclock_microuptime(struct timeval *tvp)
227 {
228         struct bintime bt;
229
230         fbclock_binuptime(&bt);
231         bintime2timeval(&bt, tvp);
232 }
233
234 void
235 fbclock_bintime(struct bintime *bt)
236 {
237
238         fbclock_binuptime(bt);
239         bintime_add(bt, &boottimebin);
240 }
241
242 void
243 fbclock_nanotime(struct timespec *tsp)
244 {
245         struct bintime bt;
246
247         fbclock_bintime(&bt);
248         bintime2timespec(&bt, tsp);
249 }
250
251 void
252 fbclock_microtime(struct timeval *tvp)
253 {
254         struct bintime bt;
255
256         fbclock_bintime(&bt);
257         bintime2timeval(&bt, tvp);
258 }
259
260 void
261 fbclock_getbinuptime(struct bintime *bt)
262 {
263         struct timehands *th;
264         unsigned int gen;
265
266         do {
267                 th = timehands;
268                 gen = atomic_load_acq_int(&th->th_generation);
269                 *bt = th->th_offset;
270                 atomic_thread_fence_acq();
271         } while (gen == 0 || gen != th->th_generation);
272 }
273
274 void
275 fbclock_getnanouptime(struct timespec *tsp)
276 {
277         struct timehands *th;
278         unsigned int gen;
279
280         do {
281                 th = timehands;
282                 gen = atomic_load_acq_int(&th->th_generation);
283                 bintime2timespec(&th->th_offset, tsp);
284                 atomic_thread_fence_acq();
285         } while (gen == 0 || gen != th->th_generation);
286 }
287
288 void
289 fbclock_getmicrouptime(struct timeval *tvp)
290 {
291         struct timehands *th;
292         unsigned int gen;
293
294         do {
295                 th = timehands;
296                 gen = atomic_load_acq_int(&th->th_generation);
297                 bintime2timeval(&th->th_offset, tvp);
298                 atomic_thread_fence_acq();
299         } while (gen == 0 || gen != th->th_generation);
300 }
301
302 void
303 fbclock_getbintime(struct bintime *bt)
304 {
305         struct timehands *th;
306         unsigned int gen;
307
308         do {
309                 th = timehands;
310                 gen = atomic_load_acq_int(&th->th_generation);
311                 *bt = th->th_offset;
312                 atomic_thread_fence_acq();
313         } while (gen == 0 || gen != th->th_generation);
314         bintime_add(bt, &boottimebin);
315 }
316
317 void
318 fbclock_getnanotime(struct timespec *tsp)
319 {
320         struct timehands *th;
321         unsigned int gen;
322
323         do {
324                 th = timehands;
325                 gen = atomic_load_acq_int(&th->th_generation);
326                 *tsp = th->th_nanotime;
327                 atomic_thread_fence_acq();
328         } while (gen == 0 || gen != th->th_generation);
329 }
330
331 void
332 fbclock_getmicrotime(struct timeval *tvp)
333 {
334         struct timehands *th;
335         unsigned int gen;
336
337         do {
338                 th = timehands;
339                 gen = atomic_load_acq_int(&th->th_generation);
340                 *tvp = th->th_microtime;
341                 atomic_thread_fence_acq();
342         } while (gen == 0 || gen != th->th_generation);
343 }
344 #else /* !FFCLOCK */
345 void
346 binuptime(struct bintime *bt)
347 {
348         struct timehands *th;
349         u_int gen;
350
351         do {
352                 th = timehands;
353                 gen = atomic_load_acq_int(&th->th_generation);
354                 *bt = th->th_offset;
355                 bintime_addx(bt, th->th_scale * tc_delta(th));
356                 atomic_thread_fence_acq();
357         } while (gen == 0 || gen != th->th_generation);
358 }
359
360 void
361 nanouptime(struct timespec *tsp)
362 {
363         struct bintime bt;
364
365         binuptime(&bt);
366         bintime2timespec(&bt, tsp);
367 }
368
369 void
370 microuptime(struct timeval *tvp)
371 {
372         struct bintime bt;
373
374         binuptime(&bt);
375         bintime2timeval(&bt, tvp);
376 }
377
378 void
379 bintime(struct bintime *bt)
380 {
381
382         binuptime(bt);
383         bintime_add(bt, &boottimebin);
384 }
385
386 void
387 nanotime(struct timespec *tsp)
388 {
389         struct bintime bt;
390
391         bintime(&bt);
392         bintime2timespec(&bt, tsp);
393 }
394
395 void
396 microtime(struct timeval *tvp)
397 {
398         struct bintime bt;
399
400         bintime(&bt);
401         bintime2timeval(&bt, tvp);
402 }
403
404 void
405 getbinuptime(struct bintime *bt)
406 {
407         struct timehands *th;
408         u_int gen;
409
410         do {
411                 th = timehands;
412                 gen = atomic_load_acq_int(&th->th_generation);
413                 *bt = th->th_offset;
414                 atomic_thread_fence_acq();
415         } while (gen == 0 || gen != th->th_generation);
416 }
417
418 void
419 getnanouptime(struct timespec *tsp)
420 {
421         struct timehands *th;
422         u_int gen;
423
424         do {
425                 th = timehands;
426                 gen = atomic_load_acq_int(&th->th_generation);
427                 bintime2timespec(&th->th_offset, tsp);
428                 atomic_thread_fence_acq();
429         } while (gen == 0 || gen != th->th_generation);
430 }
431
432 void
433 getmicrouptime(struct timeval *tvp)
434 {
435         struct timehands *th;
436         u_int gen;
437
438         do {
439                 th = timehands;
440                 gen = atomic_load_acq_int(&th->th_generation);
441                 bintime2timeval(&th->th_offset, tvp);
442                 atomic_thread_fence_acq();
443         } while (gen == 0 || gen != th->th_generation);
444 }
445
446 void
447 getbintime(struct bintime *bt)
448 {
449         struct timehands *th;
450         u_int gen;
451
452         do {
453                 th = timehands;
454                 gen = atomic_load_acq_int(&th->th_generation);
455                 *bt = th->th_offset;
456                 atomic_thread_fence_acq();
457         } while (gen == 0 || gen != th->th_generation);
458         bintime_add(bt, &boottimebin);
459 }
460
461 void
462 getnanotime(struct timespec *tsp)
463 {
464         struct timehands *th;
465         u_int gen;
466
467         do {
468                 th = timehands;
469                 gen = atomic_load_acq_int(&th->th_generation);
470                 *tsp = th->th_nanotime;
471                 atomic_thread_fence_acq();
472         } while (gen == 0 || gen != th->th_generation);
473 }
474
475 void
476 getmicrotime(struct timeval *tvp)
477 {
478         struct timehands *th;
479         u_int gen;
480
481         do {
482                 th = timehands;
483                 gen = atomic_load_acq_int(&th->th_generation);
484                 *tvp = th->th_microtime;
485                 atomic_thread_fence_acq();
486         } while (gen == 0 || gen != th->th_generation);
487 }
488 #endif /* FFCLOCK */
489
490 #ifdef FFCLOCK
491 /*
492  * Support for feed-forward synchronization algorithms. This is heavily inspired
493  * by the timehands mechanism but kept independent from it. *_windup() functions
494  * have some connection to avoid accessing the timecounter hardware more than
495  * necessary.
