]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
MFC r304316:
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  */
18
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21
22 #include "opt_compat.h"
23 #include "opt_ntp.h"
24 #include "opt_ffclock.h"
25
26 #include <sys/param.h>
27 #include <sys/kernel.h>
28 #include <sys/limits.h>
29 #include <sys/lock.h>
30 #include <sys/mutex.h>
31 #include <sys/sbuf.h>
32 #include <sys/sysctl.h>
33 #include <sys/syslog.h>
34 #include <sys/systm.h>
35 #include <sys/timeffc.h>
36 #include <sys/timepps.h>
37 #include <sys/timetc.h>
38 #include <sys/timex.h>
39 #include <sys/vdso.h>
40
41 /*
42  * A large step happens on boot.  This constant detects such steps.
43  * It is relatively small so that ntp_update_second gets called enough
44  * in the typical 'missed a couple of seconds' case, but doesn't loop
45  * forever when the time step is large.
46  */
47 #define LARGE_STEP      200
48
49 /*
50  * Implement a dummy timecounter which we can use until we get a real one
51  * in the air.  This allows the console and other early stuff to use
52  * time services.
53  */
54
55 static u_int
56 dummy_get_timecount(struct timecounter *tc)
57 {
58         static u_int now;
59
60         return (++now);
61 }
62
63 static struct timecounter dummy_timecounter = {
64         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
65 };
66
67 struct timehands {
68         /* These fields must be initialized by the driver. */
69         struct timecounter      *th_counter;
70         int64_t                 th_adjustment;
71         uint64_t                th_scale;
72         u_int                   th_offset_count;
73         struct bintime          th_offset;
74         struct bintime          th_bintime;
75         struct timeval          th_microtime;
76         struct timespec         th_nanotime;
77         struct bintime          th_boottime;
78         /* Fields not to be copied in tc_windup start with th_generation. */
79         u_int                   th_generation;
80         struct timehands        *th_next;
81 };
82
83 static struct timehands th0;
84 static struct timehands th1 = {
85         .th_next = &th0
86 };
87 static struct timehands th0 = {
88         .th_counter = &dummy_timecounter,
89         .th_scale = (uint64_t)-1 / 1000000,
90         .th_offset = { .sec = 1 },
91         .th_generation = 1,
92         .th_next = &th1
93 };
94
95 static struct timehands *volatile timehands = &th0;
96 struct timecounter *timecounter = &dummy_timecounter;
97 static struct timecounter *timecounters = &dummy_timecounter;
98
99 int tc_min_ticktock_freq = 1;
100
101 volatile time_t time_second = 1;
102 volatile time_t time_uptime = 1;
103
104 struct bintime boottimebin;
105 struct timeval boottime;
106 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
107 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
108     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
109
110 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
111 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
112
113 static int timestepwarnings;
114 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
115     &timestepwarnings, 0, "Log time steps");
116
117 struct bintime bt_timethreshold;
118 struct bintime bt_tickthreshold;
119 sbintime_t sbt_timethreshold;
120 sbintime_t sbt_tickthreshold;
121 struct bintime tc_tick_bt;
122 sbintime_t tc_tick_sbt;
123 int tc_precexp;
124 int tc_timepercentage = TC_DEFAULTPERC;
125 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
126 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
127     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
128     sysctl_kern_timecounter_adjprecision, "I",
129     "Allowed time interval deviation in percents");
130
131 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
132
133 static void tc_windup(struct bintime *new_boottimebin);
134 static void cpu_tick_calibrate(int);
135
136 void dtrace_getnanotime(struct timespec *tsp);
137
138 static int
139 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
140 {
141         struct timeval boottime_x;
142
143         getboottime(&boottime_x);
144
145 #ifndef __mips__
146 #ifdef SCTL_MASK32
147         int tv[2];
148
149         if (req->flags & SCTL_MASK32) {
150                 tv[0] = boottime_x.tv_sec;
151                 tv[1] = boottime_x.tv_usec;
152                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
153         }
154 #endif
155 #endif
156         return (SYSCTL_OUT(req, &boottime_x, sizeof(boottime_x)));
157 }
158
159 static int
160 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
161 {
162         u_int ncount;
163         struct timecounter *tc = arg1;
164
165         ncount = tc->tc_get_timecount(tc);
166         return (sysctl_handle_int(oidp, &ncount, 0, req));
167 }
168
169 static int
170 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
171 {
172         uint64_t freq;
173         struct timecounter *tc = arg1;
174
175         freq = tc->tc_frequency;
176         return (sysctl_handle_64(oidp, &freq, 0, req));
177 }
178
179 /*
180  * Return the difference between the timehands' counter value now and what
181  * was when we copied it to the timehands' offset_count.
