]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
THIS BRANCH IS OBSOLETE, PLEASE READ:
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  * All rights reserved.
13  *
14  * Portions of this software were developed by Julien Ridoux at the University
15  * of Melbourne under sponsorship from the FreeBSD Foundation.
16  *
17  * Portions of this software were developed by Konstantin Belousov
18  * under sponsorship from the FreeBSD Foundation.
19  */
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 #include "opt_ntp.h"
25 #include "opt_ffclock.h"
26
27 #include <sys/param.h>
28 #include <sys/kernel.h>
29 #include <sys/limits.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/proc.h>
33 #include <sys/sbuf.h>
34 #include <sys/sleepqueue.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
37 #include <sys/systm.h>
38 #include <sys/timeffc.h>
39 #include <sys/timepps.h>
40 #include <sys/timetc.h>
41 #include <sys/timex.h>
42 #include <sys/vdso.h>
43
44 /*
45  * A large step happens on boot.  This constant detects such steps.
46  * It is relatively small so that ntp_update_second gets called enough
47  * in the typical 'missed a couple of seconds' case, but doesn't loop
48  * forever when the time step is large.
49  */
50 #define LARGE_STEP      200
51
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57
58 static u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61         static u_int now;
62
63         return (++now);
64 }
65
66 static struct timecounter dummy_timecounter = {
67         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69
70 struct timehands {
71         /* These fields must be initialized by the driver. */
72         struct timecounter      *th_counter;
73         int64_t                 th_adjustment;
74         uint64_t                th_scale;
75         u_int                   th_large_delta;
76         u_int                   th_offset_count;
77         struct bintime          th_offset;
78         struct bintime          th_bintime;
79         struct timeval          th_microtime;
80         struct timespec         th_nanotime;
81         struct bintime          th_boottime;
82         /* Fields not to be copied in tc_windup start with th_generation. */
83         u_int                   th_generation;
84         struct timehands        *th_next;
85 };
86
87 static struct timehands ths[16] = {
88     [0] =  {
89         .th_counter = &dummy_timecounter,
90         .th_scale = (uint64_t)-1 / 1000000,
91         .th_large_delta = 1000000,
92         .th_offset = { .sec = 1 },
93         .th_generation = 1,
94     },
95 };
96
97 static struct timehands *volatile timehands = &ths[0];
98 struct timecounter *timecounter = &dummy_timecounter;
99 static struct timecounter *timecounters = &dummy_timecounter;
100
101 int tc_min_ticktock_freq = 1;
102
103 volatile time_t time_second = 1;
104 volatile time_t time_uptime = 1;
105
106 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
107 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime,
108     CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
109     sysctl_kern_boottime, "S,timeval",
110     "System boottime");
111
112 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
113     "");
114 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc,
115     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
116     "");
117
118 static int timestepwarnings;
119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
120     &timestepwarnings, 0, "Log time steps");
121
122 static int timehands_count = 2;
123 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
124     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
125     &timehands_count, 0, "Count of timehands in rotation");
126
127 struct bintime bt_timethreshold;
128 struct bintime bt_tickthreshold;
129 sbintime_t sbt_timethreshold;
130 sbintime_t sbt_tickthreshold;
131 struct bintime tc_tick_bt;
132 sbintime_t tc_tick_sbt;
133 int tc_precexp;
134 int tc_timepercentage = TC_DEFAULTPERC;
135 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
136 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
137     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
138     sysctl_kern_timecounter_adjprecision, "I",
139     "Allowed time interval deviation in percents");
140
141 volatile int rtc_generation = 1;
142
143 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
144
145 static void tc_windup(struct bintime *new_boottimebin);
146 static void cpu_tick_calibrate(int);
147
148 void dtrace_getnanotime(struct timespec *tsp);
149
150 static int
151 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
152 {
153         struct timeval boottime;
154
155         getboottime(&boottime);
156
157 /* i386 is the only arch which uses a 32bits time_t */
158 #ifdef __amd64__
159 #ifdef SCTL_MASK32
160         int tv[2];
161
162         if (req->flags & SCTL_MASK32) {
163                 tv[0] = boottime.tv_sec;
164                 tv[1] = boottime.tv_usec;
165                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
166         }
167 #endif
168 #endif
169         return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
170 }
171
172 static int
173 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
174 {
175         u_int ncount;
176         struct timecounter *tc = arg1;
177
178         ncount = tc->tc_get_timecount(tc);
179         return (sysctl_handle_int(oidp, &ncount, 0, req));
180 }
181
182 static int
183 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
184 {
185         uint64_t freq;
186         struct timecounter *tc = arg1;
187
188         freq = tc->tc_frequency;
189         return (sysctl_handle_64(oidp, &freq, 0, req));
190 }
191
192 /*
193  * Return the difference between the timehands' counter value now and what
194  * was when we copied it to the timehands' offset_count.
195  */
196 static __inline u_int
197 tc_delta(struct timehands *th)
198 {
199         struct timecounter *tc;
200
201         tc = th->th_counter;
202         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
203             tc->tc_counter_mask);
204 }
205
206 /*
207  * Functions for reading the time.  We have to loop until we are sure that
208  * the timehands that we operated on was not updated under our feet.  See
209  * the comment in <sys/time.h> for a description of these 12 functions.
210  */
211
212 static __inline void
213 bintime_off(struct bintime *bt, u_int off)
214 {
215         struct timehands *th;
216         struct bintime *btp;
217         uint64_t scale, x;
218         u_int delta, gen, large_delta;
219
220         do {
221                 th = timehands;
222                 gen = atomic_load_acq_int(&th->th_generation);
223                 btp = (struct bintime *)((vm_offset_t)th + off);
224                 *bt = *btp;
225                 scale = th->th_scale;
226                 delta = tc_delta(th);
227                 large_delta = th->th_large_delta;
228                 atomic_thread_fence_acq();
229         } while (gen == 0 || gen != th->th_generation);
230
231         if (__predict_false(delta >= large_delta)) {
232                 /* Avoid overflow for scale * delta. */
233                 x = (scale >> 32) * delta;
234                 bt->sec += x >> 32;
235                 bintime_addx(bt, x << 32);
236                 bintime_addx(bt, (scale & 0xffffffff) * delta);
237         } else {
238                 bintime_addx(bt, scale * delta);
239         }
240 }
241 #define GETTHBINTIME(dst, member)                                       \
242 do {                                                                    \
243         _Static_assert(_Generic(((struct timehands *)NULL)->member,     \
244             struct bintime: 1, default: 0) == 1,                        \
245             "struct timehands member is not of struct bintime type");   \
246         bintime_off(dst, __offsetof(struct timehands, member));         \
247 } while (0)
248
249 static __inline void
250 getthmember(void *out, size_t out_size, u_int off)
251 {
252         struct timehands *th;
253         u_int gen;
254
255         do {
256                 th = timehands;
257                 gen = atomic_load_acq_int(&th->th_generation);
258                 memcpy(out, (char *)th + off, out_size);
259                 atomic_thread_fence_acq();
260         } while (gen == 0 || gen != th->th_generation);
261 }
262 #define GETTHMEMBER(dst, member)                                        \
263 do {                                                                    \
264         _Static_assert(_Generic(*dst,                                   \
265             __typeof(((struct timehands *)NULL)->member): 1,            \
266             default: 0) == 1,                                           \
267             "*dst and struct timehands member have different types");   \
268         getthmember(dst, sizeof(*dst), __offsetof(struct timehands,     \