496  */
497
498 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
499 struct ffclock_estimate ffclock_estimate;
500 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
501 uint32_t ffclock_status;                /* Feed-forward clock status. */
502 int8_t ffclock_updated;                 /* New estimates are available. */
503 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
504
505 struct fftimehands {
506         struct ffclock_estimate cest;
507         struct bintime          tick_time;
508         struct bintime          tick_time_lerp;
509         ffcounter               tick_ffcount;
510         uint64_t                period_lerp;
511         volatile uint8_t        gen;
512         struct fftimehands      *next;
513 };
514
515 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
516
517 static struct fftimehands ffth[10];
518 static struct fftimehands *volatile fftimehands = ffth;
519
520 static void
521 ffclock_init(void)
522 {
523         struct fftimehands *cur;
524         struct fftimehands *last;
525
526         memset(ffth, 0, sizeof(ffth));
527
528         last = ffth + NUM_ELEMENTS(ffth) - 1;
529         for (cur = ffth; cur < last; cur++)
530                 cur->next = cur + 1;
531         last->next = ffth;
532
533         ffclock_updated = 0;
534         ffclock_status = FFCLOCK_STA_UNSYNC;
535         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
536 }
537
538 /*
539  * Reset the feed-forward clock estimates. Called from inittodr() to get things
540  * kick started and uses the timecounter nominal frequency as a first period
541  * estimate. Note: this function may be called several time just after boot.
542  * Note: this is the only function that sets the value of boot time for the
543  * monotonic (i.e. uptime) version of the feed-forward clock.
544  */
545 void
546 ffclock_reset_clock(struct timespec *ts)
547 {
548         struct timecounter *tc;
549         struct ffclock_estimate cest;
550
551         tc = timehands->th_counter;
552         memset(&cest, 0, sizeof(struct ffclock_estimate));
553
554         timespec2bintime(ts, &ffclock_boottime);
555         timespec2bintime(ts, &(cest.update_time));
556         ffclock_read_counter(&cest.update_ffcount);
557         cest.leapsec_next = 0;
558         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
559         cest.errb_abs = 0;
560         cest.errb_rate = 0;
561         cest.status = FFCLOCK_STA_UNSYNC;
562         cest.leapsec_total = 0;
563         cest.leapsec = 0;
564
565         mtx_lock(&ffclock_mtx);
566         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
567         ffclock_updated = INT8_MAX;
568         mtx_unlock(&ffclock_mtx);
569
570         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
571             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
572             (unsigned long)ts->tv_nsec);
573 }
574
575 /*
576  * Sub-routine to convert a time interval measured in RAW counter units to time
577  * in seconds stored in bintime format.
578  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
579  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
580  * extra cycles.
581  */
582 static void
583 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
584 {
585         struct bintime bt2;
586         ffcounter delta, delta_max;
587
588         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
589         bintime_clear(bt);
590         do {
591                 if (ffdelta > delta_max)
592                         delta = delta_max;
593                 else
594                         delta = ffdelta;
595                 bt2.sec = 0;
596                 bt2.frac = period;
597                 bintime_mul(&bt2, (unsigned int)delta);
598                 bintime_add(bt, &bt2);
599                 ffdelta -= delta;
600         } while (ffdelta > 0);
601 }
602
603 /*
604  * Update the fftimehands.
605  * Push the tick ffcount and time(s) forward based on current clock estimate.
606  * The conversion from ffcounter to bintime relies on the difference clock
607  * principle, whose accuracy relies on computing small time intervals. If a new
608  * clock estimate has been passed by the synchronisation daemon, make it
609  * current, and compute the linear interpolation for monotonic time if needed.
610  */
611 static void
612 ffclock_windup(unsigned int delta)
613 {
614         struct ffclock_estimate *cest;
615         struct fftimehands *ffth;
616         struct bintime bt, gap_lerp;
617         ffcounter ffdelta;
618         uint64_t frac;
619         unsigned int polling;
620         uint8_t forward_jump, ogen;
621
622         /*
623          * Pick the next timehand, copy current ffclock estimates and move tick
624          * times and counter forward.
625          */
626         forward_jump = 0;
627         ffth = fftimehands->next;
628         ogen = ffth->gen;
629         ffth->gen = 0;
630         cest = &ffth->cest;
631         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
632         ffdelta = (ffcounter)delta;
633         ffth->period_lerp = fftimehands->period_lerp;
634
635         ffth->tick_time = fftimehands->tick_time;
636         ffclock_convert_delta(ffdelta, cest->period, &bt);
637         bintime_add(&ffth->tick_time, &bt);
638
639         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
640         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
641         bintime_add(&ffth->tick_time_lerp, &bt);
642
643         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
644
645         /*
646          * Assess the status of the clock, if the last update is too old, it is
647          * likely the synchronisation daemon is dead and the clock is free
648          * running.
649          */
650         if (ffclock_updated == 0) {
651                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
652                 ffclock_convert_delta(ffdelta, cest->period, &bt);
653                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
654                         ffclock_status |= FFCLOCK_STA_UNSYNC;
655         }
656
657         /*
658          * If available, grab updated clock estimates and make them current.
659          * Recompute time at this tick using the updated estimates. The clock
660          * estimates passed the feed-forward synchronisation daemon may result
661          * in time conversion that is not monotonically increasing (just after
662          * the update). time_lerp is a particular linear interpolation over the
663          * synchronisation algo polling period that ensures monotonicity for the
664          * clock ids requesting it.
665          */
666         if (ffclock_updated > 0) {
667                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
668                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
669                 ffth->tick_time = cest->update_time;
670                 ffclock_convert_delta(ffdelta, cest->period, &bt);
671                 bintime_add(&ffth->tick_time, &bt);
672
673                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
674                 if (ffclock_updated == INT8_MAX)
675                         ffth->tick_time_lerp = ffth->tick_time;
676
677                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
678                         forward_jump = 1;
679                 else
680                         forward_jump = 0;
681
682                 bintime_clear(&gap_lerp);
683                 if (forward_jump) {
684                         gap_lerp = ffth->tick_time;
685                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
686                 } else {
687                         gap_lerp = ffth->tick_time_lerp;
688                         bintime_sub(&gap_lerp, &ffth->tick_time);
689                 }
690
691                 /*
692                  * The reset from the RTC clock may be far from accurate, and
693                  * reducing the gap between real time and interpolated time
694                  * could take a very long time if the interpolated clock insists
695                  * on strict monotonicity. The clock is reset under very strict
696                  * conditions (kernel time is known to be wrong and
697                  * synchronization daemon has been restarted recently.
698                  * ffclock_boottime absorbs the jump to ensure boot time is
699                  * correct and uptime functions stay consistent.
700                  */
701                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
702                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
703                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
704                         if (forward_jump)
705                                 bintime_add(&ffclock_boottime, &gap_lerp);
706                         else
707                                 bintime_sub(&ffclock_boottime, &gap_lerp);
708                         ffth->tick_time_lerp = ffth->tick_time;
709                         bintime_clear(&gap_lerp);
710                 }
711
712                 ffclock_status = cest->status;
713                 ffth->period_lerp = cest->period;
714
715                 /*
716                  * Compute corrected period used for the linear interpolation of
717                  * time. The rate of linear interpolation is capped to 5000PPM
718                  * (5ms/s).
