]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
Fix missing pfctl(8) tunable.
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  */
18
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21
22 #include "opt_compat.h"
23 #include "opt_ntp.h"
24 #include "opt_ffclock.h"
25
26 #include <sys/param.h>
27 #include <sys/kernel.h>
28 #include <sys/limits.h>
29 #include <sys/lock.h>
30 #include <sys/mutex.h>
31 #include <sys/proc.h>
32 #include <sys/sbuf.h>
33 #include <sys/sleepqueue.h>
34 #include <sys/sysctl.h>
35 #include <sys/syslog.h>
36 #include <sys/systm.h>
37 #include <sys/timeffc.h>
38 #include <sys/timepps.h>
39 #include <sys/timetc.h>
40 #include <sys/timex.h>
41 #include <sys/vdso.h>
42
43 /*
44  * A large step happens on boot.  This constant detects such steps.
45  * It is relatively small so that ntp_update_second gets called enough
46  * in the typical 'missed a couple of seconds' case, but doesn't loop
47  * forever when the time step is large.
48  */
49 #define LARGE_STEP      200
50
51 /*
52  * Implement a dummy timecounter which we can use until we get a real one
53  * in the air.  This allows the console and other early stuff to use
54  * time services.
55  */
56
57 static u_int
58 dummy_get_timecount(struct timecounter *tc)
59 {
60         static u_int now;
61
62         return (++now);
63 }
64
65 static struct timecounter dummy_timecounter = {
66         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
67 };
68
69 struct timehands {
70         /* These fields must be initialized by the driver. */
71         struct timecounter      *th_counter;
72         int64_t                 th_adjustment;
73         uint64_t                th_scale;
74         u_int                   th_offset_count;
75         struct bintime          th_offset;
76         struct bintime          th_bintime;
77         struct timeval          th_microtime;
78         struct timespec         th_nanotime;
79         struct bintime          th_boottime;
80         /* Fields not to be copied in tc_windup start with th_generation. */
81         u_int                   th_generation;
82         struct timehands        *th_next;
83 };
84
85 static struct timehands th0;
86 static struct timehands th1 = {
87         .th_next = &th0
88 };
89 static struct timehands th0 = {
90         .th_counter = &dummy_timecounter,
91         .th_scale = (uint64_t)-1 / 1000000,
92         .th_offset = { .sec = 1 },
93         .th_generation = 1,
94         .th_next = &th1
95 };
96
97 static struct timehands *volatile timehands = &th0;
98 struct timecounter *timecounter = &dummy_timecounter;
99 static struct timecounter *timecounters = &dummy_timecounter;
100
101 int tc_min_ticktock_freq = 1;
102
103 volatile time_t time_second = 1;
104 volatile time_t time_uptime = 1;
105
106 struct bintime boottimebin;
107 struct timeval boottime;
108 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
109 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
110     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
111
112 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
113 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
114
115 static int timestepwarnings;
116 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
117     &timestepwarnings, 0, "Log time steps");
118
119 struct bintime bt_timethreshold;
120 struct bintime bt_tickthreshold;
121 sbintime_t sbt_timethreshold;
122 sbintime_t sbt_tickthreshold;
123 struct bintime tc_tick_bt;
124 sbintime_t tc_tick_sbt;
125 int tc_precexp;
126 int tc_timepercentage = TC_DEFAULTPERC;
127 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
128 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
129     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
130     sysctl_kern_timecounter_adjprecision, "I",
131     "Allowed time interval deviation in percents");
132
133 volatile int rtc_generation = 1;
134
135 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
136
137 static void tc_windup(struct bintime *new_boottimebin);
138 static void cpu_tick_calibrate(int);
139
140 void dtrace_getnanotime(struct timespec *tsp);
141
142 static int
143 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
144 {
145         struct timeval boottime_x;
146
147         getboottime(&boottime_x);
148
149 #ifndef __mips__
150 #ifdef SCTL_MASK32
151         int tv[2];
152
153         if (req->flags & SCTL_MASK32) {
154                 tv[0] = boottime_x.tv_sec;
155                 tv[1] = boottime_x.tv_usec;
156                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
157         }
158 #endif
159 #endif
160         return (SYSCTL_OUT(req, &boottime_x, sizeof(boottime_x)));
161 }
162
163 static int
164 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
165 {
166         u_int ncount;
167         struct timecounter *tc = arg1;
168
169         ncount = tc->tc_get_timecount(tc);
170         return (sysctl_handle_int(oidp, &ncount, 0, req));
171 }
172
173 static int
174 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
175 {
176         uint64_t freq;
177         struct timecounter *tc = arg1;
178
179         freq = tc->tc_frequency;
180         return (sysctl_handle_64(oidp, &freq, 0, req));
181 }
182
183 /*
184  * Return the difference between the timehands' counter value now and what
185  * was when we copied it to the timehands' offset_count.
186  */
187 static __inline u_int
188 tc_delta(struct timehands *th)
189 {
190         struct timecounter *tc;
191
192         tc = th->th_counter;
193         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
194             tc->tc_counter_mask);
195 }
196
197 /*
198  * Functions for reading the time.  We have to loop until we are sure that
199  * the timehands that we operated on was not updated under our feet.  See
200  * the comment in <sys/time.h> for a description of these 12 functions.
201  */
202
203 #ifdef FFCLOCK
204 void
205 fbclock_binuptime(struct bintime *bt)
206 {
207         struct timehands *th;
208         unsigned int gen;
209
210         do {
211                 th = timehands;
212                 gen = atomic_load_acq_int(&th->th_generation);
213                 *bt = th->th_offset;
214                 bintime_addx(bt, th->th_scale * tc_delta(th));
215                 atomic_thread_fence_acq();
216         } while (gen == 0 || gen != th->th_generation);
217 }
218
219 void
220 fbclock_nanouptime(struct timespec *tsp)
221 {
222         struct bintime bt;
223
224         fbclock_binuptime(&bt);
225         bintime2timespec(&bt, tsp);
226 }
227
228 void
229 fbclock_microuptime(struct timeval *tvp)
230 {
231         struct bintime bt;
232
233         fbclock_binuptime(&bt);
234         bintime2timeval(&bt, tvp);
235 }
236
237 void
238 fbclock_bintime(struct bintime *bt)
239 {
240         struct timehands *th;
241         unsigned int gen;
242
243         do {
244                 th = timehands;
245                 gen = atomic_load_acq_int(&th->th_generation);
246                 *bt = th->th_bintime;
247                 bintime_addx(bt, th->th_scale * tc_delta(th));
248                 atomic_thread_fence_acq();
249         } while (gen == 0 || gen != th->th_generation);
250 }
251
252 void
253 fbclock_nanotime(struct timespec *tsp)
254 {
255         struct bintime bt;
256
257         fbclock_bintime(&bt);
258         bintime2timespec(&bt, tsp);
259 }
260
261 void
262 fbclock_microtime(struct timeval *tvp)
263 {
264         struct bintime bt;
265
266         fbclock_bintime(&bt);
267         bintime2timeval(&bt, tvp);
268 }
269
270 void
271 fbclock_getbinuptime(struct bintime *bt)
272 {
273         struct timehands *th;
274         unsigned int gen;
275
276         do {
277                 th = timehands;
278                 gen = atomic_load_acq_int(&th->th_generation);
279                 *bt = th->th_offset;
280                 atomic_thread_fence_acq();
281         } while (gen == 0 || gen != th->th_generation);
282 }
283
284 void
285 fbclock_getnanouptime(struct timespec *tsp)
286 {
287         struct timehands *th;
288         unsigned int gen;
289
290         do {
291                 th = timehands;
292                 gen = atomic_load_acq_int(&th->th_generation);
293                 bintime2timespec(&th->th_offset, tsp);
294                 atomic_thread_fence_acq();
295         } while (gen == 0 || gen != th->th_generation);
296 }
297
298 void
299 fbclock_getmicrouptime(struct timeval *tvp)
300 {
301         struct timehands *th;
302         unsigned int gen;
303
304         do {
305                 th = timehands;
306                 gen = atomic_load_acq_int(&th->th_generation);
307                 bintime2timeval(&th->th_offset, tvp);
308                 atomic_thread_fence_acq();
309         } while (gen == 0 || gen != th->th_generation);
310 }
311
312 void
313 fbclock_getbintime(struct bintime *bt)
314 {
315         struct timehands *th;
316         unsigned int gen;
317
318         do {
319                 th = timehands;