269             member));                                                   \
270 } while (0)
271
272 #ifdef FFCLOCK
273 void
274 fbclock_binuptime(struct bintime *bt)
275 {
276
277         GETTHBINTIME(bt, th_offset);
278 }
279
280 void
281 fbclock_nanouptime(struct timespec *tsp)
282 {
283         struct bintime bt;
284
285         fbclock_binuptime(&bt);
286         bintime2timespec(&bt, tsp);
287 }
288
289 void
290 fbclock_microuptime(struct timeval *tvp)
291 {
292         struct bintime bt;
293
294         fbclock_binuptime(&bt);
295         bintime2timeval(&bt, tvp);
296 }
297
298 void
299 fbclock_bintime(struct bintime *bt)
300 {
301
302         GETTHBINTIME(bt, th_bintime);
303 }
304
305 void
306 fbclock_nanotime(struct timespec *tsp)
307 {
308         struct bintime bt;
309
310         fbclock_bintime(&bt);
311         bintime2timespec(&bt, tsp);
312 }
313
314 void
315 fbclock_microtime(struct timeval *tvp)
316 {
317         struct bintime bt;
318
319         fbclock_bintime(&bt);
320         bintime2timeval(&bt, tvp);
321 }
322
323 void
324 fbclock_getbinuptime(struct bintime *bt)
325 {
326
327         GETTHMEMBER(bt, th_offset);
328 }
329
330 void
331 fbclock_getnanouptime(struct timespec *tsp)
332 {
333         struct bintime bt;
334
335         GETTHMEMBER(&bt, th_offset);
336         bintime2timespec(&bt, tsp);
337 }
338
339 void
340 fbclock_getmicrouptime(struct timeval *tvp)
341 {
342         struct bintime bt;
343
344         GETTHMEMBER(&bt, th_offset);
345         bintime2timeval(&bt, tvp);
346 }
347
348 void
349 fbclock_getbintime(struct bintime *bt)
350 {
351
352         GETTHMEMBER(bt, th_bintime);
353 }
354
355 void
356 fbclock_getnanotime(struct timespec *tsp)
357 {
358
359         GETTHMEMBER(tsp, th_nanotime);
360 }
361
362 void
363 fbclock_getmicrotime(struct timeval *tvp)
364 {
365
366         GETTHMEMBER(tvp, th_microtime);
367 }
368 #else /* !FFCLOCK */
369
370 void
371 binuptime(struct bintime *bt)
372 {
373
374         GETTHBINTIME(bt, th_offset);
375 }
376
377 void
378 nanouptime(struct timespec *tsp)
379 {
380         struct bintime bt;
381
382         binuptime(&bt);
383         bintime2timespec(&bt, tsp);
384 }
385
386 void
387 microuptime(struct timeval *tvp)
388 {
389         struct bintime bt;
390
391         binuptime(&bt);
392         bintime2timeval(&bt, tvp);
393 }
394
395 void
396 bintime(struct bintime *bt)
397 {
398
399         GETTHBINTIME(bt, th_bintime);
400 }
401
402 void
403 nanotime(struct timespec *tsp)
404 {
405         struct bintime bt;
406
407         bintime(&bt);
408         bintime2timespec(&bt, tsp);
409 }
410
411 void
412 microtime(struct timeval *tvp)
413 {
414         struct bintime bt;
415
416         bintime(&bt);
417         bintime2timeval(&bt, tvp);
418 }
419
420 void
421 getbinuptime(struct bintime *bt)
422 {
423
424         GETTHMEMBER(bt, th_offset);
425 }
426
427 void
428 getnanouptime(struct timespec *tsp)
429 {
430         struct bintime bt;
431
432         GETTHMEMBER(&bt, th_offset);
433         bintime2timespec(&bt, tsp);
434 }
435
436 void
437 getmicrouptime(struct timeval *tvp)
438 {
439         struct bintime bt;
440
441         GETTHMEMBER(&bt, th_offset);
442         bintime2timeval(&bt, tvp);
443 }
444
445 void
446 getbintime(struct bintime *bt)
447 {
448
449         GETTHMEMBER(bt, th_bintime);
450 }
451
452 void
453 getnanotime(struct timespec *tsp)
454 {
455
456         GETTHMEMBER(tsp, th_nanotime);
457 }
458
459 void
460 getmicrotime(struct timeval *tvp)
461 {
462
463         GETTHMEMBER(tvp, th_microtime);
464 }
465 #endif /* FFCLOCK */
466
467 void
468 getboottime(struct timeval *boottime)
469 {
470         struct bintime boottimebin;
471
472         getboottimebin(&boottimebin);
473         bintime2timeval(&boottimebin, boottime);
474 }
475
476 void
477 getboottimebin(struct bintime *boottimebin)
478 {
479
480         GETTHMEMBER(boottimebin, th_boottime);
481 }
482
483 #ifdef FFCLOCK
484 /*
485  * Support for feed-forward synchronization algorithms. This is heavily inspired
486  * by the timehands mechanism but kept independent from it. *_windup() functions
487  * have some connection to avoid accessing the timecounter hardware more than
488  * necessary.
489  */
490
491 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
492 struct ffclock_estimate ffclock_estimate;
493 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
494 uint32_t ffclock_status;                /* Feed-forward clock status. */
495 int8_t ffclock_updated;                 /* New estimates are available. */
496 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
497
498 struct fftimehands {
499         struct ffclock_estimate cest;
500         struct bintime          tick_time;
501         struct bintime          tick_time_lerp;
502         ffcounter               tick_ffcount;
503         uint64_t                period_lerp;
504         volatile uint8_t        gen;
505         struct fftimehands      *next;
506 };
507
508 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
509
510 static struct fftimehands ffth[10];
511 static struct fftimehands *volatile fftimehands = ffth;
512
513 static void
514 ffclock_init(void)
515 {
516         struct fftimehands *cur;
517         struct fftimehands *last;
518
519         memset(ffth, 0, sizeof(ffth));
520
521         last = ffth + NUM_ELEMENTS(ffth) - 1;
522         for (cur = ffth; cur < last; cur++)
523                 cur->next = cur + 1;
524         last->next = ffth;
525
526         ffclock_updated = 0;
527         ffclock_status = FFCLOCK_STA_UNSYNC;
528         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
529 }
530
531 /*
532  * Reset the feed-forward clock estimates. Called from inittodr() to get things
533  * kick started and uses the timecounter nominal frequency as a first period
534  * estimate. Note: this function may be called several time just after boot.
535  * Note: this is the only function that sets the value of boot time for the
536  * monotonic (i.e. uptime) version of the feed-forward clock.
537  */
538 void
539 ffclock_reset_clock(struct timespec *ts)
540 {
541         struct timecounter *tc;
542         struct ffclock_estimate cest;
543
544         tc = timehands->th_counter;
545         memset(&cest, 0, sizeof(struct ffclock_estimate));
546
547         timespec2bintime(ts, &ffclock_boottime);
548         timespec2bintime(ts, &(cest.update_time));
549         ffclock_read_counter(&cest.update_ffcount);
550         cest.leapsec_next = 0;
551         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
552         cest.errb_abs = 0;
553         cest.errb_rate = 0;
554         cest.status = FFCLOCK_STA_UNSYNC;
555         cest.leapsec_total = 0;
556         cest.leapsec = 0;
557
558         mtx_lock(&ffclock_mtx);
559         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
560         ffclock_updated = INT8_MAX;
561         mtx_unlock(&ffclock_mtx);
562
563         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
564             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
565             (unsigned long)ts->tv_nsec);
566 }
567
568 /*
569  * Sub-routine to convert a time interval measured in RAW counter units to time
570  * in seconds stored in bintime format.
571  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
572  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
573  * extra cycles.
574  */
575 static void
576 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
577 {
578         struct bintime bt2;
579         ffcounter delta, delta_max;
580
581         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
582         bintime_clear(bt);
583         do {
584                 if (ffdelta > delta_max)
585                         delta = delta_max;
586                 else
587                         delta = ffdelta;
588                 bt2.sec = 0;
589                 bt2.frac = period;
590                 bintime_mul(&bt2, (unsigned int)delta);
591                 bintime_add(bt, &bt2);
592                 ffdelta -= delta;
593         } while (ffdelta > 0);
594 }
595
596 /*
597  * Update the fftimehands.
598  * Push the tick ffcount and time(s) forward based on current clock estimate.
599  * The conversion from ffcounter to bintime relies on the difference clock
600  * principle, whose accuracy relies on computing small time intervals. If a new
601  * clock estimate has been passed by the synchronisation daemon, make it
602  * current, and compute the linear interpolation for monotonic time if needed.
603  */
604 static void
605 ffclock_windup(unsigned int delta)
606 {
607         struct ffclock_estimate *cest;
608         struct fftimehands *ffth;
609         struct bintime bt, gap_lerp;
610         ffcounter ffdelta;
611         uint64_t frac;
612         unsigned int polling;
613         uint8_t forward_jump, ogen;
614
615         /*
616          * Pick the next timehand, copy current ffclock estimates and move tick
617          * times and counter forward.