182  */
183 static __inline u_int
184 tc_delta(struct timehands *th)
185 {
186         struct timecounter *tc;
187
188         tc = th->th_counter;
189         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
190             tc->tc_counter_mask);
191 }
192
193 /*
194  * Functions for reading the time.  We have to loop until we are sure that
195  * the timehands that we operated on was not updated under our feet.  See
196  * the comment in <sys/time.h> for a description of these 12 functions.
197  */
198
199 #ifdef FFCLOCK
200 void
201 fbclock_binuptime(struct bintime *bt)
202 {
203         struct timehands *th;
204         unsigned int gen;
205
206         do {
207                 th = timehands;
208                 gen = atomic_load_acq_int(&th->th_generation);
209                 *bt = th->th_offset;
210                 bintime_addx(bt, th->th_scale * tc_delta(th));
211                 atomic_thread_fence_acq();
212         } while (gen == 0 || gen != th->th_generation);
213 }
214
215 void
216 fbclock_nanouptime(struct timespec *tsp)
217 {
218         struct bintime bt;
219
220         fbclock_binuptime(&bt);
221         bintime2timespec(&bt, tsp);
222 }
223
224 void
225 fbclock_microuptime(struct timeval *tvp)
226 {
227         struct bintime bt;
228
229         fbclock_binuptime(&bt);
230         bintime2timeval(&bt, tvp);
231 }
232
233 void
234 fbclock_bintime(struct bintime *bt)
235 {
236         struct timehands *th;
237         unsigned int gen;
238
239         do {
240                 th = timehands;
241                 gen = atomic_load_acq_int(&th->th_generation);
242                 *bt = th->th_bintime;
243                 bintime_addx(bt, th->th_scale * tc_delta(th));
244                 atomic_thread_fence_acq();
245         } while (gen == 0 || gen != th->th_generation);
246 }
247
248 void
249 fbclock_nanotime(struct timespec *tsp)
250 {
251         struct bintime bt;
252
253         fbclock_bintime(&bt);
254         bintime2timespec(&bt, tsp);
255 }
256
257 void
258 fbclock_microtime(struct timeval *tvp)
259 {
260         struct bintime bt;
261
262         fbclock_bintime(&bt);
263         bintime2timeval(&bt, tvp);
264 }
265
266 void
267 fbclock_getbinuptime(struct bintime *bt)
268 {
269         struct timehands *th;
270         unsigned int gen;
271
272         do {
273                 th = timehands;
274                 gen = atomic_load_acq_int(&th->th_generation);
275                 *bt = th->th_offset;
276                 atomic_thread_fence_acq();
277         } while (gen == 0 || gen != th->th_generation);
278 }
279
280 void
281 fbclock_getnanouptime(struct timespec *tsp)
282 {
283         struct timehands *th;
284         unsigned int gen;
285
286         do {
287                 th = timehands;
288                 gen = atomic_load_acq_int(&th->th_generation);
289                 bintime2timespec(&th->th_offset, tsp);
290                 atomic_thread_fence_acq();
291         } while (gen == 0 || gen != th->th_generation);
292 }
293
294 void
295 fbclock_getmicrouptime(struct timeval *tvp)
296 {
297         struct timehands *th;
298         unsigned int gen;
299
300         do {
301                 th = timehands;
302                 gen = atomic_load_acq_int(&th->th_generation);
303                 bintime2timeval(&th->th_offset, tvp);
304                 atomic_thread_fence_acq();
305         } while (gen == 0 || gen != th->th_generation);
306 }
307
308 void
309 fbclock_getbintime(struct bintime *bt)
310 {
311         struct timehands *th;
312         unsigned int gen;
313
314         do {
315                 th = timehands;
316                 gen = atomic_load_acq_int(&th->th_generation);
317                 *bt = th->th_bintime;
318                 atomic_thread_fence_acq();
319         } while (gen == 0 || gen != th->th_generation);
320 }
321
322 void
323 fbclock_getnanotime(struct timespec *tsp)
324 {
325         struct timehands *th;
326         unsigned int gen;
327
328         do {
329                 th = timehands;