320                 gen = atomic_load_acq_int(&th->th_generation);
321                 *bt = th->th_bintime;
322                 atomic_thread_fence_acq();
323         } while (gen == 0 || gen != th->th_generation);
324 }
325
326 void
327 fbclock_getnanotime(struct timespec *tsp)
328 {
329         struct timehands *th;
330         unsigned int gen;
331
332         do {
333                 th = timehands;
334                 gen = atomic_load_acq_int(&th->th_generation);
335                 *tsp = th->th_nanotime;
336                 atomic_thread_fence_acq();
337         } while (gen == 0 || gen != th->th_generation);
338 }
339
340 void
341 fbclock_getmicrotime(struct timeval *tvp)
342 {
343         struct timehands *th;
344         unsigned int gen;
345
346         do {
347                 th = timehands;
348                 gen = atomic_load_acq_int(&th->th_generation);
349                 *tvp = th->th_microtime;
350                 atomic_thread_fence_acq();
351         } while (gen == 0 || gen != th->th_generation);
352 }
353 #else /* !FFCLOCK */
354 void
355 binuptime(struct bintime *bt)
356 {
357         struct timehands *th;
358         u_int gen;
359
360         do {
361                 th = timehands;
362                 gen = atomic_load_acq_int(&th->th_generation);
363                 *bt = th->th_offset;
364                 bintime_addx(bt, th->th_scale * tc_delta(th));
365                 atomic_thread_fence_acq();
366         } while (gen == 0 || gen != th->th_generation);
367 }
368
369 void
370 nanouptime(struct timespec *tsp)
371 {
372         struct bintime bt;
373
374         binuptime(&bt);
375         bintime2timespec(&bt, tsp);
376 }
377
378 void
379 microuptime(struct timeval *tvp)
380 {
381         struct bintime bt;
382
383         binuptime(&bt);
384         bintime2timeval(&bt, tvp);
385 }
386
387 void
388 bintime(struct bintime *bt)
389 {
390         struct timehands *th;
391         u_int gen;
392
393         do {
394                 th = timehands;
395                 gen = atomic_load_acq_int(&th->th_generation);
396                 *bt = th->th_bintime;
397                 bintime_addx(bt, th->th_scale * tc_delta(th));
398                 atomic_thread_fence_acq();
399         } while (gen == 0 || gen != th->th_generation);
400 }
401
402 void
403 nanotime(struct timespec *tsp)
404 {
405         struct bintime bt;
406
407         bintime(&bt);
408         bintime2timespec(&bt, tsp);
409 }
410
411 void
412 microtime(struct timeval *tvp)
413 {
414         struct bintime bt;
415
416         bintime(&bt);
417         bintime2timeval(&bt, tvp);
418 }
419
420 void
421 getbinuptime(struct bintime *bt)
422 {
423         struct timehands *th;
424         u_int gen;
425
426         do {
427                 th = timehands;
428                 gen = atomic_load_acq_int(&th->th_generation);
429                 *bt = th->th_offset;
430                 atomic_thread_fence_acq();
431         } while (gen == 0 || gen != th->th_generation);
432 }
433
434 void
435 getnanouptime(struct timespec *tsp)
436 {
437         struct timehands *th;
438         u_int gen;
439
440         do {
441                 th = timehands;
442                 gen = atomic_load_acq_int(&th->th_generation);
443                 bintime2timespec(&th->th_offset, tsp);
444                 atomic_thread_fence_acq();
445         } while (gen == 0 || gen != th->th_generation);
446 }
447
448 void
449 getmicrouptime(struct timeval *tvp)
450 {
451         struct timehands *th;
452         u_int gen;
453
454         do {
455                 th = timehands;
456                 gen = atomic_load_acq_int(&th->th_generation);
457                 bintime2timeval(&th->th_offset, tvp);
458                 atomic_thread_fence_acq();
459         } while (gen == 0 || gen != th->th_generation);
460 }
461
462 void
463 getbintime(struct bintime *bt)
464 {
465         struct timehands *th;
466         u_int gen;
467
468         do {
469                 th = timehands;
470                 gen = atomic_load_acq_int(&th->th_generation);
471                 *bt = th->th_bintime;
472                 atomic_thread_fence_acq();
473         } while (gen == 0 || gen != th->th_generation);
474 }
475
476 void
477 getnanotime(struct timespec *tsp)
478 {
479         struct timehands *th;
480         u_int gen;
481
482         do {
483                 th = timehands;
484                 gen = atomic_load_acq_int(&th->th_generation);
485                 *tsp = th->th_nanotime;
486                 atomic_thread_fence_acq();
487         } while (gen == 0 || gen != th->th_generation);
488 }
489
490 void
491 getmicrotime(struct timeval *tvp)
492 {
493         struct timehands *th;
494         u_int gen;
495
496         do {
497                 th = timehands;
498                 gen = atomic_load_acq_int(&th->th_generation);
499                 *tvp = th->th_microtime;
500                 atomic_thread_fence_acq();
501         } while (gen == 0 || gen != th->th_generation);
502 }
503 #endif /* FFCLOCK */
504
505 void
506 getboottime(struct timeval *boottime_x)
507 {
508         struct bintime boottimebin_x;
509
510         getboottimebin(&boottimebin_x);
511         bintime2timeval(&boottimebin_x, boottime_x);
512 }
513
514 void
515 getboottimebin(struct bintime *boottimebin_x)
516 {
517         struct timehands *th;
518         u_int gen;
519
520         do {
521                 th = timehands;
522                 gen = atomic_load_acq_int(&th->th_generation);
523                 *boottimebin_x = th->th_boottime;
524                 atomic_thread_fence_acq();
525         } while (gen == 0 || gen != th->th_generation);
526 }
527
528 #ifdef FFCLOCK
529 /*
530  * Support for feed-forward synchronization algorithms. This is heavily inspired
531  * by the timehands mechanism but kept independent from it. *_windup() functions
532  * have some connection to avoid accessing the timecounter hardware more than
533  * necessary.
534  */
535
536 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
537 struct ffclock_estimate ffclock_estimate;
538 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
539 uint32_t ffclock_status;                /* Feed-forward clock status. */
540 int8_t ffclock_updated;                 /* New estimates are available. */
541 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
542
543 struct fftimehands {
544         struct ffclock_estimate cest;
545         struct bintime          tick_time;
546         struct bintime          tick_time_lerp;
547         ffcounter               tick_ffcount;
548         uint64_t                period_lerp;
549         volatile uint8_t        gen;
550         struct fftimehands      *next;
551 };
552
553 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
554
555 static struct fftimehands ffth[10];
556 static struct fftimehands *volatile fftimehands = ffth;
557
558 static void
559 ffclock_init(void)
560 {
561         struct fftimehands *cur;
562         struct fftimehands *last;
563
564         memset(ffth, 0, sizeof(ffth));
565
566         last = ffth + NUM_ELEMENTS(ffth) - 1;
567         for (cur = ffth; cur < last; cur++)
568                 cur->next = cur + 1;
569         last->next = ffth;
570
571         ffclock_updated = 0;
572         ffclock_status = FFCLOCK_STA_UNSYNC;
573         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
574 }
575
576 /*
577  * Reset the feed-forward clock estimates. Called from inittodr() to get things
578  * kick started and uses the timecounter nominal frequency as a first period
579  * estimate. Note: this function may be called several time just after boot.
580  * Note: this is the only function that sets the value of boot time for the
581  * monotonic (i.e. uptime) version of the feed-forward clock.
582  */
583 void
584 ffclock_reset_clock(struct timespec *ts)
585 {
586         struct timecounter *tc;
587         struct ffclock_estimate cest;
588
589         tc = timehands->th_counter;
590         memset(&cest, 0, sizeof(struct ffclock_estimate));
591
592         timespec2bintime(ts, &ffclock_boottime);
593         timespec2bintime(ts, &(cest.update_time));
594         ffclock_read_counter(&cest.update_ffcount);
595         cest.leapsec_next = 0;
596         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
597         cest.errb_abs = 0;
598         cest.errb_rate = 0;
599         cest.status = FFCLOCK_STA_UNSYNC;
600         cest.leapsec_total = 0;
601         cest.leapsec = 0;
602
603         mtx_lock(&ffclock_mtx);
604         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
605         ffclock_updated = INT8_MAX;
606         mtx_unlock(&ffclock_mtx);
607
608         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
609             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
610             (unsigned long)ts->tv_nsec);
611 }
612
613 /*
614  * Sub-routine to convert a time interval measured in RAW counter units to time
615  * in seconds stored in bintime format.