618          */
619         forward_jump = 0;
620         ffth = fftimehands->next;
621         ogen = ffth->gen;
622         ffth->gen = 0;
623         cest = &ffth->cest;
624         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
625         ffdelta = (ffcounter)delta;
626         ffth->period_lerp = fftimehands->period_lerp;
627
628         ffth->tick_time = fftimehands->tick_time;
629         ffclock_convert_delta(ffdelta, cest->period, &bt);
630         bintime_add(&ffth->tick_time, &bt);
631
632         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
633         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
634         bintime_add(&ffth->tick_time_lerp, &bt);
635
636         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
637
638         /*
639          * Assess the status of the clock, if the last update is too old, it is
640          * likely the synchronisation daemon is dead and the clock is free
641          * running.
642          */
643         if (ffclock_updated == 0) {
644                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
645                 ffclock_convert_delta(ffdelta, cest->period, &bt);
646                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
647                         ffclock_status |= FFCLOCK_STA_UNSYNC;
648         }
649
650         /*
651          * If available, grab updated clock estimates and make them current.
652          * Recompute time at this tick using the updated estimates. The clock
653          * estimates passed the feed-forward synchronisation daemon may result
654          * in time conversion that is not monotonically increasing (just after
655          * the update). time_lerp is a particular linear interpolation over the
656          * synchronisation algo polling period that ensures monotonicity for the
657          * clock ids requesting it.
658          */
659         if (ffclock_updated > 0) {
660                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
661                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
662                 ffth->tick_time = cest->update_time;
663                 ffclock_convert_delta(ffdelta, cest->period, &bt);
664                 bintime_add(&ffth->tick_time, &bt);
665
666                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
667                 if (ffclock_updated == INT8_MAX)
668                         ffth->tick_time_lerp = ffth->tick_time;
669
670                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
671                         forward_jump = 1;
672                 else
673                         forward_jump = 0;
674
675                 bintime_clear(&gap_lerp);
676                 if (forward_jump) {
677                         gap_lerp = ffth->tick_time;
678                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
679                 } else {
680                         gap_lerp = ffth->tick_time_lerp;
681                         bintime_sub(&gap_lerp, &ffth->tick_time);
682                 }
683
684                 /*
685                  * The reset from the RTC clock may be far from accurate, and
686                  * reducing the gap between real time and interpolated time
687                  * could take a very long time if the interpolated clock insists
688                  * on strict monotonicity. The clock is reset under very strict
689                  * conditions (kernel time is known to be wrong and
690                  * synchronization daemon has been restarted recently.
691                  * ffclock_boottime absorbs the jump to ensure boot time is
692                  * correct and uptime functions stay consistent.
693                  */
694                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
695                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
696                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
697                         if (forward_jump)
698                                 bintime_add(&ffclock_boottime, &gap_lerp);
699                         else
700                                 bintime_sub(&ffclock_boottime, &gap_lerp);
701                         ffth->tick_time_lerp = ffth->tick_time;
702                         bintime_clear(&gap_lerp);
703                 }
704
705                 ffclock_status = cest->status;
706                 ffth->period_lerp = cest->period;
707
708                 /*
709                  * Compute corrected period used for the linear interpolation of
710                  * time. The rate of linear interpolation is capped to 5000PPM
711                  * (5ms/s).
712                  */
713                 if (bintime_isset(&gap_lerp)) {
714                         ffdelta = cest->update_ffcount;
715                         ffdelta -= fftimehands->cest.update_ffcount;
716                         ffclock_convert_delta(ffdelta, cest->period, &bt);
717                         polling = bt.sec;
718                         bt.sec = 0;
719                         bt.frac = 5000000 * (uint64_t)18446744073LL;
720                         bintime_mul(&bt, polling);
721                         if (bintime_cmp(&gap_lerp, &bt, >))
722                                 gap_lerp = bt;
723
724                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
725                         frac = 0;
726                         if (gap_lerp.sec > 0) {
727                                 frac -= 1;
728                                 frac /= ffdelta / gap_lerp.sec;
729                         }
730                         frac += gap_lerp.frac / ffdelta;
731
732                         if (forward_jump)
733                                 ffth->period_lerp += frac;
734                         else
735                                 ffth->period_lerp -= frac;
736                 }
737
738                 ffclock_updated = 0;
739         }
740         if (++ogen == 0)
741                 ogen = 1;
742         ffth->gen = ogen;
743         fftimehands = ffth;
744 }
745
746 /*
747  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
748  * the old and new hardware counter cannot be read simultaneously. tc_windup()
749  * does read the two counters 'back to back', but a few cycles are effectively
750  * lost, and not accumulated in tick_ffcount. This is a fairly radical
751  * operation for a feed-forward synchronization daemon, and it is its job to not
752  * pushing irrelevant data to the kernel. Because there is no locking here,
753  * simply force to ignore pending or next update to give daemon a chance to
754  * realize the counter has changed.
755  */
756 static void
757 ffclock_change_tc(struct timehands *th)
758 {
759         struct fftimehands *ffth;
760         struct ffclock_estimate *cest;
761         struct timecounter *tc;
762         uint8_t ogen;
763
764         tc = th->th_counter;
765         ffth = fftimehands->next;
766         ogen = ffth->gen;
767         ffth->gen = 0;
768
769         cest = &ffth->cest;
770         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
771         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
772         cest->errb_abs = 0;
773         cest->errb_rate = 0;
774         cest->status |= FFCLOCK_STA_UNSYNC;
775
776         ffth->tick_ffcount = fftimehands->tick_ffcount;
777         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
778         ffth->tick_time = fftimehands->tick_time;
779         ffth->period_lerp = cest->period;
780
781         /* Do not lock but ignore next update from synchronization daemon. */
782         ffclock_updated--;
783
784         if (++ogen == 0)
785                 ogen = 1;
786         ffth->gen = ogen;
787         fftimehands = ffth;
788 }
789
790 /*
791  * Retrieve feed-forward counter and time of last kernel tick.
792  */
793 void
794 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
795 {
796         struct fftimehands *ffth;
797         uint8_t gen;
798
799         /*
800          * No locking but check generation has not changed. Also need to make
801          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
802          */
803         do {
804                 ffth = fftimehands;
805                 gen = ffth->gen;
806                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
807                         *bt = ffth->tick_time_lerp;
808                 else
809                         *bt = ffth->tick_time;
810                 *ffcount = ffth->tick_ffcount;
811         } while (gen == 0 || gen != ffth->gen);
812 }
813
814 /*
815  * Absolute clock conversion. Low level function to convert ffcounter to
816  * bintime. The ffcounter is converted using the current ffclock period estimate
817  * or the "interpolated period" to ensure monotonicity.
818  * NOTE: this conversion may have been deferred, and the clock updated since the
819  * hardware counter has been read.
820  */
821 void
822 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
823 {
824         struct fftimehands *ffth;
825         struct bintime bt2;
826         ffcounter ffdelta;
827         uint8_t gen;
828
829         /*
830          * No locking but check generation has not changed. Also need to make
831          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
832          */
833         do {
834                 ffth = fftimehands;
835                 gen = ffth->gen;
836                 if (ffcount > ffth->tick_ffcount)
837                         ffdelta = ffcount - ffth->tick_ffcount;
838                 else
839                         ffdelta = ffth->tick_ffcount - ffcount;
840
841                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
842                         *bt = ffth->tick_time_lerp;
843                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
844                 } else {
845                         *bt = ffth->tick_time;
846                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
847                 }
848
849                 if (ffcount > ffth->tick_ffcount)
850                         bintime_add(bt, &bt2);
851                 else
852                         bintime_sub(bt, &bt2);
853         } while (gen == 0 || gen != ffth->gen);
854 }
855
856 /*
857  * Difference clock conversion.
858  * Low level function to Convert a time interval measured in RAW counter units
859  * into bintime. The difference clock allows measuring small intervals much more
860  * reliably than the absolute clock.
861  */
862 void
863 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
864 {
865         struct fftimehands *ffth;
866         uint8_t gen;
867
868         /* No locking but check generation has not changed. */
869         do {
870                 ffth = fftimehands;
871                 gen = ffth->gen;
872                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
873         } while (gen == 0 || gen != ffth->gen);
874 }
875
876 /*
877  * Access to current ffcounter value.