719                  */
720                 if (bintime_isset(&gap_lerp)) {
721                         ffdelta = cest->update_ffcount;
722                         ffdelta -= fftimehands->cest.update_ffcount;
723                         ffclock_convert_delta(ffdelta, cest->period, &bt);
724                         polling = bt.sec;
725                         bt.sec = 0;
726                         bt.frac = 5000000 * (uint64_t)18446744073LL;
727                         bintime_mul(&bt, polling);
728                         if (bintime_cmp(&gap_lerp, &bt, >))
729                                 gap_lerp = bt;
730
731                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
732                         frac = 0;
733                         if (gap_lerp.sec > 0) {
734                                 frac -= 1;
735                                 frac /= ffdelta / gap_lerp.sec;
736                         }
737                         frac += gap_lerp.frac / ffdelta;
738
739                         if (forward_jump)
740                                 ffth->period_lerp += frac;
741                         else
742                                 ffth->period_lerp -= frac;
743                 }
744
745                 ffclock_updated = 0;
746         }
747         if (++ogen == 0)
748                 ogen = 1;
749         ffth->gen = ogen;
750         fftimehands = ffth;
751 }
752
753 /*
754  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
755  * the old and new hardware counter cannot be read simultaneously. tc_windup()
756  * does read the two counters 'back to back', but a few cycles are effectively
757  * lost, and not accumulated in tick_ffcount. This is a fairly radical
758  * operation for a feed-forward synchronization daemon, and it is its job to not
759  * pushing irrelevant data to the kernel. Because there is no locking here,
760  * simply force to ignore pending or next update to give daemon a chance to
761  * realize the counter has changed.
762  */
763 static void
764 ffclock_change_tc(struct timehands *th)
765 {
766         struct fftimehands *ffth;
767         struct ffclock_estimate *cest;
768         struct timecounter *tc;
769         uint8_t ogen;
770
771         tc = th->th_counter;
772         ffth = fftimehands->next;
773         ogen = ffth->gen;
774         ffth->gen = 0;
775
776         cest = &ffth->cest;
777         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
778         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
779         cest->errb_abs = 0;
780         cest->errb_rate = 0;
781         cest->status |= FFCLOCK_STA_UNSYNC;
782
783         ffth->tick_ffcount = fftimehands->tick_ffcount;
784         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
785         ffth->tick_time = fftimehands->tick_time;
786         ffth->period_lerp = cest->period;
787
788         /* Do not lock but ignore next update from synchronization daemon. */
789         ffclock_updated--;
790
791         if (++ogen == 0)
792                 ogen = 1;
793         ffth->gen = ogen;
794         fftimehands = ffth;
795 }
796
797 /*
798  * Retrieve feed-forward counter and time of last kernel tick.
799  */
800 void
801 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
802 {
803         struct fftimehands *ffth;
804         uint8_t gen;
805
806         /*
807          * No locking but check generation has not changed. Also need to make
808          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
809          */
810         do {
811                 ffth = fftimehands;
812                 gen = ffth->gen;
813                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
814                         *bt = ffth->tick_time_lerp;
815                 else
816                         *bt = ffth->tick_time;
817                 *ffcount = ffth->tick_ffcount;
818         } while (gen == 0 || gen != ffth->gen);
819 }
820
821 /*
822  * Absolute clock conversion. Low level function to convert ffcounter to
823  * bintime. The ffcounter is converted using the current ffclock period estimate
824  * or the "interpolated period" to ensure monotonicity.
825  * NOTE: this conversion may have been deferred, and the clock updated since the
826  * hardware counter has been read.
827  */
828 void
829 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
830 {
831         struct fftimehands *ffth;
832         struct bintime bt2;
833         ffcounter ffdelta;
834         uint8_t gen;
835
836         /*
837          * No locking but check generation has not changed. Also need to make
838          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
839          */
840         do {
841                 ffth = fftimehands;
842                 gen = ffth->gen;
843                 if (ffcount > ffth->tick_ffcount)
844                         ffdelta = ffcount - ffth->tick_ffcount;
845                 else
846                         ffdelta = ffth->tick_ffcount - ffcount;
847
848                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
849                         *bt = ffth->tick_time_lerp;
850                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
851                 } else {
852                         *bt = ffth->tick_time;
853                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
854                 }
855
856                 if (ffcount > ffth->tick_ffcount)
857                         bintime_add(bt, &bt2);
858                 else
859                         bintime_sub(bt, &bt2);
860         } while (gen == 0 || gen != ffth->gen);
861 }
862
863 /*
864  * Difference clock conversion.
865  * Low level function to Convert a time interval measured in RAW counter units
866  * into bintime. The difference clock allows measuring small intervals much more
867  * reliably than the absolute clock.
868  */
869 void
870 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
871 {
872         struct fftimehands *ffth;
873         uint8_t gen;
874
875         /* No locking but check generation has not changed. */
876         do {
877                 ffth = fftimehands;
878                 gen = ffth->gen;
879                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
880         } while (gen == 0 || gen != ffth->gen);
881 }
882
883 /*
884  * Access to current ffcounter value.
885  */
886 void
887 ffclock_read_counter(ffcounter *ffcount)
888 {
889         struct timehands *th;
890         struct fftimehands *ffth;
891         unsigned int gen, delta;
892
893         /*
894          * ffclock_windup() called from tc_windup(), safe to rely on
895          * th->th_generation only, for correct delta and ffcounter.
896          */
897         do {
898                 th = timehands;
899                 gen = atomic_load_acq_int(&th->th_generation);
900                 ffth = fftimehands;
901                 delta = tc_delta(th);
902                 *ffcount = ffth->tick_ffcount;
903                 atomic_thread_fence_acq();
904         } while (gen == 0 || gen != th->th_generation);
905
906         *ffcount += delta;
907 }
908
909 void
910 binuptime(struct bintime *bt)
911 {
912
913         binuptime_fromclock(bt, sysclock_active);
914 }
915
916 void
917 nanouptime(struct timespec *tsp)
918 {
919
920         nanouptime_fromclock(tsp, sysclock_active);
921 }
922
923 void
924 microuptime(struct timeval *tvp)
925 {
926
927         microuptime_fromclock(tvp, sysclock_active);
928 }
929
930 void
931 bintime(struct bintime *bt)
932 {
933
934         bintime_fromclock(bt, sysclock_active);
935 }
936
937 void
938 nanotime(struct timespec *tsp)
939 {
940
941         nanotime_fromclock(tsp, sysclock_active);
942 }
943
944 void
945 microtime(struct timeval *tvp)
946 {
947
948         microtime_fromclock(tvp, sysclock_active);
949 }
950
951 void
952 getbinuptime(struct bintime *bt)
953 {
954
955         getbinuptime_fromclock(bt, sysclock_active);
956 }
957
958 void
959 getnanouptime(struct timespec *tsp)
960 {
961
962         getnanouptime_fromclock(tsp, sysclock_active);
963 }
964
965 void
966 getmicrouptime(struct timeval *tvp)
967 {
968
969         getmicrouptime_fromclock(tvp, sysclock_active);
970 }
971
972 void
973 getbintime(struct bintime *bt)
974 {
975
976         getbintime_fromclock(bt, sysclock_active);
977 }
978
979 void
980 getnanotime(struct timespec *tsp)
981 {
982
983         getnanotime_fromclock(tsp, sysclock_active);
984 }
985
986 void
987 getmicrotime(struct timeval *tvp)
988 {
989
990         getmicrouptime_fromclock(tvp, sysclock_active);
991 }
992
993 #endif /* FFCLOCK */
994
995 /*
996  * This is a clone of getnanotime and used for walltimestamps.