616  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
617  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
618  * extra cycles.
619  */
620 static void
621 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
622 {
623         struct bintime bt2;
624         ffcounter delta, delta_max;
625
626         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
627         bintime_clear(bt);
628         do {
629                 if (ffdelta > delta_max)
630                         delta = delta_max;
631                 else
632                         delta = ffdelta;
633                 bt2.sec = 0;
634                 bt2.frac = period;
635                 bintime_mul(&bt2, (unsigned int)delta);
636                 bintime_add(bt, &bt2);
637                 ffdelta -= delta;
638         } while (ffdelta > 0);
639 }
640
641 /*
642  * Update the fftimehands.
643  * Push the tick ffcount and time(s) forward based on current clock estimate.
644  * The conversion from ffcounter to bintime relies on the difference clock
645  * principle, whose accuracy relies on computing small time intervals. If a new
646  * clock estimate has been passed by the synchronisation daemon, make it
647  * current, and compute the linear interpolation for monotonic time if needed.
648  */
649 static void
650 ffclock_windup(unsigned int delta)
651 {
652         struct ffclock_estimate *cest;
653         struct fftimehands *ffth;
654         struct bintime bt, gap_lerp;
655         ffcounter ffdelta;
656         uint64_t frac;
657         unsigned int polling;
658         uint8_t forward_jump, ogen;
659
660         /*
661          * Pick the next timehand, copy current ffclock estimates and move tick
662          * times and counter forward.
663          */
664         forward_jump = 0;
665         ffth = fftimehands->next;
666         ogen = ffth->gen;
667         ffth->gen = 0;
668         cest = &ffth->cest;
669         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
670         ffdelta = (ffcounter)delta;
671         ffth->period_lerp = fftimehands->period_lerp;
672
673         ffth->tick_time = fftimehands->tick_time;
674         ffclock_convert_delta(ffdelta, cest->period, &bt);
675         bintime_add(&ffth->tick_time, &bt);
676
677         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
678         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
679         bintime_add(&ffth->tick_time_lerp, &bt);
680
681         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
682
683         /*
684          * Assess the status of the clock, if the last update is too old, it is
685          * likely the synchronisation daemon is dead and the clock is free
686          * running.
687          */
688         if (ffclock_updated == 0) {
689                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
690                 ffclock_convert_delta(ffdelta, cest->period, &bt);
691                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
692                         ffclock_status |= FFCLOCK_STA_UNSYNC;
693         }
694
695         /*
696          * If available, grab updated clock estimates and make them current.
697          * Recompute time at this tick using the updated estimates. The clock
698          * estimates passed the feed-forward synchronisation daemon may result
699          * in time conversion that is not monotonically increasing (just after
700          * the update). time_lerp is a particular linear interpolation over the
701          * synchronisation algo polling period that ensures monotonicity for the
702          * clock ids requesting it.
703          */
704         if (ffclock_updated > 0) {
705                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
706                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
707                 ffth->tick_time = cest->update_time;
708                 ffclock_convert_delta(ffdelta, cest->period, &bt);
709                 bintime_add(&ffth->tick_time, &bt);
710
711                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
712                 if (ffclock_updated == INT8_MAX)
713                         ffth->tick_time_lerp = ffth->tick_time;
714
715                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
716                         forward_jump = 1;
717                 else
718                         forward_jump = 0;
719
720                 bintime_clear(&gap_lerp);
721                 if (forward_jump) {
722                         gap_lerp = ffth->tick_time;
723                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
724                 } else {
725                         gap_lerp = ffth->tick_time_lerp;
726                         bintime_sub(&gap_lerp, &ffth->tick_time);
727                 }
728
729                 /*
730                  * The reset from the RTC clock may be far from accurate, and
731                  * reducing the gap between real time and interpolated time
732                  * could take a very long time if the interpolated clock insists
733                  * on strict monotonicity. The clock is reset under very strict
734                  * conditions (kernel time is known to be wrong and
735                  * synchronization daemon has been restarted recently.
736                  * ffclock_boottime absorbs the jump to ensure boot time is
737                  * correct and uptime functions stay consistent.
738                  */
739                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
740                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
741                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
742                         if (forward_jump)
743                                 bintime_add(&ffclock_boottime, &gap_lerp);
744                         else
745                                 bintime_sub(&ffclock_boottime, &gap_lerp);
746                         ffth->tick_time_lerp = ffth->tick_time;
747                         bintime_clear(&gap_lerp);
748                 }
749
750                 ffclock_status = cest->status;
751                 ffth->period_lerp = cest->period;
752
753                 /*
754                  * Compute corrected period used for the linear interpolation of
755                  * time. The rate of linear interpolation is capped to 5000PPM
756                  * (5ms/s).
757                  */
758                 if (bintime_isset(&gap_lerp)) {
759                         ffdelta = cest->update_ffcount;
760                         ffdelta -= fftimehands->cest.update_ffcount;
761                         ffclock_convert_delta(ffdelta, cest->period, &bt);
762                         polling = bt.sec;
763                         bt.sec = 0;
764                         bt.frac = 5000000 * (uint64_t)18446744073LL;
765                         bintime_mul(&bt, polling);
766                         if (bintime_cmp(&gap_lerp, &bt, >))
767                                 gap_lerp = bt;
768
769                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
770                         frac = 0;
771                         if (gap_lerp.sec > 0) {
772                                 frac -= 1;
773                                 frac /= ffdelta / gap_lerp.sec;
774                         }
775                         frac += gap_lerp.frac / ffdelta;
776
777                         if (forward_jump)
778                                 ffth->period_lerp += frac;
779                         else
780                                 ffth->period_lerp -= frac;
781                 }
782
783                 ffclock_updated = 0;
784         }
785         if (++ogen == 0)
786                 ogen = 1;
787         ffth->gen = ogen;
788         fftimehands = ffth;
789 }
790
791 /*
792  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
793  * the old and new hardware counter cannot be read simultaneously. tc_windup()
794  * does read the two counters 'back to back', but a few cycles are effectively
795  * lost, and not accumulated in tick_ffcount. This is a fairly radical
796  * operation for a feed-forward synchronization daemon, and it is its job to not
797  * pushing irrelevant data to the kernel. Because there is no locking here,
798  * simply force to ignore pending or next update to give daemon a chance to
799  * realize the counter has changed.
800  */
801 static void
802 ffclock_change_tc(struct timehands *th)
803 {
804         struct fftimehands *ffth;
805         struct ffclock_estimate *cest;
806         struct timecounter *tc;
807         uint8_t ogen;
808
809         tc = th->th_counter;
810         ffth = fftimehands->next;
811         ogen = ffth->gen;
812         ffth->gen = 0;
813
814         cest = &ffth->cest;
815         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
816         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
817         cest->errb_abs = 0;
818         cest->errb_rate = 0;
819         cest->status |= FFCLOCK_STA_UNSYNC;
820
821         ffth->tick_ffcount = fftimehands->tick_ffcount;
822         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
823         ffth->tick_time = fftimehands->tick_time;
824         ffth->period_lerp = cest->period;
825
826         /* Do not lock but ignore next update from synchronization daemon. */
827         ffclock_updated--;
828
829         if (++ogen == 0)
830                 ogen = 1;
831         ffth->gen = ogen;
832         fftimehands = ffth;
833 }
834
835 /*
836  * Retrieve feed-forward counter and time of last kernel tick.
837  */
838 void
839 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
840 {
841         struct fftimehands *ffth;
842         uint8_t gen;
843
844         /*
845          * No locking but check generation has not changed. Also need to make
846          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
847          */
848         do {
849                 ffth = fftimehands;
850                 gen = ffth->gen;
851                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
852                         *bt = ffth->tick_time_lerp;
853                 else
854                         *bt = ffth->tick_time;
855                 *ffcount = ffth->tick_ffcount;
856         } while (gen == 0 || gen != ffth->gen);
857 }
858
859 /*
860  * Absolute clock conversion. Low level function to convert ffcounter to
861  * bintime. The ffcounter is converted using the current ffclock period estimate
862  * or the "interpolated period" to ensure monotonicity.
863  * NOTE: this conversion may have been deferred, and the clock updated since the
864  * hardware counter has been read.