878  */
879 void
880 ffclock_read_counter(ffcounter *ffcount)
881 {
882         struct timehands *th;
883         struct fftimehands *ffth;
884         unsigned int gen, delta;
885
886         /*
887          * ffclock_windup() called from tc_windup(), safe to rely on
888          * th->th_generation only, for correct delta and ffcounter.
889          */
890         do {
891                 th = timehands;
892                 gen = atomic_load_acq_int(&th->th_generation);
893                 ffth = fftimehands;
894                 delta = tc_delta(th);
895                 *ffcount = ffth->tick_ffcount;
896                 atomic_thread_fence_acq();
897         } while (gen == 0 || gen != th->th_generation);
898
899         *ffcount += delta;
900 }
901
902 void
903 binuptime(struct bintime *bt)
904 {
905
906         binuptime_fromclock(bt, sysclock_active);
907 }
908
909 void
910 nanouptime(struct timespec *tsp)
911 {
912
913         nanouptime_fromclock(tsp, sysclock_active);
914 }
915
916 void
917 microuptime(struct timeval *tvp)
918 {
919
920         microuptime_fromclock(tvp, sysclock_active);
921 }
922
923 void
924 bintime(struct bintime *bt)
925 {
926
927         bintime_fromclock(bt, sysclock_active);
928 }
929
930 void
931 nanotime(struct timespec *tsp)
932 {
933
934         nanotime_fromclock(tsp, sysclock_active);
935 }
936
937 void
938 microtime(struct timeval *tvp)
939 {
940
941         microtime_fromclock(tvp, sysclock_active);
942 }
943
944 void
945 getbinuptime(struct bintime *bt)
946 {
947
948         getbinuptime_fromclock(bt, sysclock_active);
949 }
950
951 void
952 getnanouptime(struct timespec *tsp)
953 {
954
955         getnanouptime_fromclock(tsp, sysclock_active);
956 }
957
958 void
959 getmicrouptime(struct timeval *tvp)
960 {
961
962         getmicrouptime_fromclock(tvp, sysclock_active);
963 }
964
965 void
966 getbintime(struct bintime *bt)
967 {
968
969         getbintime_fromclock(bt, sysclock_active);
970 }
971
972 void
973 getnanotime(struct timespec *tsp)
974 {
975
976         getnanotime_fromclock(tsp, sysclock_active);
977 }
978
979 void
980 getmicrotime(struct timeval *tvp)
981 {
982
983         getmicrouptime_fromclock(tvp, sysclock_active);
984 }
985
986 #endif /* FFCLOCK */
987
988 /*
989  * This is a clone of getnanotime and used for walltimestamps.
990  * The dtrace_ prefix prevents fbt from creating probes for
991  * it so walltimestamp can be safely used in all fbt probes.
992  */
993 void
994 dtrace_getnanotime(struct timespec *tsp)
995 {
996
997         GETTHMEMBER(tsp, th_nanotime);
998 }
999
1000 /*
1001  * System clock currently providing time to the system. Modifiable via sysctl
1002  * when the FFCLOCK option is defined.
1003  */
1004 int sysclock_active = SYSCLOCK_FBCK;
1005
1006 /* Internal NTP status and error estimates. */
1007 extern int time_status;
1008 extern long time_esterror;
1009
1010 /*
1011  * Take a snapshot of sysclock data which can be used to compare system clocks
1012  * and generate timestamps after the fact.
1013  */
1014 void
1015 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1016 {
1017         struct fbclock_info *fbi;
1018         struct timehands *th;
1019         struct bintime bt;
1020         unsigned int delta, gen;
1021 #ifdef FFCLOCK
1022         ffcounter ffcount;
1023         struct fftimehands *ffth;
1024         struct ffclock_info *ffi;
1025         struct ffclock_estimate cest;
1026
1027         ffi = &clock_snap->ff_info;
1028 #endif
1029
1030         fbi = &clock_snap->fb_info;
1031         delta = 0;
1032
1033         do {
1034                 th = timehands;
1035                 gen = atomic_load_acq_int(&th->th_generation);
1036                 fbi->th_scale = th->th_scale;
1037                 fbi->tick_time = th->th_offset;
1038 #ifdef FFCLOCK
1039                 ffth = fftimehands;
1040                 ffi->tick_time = ffth->tick_time_lerp;
1041                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1042                 ffi->period = ffth->cest.period;
1043                 ffi->period_lerp = ffth->period_lerp;
1044                 clock_snap->ffcount = ffth->tick_ffcount;
1045                 cest = ffth->cest;
1046 #endif
1047                 if (!fast)
1048                         delta = tc_delta(th);
1049                 atomic_thread_fence_acq();
1050         } while (gen == 0 || gen != th->th_generation);
1051
1052         clock_snap->delta = delta;
1053         clock_snap->sysclock_active = sysclock_active;
1054
1055         /* Record feedback clock status and error. */
1056         clock_snap->fb_info.status = time_status;
1057         /* XXX: Very crude estimate of feedback clock error. */
1058         bt.sec = time_esterror / 1000000;
1059         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1060             (uint64_t)18446744073709ULL;
1061         clock_snap->fb_info.error = bt;
1062
1063 #ifdef FFCLOCK
1064         if (!fast)
1065                 clock_snap->ffcount += delta;
1066
1067         /* Record feed-forward clock leap second adjustment. */
1068         ffi->leapsec_adjustment = cest.leapsec_total;
1069         if (clock_snap->ffcount > cest.leapsec_next)
1070                 ffi->leapsec_adjustment -= cest.leapsec;
1071
1072         /* Record feed-forward clock status and error. */
1073         clock_snap->ff_info.status = cest.status;
1074         ffcount = clock_snap->ffcount - cest.update_ffcount;
1075         ffclock_convert_delta(ffcount, cest.period, &bt);
1076         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1077         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1078         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1079         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1080         clock_snap->ff_info.error = bt;
1081 #endif
1082 }
1083
1084 /*
1085  * Convert a sysclock snapshot into a struct bintime based on the specified
1086  * clock source and flags.
1087  */
1088 int
1089 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1090     int whichclock, uint32_t flags)
1091 {
1092         struct bintime boottimebin;
1093 #ifdef FFCLOCK
1094         struct bintime bt2;
1095         uint64_t period;
1096 #endif
1097
1098         switch (whichclock) {
1099         case SYSCLOCK_FBCK:
1100                 *bt = cs->fb_info.tick_time;
1101
1102                 /* If snapshot was created with !fast, delta will be >0. */
1103                 if (cs->delta > 0)
1104                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1105
1106                 if ((flags & FBCLOCK_UPTIME) == 0) {
1107                         getboottimebin(&boottimebin);
1108                         bintime_add(bt, &boottimebin);
1109                 }
1110                 break;
1111 #ifdef FFCLOCK
1112         case SYSCLOCK_FFWD:
1113                 if (flags & FFCLOCK_LERP) {
1114                         *bt = cs->ff_info.tick_time_lerp;
1115                         period = cs->ff_info.period_lerp;
1116                 } else {
1117                         *bt = cs->ff_info.tick_time;
1118                         period = cs->ff_info.period;
1119                 }
1120
1121                 /* If snapshot was created with !fast, delta will be >0. */
1122                 if (cs->delta > 0) {
1123                         ffclock_convert_delta(cs->delta, period, &bt2);
1124                         bintime_add(bt, &bt2);
1125                 }
1126
1127                 /* Leap second adjustment. */
1128                 if (flags & FFCLOCK_LEAPSEC)
1129                         bt->sec -= cs->ff_info.leapsec_adjustment;
1130
1131                 /* Boot time adjustment, for uptime/monotonic clocks. */
1132                 if (flags & FFCLOCK_UPTIME)
1133                         bintime_sub(bt, &ffclock_boottime);
1134                 break;
1135 #endif
1136         default:
1137                 return (EINVAL);
1138                 break;
1139         }
1140
1141         return (0);
1142 }
1143
1144 /*
1145  * Initialize a new timecounter and possibly use it.