997  * The dtrace_ prefix prevents fbt from creating probes for
998  * it so walltimestamp can be safely used in all fbt probes.
999  */
1000 void
1001 dtrace_getnanotime(struct timespec *tsp)
1002 {
1003         struct timehands *th;
1004         u_int gen;
1005
1006         do {
1007                 th = timehands;
1008                 gen = atomic_load_acq_int(&th->th_generation);
1009                 *tsp = th->th_nanotime;
1010                 atomic_thread_fence_acq();
1011         } while (gen == 0 || gen != th->th_generation);
1012 }
1013
1014 /*
1015  * System clock currently providing time to the system. Modifiable via sysctl
1016  * when the FFCLOCK option is defined.
1017  */
1018 int sysclock_active = SYSCLOCK_FBCK;
1019
1020 /* Internal NTP status and error estimates. */
1021 extern int time_status;
1022 extern long time_esterror;
1023
1024 /*
1025  * Take a snapshot of sysclock data which can be used to compare system clocks
1026  * and generate timestamps after the fact.
1027  */
1028 void
1029 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1030 {
1031         struct fbclock_info *fbi;
1032         struct timehands *th;
1033         struct bintime bt;
1034         unsigned int delta, gen;
1035 #ifdef FFCLOCK
1036         ffcounter ffcount;
1037         struct fftimehands *ffth;
1038         struct ffclock_info *ffi;
1039         struct ffclock_estimate cest;
1040
1041         ffi = &clock_snap->ff_info;
1042 #endif
1043
1044         fbi = &clock_snap->fb_info;
1045         delta = 0;
1046
1047         do {
1048                 th = timehands;
1049                 gen = atomic_load_acq_int(&th->th_generation);
1050                 fbi->th_scale = th->th_scale;
1051                 fbi->tick_time = th->th_offset;
1052 #ifdef FFCLOCK
1053                 ffth = fftimehands;
1054                 ffi->tick_time = ffth->tick_time_lerp;
1055                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1056                 ffi->period = ffth->cest.period;
1057                 ffi->period_lerp = ffth->period_lerp;
1058                 clock_snap->ffcount = ffth->tick_ffcount;
1059                 cest = ffth->cest;
1060 #endif
1061                 if (!fast)
1062                         delta = tc_delta(th);
1063                 atomic_thread_fence_acq();
1064         } while (gen == 0 || gen != th->th_generation);
1065
1066         clock_snap->delta = delta;
1067         clock_snap->sysclock_active = sysclock_active;
1068
1069         /* Record feedback clock status and error. */
1070         clock_snap->fb_info.status = time_status;
1071         /* XXX: Very crude estimate of feedback clock error. */
1072         bt.sec = time_esterror / 1000000;
1073         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1074             (uint64_t)18446744073709ULL;
1075         clock_snap->fb_info.error = bt;
1076
1077 #ifdef FFCLOCK
1078         if (!fast)
1079                 clock_snap->ffcount += delta;
1080
1081         /* Record feed-forward clock leap second adjustment. */
1082         ffi->leapsec_adjustment = cest.leapsec_total;
1083         if (clock_snap->ffcount > cest.leapsec_next)
1084                 ffi->leapsec_adjustment -= cest.leapsec;
1085
1086         /* Record feed-forward clock status and error. */
1087         clock_snap->ff_info.status = cest.status;
1088         ffcount = clock_snap->ffcount - cest.update_ffcount;
1089         ffclock_convert_delta(ffcount, cest.period, &bt);
1090         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1091         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1092         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1093         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1094         clock_snap->ff_info.error = bt;
1095 #endif
1096 }
1097
1098 /*
1099  * Convert a sysclock snapshot into a struct bintime based on the specified
1100  * clock source and flags.
1101  */
1102 int
1103 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1104     int whichclock, uint32_t flags)
1105 {
1106 #ifdef FFCLOCK
1107         struct bintime bt2;
1108         uint64_t period;
1109 #endif
1110
1111         switch (whichclock) {
1112         case SYSCLOCK_FBCK:
1113                 *bt = cs->fb_info.tick_time;
1114
1115                 /* If snapshot was created with !fast, delta will be >0. */
1116                 if (cs->delta > 0)
1117                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1118
1119                 if ((flags & FBCLOCK_UPTIME) == 0)
1120                         bintime_add(bt, &boottimebin);
1121                 break;
1122 #ifdef FFCLOCK
1123         case SYSCLOCK_FFWD:
1124                 if (flags & FFCLOCK_LERP) {
1125                         *bt = cs->ff_info.tick_time_lerp;
1126                         period = cs->ff_info.period_lerp;
1127                 } else {
1128                         *bt = cs->ff_info.tick_time;
1129                         period = cs->ff_info.period;
1130                 }
1131
1132                 /* If snapshot was created with !fast, delta will be >0. */
1133                 if (cs->delta > 0) {
1134                         ffclock_convert_delta(cs->delta, period, &bt2);
1135                         bintime_add(bt, &bt2);
1136                 }
1137
1138                 /* Leap second adjustment. */
1139                 if (flags & FFCLOCK_LEAPSEC)
1140                         bt->sec -= cs->ff_info.leapsec_adjustment;
1141
1142                 /* Boot time adjustment, for uptime/monotonic clocks. */
1143                 if (flags & FFCLOCK_UPTIME)
1144                         bintime_sub(bt, &ffclock_boottime);
1145                 break;
1146 #endif
1147         default:
1148                 return (EINVAL);
1149                 break;
1150         }
1151
1152         return (0);
1153 }
1154
1155 /*
1156  * Initialize a new timecounter and possibly use it.
1157  */
1158 void
1159 tc_init(struct timecounter *tc)
1160 {
1161         u_int u;
1162         struct sysctl_oid *tc_root;
1163
1164         u = tc->tc_frequency / tc->tc_counter_mask;
1165         /* XXX: We need some margin here, 10% is a guess */
1166         u *= 11;
1167         u /= 10;
1168         if (u > hz && tc->tc_quality >= 0) {
1169                 tc->tc_quality = -2000;
1170                 if (bootverbose) {
1171                         printf("Timecounter \"%s\" frequency %ju Hz",
1172                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1173                         printf(" -- Insufficient hz, needs at least %u\n", u);
1174                 }
1175         } else if (tc->tc_quality >= 0 || bootverbose) {
1176                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1177                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1178                     tc->tc_quality);
1179         }
1180
1181         tc->tc_next = timecounters;
1182         timecounters = tc;
1183         /*
1184          * Set up sysctl tree for this counter.
1185          */
1186         tc_root = SYSCTL_ADD_NODE(NULL,
1187             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1188             CTLFLAG_RW, 0, "timecounter description");
1189         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1190             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1191             "mask for implemented bits");
1192         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1193             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1194             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1195         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1196             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1197              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1198         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1199             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1200             "goodness of time counter");
1201         /*
1202          * Do not automatically switch if the current tc was specifically
1203          * chosen.  Never automatically use a timecounter with negative quality.
1204          * Even though we run on the dummy counter, switching here may be
1205          * worse since this timecounter may not be monotonic.