865  */
866 void
867 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
868 {
869         struct fftimehands *ffth;
870         struct bintime bt2;
871         ffcounter ffdelta;
872         uint8_t gen;
873
874         /*
875          * No locking but check generation has not changed. Also need to make
876          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
877          */
878         do {
879                 ffth = fftimehands;
880                 gen = ffth->gen;
881                 if (ffcount > ffth->tick_ffcount)
882                         ffdelta = ffcount - ffth->tick_ffcount;
883                 else
884                         ffdelta = ffth->tick_ffcount - ffcount;
885
886                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
887                         *bt = ffth->tick_time_lerp;
888                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
889                 } else {
890                         *bt = ffth->tick_time;
891                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
892                 }
893
894                 if (ffcount > ffth->tick_ffcount)
895                         bintime_add(bt, &bt2);
896                 else
897                         bintime_sub(bt, &bt2);
898         } while (gen == 0 || gen != ffth->gen);
899 }
900
901 /*
902  * Difference clock conversion.
903  * Low level function to Convert a time interval measured in RAW counter units
904  * into bintime. The difference clock allows measuring small intervals much more
905  * reliably than the absolute clock.
906  */
907 void
908 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
909 {
910         struct fftimehands *ffth;
911         uint8_t gen;
912
913         /* No locking but check generation has not changed. */
914         do {
915                 ffth = fftimehands;
916                 gen = ffth->gen;
917                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
918         } while (gen == 0 || gen != ffth->gen);
919 }
920
921 /*
922  * Access to current ffcounter value.
923  */
924 void
925 ffclock_read_counter(ffcounter *ffcount)
926 {
927         struct timehands *th;
928         struct fftimehands *ffth;
929         unsigned int gen, delta;
930
931         /*
932          * ffclock_windup() called from tc_windup(), safe to rely on
933          * th->th_generation only, for correct delta and ffcounter.
934          */
935         do {
936                 th = timehands;
937                 gen = atomic_load_acq_int(&th->th_generation);
938                 ffth = fftimehands;
939                 delta = tc_delta(th);
940                 *ffcount = ffth->tick_ffcount;
941                 atomic_thread_fence_acq();
942         } while (gen == 0 || gen != th->th_generation);
943
944         *ffcount += delta;
945 }
946
947 void
948 binuptime(struct bintime *bt)
949 {
950
951         binuptime_fromclock(bt, sysclock_active);
952 }
953
954 void
955 nanouptime(struct timespec *tsp)
956 {
957
958         nanouptime_fromclock(tsp, sysclock_active);
959 }
960
961 void
962 microuptime(struct timeval *tvp)
963 {
964
965         microuptime_fromclock(tvp, sysclock_active);
966 }
967
968 void
969 bintime(struct bintime *bt)
970 {
971
972         bintime_fromclock(bt, sysclock_active);
973 }
974
975 void
976 nanotime(struct timespec *tsp)
977 {
978
979         nanotime_fromclock(tsp, sysclock_active);
980 }
981
982 void
983 microtime(struct timeval *tvp)
984 {
985
986         microtime_fromclock(tvp, sysclock_active);
987 }
988
989 void
990 getbinuptime(struct bintime *bt)
991 {
992
993         getbinuptime_fromclock(bt, sysclock_active);
994 }
995
996 void
997 getnanouptime(struct timespec *tsp)
998 {
999
1000         getnanouptime_fromclock(tsp, sysclock_active);
1001 }
1002
1003 void
1004 getmicrouptime(struct timeval *tvp)
1005 {
1006
1007         getmicrouptime_fromclock(tvp, sysclock_active);
1008 }
1009
1010 void
1011 getbintime(struct bintime *bt)
1012 {
1013
1014         getbintime_fromclock(bt, sysclock_active);
1015 }
1016
1017 void
1018 getnanotime(struct timespec *tsp)
1019 {
1020
1021         getnanotime_fromclock(tsp, sysclock_active);
1022 }
1023
1024 void
1025 getmicrotime(struct timeval *tvp)
1026 {
1027
1028         getmicrouptime_fromclock(tvp, sysclock_active);
1029 }
1030
1031 #endif /* FFCLOCK */
1032
1033 /*
1034  * This is a clone of getnanotime and used for walltimestamps.
1035  * The dtrace_ prefix prevents fbt from creating probes for
1036  * it so walltimestamp can be safely used in all fbt probes.
1037  */
1038 void
1039 dtrace_getnanotime(struct timespec *tsp)
1040 {
1041         struct timehands *th;
1042         u_int gen;
1043
1044         do {
1045                 th = timehands;
1046                 gen = atomic_load_acq_int(&th->th_generation);
1047                 *tsp = th->th_nanotime;
1048                 atomic_thread_fence_acq();
1049         } while (gen == 0 || gen != th->th_generation);
1050 }
1051
1052 /*
1053  * System clock currently providing time to the system. Modifiable via sysctl
1054  * when the FFCLOCK option is defined.
1055  */
1056 int sysclock_active = SYSCLOCK_FBCK;
1057
1058 /* Internal NTP status and error estimates. */
1059 extern int time_status;
1060 extern long time_esterror;
1061
1062 /*
1063  * Take a snapshot of sysclock data which can be used to compare system clocks
1064  * and generate timestamps after the fact.
1065  */
1066 void
1067 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1068 {
1069         struct fbclock_info *fbi;
1070         struct timehands *th;
1071         struct bintime bt;
1072         unsigned int delta, gen;
1073 #ifdef FFCLOCK
1074         ffcounter ffcount;
1075         struct fftimehands *ffth;
1076         struct ffclock_info *ffi;
1077         struct ffclock_estimate cest;
1078
1079         ffi = &clock_snap->ff_info;
1080 #endif
1081
1082         fbi = &clock_snap->fb_info;
1083         delta = 0;
1084
1085         do {
1086                 th = timehands;
1087                 gen = atomic_load_acq_int(&th->th_generation);
1088                 fbi->th_scale = th->th_scale;
1089                 fbi->tick_time = th->th_offset;
1090 #ifdef FFCLOCK
1091                 ffth = fftimehands;
1092                 ffi->tick_time = ffth->tick_time_lerp;
1093                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1094                 ffi->period = ffth->cest.period;
1095                 ffi->period_lerp = ffth->period_lerp;
1096                 clock_snap->ffcount = ffth->tick_ffcount;
1097                 cest = ffth->cest;
1098 #endif
1099                 if (!fast)
1100                         delta = tc_delta(th);
1101                 atomic_thread_fence_acq();
1102         } while (gen == 0 || gen != th->th_generation);
1103
1104         clock_snap->delta = delta;
1105         clock_snap->sysclock_active = sysclock_active;
1106
1107         /* Record feedback clock status and error. */
1108         clock_snap->fb_info.status = time_status;
1109         /* XXX: Very crude estimate of feedback clock error. */
1110         bt.sec = time_esterror / 1000000;
1111         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1112             (uint64_t)18446744073709ULL;
1113         clock_snap->fb_info.error = bt;
1114
1115 #ifdef FFCLOCK
1116         if (!fast)
1117                 clock_snap->ffcount += delta;
1118
1119         /* Record feed-forward clock leap second adjustment. */
1120         ffi->leapsec_adjustment = cest.leapsec_total;
1121         if (clock_snap->ffcount > cest.leapsec_next)
1122                 ffi->leapsec_adjustment -= cest.leapsec;
1123
1124         /* Record feed-forward clock status and error. */
1125         clock_snap->ff_info.status = cest.status;
1126         ffcount = clock_snap->ffcount - cest.update_ffcount;
1127         ffclock_convert_delta(ffcount, cest.period, &bt);
1128         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1129         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1130         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1131         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1132         clock_snap->ff_info.error = bt;
1133 #endif
1134 }
1135
1136 /*
1137  * Convert a sysclock snapshot into a struct bintime based on the specified
1138  * clock source and flags.