1146  */
1147 void
1148 tc_init(struct timecounter *tc)
1149 {
1150         u_int u;
1151         struct sysctl_oid *tc_root;
1152
1153         u = tc->tc_frequency / tc->tc_counter_mask;
1154         /* XXX: We need some margin here, 10% is a guess */
1155         u *= 11;
1156         u /= 10;
1157         if (u > hz && tc->tc_quality >= 0) {
1158                 tc->tc_quality = -2000;
1159                 if (bootverbose) {
1160                         printf("Timecounter \"%s\" frequency %ju Hz",
1161                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1162                         printf(" -- Insufficient hz, needs at least %u\n", u);
1163                 }
1164         } else if (tc->tc_quality >= 0 || bootverbose) {
1165                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1166                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1167                     tc->tc_quality);
1168         }
1169
1170         tc->tc_next = timecounters;
1171         timecounters = tc;
1172         /*
1173          * Set up sysctl tree for this counter.
1174          */
1175         tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1176             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1177             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1178             "timecounter description", "timecounter");
1179         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1180             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1181             "mask for implemented bits");
1182         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1183             "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1184             sizeof(*tc), sysctl_kern_timecounter_get, "IU",
1185             "current timecounter value");
1186         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1187             "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1188             sizeof(*tc), sysctl_kern_timecounter_freq, "QU",
1189             "timecounter frequency");
1190         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1191             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1192             "goodness of time counter");
1193         /*
1194          * Do not automatically switch if the current tc was specifically
1195          * chosen.  Never automatically use a timecounter with negative quality.
1196          * Even though we run on the dummy counter, switching here may be
1197          * worse since this timecounter may not be monotonic.
1198          */
1199         if (tc_chosen)
1200                 return;
1201         if (tc->tc_quality < 0)
1202                 return;
1203         if (tc->tc_quality < timecounter->tc_quality)
1204                 return;
1205         if (tc->tc_quality == timecounter->tc_quality &&
1206             tc->tc_frequency < timecounter->tc_frequency)
1207                 return;
1208         (void)tc->tc_get_timecount(tc);
1209         timecounter = tc;
1210 }
1211
1212 /* Report the frequency of the current timecounter. */
1213 uint64_t
1214 tc_getfrequency(void)
1215 {
1216
1217         return (timehands->th_counter->tc_frequency);
1218 }
1219
1220 static bool
1221 sleeping_on_old_rtc(struct thread *td)
1222 {
1223
1224         /*
1225          * td_rtcgen is modified by curthread when it is running,
1226          * and by other threads in this function.  By finding the thread
1227          * on a sleepqueue and holding the lock on the sleepqueue
1228          * chain, we guarantee that the thread is not running and that
1229          * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1230          * the thread that it was woken due to a real-time clock adjustment.
1231          * (The declaration of td_rtcgen refers to this comment.)
1232          */
1233         if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1234                 td->td_rtcgen = 0;
1235                 return (true);
1236         }
1237         return (false);
1238 }
1239
1240 static struct mtx tc_setclock_mtx;
1241 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1242
1243 /*
1244  * Step our concept of UTC.  This is done by modifying our estimate of
1245  * when we booted.
1246  */
1247 void
1248 tc_setclock(struct timespec *ts)
1249 {
1250         struct timespec tbef, taft;
1251         struct bintime bt, bt2;
1252
1253         timespec2bintime(ts, &bt);
1254         nanotime(&tbef);
1255         mtx_lock_spin(&tc_setclock_mtx);
1256         cpu_tick_calibrate(1);
1257         binuptime(&bt2);
1258         bintime_sub(&bt, &bt2);
1259
1260         /* XXX fiddle all the little crinkly bits around the fiords... */
1261         tc_windup(&bt);
1262         mtx_unlock_spin(&tc_setclock_mtx);
1263
1264         /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1265         atomic_add_rel_int(&rtc_generation, 2);
1266         sleepq_chains_remove_matching(sleeping_on_old_rtc);
1267         if (timestepwarnings) {
1268                 nanotime(&taft);
1269                 log(LOG_INFO,
1270                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1271                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1272                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1273                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1274         }
1275 }
1276
1277 /*
1278  * Initialize the next struct timehands in the ring and make
1279  * it the active timehands.  Along the way we might switch to a different
1280  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1281  */
1282 static void
1283 tc_windup(struct bintime *new_boottimebin)
1284 {
1285         struct bintime bt;
1286         struct timehands *th, *tho;
1287         uint64_t scale;
1288         u_int delta, ncount, ogen;
1289         int i;
1290         time_t t;
1291
1292         /*
1293          * Make the next timehands a copy of the current one, but do
1294          * not overwrite the generation or next pointer.  While we
1295          * update the contents, the generation must be zero.  We need
1296          * to ensure that the zero generation is visible before the
1297          * data updates become visible, which requires release fence.
1298          * For similar reasons, re-reading of the generation after the
1299          * data is read should use acquire fence.
1300          */
1301         tho = timehands;
1302         th = tho->th_next;
1303         ogen = th->th_generation;
1304         th->th_generation = 0;
1305         atomic_thread_fence_rel();
1306         memcpy(th, tho, offsetof(struct timehands, th_generation));
1307         if (new_boottimebin != NULL)
1308                 th->th_boottime = *new_boottimebin;
1309
1310         /*
1311          * Capture a timecounter delta on the current timecounter and if
1312          * changing timecounters, a counter value from the new timecounter.
1313          * Update the offset fields accordingly.
1314          */
1315         delta = tc_delta(th);
1316         if (th->th_counter != timecounter)
1317                 ncount = timecounter->tc_get_timecount(timecounter);
1318         else
1319                 ncount = 0;
1320 #ifdef FFCLOCK
1321         ffclock_windup(delta);
1322 #endif
1323         th->th_offset_count += delta;
1324         th->th_offset_count &= th->th_counter->tc_counter_mask;
1325         while (delta > th->th_counter->tc_frequency) {
1326                 /* Eat complete unadjusted seconds. */
1327                 delta -= th->th_counter->tc_frequency;
1328                 th->th_offset.sec++;
1329         }
1330         if ((delta > th->th_counter->tc_frequency / 2) &&
1331             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1332                 /* The product th_scale * delta just barely overflows. */
1333                 th->th_offset.sec++;
1334         }
1335         bintime_addx(&th->th_offset, th->th_scale * delta);
1336
1337         /*
1338          * Hardware latching timecounters may not generate interrupts on
1339          * PPS events, so instead we poll them.  There is a finite risk that
1340          * the hardware might capture a count which is later than the one we
1341          * got above, and therefore possibly in the next NTP second which might
1342          * have a different rate than the current NTP second.  It doesn't
1343          * matter in practice.
1344          */
1345         if (tho->th_counter->tc_poll_pps)
1346                 tho->th_counter->tc_poll_pps(tho->th_counter);
1347
1348         /*
1349          * Deal with NTP second processing.  The for loop normally
1350          * iterates at most once, but in extreme situations it might
1351          * keep NTP sane if timeouts are not run for several seconds.
1352          * At boot, the time step can be large when the TOD hardware
1353          * has been read, so on really large steps, we call
1354          * ntp_update_second only twice.  We need to call it twice in
1355          * case we missed a leap second.
1356          */
1357         bt = th->th_offset;
1358         bintime_add(&bt, &th->th_boottime);
1359         i = bt.sec - tho->th_microtime.tv_sec;
1360         if (i > LARGE_STEP)
1361                 i = 2;
1362         for (; i > 0; i--) {
1363                 t = bt.sec;
1364                 ntp_update_second(&th->th_adjustment, &bt.sec);
1365                 if (bt.sec != t)
1366                         th->th_boottime.sec += bt.sec - t;
1367         }
1368         /* Update the UTC timestamps used by the get*() functions. */
1369         th->th_bintime = bt;
1370         bintime2timeval(&bt, &th->th_microtime);
1371         bintime2timespec(&bt, &th->th_nanotime);
1372
1373         /* Now is a good time to change timecounters. */
1374         if (th->th_counter != timecounter) {
1375 #ifndef __arm__
1376                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1377                         cpu_disable_c2_sleep++;
1378                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1379                         cpu_disable_c2_sleep--;
1380 #endif
1381                 th->th_counter = timecounter;
1382                 th->th_offset_count = ncount;
1383                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1384                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1385 #ifdef FFCLOCK
1386                 ffclock_change_tc(th);
1387 #endif
1388         }
1389
1390         /*-
1391          * Recalculate the scaling factor.  We want the number of 1/2^64
1392          * fractions of a second per period of the hardware counter, taking
1393          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1394          * processing provides us with.