1206          */
1207         if (tc_chosen)
1208                 return;
1209         if (tc->tc_quality < 0)
1210                 return;
1211         if (tc->tc_quality < timecounter->tc_quality)
1212                 return;
1213         if (tc->tc_quality == timecounter->tc_quality &&
1214             tc->tc_frequency < timecounter->tc_frequency)
1215                 return;
1216         (void)tc->tc_get_timecount(tc);
1217         (void)tc->tc_get_timecount(tc);
1218         timecounter = tc;
1219 }
1220
1221 /* Report the frequency of the current timecounter. */
1222 uint64_t
1223 tc_getfrequency(void)
1224 {
1225
1226         return (timehands->th_counter->tc_frequency);
1227 }
1228
1229 /*
1230  * Step our concept of UTC.  This is done by modifying our estimate of
1231  * when we booted.
1232  * XXX: not locked.
1233  */
1234 void
1235 tc_setclock(struct timespec *ts)
1236 {
1237         struct timespec tbef, taft;
1238         struct bintime bt, bt2;
1239
1240         cpu_tick_calibrate(1);
1241         nanotime(&tbef);
1242         timespec2bintime(ts, &bt);
1243         binuptime(&bt2);
1244         bintime_sub(&bt, &bt2);
1245         bintime_add(&bt2, &boottimebin);
1246         boottimebin = bt;
1247         bintime2timeval(&bt, &boottime);
1248
1249         /* XXX fiddle all the little crinkly bits around the fiords... */
1250         tc_windup();
1251         nanotime(&taft);
1252         if (timestepwarnings) {
1253                 log(LOG_INFO,
1254                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1255                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1256                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1257                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1258         }
1259         cpu_tick_calibrate(1);
1260 }
1261
1262 /*
1263  * Initialize the next struct timehands in the ring and make
1264  * it the active timehands.  Along the way we might switch to a different
1265  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1266  */
1267 static void
1268 tc_windup(void)
1269 {
1270         struct bintime bt;
1271         struct timehands *th, *tho;
1272         uint64_t scale;
1273         u_int delta, ncount, ogen;
1274         int i;
1275         time_t t;
1276
1277         /*
1278          * Make the next timehands a copy of the current one, but do
1279          * not overwrite the generation or next pointer.  While we
1280          * update the contents, the generation must be zero.  We need
1281          * to ensure that the zero generation is visible before the
1282          * data updates become visible, which requires release fence.
1283          * For similar reasons, re-reading of the generation after the
1284          * data is read should use acquire fence.
1285          */
1286         tho = timehands;
1287         th = tho->th_next;
1288         ogen = th->th_generation;
1289         th->th_generation = 0;
1290         atomic_thread_fence_rel();
1291         bcopy(tho, th, offsetof(struct timehands, th_generation));
1292
1293         /*
1294          * Capture a timecounter delta on the current timecounter and if
1295          * changing timecounters, a counter value from the new timecounter.
1296          * Update the offset fields accordingly.
1297          */
1298         delta = tc_delta(th);
1299         if (th->th_counter != timecounter)
1300                 ncount = timecounter->tc_get_timecount(timecounter);
1301         else
1302                 ncount = 0;
1303 #ifdef FFCLOCK
1304         ffclock_windup(delta);
1305 #endif
1306         th->th_offset_count += delta;
1307         th->th_offset_count &= th->th_counter->tc_counter_mask;
1308         while (delta > th->th_counter->tc_frequency) {
1309                 /* Eat complete unadjusted seconds. */
1310                 delta -= th->th_counter->tc_frequency;
1311                 th->th_offset.sec++;
1312         }
1313         if ((delta > th->th_counter->tc_frequency / 2) &&
1314             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1315                 /* The product th_scale * delta just barely overflows. */
1316                 th->th_offset.sec++;
1317         }
1318         bintime_addx(&th->th_offset, th->th_scale * delta);
1319
1320         /*
1321          * Hardware latching timecounters may not generate interrupts on
1322          * PPS events, so instead we poll them.  There is a finite risk that
1323          * the hardware might capture a count which is later than the one we
1324          * got above, and therefore possibly in the next NTP second which might
1325          * have a different rate than the current NTP second.  It doesn't
1326          * matter in practice.
1327          */
1328         if (tho->th_counter->tc_poll_pps)
1329                 tho->th_counter->tc_poll_pps(tho->th_counter);
1330
1331         /*
1332          * Deal with NTP second processing.  The for loop normally
1333          * iterates at most once, but in extreme situations it might
1334          * keep NTP sane if timeouts are not run for several seconds.
1335          * At boot, the time step can be large when the TOD hardware
1336          * has been read, so on really large steps, we call
1337          * ntp_update_second only twice.  We need to call it twice in
1338          * case we missed a leap second.
1339          */
1340         bt = th->th_offset;
1341         bintime_add(&bt, &boottimebin);
1342         i = bt.sec - tho->th_microtime.tv_sec;
1343         if (i > LARGE_STEP)
1344                 i = 2;
1345         for (; i > 0; i--) {
1346                 t = bt.sec;
1347                 ntp_update_second(&th->th_adjustment, &bt.sec);
1348                 if (bt.sec != t)
1349                         boottimebin.sec += bt.sec - t;
1350         }
1351         /* Update the UTC timestamps used by the get*() functions. */
1352         /* XXX shouldn't do this here.  Should force non-`get' versions. */
1353         bintime2timeval(&bt, &th->th_microtime);
1354         bintime2timespec(&bt, &th->th_nanotime);
1355
1356         /* Now is a good time to change timecounters. */
1357         if (th->th_counter != timecounter) {
1358 #ifndef __arm__
1359                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1360                         cpu_disable_c2_sleep++;
1361                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1362                         cpu_disable_c2_sleep--;
1363 #endif
1364                 th->th_counter = timecounter;
1365                 th->th_offset_count = ncount;
1366                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1367                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1368 #ifdef FFCLOCK
1369                 ffclock_change_tc(th);
1370 #endif
1371         }
1372
1373         /*-
1374          * Recalculate the scaling factor.  We want the number of 1/2^64
1375          * fractions of a second per period of the hardware counter, taking
1376          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1377          * processing provides us with.
1378          *
1379          * The th_adjustment is nanoseconds per second with 32 bit binary
1380          * fraction and we want 64 bit binary fraction of second:
1381          *
1382          *       x = a * 2^32 / 10^9 = a * 4.294967296
1383          *
1384          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1385          * we can only multiply by about 850 without overflowing, that
1386          * leaves no suitably precise fractions for multiply before divide.
1387          *
1388          * Divide before multiply with a fraction of 2199/512 results in a
1389          * systematic undercompensation of 10PPM of th_adjustment.  On a
1390          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1391          *
1392          * We happily sacrifice the lowest of the 64 bits of our result
1393          * to the goddess of code clarity.
1394          *
1395          */
1396         scale = (uint64_t)1 << 63;
1397         scale += (th->th_adjustment / 1024) * 2199;
1398         scale /= th->th_counter->tc_frequency;
1399         th->th_scale = scale * 2;
1400
1401         /*
1402          * Now that the struct timehands is again consistent, set the new
1403          * generation number, making sure to not make it zero.