1139  */
1140 int
1141 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1142     int whichclock, uint32_t flags)
1143 {
1144         struct bintime boottimebin_x;
1145 #ifdef FFCLOCK
1146         struct bintime bt2;
1147         uint64_t period;
1148 #endif
1149
1150         switch (whichclock) {
1151         case SYSCLOCK_FBCK:
1152                 *bt = cs->fb_info.tick_time;
1153
1154                 /* If snapshot was created with !fast, delta will be >0. */
1155                 if (cs->delta > 0)
1156                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1157
1158                 if ((flags & FBCLOCK_UPTIME) == 0) {
1159                         getboottimebin(&boottimebin_x);
1160                         bintime_add(bt, &boottimebin_x);
1161                 }
1162                 break;
1163 #ifdef FFCLOCK
1164         case SYSCLOCK_FFWD:
1165                 if (flags & FFCLOCK_LERP) {
1166                         *bt = cs->ff_info.tick_time_lerp;
1167                         period = cs->ff_info.period_lerp;
1168                 } else {
1169                         *bt = cs->ff_info.tick_time;
1170                         period = cs->ff_info.period;
1171                 }
1172
1173                 /* If snapshot was created with !fast, delta will be >0. */
1174                 if (cs->delta > 0) {
1175                         ffclock_convert_delta(cs->delta, period, &bt2);
1176                         bintime_add(bt, &bt2);
1177                 }
1178
1179                 /* Leap second adjustment. */
1180                 if (flags & FFCLOCK_LEAPSEC)
1181                         bt->sec -= cs->ff_info.leapsec_adjustment;
1182
1183                 /* Boot time adjustment, for uptime/monotonic clocks. */
1184                 if (flags & FFCLOCK_UPTIME)
1185                         bintime_sub(bt, &ffclock_boottime);
1186                 break;
1187 #endif
1188         default:
1189                 return (EINVAL);
1190                 break;
1191         }
1192
1193         return (0);
1194 }
1195
1196 /*
1197  * Initialize a new timecounter and possibly use it.
1198  */
1199 void
1200 tc_init(struct timecounter *tc)
1201 {
1202         u_int u;
1203         struct sysctl_oid *tc_root;
1204
1205         u = tc->tc_frequency / tc->tc_counter_mask;
1206         /* XXX: We need some margin here, 10% is a guess */
1207         u *= 11;
1208         u /= 10;
1209         if (u > hz && tc->tc_quality >= 0) {
1210                 tc->tc_quality = -2000;
1211                 if (bootverbose) {
1212                         printf("Timecounter \"%s\" frequency %ju Hz",
1213                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1214                         printf(" -- Insufficient hz, needs at least %u\n", u);
1215                 }
1216         } else if (tc->tc_quality >= 0 || bootverbose) {
1217                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1218                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1219                     tc->tc_quality);
1220         }
1221
1222         tc->tc_next = timecounters;
1223         timecounters = tc;
1224         /*
1225          * Set up sysctl tree for this counter.
1226          */
1227         tc_root = SYSCTL_ADD_NODE(NULL,
1228             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1229             CTLFLAG_RW, 0, "timecounter description");
1230         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1231             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1232             "mask for implemented bits");
1233         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1234             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1235             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1236         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1237             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1238              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1239         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1240             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1241             "goodness of time counter");
1242         /*
1243          * Do not automatically switch if the current tc was specifically
1244          * chosen.  Never automatically use a timecounter with negative quality.
1245          * Even though we run on the dummy counter, switching here may be
1246          * worse since this timecounter may not be monotonic.
1247          */
1248         if (tc_chosen)
1249                 return;
1250         if (tc->tc_quality < 0)
1251                 return;
1252         if (tc->tc_quality < timecounter->tc_quality)
1253                 return;
1254         if (tc->tc_quality == timecounter->tc_quality &&
1255             tc->tc_frequency < timecounter->tc_frequency)
1256                 return;
1257         (void)tc->tc_get_timecount(tc);
1258         (void)tc->tc_get_timecount(tc);
1259         timecounter = tc;
1260 }
1261
1262 /* Report the frequency of the current timecounter. */
1263 uint64_t
1264 tc_getfrequency(void)
1265 {
1266
1267         return (timehands->th_counter->tc_frequency);
1268 }
1269
1270 static bool
1271 sleeping_on_old_rtc(struct thread *td)
1272 {
1273
1274         /*
1275          * td_rtcgen is modified by curthread when it is running,
1276          * and by other threads in this function.  By finding the thread
1277          * on a sleepqueue and holding the lock on the sleepqueue
1278          * chain, we guarantee that the thread is not running and that
1279          * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1280          * the thread that it was woken due to a real-time clock adjustment.
1281          * (The declaration of td_rtcgen refers to this comment.)
1282          */
1283         if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1284                 td->td_rtcgen = 0;
1285                 return (true);
1286         }
1287         return (false);
1288 }
1289
1290 static struct mtx tc_setclock_mtx;
1291 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1292
1293 /*
1294  * Step our concept of UTC.  This is done by modifying our estimate of
1295  * when we booted.
1296  */
1297 void
1298 tc_setclock(struct timespec *ts)
1299 {
1300         struct timespec tbef, taft;
1301         struct bintime bt, bt2;
1302
1303         timespec2bintime(ts, &bt);
1304         nanotime(&tbef);
1305         mtx_lock_spin(&tc_setclock_mtx);
1306         cpu_tick_calibrate(1);
1307         binuptime(&bt2);
1308         bintime_sub(&bt, &bt2);
1309
1310         /* XXX fiddle all the little crinkly bits around the fiords... */
1311         tc_windup(&bt);
1312         mtx_unlock_spin(&tc_setclock_mtx);
1313         getboottimebin(&boottimebin);
1314         bintime2timeval(&boottimebin, &boottime);
1315
1316         /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1317         atomic_add_rel_int(&rtc_generation, 2);
1318         sleepq_chains_remove_matching(sleeping_on_old_rtc);
1319         if (timestepwarnings) {
1320                 nanotime(&taft);
1321                 log(LOG_INFO,
1322                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1323                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1324                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1325                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1326         }
1327 }
1328
1329 /*
1330  * Initialize the next struct timehands in the ring and make
1331  * it the active timehands.  Along the way we might switch to a different
1332  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1333  */
1334 static void
1335 tc_windup(struct bintime *new_boottimebin)
1336 {
1337         struct bintime bt;
1338         struct timehands *th, *tho;
1339         uint64_t scale;
1340         u_int delta, ncount, ogen;
1341         int i;
1342         time_t t;
1343
1344         /*
1345          * Make the next timehands a copy of the current one, but do
1346          * not overwrite the generation or next pointer.  While we
1347          * update the contents, the generation must be zero.  We need
1348          * to ensure that the zero generation is visible before the
1349          * data updates become visible, which requires release fence.
1350          * For similar reasons, re-reading of the generation after the
1351          * data is read should use acquire fence.
1352          */
1353         tho = timehands;
1354         th = tho->th_next;
1355         ogen = th->th_generation;
1356         th->th_generation = 0;
1357         atomic_thread_fence_rel();
1358         bcopy(tho, th, offsetof(struct timehands, th_generation));
1359         if (new_boottimebin != NULL)
1360                 th->th_boottime = *new_boottimebin;
1361
1362         /*
1363          * Capture a timecounter delta on the current timecounter and if
1364          * changing timecounters, a counter value from the new timecounter.
1365          * Update the offset fields accordingly.
1366          */
1367         delta = tc_delta(th);
1368         if (th->th_counter != timecounter)
1369                 ncount = timecounter->tc_get_timecount(timecounter);
1370         else
1371                 ncount = 0;
1372 #ifdef FFCLOCK
1373         ffclock_windup(delta);
1374 #endif
1375         th->th_offset_count += delta;
1376         th->th_offset_count &= th->th_counter->tc_counter_mask;
1377         while (delta > th->th_counter->tc_frequency) {
1378                 /* Eat complete unadjusted seconds. */
1379                 delta -= th->th_counter->tc_frequency;
1380                 th->th_offset.sec++;
1381         }
1382         if ((delta > th->th_counter->tc_frequency / 2) &&
1383             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1384                 /* The product th_scale * delta just barely overflows. */
1385                 th->th_offset.sec++;
1386         }
1387         bintime_addx(&th->th_offset, th->th_scale * delta);
1388
1389         /*
1390          * Hardware latching timecounters may not generate interrupts on
1391          * PPS events, so instead we poll them.  There is a finite risk that
1392          * the hardware might capture a count which is later than the one we
1393          * got above, and therefore possibly in the next NTP second which might
1394          * have a different rate than the current NTP second.  It doesn't
1395          * matter in practice.
1396          */
1397         if (tho->th_counter->tc_poll_pps)
1398                 tho->th_counter->tc_poll_pps(tho->th_counter);
1399
1400         /*
1401          * Deal with NTP second processing.  The for loop normally
1402          * iterates at most once, but in extreme situations it might
1403          * keep NTP sane if timeouts are not run for several seconds.
1404          * At boot, the time step can be large when the TOD hardware
1405          * has been read, so on really large steps, we call
1406          * ntp_update_second only twice.  We need to call it twice in
1407          * case we missed a leap second.