1395          *
1396          * The th_adjustment is nanoseconds per second with 32 bit binary
1397          * fraction and we want 64 bit binary fraction of second:
1398          *
1399          *       x = a * 2^32 / 10^9 = a * 4.294967296
1400          *
1401          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1402          * we can only multiply by about 850 without overflowing, that
1403          * leaves no suitably precise fractions for multiply before divide.
1404          *
1405          * Divide before multiply with a fraction of 2199/512 results in a
1406          * systematic undercompensation of 10PPM of th_adjustment.  On a
1407          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1408          *
1409          * We happily sacrifice the lowest of the 64 bits of our result
1410          * to the goddess of code clarity.
1411          *
1412          */
1413         scale = (uint64_t)1 << 63;
1414         scale += (th->th_adjustment / 1024) * 2199;
1415         scale /= th->th_counter->tc_frequency;
1416         th->th_scale = scale * 2;
1417         th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX);
1418
1419         /*
1420          * Now that the struct timehands is again consistent, set the new
1421          * generation number, making sure to not make it zero.
1422          */
1423         if (++ogen == 0)
1424                 ogen = 1;
1425         atomic_store_rel_int(&th->th_generation, ogen);
1426
1427         /* Go live with the new struct timehands. */
1428 #ifdef FFCLOCK
1429         switch (sysclock_active) {
1430         case SYSCLOCK_FBCK:
1431 #endif
1432                 time_second = th->th_microtime.tv_sec;
1433                 time_uptime = th->th_offset.sec;
1434 #ifdef FFCLOCK
1435                 break;
1436         case SYSCLOCK_FFWD:
1437                 time_second = fftimehands->tick_time_lerp.sec;
1438                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1439                 break;
1440         }
1441 #endif
1442
1443         timehands = th;
1444         timekeep_push_vdso();
1445 }
1446
1447 /* Report or change the active timecounter hardware. */
1448 static int
1449 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1450 {
1451         char newname[32];
1452         struct timecounter *newtc, *tc;
1453         int error;
1454
1455         tc = timecounter;
1456         strlcpy(newname, tc->tc_name, sizeof(newname));
1457
1458         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1459         if (error != 0 || req->newptr == NULL)
1460                 return (error);
1461         /* Record that the tc in use now was specifically chosen. */
1462         tc_chosen = 1;
1463         if (strcmp(newname, tc->tc_name) == 0)
1464                 return (0);
1465         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1466                 if (strcmp(newname, newtc->tc_name) != 0)
1467                         continue;
1468
1469                 /* Warm up new timecounter. */
1470                 (void)newtc->tc_get_timecount(newtc);
1471
1472                 timecounter = newtc;
1473
1474                 /*
1475                  * The vdso timehands update is deferred until the next
1476                  * 'tc_windup()'.
1477                  *
1478                  * This is prudent given that 'timekeep_push_vdso()' does not
1479                  * use any locking and that it can be called in hard interrupt
1480                  * context via 'tc_windup()'.
1481                  */
1482                 return (0);
1483         }
1484         return (EINVAL);
1485 }
1486
1487 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware,
1488     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
1489     sysctl_kern_timecounter_hardware, "A",
1490     "Timecounter hardware selected");
1491
1492 /* Report the available timecounter hardware. */
1493 static int
1494 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1495 {
1496         struct sbuf sb;
1497         struct timecounter *tc;
1498         int error;
1499
1500         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1501         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1502                 if (tc != timecounters)
1503                         sbuf_putc(&sb, ' ');
1504                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1505         }
1506         error = sbuf_finish(&sb);
1507         sbuf_delete(&sb);
1508         return (error);
1509 }
1510
1511 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice,
1512     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
1513     sysctl_kern_timecounter_choice, "A",
1514     "Timecounter hardware detected");
1515
1516 /*
1517  * RFC 2783 PPS-API implementation.
1518  */
1519
1520 /*
1521  *  Return true if the driver is aware of the abi version extensions in the
1522  *  pps_state structure, and it supports at least the given abi version number.
1523  */
1524 static inline int
1525 abi_aware(struct pps_state *pps, int vers)
1526 {
1527
1528         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1529 }
1530
1531 static int
1532 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1533 {
1534         int err, timo;
1535         pps_seq_t aseq, cseq;
1536         struct timeval tv;
1537
1538         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1539                 return (EINVAL);
1540
1541         /*
1542          * If no timeout is requested, immediately return whatever values were
1543          * most recently captured.  If timeout seconds is -1, that's a request
1544          * to block without a timeout.  WITNESS won't let us sleep forever
1545          * without a lock (we really don't need a lock), so just repeatedly
1546          * sleep a long time.
1547          */
1548         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1549                 if (fapi->timeout.tv_sec == -1)
1550                         timo = 0x7fffffff;
1551                 else {
1552                         tv.tv_sec = fapi->timeout.tv_sec;
1553                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1554                         timo = tvtohz(&tv);
1555                 }
1556                 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1557                 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1558                 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1559                     cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1560                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1561                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1562                                         err = msleep_spin(pps, pps->driver_mtx,
1563                                             "ppsfch", timo);
1564                                 } else {
1565                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1566                                             "ppsfch", timo);
1567                                 }
1568                         } else {
1569                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1570                         }
1571                         if (err == EWOULDBLOCK) {
1572                                 if (fapi->timeout.tv_sec == -1) {
1573                                         continue;
1574                                 } else {
1575                                         return (ETIMEDOUT);
1576                                 }
1577                         } else if (err != 0) {
1578                                 return (err);
1579                         }
1580                 }
1581         }
1582
1583         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1584         fapi->pps_info_buf = pps->ppsinfo;
1585
1586         return (0);
1587 }
1588
1589 int
1590 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1591 {
1592         pps_params_t *app;
1593         struct pps_fetch_args *fapi;
1594 #ifdef FFCLOCK
1595         struct pps_fetch_ffc_args *fapi_ffc;
1596 #endif
1597 #ifdef PPS_SYNC
1598         struct pps_kcbind_args *kapi;
1599 #endif
1600
1601         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1602         switch (cmd) {
1603         case PPS_IOC_CREATE:
1604                 return (0);
1605         case PPS_IOC_DESTROY:
1606                 return (0);
1607         case PPS_IOC_SETPARAMS:
1608                 app = (pps_params_t *)data;
1609                 if (app->mode & ~pps->ppscap)
1610                         return (EINVAL);
1611 #ifdef FFCLOCK
1612                 /* Ensure only a single clock is selected for ffc timestamp. */
1613                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1614                         return (EINVAL);
1615 #endif
1616                 pps->ppsparam = *app;
1617                 return (0);
1618         case PPS_IOC_GETPARAMS:
1619                 app = (pps_params_t *)data;
1620                 *app = pps->ppsparam;
1621                 app->api_version = PPS_API_VERS_1;
1622                 return (0);
1623         case PPS_IOC_GETCAP:
1624                 *(int*)data = pps->ppscap;
1625                 return (0);
1626         case PPS_IOC_FETCH:
1627                 fapi = (struct pps_fetch_args *)data;
1628                 return (pps_fetch(fapi, pps));
1629 #ifdef FFCLOCK
1630         case PPS_IOC_FETCH_FFCOUNTER:
1631                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1632                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1633                     PPS_TSFMT_TSPEC)
1634                         return (EINVAL);
1635                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1636                         return (EOPNOTSUPP);
1637                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1638                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1639                 /* Overwrite timestamps if feedback clock selected. */
1640                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1641                 case PPS_TSCLK_FBCK:
1642                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1643                             pps->ppsinfo.assert_timestamp;
1644                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1645                             pps->ppsinfo.clear_timestamp;
1646                         break;
1647                 case PPS_TSCLK_FFWD:
1648                         break;