1404          */
1405         if (++ogen == 0)
1406                 ogen = 1;
1407         atomic_store_rel_int(&th->th_generation, ogen);
1408
1409         /* Go live with the new struct timehands. */
1410 #ifdef FFCLOCK
1411         switch (sysclock_active) {
1412         case SYSCLOCK_FBCK:
1413 #endif
1414                 time_second = th->th_microtime.tv_sec;
1415                 time_uptime = th->th_offset.sec;
1416 #ifdef FFCLOCK
1417                 break;
1418         case SYSCLOCK_FFWD:
1419                 time_second = fftimehands->tick_time_lerp.sec;
1420                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1421                 break;
1422         }
1423 #endif
1424
1425         timehands = th;
1426         timekeep_push_vdso();
1427 }
1428
1429 /* Report or change the active timecounter hardware. */
1430 static int
1431 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1432 {
1433         char newname[32];
1434         struct timecounter *newtc, *tc;
1435         int error;
1436
1437         tc = timecounter;
1438         strlcpy(newname, tc->tc_name, sizeof(newname));
1439
1440         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1441         if (error != 0 || req->newptr == NULL)
1442                 return (error);
1443         /* Record that the tc in use now was specifically chosen. */
1444         tc_chosen = 1;
1445         if (strcmp(newname, tc->tc_name) == 0)
1446                 return (0);
1447         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1448                 if (strcmp(newname, newtc->tc_name) != 0)
1449                         continue;
1450
1451                 /* Warm up new timecounter. */
1452                 (void)newtc->tc_get_timecount(newtc);
1453                 (void)newtc->tc_get_timecount(newtc);
1454
1455                 timecounter = newtc;
1456
1457                 /*
1458                  * The vdso timehands update is deferred until the next
1459                  * 'tc_windup()'.
1460                  *
1461                  * This is prudent given that 'timekeep_push_vdso()' does not
1462                  * use any locking and that it can be called in hard interrupt
1463                  * context via 'tc_windup()'.
1464                  */
1465                 return (0);
1466         }
1467         return (EINVAL);
1468 }
1469
1470 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1471     0, 0, sysctl_kern_timecounter_hardware, "A",
1472     "Timecounter hardware selected");
1473
1474
1475 /* Report the available timecounter hardware. */
1476 static int
1477 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1478 {
1479         struct sbuf sb;
1480         struct timecounter *tc;
1481         int error;
1482
1483         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1484         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1485                 if (tc != timecounters)
1486                         sbuf_putc(&sb, ' ');
1487                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1488         }
1489         error = sbuf_finish(&sb);
1490         sbuf_delete(&sb);
1491         return (error);
1492 }
1493
1494 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1495     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1496
1497 /*
1498  * RFC 2783 PPS-API implementation.
1499  */
1500
1501 /*
1502  *  Return true if the driver is aware of the abi version extensions in the
1503  *  pps_state structure, and it supports at least the given abi version number.
1504  */
1505 static inline int
1506 abi_aware(struct pps_state *pps, int vers)
1507 {
1508
1509         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1510 }
1511
1512 static int
1513 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1514 {
1515         int err, timo;
1516         pps_seq_t aseq, cseq;
1517         struct timeval tv;
1518
1519         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1520                 return (EINVAL);
1521
1522         /*
1523          * If no timeout is requested, immediately return whatever values were
1524          * most recently captured.  If timeout seconds is -1, that's a request
1525          * to block without a timeout.  WITNESS won't let us sleep forever
1526          * without a lock (we really don't need a lock), so just repeatedly
1527          * sleep a long time.
1528          */
1529         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1530                 if (fapi->timeout.tv_sec == -1)
1531                         timo = 0x7fffffff;
1532                 else {
1533                         tv.tv_sec = fapi->timeout.tv_sec;
1534                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1535                         timo = tvtohz(&tv);
1536                 }
1537                 aseq = pps->ppsinfo.assert_sequence;
1538                 cseq = pps->ppsinfo.clear_sequence;
1539                 while (aseq == pps->ppsinfo.assert_sequence &&
1540                     cseq == pps->ppsinfo.clear_sequence) {
1541                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1542                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1543                                         err = msleep_spin(pps, pps->driver_mtx,
1544                                             "ppsfch", timo);
1545                                 } else {
1546                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1547                                             "ppsfch", timo);
1548                                 }
1549                         } else {
1550                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1551                         }
1552                         if (err == EWOULDBLOCK) {
1553                                 if (fapi->timeout.tv_sec == -1) {
1554                                         continue;
1555                                 } else {
1556                                         return (ETIMEDOUT);
1557                                 }
1558                         } else if (err != 0) {
1559                                 return (err);
1560                         }
1561                 }
1562         }
1563
1564         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1565         fapi->pps_info_buf = pps->ppsinfo;
1566
1567         return (0);
1568 }
1569
1570 int
1571 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1572 {
1573         pps_params_t *app;
1574         struct pps_fetch_args *fapi;
1575 #ifdef FFCLOCK
1576         struct pps_fetch_ffc_args *fapi_ffc;
1577 #endif
1578 #ifdef PPS_SYNC
1579         struct pps_kcbind_args *kapi;
1580 #endif
1581
1582         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1583         switch (cmd) {
1584         case PPS_IOC_CREATE:
1585                 return (0);
1586         case PPS_IOC_DESTROY:
1587                 return (0);
1588         case PPS_IOC_SETPARAMS:
1589                 app = (pps_params_t *)data;
1590                 if (app->mode & ~pps->ppscap)
1591                         return (EINVAL);
1592 #ifdef FFCLOCK
1593                 /* Ensure only a single clock is selected for ffc timestamp. */
1594                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1595                         return (EINVAL);
1596 #endif
1597                 pps->ppsparam = *app;
1598                 return (0);
1599         case PPS_IOC_GETPARAMS:
1600                 app = (pps_params_t *)data;
1601                 *app = pps->ppsparam;
1602                 app->api_version = PPS_API_VERS_1;
1603                 return (0);
1604         case PPS_IOC_GETCAP:
1605                 *(int*)data = pps->ppscap;
1606                 return (0);
1607         case PPS_IOC_FETCH:
1608                 fapi = (struct pps_fetch_args *)data;
1609                 return (pps_fetch(fapi, pps));
1610 #ifdef FFCLOCK
1611         case PPS_IOC_FETCH_FFCOUNTER:
1612                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1613                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1614                     PPS_TSFMT_TSPEC)
1615                         return (EINVAL);
1616                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1617                         return (EOPNOTSUPP);
1618                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1619                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1620                 /* Overwrite timestamps if feedback clock selected. */
1621                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1622                 case PPS_TSCLK_FBCK:
1623                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1624                             pps->ppsinfo.assert_timestamp;
1625                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1626                             pps->ppsinfo.clear_timestamp;
1627                         break;
1628                 case PPS_TSCLK_FFWD:
1629                         break;
1630                 default:
1631                         break;
1632                 }
1633                 return (0);
1634 #endif /* FFCLOCK */
1635         case PPS_IOC_KCBIND:
1636 #ifdef PPS_SYNC
1637                 kapi = (struct pps_kcbind_args *)data;