1408          */
1409         bt = th->th_offset;
1410         bintime_add(&bt, &th->th_boottime);
1411         i = bt.sec - tho->th_microtime.tv_sec;
1412         if (i > LARGE_STEP)
1413                 i = 2;
1414         for (; i > 0; i--) {
1415                 t = bt.sec;
1416                 ntp_update_second(&th->th_adjustment, &bt.sec);
1417                 if (bt.sec != t)
1418                         th->th_boottime.sec += bt.sec - t;
1419         }
1420         /* Update the UTC timestamps used by the get*() functions. */
1421         th->th_bintime = bt;
1422         bintime2timeval(&bt, &th->th_microtime);
1423         bintime2timespec(&bt, &th->th_nanotime);
1424
1425         /* Now is a good time to change timecounters. */
1426         if (th->th_counter != timecounter) {
1427 #ifndef __arm__
1428                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1429                         cpu_disable_c2_sleep++;
1430                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1431                         cpu_disable_c2_sleep--;
1432 #endif
1433                 th->th_counter = timecounter;
1434                 th->th_offset_count = ncount;
1435                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1436                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1437 #ifdef FFCLOCK
1438                 ffclock_change_tc(th);
1439 #endif
1440         }
1441
1442         /*-
1443          * Recalculate the scaling factor.  We want the number of 1/2^64
1444          * fractions of a second per period of the hardware counter, taking
1445          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1446          * processing provides us with.
1447          *
1448          * The th_adjustment is nanoseconds per second with 32 bit binary
1449          * fraction and we want 64 bit binary fraction of second:
1450          *
1451          *       x = a * 2^32 / 10^9 = a * 4.294967296
1452          *
1453          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1454          * we can only multiply by about 850 without overflowing, that
1455          * leaves no suitably precise fractions for multiply before divide.
1456          *
1457          * Divide before multiply with a fraction of 2199/512 results in a
1458          * systematic undercompensation of 10PPM of th_adjustment.  On a
1459          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1460          *
1461          * We happily sacrifice the lowest of the 64 bits of our result
1462          * to the goddess of code clarity.
1463          *
1464          */
1465         scale = (uint64_t)1 << 63;
1466         scale += (th->th_adjustment / 1024) * 2199;
1467         scale /= th->th_counter->tc_frequency;
1468         th->th_scale = scale * 2;
1469
1470         /*
1471          * Now that the struct timehands is again consistent, set the new
1472          * generation number, making sure to not make it zero.
1473          */
1474         if (++ogen == 0)
1475                 ogen = 1;
1476         atomic_store_rel_int(&th->th_generation, ogen);
1477
1478         /* Go live with the new struct timehands. */
1479 #ifdef FFCLOCK
1480         switch (sysclock_active) {
1481         case SYSCLOCK_FBCK:
1482 #endif
1483                 time_second = th->th_microtime.tv_sec;
1484                 time_uptime = th->th_offset.sec;
1485 #ifdef FFCLOCK
1486                 break;
1487         case SYSCLOCK_FFWD:
1488                 time_second = fftimehands->tick_time_lerp.sec;
1489                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1490                 break;
1491         }
1492 #endif
1493
1494         timehands = th;
1495         timekeep_push_vdso();
1496 }
1497
1498 /* Report or change the active timecounter hardware. */
1499 static int
1500 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1501 {
1502         char newname[32];
1503         struct timecounter *newtc, *tc;
1504         int error;
1505
1506         tc = timecounter;
1507         strlcpy(newname, tc->tc_name, sizeof(newname));
1508
1509         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1510         if (error != 0 || req->newptr == NULL)
1511                 return (error);
1512         /* Record that the tc in use now was specifically chosen. */
1513         tc_chosen = 1;
1514         if (strcmp(newname, tc->tc_name) == 0)
1515                 return (0);
1516         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1517                 if (strcmp(newname, newtc->tc_name) != 0)
1518                         continue;
1519
1520                 /* Warm up new timecounter. */
1521                 (void)newtc->tc_get_timecount(newtc);
1522                 (void)newtc->tc_get_timecount(newtc);
1523
1524                 timecounter = newtc;
1525
1526                 /*
1527                  * The vdso timehands update is deferred until the next
1528                  * 'tc_windup()'.
1529                  *
1530                  * This is prudent given that 'timekeep_push_vdso()' does not
1531                  * use any locking and that it can be called in hard interrupt
1532                  * context via 'tc_windup()'.
1533                  */
1534                 return (0);
1535         }
1536         return (EINVAL);
1537 }
1538
1539 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1540     0, 0, sysctl_kern_timecounter_hardware, "A",
1541     "Timecounter hardware selected");
1542
1543
1544 /* Report the available timecounter hardware. */
1545 static int
1546 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1547 {
1548         struct sbuf sb;
1549         struct timecounter *tc;
1550         int error;
1551
1552         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1553         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1554                 if (tc != timecounters)
1555                         sbuf_putc(&sb, ' ');
1556                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1557         }
1558         error = sbuf_finish(&sb);
1559         sbuf_delete(&sb);
1560         return (error);
1561 }
1562
1563 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1564     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1565
1566 /*
1567  * RFC 2783 PPS-API implementation.
1568  */
1569
1570 /*
1571  *  Return true if the driver is aware of the abi version extensions in the
1572  *  pps_state structure, and it supports at least the given abi version number.
1573  */
1574 static inline int
1575 abi_aware(struct pps_state *pps, int vers)
1576 {
1577
1578         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1579 }
1580
1581 static int
1582 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1583 {
1584         int err, timo;
1585         pps_seq_t aseq, cseq;
1586         struct timeval tv;
1587
1588         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1589                 return (EINVAL);
1590
1591         /*
1592          * If no timeout is requested, immediately return whatever values were
1593          * most recently captured.  If timeout seconds is -1, that's a request
1594          * to block without a timeout.  WITNESS won't let us sleep forever
1595          * without a lock (we really don't need a lock), so just repeatedly
1596          * sleep a long time.