1649                 default:
1650                         break;
1651                 }
1652                 return (0);
1653 #endif /* FFCLOCK */
1654         case PPS_IOC_KCBIND:
1655 #ifdef PPS_SYNC
1656                 kapi = (struct pps_kcbind_args *)data;
1657                 /* XXX Only root should be able to do this */
1658                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1659                         return (EINVAL);
1660                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1661                         return (EINVAL);
1662                 if (kapi->edge & ~pps->ppscap)
1663                         return (EINVAL);
1664                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1665                     (pps->kcmode & KCMODE_ABIFLAG);
1666                 return (0);
1667 #else
1668                 return (EOPNOTSUPP);
1669 #endif
1670         default:
1671                 return (ENOIOCTL);
1672         }
1673 }
1674
1675 void
1676 pps_init(struct pps_state *pps)
1677 {
1678         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1679         if (pps->ppscap & PPS_CAPTUREASSERT)
1680                 pps->ppscap |= PPS_OFFSETASSERT;
1681         if (pps->ppscap & PPS_CAPTURECLEAR)
1682                 pps->ppscap |= PPS_OFFSETCLEAR;
1683 #ifdef FFCLOCK
1684         pps->ppscap |= PPS_TSCLK_MASK;
1685 #endif
1686         pps->kcmode &= ~KCMODE_ABIFLAG;
1687 }
1688
1689 void
1690 pps_init_abi(struct pps_state *pps)
1691 {
1692
1693         pps_init(pps);
1694         if (pps->driver_abi > 0) {
1695                 pps->kcmode |= KCMODE_ABIFLAG;
1696                 pps->kernel_abi = PPS_ABI_VERSION;
1697         }
1698 }
1699
1700 void
1701 pps_capture(struct pps_state *pps)
1702 {
1703         struct timehands *th;
1704
1705         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1706         th = timehands;
1707         pps->capgen = atomic_load_acq_int(&th->th_generation);
1708         pps->capth = th;
1709 #ifdef FFCLOCK
1710         pps->capffth = fftimehands;
1711 #endif
1712         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1713         atomic_thread_fence_acq();
1714         if (pps->capgen != th->th_generation)
1715                 pps->capgen = 0;
1716 }
1717
1718 void
1719 pps_event(struct pps_state *pps, int event)
1720 {
1721         struct bintime bt;
1722         struct timespec ts, *tsp, *osp;
1723         u_int tcount, *pcount;
1724         int foff;
1725         pps_seq_t *pseq;
1726 #ifdef FFCLOCK
1727         struct timespec *tsp_ffc;
1728         pps_seq_t *pseq_ffc;
1729         ffcounter *ffcount;
1730 #endif
1731 #ifdef PPS_SYNC
1732         int fhard;
1733 #endif
1734
1735         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1736         /* Nothing to do if not currently set to capture this event type. */
1737         if ((event & pps->ppsparam.mode) == 0)
1738                 return;
1739         /* If the timecounter was wound up underneath us, bail out. */
1740         if (pps->capgen == 0 || pps->capgen !=
1741             atomic_load_acq_int(&pps->capth->th_generation))
1742                 return;
1743
1744         /* Things would be easier with arrays. */
1745         if (event == PPS_CAPTUREASSERT) {
1746                 tsp = &pps->ppsinfo.assert_timestamp;
1747                 osp = &pps->ppsparam.assert_offset;
1748                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1749 #ifdef PPS_SYNC
1750                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1751 #endif
1752                 pcount = &pps->ppscount[0];
1753                 pseq = &pps->ppsinfo.assert_sequence;
1754 #ifdef FFCLOCK
1755                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1756                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1757                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1758 #endif
1759         } else {
1760                 tsp = &pps->ppsinfo.clear_timestamp;
1761                 osp = &pps->ppsparam.clear_offset;
1762                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1763 #ifdef PPS_SYNC
1764                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1765 #endif
1766                 pcount = &pps->ppscount[1];
1767                 pseq = &pps->ppsinfo.clear_sequence;
1768 #ifdef FFCLOCK
1769                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1770                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1771                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1772 #endif
1773         }
1774
1775         /*
1776          * If the timecounter changed, we cannot compare the count values, so
1777          * we have to drop the rest of the PPS-stuff until the next event.
1778          */
1779         if (pps->ppstc != pps->capth->th_counter) {
1780                 pps->ppstc = pps->capth->th_counter;
1781                 *pcount = pps->capcount;
1782                 pps->ppscount[2] = pps->capcount;
1783                 return;
1784         }
1785
1786         /* Convert the count to a timespec. */
1787         tcount = pps->capcount - pps->capth->th_offset_count;
1788         tcount &= pps->capth->th_counter->tc_counter_mask;
1789         bt = pps->capth->th_bintime;
1790         bintime_addx(&bt, pps->capth->th_scale * tcount);
1791         bintime2timespec(&bt, &ts);
1792
1793         /* If the timecounter was wound up underneath us, bail out. */
1794         atomic_thread_fence_acq();
1795         if (pps->capgen != pps->capth->th_generation)
1796                 return;
1797
1798         *pcount = pps->capcount;
1799         (*pseq)++;
1800         *tsp = ts;
1801
1802         if (foff) {
1803                 timespecadd(tsp, osp, tsp);
1804                 if (tsp->tv_nsec < 0) {
1805                         tsp->tv_nsec += 1000000000;
1806                         tsp->tv_sec -= 1;
1807                 }
1808         }
1809
1810 #ifdef FFCLOCK
1811         *ffcount = pps->capffth->tick_ffcount + tcount;
1812         bt = pps->capffth->tick_time;
1813         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1814         bintime_add(&bt, &pps->capffth->tick_time);
1815         bintime2timespec(&bt, &ts);
1816         (*pseq_ffc)++;
1817         *tsp_ffc = ts;
1818 #endif
1819
1820 #ifdef PPS_SYNC
1821         if (fhard) {
1822                 uint64_t scale;
1823
1824                 /*
1825                  * Feed the NTP PLL/FLL.
1826                  * The FLL wants to know how many (hardware) nanoseconds
1827                  * elapsed since the previous event.
1828                  */
1829                 tcount = pps->capcount - pps->ppscount[2];
1830                 pps->ppscount[2] = pps->capcount;
1831                 tcount &= pps->capth->th_counter->tc_counter_mask;
1832                 scale = (uint64_t)1 << 63;
1833                 scale /= pps->capth->th_counter->tc_frequency;
1834                 scale *= 2;
1835                 bt.sec = 0;
1836                 bt.frac = 0;
1837                 bintime_addx(&bt, scale * tcount);
1838                 bintime2timespec(&bt, &ts);
1839                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1840         }
1841 #endif
1842
1843         /* Wakeup anyone sleeping in pps_fetch().  */
1844         wakeup(pps);
1845 }
1846
1847 /*
1848  * Timecounters need to be updated every so often to prevent the hardware
1849  * counter from overflowing.  Updating also recalculates the cached values
1850  * used by the get*() family of functions, so their precision depends on
1851  * the update frequency.
1852  */
1853
1854 static int tc_tick;
1855 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1856     "Approximate number of hardclock ticks in a millisecond");
1857
1858 void
1859 tc_ticktock(int cnt)
1860 {
1861         static int count;
1862
1863         if (mtx_trylock_spin(&tc_setclock_mtx)) {
1864                 count += cnt;
1865                 if (count >= tc_tick) {
1866                         count = 0;
1867                         tc_windup(NULL);
1868                 }
1869                 mtx_unlock_spin(&tc_setclock_mtx);
1870         }
1871 }
1872
1873 static void __inline
1874 tc_adjprecision(void)
1875 {
1876         int t;
1877
1878         if (tc_timepercentage > 0) {
1879                 t = (99 + tc_timepercentage) / tc_timepercentage;
1880                 tc_precexp = fls(t + (t >> 1)) - 1;
1881                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1882                 FREQ2BT(hz, &bt_tickthreshold);
1883                 bintime_shift(&bt_timethreshold, tc_precexp);
1884                 bintime_shift(&bt_tickthreshold, tc_precexp);
1885         } else {
1886                 tc_precexp = 31;
1887                 bt_timethreshold.sec = INT_MAX;
1888                 bt_timethreshold.frac = ~(uint64_t)0;
1889                 bt_tickthreshold = bt_timethreshold;
1890         }
1891         sbt_timethreshold = bttosbt(bt_timethreshold);
1892         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1893 }
1894
1895 static int
1896 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1897 {
1898         int error, val;
1899
1900         val = tc_timepercentage;
1901         error = sysctl_handle_int(oidp, &val, 0, req);
1902         if (error != 0 || req->newptr == NULL)
1903                 return (error);
1904         tc_timepercentage = val;
1905         if (cold)
1906                 goto done;
1907         tc_adjprecision();
1908 done:
1909         return (0);
1910 }
1911
1912 /* Set up the requested number of timehands. */
1913 static void
1914 inittimehands(void *dummy)
1915 {
1916         struct timehands *thp;
1917         int i;
1918
1919         TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
1920             &timehands_count);
1921         if (timehands_count < 1)
1922                 timehands_count = 1;
1923         if (timehands_count > nitems(ths))
1924                 timehands_count = nitems(ths);
1925         for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
1926                 thp->th_next = &ths[i];
1927         thp->th_next = &ths[0];
1928 }
1929 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);
1930
1931 static void
1932 inittimecounter(void *dummy)
1933 {
1934         u_int p;
1935         int tick_rate;
1936
1937         /*
1938          * Set the initial timeout to
1939          * max(1, <approx. number of hardclock ticks in a millisecond>).