1638                 /* XXX Only root should be able to do this */
1639                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1640                         return (EINVAL);
1641                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1642                         return (EINVAL);
1643                 if (kapi->edge & ~pps->ppscap)
1644                         return (EINVAL);
1645                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1646                     (pps->kcmode & KCMODE_ABIFLAG);
1647                 return (0);
1648 #else
1649                 return (EOPNOTSUPP);
1650 #endif
1651         default:
1652                 return (ENOIOCTL);
1653         }
1654 }
1655
1656 void
1657 pps_init(struct pps_state *pps)
1658 {
1659         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1660         if (pps->ppscap & PPS_CAPTUREASSERT)
1661                 pps->ppscap |= PPS_OFFSETASSERT;
1662         if (pps->ppscap & PPS_CAPTURECLEAR)
1663                 pps->ppscap |= PPS_OFFSETCLEAR;
1664 #ifdef FFCLOCK
1665         pps->ppscap |= PPS_TSCLK_MASK;
1666 #endif
1667         pps->kcmode &= ~KCMODE_ABIFLAG;
1668 }
1669
1670 void
1671 pps_init_abi(struct pps_state *pps)
1672 {
1673
1674         pps_init(pps);
1675         if (pps->driver_abi > 0) {
1676                 pps->kcmode |= KCMODE_ABIFLAG;
1677                 pps->kernel_abi = PPS_ABI_VERSION;
1678         }
1679 }
1680
1681 void
1682 pps_capture(struct pps_state *pps)
1683 {
1684         struct timehands *th;
1685
1686         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1687         th = timehands;
1688         pps->capgen = atomic_load_acq_int(&th->th_generation);
1689         pps->capth = th;
1690 #ifdef FFCLOCK
1691         pps->capffth = fftimehands;
1692 #endif
1693         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1694         atomic_thread_fence_acq();
1695         if (pps->capgen != th->th_generation)
1696                 pps->capgen = 0;
1697 }
1698
1699 void
1700 pps_event(struct pps_state *pps, int event)
1701 {
1702         struct bintime bt;
1703         struct timespec ts, *tsp, *osp;
1704         u_int tcount, *pcount;
1705         int foff, fhard;
1706         pps_seq_t *pseq;
1707 #ifdef FFCLOCK
1708         struct timespec *tsp_ffc;
1709         pps_seq_t *pseq_ffc;
1710         ffcounter *ffcount;
1711 #endif
1712
1713         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1714         /* Nothing to do if not currently set to capture this event type. */
1715         if ((event & pps->ppsparam.mode) == 0)
1716                 return;
1717         /* If the timecounter was wound up underneath us, bail out. */
1718         if (pps->capgen == 0 || pps->capgen !=
1719             atomic_load_acq_int(&pps->capth->th_generation))
1720                 return;
1721
1722         /* Things would be easier with arrays. */
1723         if (event == PPS_CAPTUREASSERT) {
1724                 tsp = &pps->ppsinfo.assert_timestamp;
1725                 osp = &pps->ppsparam.assert_offset;
1726                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1727                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1728                 pcount = &pps->ppscount[0];
1729                 pseq = &pps->ppsinfo.assert_sequence;
1730 #ifdef FFCLOCK
1731                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1732                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1733                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1734 #endif
1735         } else {
1736                 tsp = &pps->ppsinfo.clear_timestamp;
1737                 osp = &pps->ppsparam.clear_offset;
1738                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1739                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1740                 pcount = &pps->ppscount[1];
1741                 pseq = &pps->ppsinfo.clear_sequence;
1742 #ifdef FFCLOCK
1743                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1744                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1745                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1746 #endif
1747         }
1748
1749         /*
1750          * If the timecounter changed, we cannot compare the count values, so
1751          * we have to drop the rest of the PPS-stuff until the next event.
1752          */
1753         if (pps->ppstc != pps->capth->th_counter) {
1754                 pps->ppstc = pps->capth->th_counter;
1755                 *pcount = pps->capcount;
1756                 pps->ppscount[2] = pps->capcount;
1757                 return;
1758         }
1759
1760         /* Convert the count to a timespec. */
1761         tcount = pps->capcount - pps->capth->th_offset_count;
1762         tcount &= pps->capth->th_counter->tc_counter_mask;
1763         bt = pps->capth->th_offset;
1764         bintime_addx(&bt, pps->capth->th_scale * tcount);
1765         bintime_add(&bt, &boottimebin);
1766         bintime2timespec(&bt, &ts);
1767
1768         /* If the timecounter was wound up underneath us, bail out. */
1769         atomic_thread_fence_acq();
1770         if (pps->capgen != pps->capth->th_generation)
1771                 return;
1772
1773         *pcount = pps->capcount;
1774         (*pseq)++;
1775         *tsp = ts;
1776
1777         if (foff) {
1778                 timespecadd(tsp, osp);
1779                 if (tsp->tv_nsec < 0) {
1780                         tsp->tv_nsec += 1000000000;
1781                         tsp->tv_sec -= 1;
1782                 }
1783         }
1784
1785 #ifdef FFCLOCK
1786         *ffcount = pps->capffth->tick_ffcount + tcount;
1787         bt = pps->capffth->tick_time;
1788         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1789         bintime_add(&bt, &pps->capffth->tick_time);
1790         bintime2timespec(&bt, &ts);
1791         (*pseq_ffc)++;
1792         *tsp_ffc = ts;
1793 #endif
1794
1795 #ifdef PPS_SYNC
1796         if (fhard) {
1797                 uint64_t scale;
1798
1799                 /*
1800                  * Feed the NTP PLL/FLL.
1801                  * The FLL wants to know how many (hardware) nanoseconds
1802                  * elapsed since the previous event.
1803                  */
1804                 tcount = pps->capcount - pps->ppscount[2];
1805                 pps->ppscount[2] = pps->capcount;
1806                 tcount &= pps->capth->th_counter->tc_counter_mask;
1807                 scale = (uint64_t)1 << 63;
1808                 scale /= pps->capth->th_counter->tc_frequency;
1809                 scale *= 2;
1810                 bt.sec = 0;
1811                 bt.frac = 0;
1812                 bintime_addx(&bt, scale * tcount);
1813                 bintime2timespec(&bt, &ts);
1814                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1815         }
1816 #endif
1817
1818         /* Wakeup anyone sleeping in pps_fetch().  */
1819         wakeup(pps);
1820 }
1821
1822 /*
1823  * Timecounters need to be updated every so often to prevent the hardware
1824  * counter from overflowing.  Updating also recalculates the cached values
1825  * used by the get*() family of functions, so their precision depends on
1826  * the update frequency.
1827  */
1828
1829 static int tc_tick;
1830 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1831     "Approximate number of hardclock ticks in a millisecond");
1832
1833 void
1834 tc_ticktock(int cnt)
1835 {
1836         static int count;
1837
1838         count += cnt;
1839         if (count < tc_tick)
1840                 return;
1841         count = 0;
1842         tc_windup();
1843 }
1844
1845 static void __inline
1846 tc_adjprecision(void)
1847 {
1848         int t;
1849
1850         if (tc_timepercentage > 0) {
1851                 t = (99 + tc_timepercentage) / tc_timepercentage;
1852                 tc_precexp = fls(t + (t >> 1)) - 1;
1853                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1854                 FREQ2BT(hz, &bt_tickthreshold);
1855                 bintime_shift(&bt_timethreshold, tc_precexp);
1856                 bintime_shift(&bt_tickthreshold, tc_precexp);
1857         } else {
1858                 tc_precexp = 31;
1859                 bt_timethreshold.sec = INT_MAX;
1860                 bt_timethreshold.frac = ~(uint64_t)0;
1861                 bt_tickthreshold = bt_timethreshold;
1862         }
1863         sbt_timethreshold = bttosbt(bt_timethreshold);
1864         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1865 }
1866
1867 static int
1868 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1869 {
1870         int error, val;
1871
1872         val = tc_timepercentage;
1873         error = sysctl_handle_int(oidp, &val, 0, req);
1874         if (error != 0 || req->newptr == NULL)
1875                 return (error);
1876         tc_timepercentage = val;
1877         if (cold)
1878                 goto done;
1879         tc_adjprecision();
1880 done:
1881         return (0);
1882 }
1883
1884 static void
1885 inittimecounter(void *dummy)
1886 {
1887         u_int p;
1888         int tick_rate;
1889
1890         /*
1891          * Set the initial timeout to
1892          * max(1, <approx. number of hardclock ticks in a millisecond>).