1597          */
1598         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1599                 if (fapi->timeout.tv_sec == -1)
1600                         timo = 0x7fffffff;
1601                 else {
1602                         tv.tv_sec = fapi->timeout.tv_sec;
1603                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1604                         timo = tvtohz(&tv);
1605                 }
1606                 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1607                 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1608                 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1609                     cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1610                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1611                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1612                                         err = msleep_spin(pps, pps->driver_mtx,
1613                                             "ppsfch", timo);
1614                                 } else {
1615                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1616                                             "ppsfch", timo);
1617                                 }
1618                         } else {
1619                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1620                         }
1621                         if (err == EWOULDBLOCK) {
1622                                 if (fapi->timeout.tv_sec == -1) {
1623                                         continue;
1624                                 } else {
1625                                         return (ETIMEDOUT);
1626                                 }
1627                         } else if (err != 0) {
1628                                 return (err);
1629                         }
1630                 }
1631         }
1632
1633         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1634         fapi->pps_info_buf = pps->ppsinfo;
1635
1636         return (0);
1637 }
1638
1639 int
1640 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1641 {
1642         pps_params_t *app;
1643         struct pps_fetch_args *fapi;
1644 #ifdef FFCLOCK
1645         struct pps_fetch_ffc_args *fapi_ffc;
1646 #endif
1647 #ifdef PPS_SYNC
1648         struct pps_kcbind_args *kapi;
1649 #endif
1650
1651         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1652         switch (cmd) {
1653         case PPS_IOC_CREATE:
1654                 return (0);
1655         case PPS_IOC_DESTROY:
1656                 return (0);
1657         case PPS_IOC_SETPARAMS:
1658                 app = (pps_params_t *)data;
1659                 if (app->mode & ~pps->ppscap)
1660                         return (EINVAL);
1661 #ifdef FFCLOCK
1662                 /* Ensure only a single clock is selected for ffc timestamp. */
1663                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1664                         return (EINVAL);
1665 #endif
1666                 pps->ppsparam = *app;
1667                 return (0);
1668         case PPS_IOC_GETPARAMS:
1669                 app = (pps_params_t *)data;
1670                 *app = pps->ppsparam;
1671                 app->api_version = PPS_API_VERS_1;
1672                 return (0);
1673         case PPS_IOC_GETCAP:
1674                 *(int*)data = pps->ppscap;
1675                 return (0);
1676         case PPS_IOC_FETCH:
1677                 fapi = (struct pps_fetch_args *)data;
1678                 return (pps_fetch(fapi, pps));
1679 #ifdef FFCLOCK
1680         case PPS_IOC_FETCH_FFCOUNTER:
1681                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1682                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1683                     PPS_TSFMT_TSPEC)
1684                         return (EINVAL);
1685                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1686                         return (EOPNOTSUPP);
1687                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1688                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1689                 /* Overwrite timestamps if feedback clock selected. */
1690                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1691                 case PPS_TSCLK_FBCK:
1692                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1693                             pps->ppsinfo.assert_timestamp;
1694                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1695                             pps->ppsinfo.clear_timestamp;
1696                         break;
1697                 case PPS_TSCLK_FFWD:
1698                         break;
1699                 default:
1700                         break;
1701                 }
1702                 return (0);
1703 #endif /* FFCLOCK */
1704         case PPS_IOC_KCBIND:
1705 #ifdef PPS_SYNC
1706                 kapi = (struct pps_kcbind_args *)data;
1707                 /* XXX Only root should be able to do this */
1708                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1709                         return (EINVAL);
1710                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1711                         return (EINVAL);
1712                 if (kapi->edge & ~pps->ppscap)
1713                         return (EINVAL);
1714                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1715                     (pps->kcmode & KCMODE_ABIFLAG);
1716                 return (0);
1717 #else
1718                 return (EOPNOTSUPP);
1719 #endif
1720         default:
1721                 return (ENOIOCTL);
1722         }
1723 }
1724
1725 void
1726 pps_init(struct pps_state *pps)
1727 {
1728         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1729         if (pps->ppscap & PPS_CAPTUREASSERT)
1730                 pps->ppscap |= PPS_OFFSETASSERT;
1731         if (pps->ppscap & PPS_CAPTURECLEAR)
1732                 pps->ppscap |= PPS_OFFSETCLEAR;
1733 #ifdef FFCLOCK
1734         pps->ppscap |= PPS_TSCLK_MASK;
1735 #endif
1736         pps->kcmode &= ~KCMODE_ABIFLAG;
1737 }
1738
1739 void
1740 pps_init_abi(struct pps_state *pps)
1741 {
1742
1743         pps_init(pps);
1744         if (pps->driver_abi > 0) {
1745                 pps->kcmode |= KCMODE_ABIFLAG;
1746                 pps->kernel_abi = PPS_ABI_VERSION;
1747         }
1748 }
1749
1750 void
1751 pps_capture(struct pps_state *pps)
1752 {
1753         struct timehands *th;
1754
1755         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1756         th = timehands;
1757         pps->capgen = atomic_load_acq_int(&th->th_generation);
1758         pps->capth = th;
1759 #ifdef FFCLOCK
1760         pps->capffth = fftimehands;
1761 #endif
1762         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1763         atomic_thread_fence_acq();
1764         if (pps->capgen != th->th_generation)
1765                 pps->capgen = 0;
1766 }
1767
1768 void
1769 pps_event(struct pps_state *pps, int event)
1770 {
1771         struct bintime bt;
1772         struct timespec ts, *tsp, *osp;
1773         u_int tcount, *pcount;
1774         int foff;
1775         pps_seq_t *pseq;
1776 #ifdef FFCLOCK
1777         struct timespec *tsp_ffc;
1778         pps_seq_t *pseq_ffc;
1779         ffcounter *ffcount;
1780 #endif
1781 #ifdef PPS_SYNC
1782         int fhard;
1783 #endif
1784
1785         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1786         /* Nothing to do if not currently set to capture this event type. */
1787         if ((event & pps->ppsparam.mode) == 0)
1788                 return;
1789         /* If the timecounter was wound up underneath us, bail out. */
1790         if (pps->capgen == 0 || pps->capgen !=
1791             atomic_load_acq_int(&pps->capth->th_generation))
1792                 return;
1793
1794         /* Things would be easier with arrays. */
1795         if (event == PPS_CAPTUREASSERT) {
1796                 tsp = &pps->ppsinfo.assert_timestamp;
1797                 osp = &pps->ppsparam.assert_offset;
1798                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1799 #ifdef PPS_SYNC
1800                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1801 #endif
1802                 pcount = &pps->ppscount[0];
1803                 pseq = &pps->ppsinfo.assert_sequence;
1804 #ifdef FFCLOCK
1805                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1806                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1807                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1808 #endif
1809         } else {
1810                 tsp = &pps->ppsinfo.clear_timestamp;
1811                 osp = &pps->ppsparam.clear_offset;
1812                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1813 #ifdef PPS_SYNC
1814                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1815 #endif
1816                 pcount = &pps->ppscount[1];
1817                 pseq = &pps->ppsinfo.clear_sequence;
1818 #ifdef FFCLOCK
1819                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1820                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1821                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1822 #endif
1823         }
1824
1825         /*
1826          * If the timecounter changed, we cannot compare the count values, so
1827          * we have to drop the rest of the PPS-stuff until the next event.
1828          */
1829         if (pps->ppstc != pps->capth->th_counter) {
1830                 pps->ppstc = pps->capth->th_counter;
1831                 *pcount = pps->capcount;
1832                 pps->ppscount[2] = pps->capcount;
1833                 return;
1834         }
1835
1836         /* Convert the count to a timespec. */
1837         tcount = pps->capcount - pps->capth->th_offset_count;
1838         tcount &= pps->capth->th_counter->tc_counter_mask;
1839         bt = pps->capth->th_bintime;
1840         bintime_addx(&bt, pps->capth->th_scale * tcount);
1841         bintime2timespec(&bt, &ts);
1842
1843         /* If the timecounter was wound up underneath us, bail out. */
1844         atomic_thread_fence_acq();
1845         if (pps->capgen != pps->capth->th_generation)
1846                 return;
1847
1848         *pcount = pps->capcount;
1849         (*pseq)++;
1850         *tsp = ts;
1851
1852         if (foff) {
1853                 timespecadd(tsp, osp);
1854                 if (tsp->tv_nsec < 0) {
1855                         tsp->tv_nsec += 1000000000;
1856                         tsp->tv_sec -= 1;
1857                 }
1858         }
1859
1860 #ifdef FFCLOCK
1861         *ffcount = pps->capffth->tick_ffcount + tcount;
1862         bt = pps->capffth->tick_time;
1863         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1864         bintime_add(&bt, &pps->capffth->tick_time);
1865         bintime2timespec(&bt, &ts);
1866         (*pseq_ffc)++;
1867         *tsp_ffc = ts;
1868 #endif
1869
1870 #ifdef PPS_SYNC
1871         if (fhard) {
1872                 uint64_t scale;
1873
1874                 /*
1875                  * Feed the NTP PLL/FLL.
1876                  * The FLL wants to know how many (hardware) nanoseconds
1877                  * elapsed since the previous event.
1878                  */
1879                 tcount = pps->capcount - pps->ppscount[2];
1880                 pps->ppscount[2] = pps->capcount;
1881                 tcount &= pps->capth->th_counter->tc_counter_mask;
1882                 scale = (uint64_t)1 << 63;
1883                 scale /= pps->capth->th_counter->tc_frequency;
1884                 scale *= 2;
1885                 bt.sec = 0;
1886                 bt.frac = 0;
1887                 bintime_addx(&bt, scale * tcount);
1888                 bintime2timespec(&bt, &ts);
1889                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1890         }
1891 #endif
1892
1893         /* Wakeup anyone sleeping in pps_fetch().  */
1894         wakeup(pps);
1895 }
1896
1897 /*
1898  * Timecounters need to be updated every so often to prevent the hardware
1899  * counter from overflowing.  Updating also recalculates the cached values
1900  * used by the get*() family of functions, so their precision depends on
1901  * the update frequency.