1940          * People should probably not use the sysctl to set the timeout
1941          * to smaller than its initial value, since that value is the
1942          * smallest reasonable one.  If they want better timestamps they
1943          * should use the non-"get"* functions.
1944          */
1945         if (hz > 1000)
1946                 tc_tick = (hz + 500) / 1000;
1947         else
1948                 tc_tick = 1;
1949         tc_adjprecision();
1950         FREQ2BT(hz, &tick_bt);
1951         tick_sbt = bttosbt(tick_bt);
1952         tick_rate = hz / tc_tick;
1953         FREQ2BT(tick_rate, &tc_tick_bt);
1954         tc_tick_sbt = bttosbt(tc_tick_bt);
1955         p = (tc_tick * 1000000) / hz;
1956         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1957
1958 #ifdef FFCLOCK
1959         ffclock_init();
1960 #endif
1961
1962         /* warm up new timecounter (again) and get rolling. */
1963         (void)timecounter->tc_get_timecount(timecounter);
1964         mtx_lock_spin(&tc_setclock_mtx);
1965         tc_windup(NULL);
1966         mtx_unlock_spin(&tc_setclock_mtx);
1967 }
1968
1969 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1970
1971 /* Cpu tick handling -------------------------------------------------*/
1972
1973 static int cpu_tick_variable;
1974 static uint64_t cpu_tick_frequency;
1975
1976 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
1977 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
1978
1979 static uint64_t
1980 tc_cpu_ticks(void)
1981 {
1982         struct timecounter *tc;
1983         uint64_t res, *base;
1984         unsigned u, *last;
1985
1986         critical_enter();
1987         base = DPCPU_PTR(tc_cpu_ticks_base);
1988         last = DPCPU_PTR(tc_cpu_ticks_last);
1989         tc = timehands->th_counter;
1990         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1991         if (u < *last)
1992                 *base += (uint64_t)tc->tc_counter_mask + 1;
1993         *last = u;
1994         res = u + *base;
1995         critical_exit();
1996         return (res);
1997 }
1998
1999 void
2000 cpu_tick_calibration(void)
2001 {
2002         static time_t last_calib;
2003
2004         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2005                 cpu_tick_calibrate(0);
2006                 last_calib = time_uptime;
2007         }
2008 }
2009
2010 /*
2011  * This function gets called every 16 seconds on only one designated
2012  * CPU in the system from hardclock() via cpu_tick_calibration()().
2013  *
2014  * Whenever the real time clock is stepped we get called with reset=1
2015  * to make sure we handle suspend/resume and similar events correctly.
2016  */
2017
2018 static void
2019 cpu_tick_calibrate(int reset)
2020 {
2021         static uint64_t c_last;
2022         uint64_t c_this, c_delta;
2023         static struct bintime  t_last;
2024         struct bintime t_this, t_delta;
2025         uint32_t divi;
2026
2027         if (reset) {
2028                 /* The clock was stepped, abort & reset */
2029                 t_last.sec = 0;
2030                 return;
2031         }
2032
2033         /* we don't calibrate fixed rate cputicks */
2034         if (!cpu_tick_variable)
2035                 return;
2036
2037         getbinuptime(&t_this);
2038         c_this = cpu_ticks();
2039         if (t_last.sec != 0) {
2040                 c_delta = c_this - c_last;
2041                 t_delta = t_this;
2042                 bintime_sub(&t_delta, &t_last);
2043                 /*
2044                  * Headroom:
2045                  *      2^(64-20) / 16[s] =
2046                  *      2^(44) / 16[s] =
2047                  *      17.592.186.044.416 / 16 =
2048                  *      1.099.511.627.776 [Hz]
2049                  */
2050                 divi = t_delta.sec << 20;
2051                 divi |= t_delta.frac >> (64 - 20);
2052                 c_delta <<= 20;
2053                 c_delta /= divi;
2054                 if (c_delta > cpu_tick_frequency) {
2055                         if (0 && bootverbose)
2056                                 printf("cpu_tick increased to %ju Hz\n",
2057                                     c_delta);
2058                         cpu_tick_frequency = c_delta;
2059                 }
2060         }
2061         c_last = c_this;
2062         t_last = t_this;
2063 }
2064
2065 void
2066 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2067 {
2068
2069         if (func == NULL) {
2070                 cpu_ticks = tc_cpu_ticks;
2071         } else {
2072                 cpu_tick_frequency = freq;
2073                 cpu_tick_variable = var;
2074                 cpu_ticks = func;
2075         }
2076 }
2077
2078 uint64_t
2079 cpu_tickrate(void)
2080 {
2081
2082         if (cpu_ticks == tc_cpu_ticks) 
2083                 return (tc_getfrequency());
2084         return (cpu_tick_frequency);
2085 }
2086
2087 /*
2088  * We need to be slightly careful converting cputicks to microseconds.
2089  * There is plenty of margin in 64 bits of microseconds (half a million
2090  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2091  * before divide conversion (to retain precision) we find that the
2092  * margin shrinks to 1.5 hours (one millionth of 146y).
2093  * With a three prong approach we never lose significant bits, no
2094  * matter what the cputick rate and length of timeinterval is.
2095  */
2096
2097 uint64_t
2098 cputick2usec(uint64_t tick)
2099 {
2100
2101         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2102                 return (tick / (cpu_tickrate() / 1000000LL));
2103         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2104                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2105         else
2106                 return ((tick * 1000000LL) / cpu_tickrate());
2107 }
2108
2109 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2110
2111 static int vdso_th_enable = 1;
2112 static int
2113 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2114 {
2115         int old_vdso_th_enable, error;
2116
2117         old_vdso_th_enable = vdso_th_enable;
2118         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2119         if (error != 0)
2120                 return (error);
2121         vdso_th_enable = old_vdso_th_enable;
2122         return (0);
2123 }
2124 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2125     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2126     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2127
2128 uint32_t
2129 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2130 {
2131         struct timehands *th;
2132         uint32_t enabled;
2133
2134         th = timehands;
2135         vdso_th->th_scale = th->th_scale;
2136         vdso_th->th_offset_count = th->th_offset_count;
2137         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2138         vdso_th->th_offset = th->th_offset;
2139         vdso_th->th_boottime = th->th_boottime;
2140         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2141                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2142                     th->th_counter);
2143         } else
2144                 enabled = 0;
2145         if (!vdso_th_enable)
2146                 enabled = 0;
2147         return (enabled);
2148 }
2149
2150 #ifdef COMPAT_FREEBSD32
2151 uint32_t
2152 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2153 {
2154         struct timehands *th;
2155         uint32_t enabled;
2156
2157         th = timehands;
2158         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2159         vdso_th32->th_offset_count = th->th_offset_count;
2160         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2161         vdso_th32->th_offset.sec = th->th_offset.sec;
2162         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2163         vdso_th32->th_boottime.sec = th->th_boottime.sec;
2164         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2165         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2166                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2167                     th->th_counter);
2168         } else
2169                 enabled = 0;
2170         if (!vdso_th_enable)
2171                 enabled = 0;
2172         return (enabled);
2173 }
2174 #endif