1893          * People should probably not use the sysctl to set the timeout
1894          * to smaller than its inital value, since that value is the
1895          * smallest reasonable one.  If they want better timestamps they
1896          * should use the non-"get"* functions.
1897          */
1898         if (hz > 1000)
1899                 tc_tick = (hz + 500) / 1000;
1900         else
1901                 tc_tick = 1;
1902         tc_adjprecision();
1903         FREQ2BT(hz, &tick_bt);
1904         tick_sbt = bttosbt(tick_bt);
1905         tick_rate = hz / tc_tick;
1906         FREQ2BT(tick_rate, &tc_tick_bt);
1907         tc_tick_sbt = bttosbt(tc_tick_bt);
1908         p = (tc_tick * 1000000) / hz;
1909         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1910
1911 #ifdef FFCLOCK
1912         ffclock_init();
1913 #endif
1914         /* warm up new timecounter (again) and get rolling. */
1915         (void)timecounter->tc_get_timecount(timecounter);
1916         (void)timecounter->tc_get_timecount(timecounter);
1917         tc_windup();
1918 }
1919
1920 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1921
1922 /* Cpu tick handling -------------------------------------------------*/
1923
1924 static int cpu_tick_variable;
1925 static uint64_t cpu_tick_frequency;
1926
1927 static uint64_t
1928 tc_cpu_ticks(void)
1929 {
1930         static uint64_t base;
1931         static unsigned last;
1932         unsigned u;
1933         struct timecounter *tc;
1934
1935         tc = timehands->th_counter;
1936         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1937         if (u < last)
1938                 base += (uint64_t)tc->tc_counter_mask + 1;
1939         last = u;
1940         return (u + base);
1941 }
1942
1943 void
1944 cpu_tick_calibration(void)
1945 {
1946         static time_t last_calib;
1947
1948         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1949                 cpu_tick_calibrate(0);
1950                 last_calib = time_uptime;
1951         }
1952 }
1953
1954 /*
1955  * This function gets called every 16 seconds on only one designated
1956  * CPU in the system from hardclock() via cpu_tick_calibration()().
1957  *
1958  * Whenever the real time clock is stepped we get called with reset=1
1959  * to make sure we handle suspend/resume and similar events correctly.
1960  */
1961
1962 static void
1963 cpu_tick_calibrate(int reset)
1964 {
1965         static uint64_t c_last;
1966         uint64_t c_this, c_delta;
1967         static struct bintime  t_last;
1968         struct bintime t_this, t_delta;
1969         uint32_t divi;
1970
1971         if (reset) {
1972                 /* The clock was stepped, abort & reset */
1973                 t_last.sec = 0;
1974                 return;
1975         }
1976
1977         /* we don't calibrate fixed rate cputicks */
1978         if (!cpu_tick_variable)
1979                 return;
1980
1981         getbinuptime(&t_this);
1982         c_this = cpu_ticks();
1983         if (t_last.sec != 0) {
1984                 c_delta = c_this - c_last;
1985                 t_delta = t_this;
1986                 bintime_sub(&t_delta, &t_last);
1987                 /*
1988                  * Headroom:
1989                  *      2^(64-20) / 16[s] =
1990                  *      2^(44) / 16[s] =
1991                  *      17.592.186.044.416 / 16 =
1992                  *      1.099.511.627.776 [Hz]
1993                  */
1994                 divi = t_delta.sec << 20;
1995                 divi |= t_delta.frac >> (64 - 20);
1996                 c_delta <<= 20;
1997                 c_delta /= divi;
1998                 if (c_delta > cpu_tick_frequency) {
1999                         if (0 && bootverbose)
2000                                 printf("cpu_tick increased to %ju Hz\n",
2001                                     c_delta);
2002                         cpu_tick_frequency = c_delta;
2003                 }
2004         }
2005         c_last = c_this;
2006         t_last = t_this;
2007 }
2008
2009 void
2010 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2011 {
2012
2013         if (func == NULL) {
2014                 cpu_ticks = tc_cpu_ticks;
2015         } else {
2016                 cpu_tick_frequency = freq;
2017                 cpu_tick_variable = var;
2018                 cpu_ticks = func;
2019         }
2020 }
2021
2022 uint64_t
2023 cpu_tickrate(void)
2024 {
2025
2026         if (cpu_ticks == tc_cpu_ticks) 
2027                 return (tc_getfrequency());
2028         return (cpu_tick_frequency);
2029 }
2030
2031 /*
2032  * We need to be slightly careful converting cputicks to microseconds.
2033  * There is plenty of margin in 64 bits of microseconds (half a million
2034  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2035  * before divide conversion (to retain precision) we find that the
2036  * margin shrinks to 1.5 hours (one millionth of 146y).
2037  * With a three prong approach we never lose significant bits, no
2038  * matter what the cputick rate and length of timeinterval is.
2039  */
2040
2041 uint64_t
2042 cputick2usec(uint64_t tick)
2043 {
2044
2045         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2046                 return (tick / (cpu_tickrate() / 1000000LL));
2047         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2048                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2049         else
2050                 return ((tick * 1000000LL) / cpu_tickrate());
2051 }
2052
2053 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2054
2055 static int vdso_th_enable = 1;
2056 static int
2057 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2058 {
2059         int old_vdso_th_enable, error;
2060
2061         old_vdso_th_enable = vdso_th_enable;
2062         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2063         if (error != 0)
2064                 return (error);
2065         vdso_th_enable = old_vdso_th_enable;
2066         return (0);
2067 }
2068 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2069     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2070     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2071
2072 uint32_t
2073 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2074 {
2075         struct timehands *th;
2076         uint32_t enabled;
2077
2078         th = timehands;
2079         vdso_th->th_algo = VDSO_TH_ALGO_1;
2080         vdso_th->th_scale = th->th_scale;
2081         vdso_th->th_offset_count = th->th_offset_count;
2082         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2083         vdso_th->th_offset = th->th_offset;
2084         vdso_th->th_boottime = boottimebin;
2085         enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter);
2086         if (!vdso_th_enable)
2087                 enabled = 0;
2088         return (enabled);
2089 }
2090
2091 #ifdef COMPAT_FREEBSD32
2092 uint32_t
2093 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2094 {
2095         struct timehands *th;
2096         uint32_t enabled;
2097
2098         th = timehands;
2099         vdso_th32->th_algo = VDSO_TH_ALGO_1;
2100         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2101         vdso_th32->th_offset_count = th->th_offset_count;
2102         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2103         vdso_th32->th_offset.sec = th->th_offset.sec;
2104         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2105         vdso_th32->th_boottime.sec = boottimebin.sec;
2106         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
2107         enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter);
2108         if (!vdso_th_enable)
2109                 enabled = 0;
2110         return (enabled);
2111 }
2112 #endif