1902  */
1903
1904 static int tc_tick;
1905 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1906     "Approximate number of hardclock ticks in a millisecond");
1907
1908 void
1909 tc_ticktock(int cnt)
1910 {
1911         static int count;
1912
1913         if (mtx_trylock_spin(&tc_setclock_mtx)) {
1914                 count += cnt;
1915                 if (count >= tc_tick) {
1916                         count = 0;
1917                         tc_windup(NULL);
1918                 }
1919                 mtx_unlock_spin(&tc_setclock_mtx);
1920         }
1921 }
1922
1923 static void __inline
1924 tc_adjprecision(void)
1925 {
1926         int t;
1927
1928         if (tc_timepercentage > 0) {
1929                 t = (99 + tc_timepercentage) / tc_timepercentage;
1930                 tc_precexp = fls(t + (t >> 1)) - 1;
1931                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1932                 FREQ2BT(hz, &bt_tickthreshold);
1933                 bintime_shift(&bt_timethreshold, tc_precexp);
1934                 bintime_shift(&bt_tickthreshold, tc_precexp);
1935         } else {
1936                 tc_precexp = 31;
1937                 bt_timethreshold.sec = INT_MAX;
1938                 bt_timethreshold.frac = ~(uint64_t)0;
1939                 bt_tickthreshold = bt_timethreshold;
1940         }
1941         sbt_timethreshold = bttosbt(bt_timethreshold);
1942         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1943 }
1944
1945 static int
1946 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1947 {
1948         int error, val;
1949
1950         val = tc_timepercentage;
1951         error = sysctl_handle_int(oidp, &val, 0, req);
1952         if (error != 0 || req->newptr == NULL)
1953                 return (error);
1954         tc_timepercentage = val;
1955         if (cold)
1956                 goto done;
1957         tc_adjprecision();
1958 done:
1959         return (0);
1960 }
1961
1962 static void
1963 inittimecounter(void *dummy)
1964 {
1965         u_int p;
1966         int tick_rate;
1967
1968         /*
1969          * Set the initial timeout to
1970          * max(1, <approx. number of hardclock ticks in a millisecond>).
1971          * People should probably not use the sysctl to set the timeout
1972          * to smaller than its initial value, since that value is the
1973          * smallest reasonable one.  If they want better timestamps they
1974          * should use the non-"get"* functions.
1975          */
1976         if (hz > 1000)
1977                 tc_tick = (hz + 500) / 1000;
1978         else
1979                 tc_tick = 1;
1980         tc_adjprecision();
1981         FREQ2BT(hz, &tick_bt);
1982         tick_sbt = bttosbt(tick_bt);
1983         tick_rate = hz / tc_tick;
1984         FREQ2BT(tick_rate, &tc_tick_bt);
1985         tc_tick_sbt = bttosbt(tc_tick_bt);
1986         p = (tc_tick * 1000000) / hz;
1987         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1988
1989 #ifdef FFCLOCK
1990         ffclock_init();
1991 #endif
1992         /* warm up new timecounter (again) and get rolling. */
1993         (void)timecounter->tc_get_timecount(timecounter);
1994         (void)timecounter->tc_get_timecount(timecounter);
1995         mtx_lock_spin(&tc_setclock_mtx);
1996         tc_windup(NULL);
1997         mtx_unlock_spin(&tc_setclock_mtx);
1998 }
1999
2000 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
2001
2002 /* Cpu tick handling -------------------------------------------------*/
2003
2004 static int cpu_tick_variable;
2005 static uint64_t cpu_tick_frequency;
2006
2007 static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base);
2008 static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last);
2009
2010 static uint64_t
2011 tc_cpu_ticks(void)
2012 {
2013         struct timecounter *tc;
2014         uint64_t res, *base;
2015         unsigned u, *last;
2016
2017         critical_enter();
2018         base = DPCPU_PTR(tc_cpu_ticks_base);
2019         last = DPCPU_PTR(tc_cpu_ticks_last);
2020         tc = timehands->th_counter;
2021         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2022         if (u < *last)
2023                 *base += (uint64_t)tc->tc_counter_mask + 1;
2024         *last = u;
2025         res = u + *base;
2026         critical_exit();
2027         return (res);
2028 }
2029
2030 void
2031 cpu_tick_calibration(void)
2032 {
2033         static time_t last_calib;
2034
2035         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2036                 cpu_tick_calibrate(0);
2037                 last_calib = time_uptime;
2038         }
2039 }
2040
2041 /*
2042  * This function gets called every 16 seconds on only one designated
2043  * CPU in the system from hardclock() via cpu_tick_calibration()().
2044  *
2045  * Whenever the real time clock is stepped we get called with reset=1
2046  * to make sure we handle suspend/resume and similar events correctly.
2047  */
2048
2049 static void
2050 cpu_tick_calibrate(int reset)
2051 {
2052         static uint64_t c_last;
2053         uint64_t c_this, c_delta;
2054         static struct bintime  t_last;
2055         struct bintime t_this, t_delta;
2056         uint32_t divi;
2057
2058         if (reset) {
2059                 /* The clock was stepped, abort & reset */
2060                 t_last.sec = 0;
2061                 return;
2062         }
2063
2064         /* we don't calibrate fixed rate cputicks */
2065         if (!cpu_tick_variable)
2066                 return;
2067
2068         getbinuptime(&t_this);
2069         c_this = cpu_ticks();
2070         if (t_last.sec != 0) {
2071                 c_delta = c_this - c_last;
2072                 t_delta = t_this;
2073                 bintime_sub(&t_delta, &t_last);
2074                 /*
2075                  * Headroom:
2076                  *      2^(64-20) / 16[s] =
2077                  *      2^(44) / 16[s] =
2078                  *      17.592.186.044.416 / 16 =
2079                  *      1.099.511.627.776 [Hz]
2080                  */
2081                 divi = t_delta.sec << 20;
2082                 divi |= t_delta.frac >> (64 - 20);
2083                 c_delta <<= 20;
2084                 c_delta /= divi;
2085                 if (c_delta > cpu_tick_frequency) {
2086                         if (0 && bootverbose)
2087                                 printf("cpu_tick increased to %ju Hz\n",
2088                                     c_delta);
2089                         cpu_tick_frequency = c_delta;
2090                 }
2091         }
2092         c_last = c_this;
2093         t_last = t_this;
2094 }
2095
2096 void
2097 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2098 {
2099
2100         if (func == NULL) {
2101                 cpu_ticks = tc_cpu_ticks;
2102         } else {
2103                 cpu_tick_frequency = freq;
2104                 cpu_tick_variable = var;
2105                 cpu_ticks = func;
2106         }
2107 }
2108
2109 uint64_t
2110 cpu_tickrate(void)
2111 {
2112
2113         if (cpu_ticks == tc_cpu_ticks) 
2114                 return (tc_getfrequency());
2115         return (cpu_tick_frequency);
2116 }
2117
2118 /*
2119  * We need to be slightly careful converting cputicks to microseconds.
2120  * There is plenty of margin in 64 bits of microseconds (half a million
2121  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2122  * before divide conversion (to retain precision) we find that the
2123  * margin shrinks to 1.5 hours (one millionth of 146y).
2124  * With a three prong approach we never lose significant bits, no
2125  * matter what the cputick rate and length of timeinterval is.
2126  */
2127
2128 uint64_t
2129 cputick2usec(uint64_t tick)
2130 {
2131
2132         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2133                 return (tick / (cpu_tickrate() / 1000000LL));
2134         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2135                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2136         else
2137                 return ((tick * 1000000LL) / cpu_tickrate());
2138 }
2139
2140 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2141
2142 static int vdso_th_enable = 1;
2143 static int
2144 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2145 {
2146         int old_vdso_th_enable, error;
2147
2148         old_vdso_th_enable = vdso_th_enable;
2149         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2150         if (error != 0)
2151                 return (error);
2152         vdso_th_enable = old_vdso_th_enable;
2153         return (0);
2154 }
2155 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2156     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2157     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2158
2159 uint32_t
2160 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2161 {
2162         struct timehands *th;
2163         uint32_t enabled;
2164
2165         th = timehands;
2166         vdso_th->th_scale = th->th_scale;
2167         vdso_th->th_offset_count = th->th_offset_count;
2168         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2169         vdso_th->th_offset = th->th_offset;
2170         vdso_th->th_boottime = th->th_boottime;
2171         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2172                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2173                     th->th_counter);
2174         } else
2175                 enabled = 0;
2176         if (!vdso_th_enable)
2177                 enabled = 0;
2178         return (enabled);
2179 }
2180
2181 #ifdef COMPAT_FREEBSD32
2182 uint32_t
2183 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2184 {
2185         struct timehands *th;
2186         uint32_t enabled;
2187
2188         th = timehands;
2189         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2190         vdso_th32->th_offset_count = th->th_offset_count;
2191         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2192         vdso_th32->th_offset.sec = th->th_offset.sec;
2193         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2194         vdso_th32->th_boottime.sec = th->th_boottime.sec;
2195         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2196         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2197                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2198                     th->th_counter);
2199         } else
2200                 enabled = 0;
2201         if (!vdso_th_enable)
2202                 enabled = 0;
2203         return (enabled);
2204 }
2205 #endif