330                 gen = atomic_load_acq_int(&th->th_generation);
331                 *tsp = th->th_nanotime;
332                 atomic_thread_fence_acq();
333         } while (gen == 0 || gen != th->th_generation);
334 }
335
336 void
337 fbclock_getmicrotime(struct timeval *tvp)
338 {
339         struct timehands *th;
340         unsigned int gen;
341
342         do {
343                 th = timehands;
344                 gen = atomic_load_acq_int(&th->th_generation);
345                 *tvp = th->th_microtime;
346                 atomic_thread_fence_acq();
347         } while (gen == 0 || gen != th->th_generation);
348 }
349 #else /* !FFCLOCK */
350 void
351 binuptime(struct bintime *bt)
352 {
353         struct timehands *th;
354         u_int gen;
355
356         do {
357                 th = timehands;
358                 gen = atomic_load_acq_int(&th->th_generation);
359                 *bt = th->th_offset;
360                 bintime_addx(bt, th->th_scale * tc_delta(th));
361                 atomic_thread_fence_acq();
362         } while (gen == 0 || gen != th->th_generation);
363 }
364
365 void
366 nanouptime(struct timespec *tsp)
367 {
368         struct bintime bt;
369
370         binuptime(&bt);
371         bintime2timespec(&bt, tsp);
372 }
373
374 void
375 microuptime(struct timeval *tvp)
376 {
377         struct bintime bt;
378
379         binuptime(&bt);
380         bintime2timeval(&bt, tvp);
381 }
382
383 void
384 bintime(struct bintime *bt)
385 {
386         struct timehands *th;
387         u_int gen;
388
389         do {
390                 th = timehands;
391                 gen = atomic_load_acq_int(&th->th_generation);
392                 *bt = th->th_bintime;
393                 bintime_addx(bt, th->th_scale * tc_delta(th));
394                 atomic_thread_fence_acq();
395         } while (gen == 0 || gen != th->th_generation);
396 }
397
398 void
399 nanotime(struct timespec *tsp)
400 {
401         struct bintime bt;
402
403         bintime(&bt);
404         bintime2timespec(&bt, tsp);
405 }
406
407 void
408 microtime(struct timeval *tvp)
409 {
410         struct bintime bt;
411
412         bintime(&bt);
413         bintime2timeval(&bt, tvp);
414 }
415
416 void
417 getbinuptime(struct bintime *bt)
418 {
419         struct timehands *th;
420         u_int gen;
421
422         do {
423                 th = timehands;
424                 gen = atomic_load_acq_int(&th->th_generation);
425                 *bt = th->th_offset;
426                 atomic_thread_fence_acq();
427         } while (gen == 0 || gen != th->th_generation);
428 }
429
430 void
431 getnanouptime(struct timespec *tsp)
432 {
433         struct timehands *th;
434         u_int gen;
435
436         do {
437                 th = timehands;
438                 gen = atomic_load_acq_int(&th->th_generation);
439                 bintime2timespec(&th->th_offset, tsp);
440                 atomic_thread_fence_acq();
441         } while (gen == 0 || gen != th->th_generation);
442 }
443
444 void
445 getmicrouptime(struct timeval *tvp)
446 {
447         struct timehands *th;
448         u_int gen;
449
450         do {
451                 th = timehands;
452                 gen = atomic_load_acq_int(&th->th_generation);
453                 bintime2timeval(&th->th_offset, tvp);
454                 atomic_thread_fence_acq();
455         } while (gen == 0 || gen != th->th_generation);
456 }
457
458 void
459 getbintime(struct bintime *bt)
460 {
461         struct timehands *th;
462         u_int gen;
463
464         do {
465                 th = timehands;
466                 gen = atomic_load_acq_int(&th->th_generation);
467                 *bt = th->th_bintime;
468                 atomic_thread_fence_acq();
469         } while (gen == 0 || gen != th->th_generation);
470 }
471
472 void
473 getnanotime(struct timespec *tsp)
474 {
475         struct timehands *th;
476         u_int gen;
477
478         do {
479                 th = timehands;
480                 gen = atomic_load_acq_int(&th->th_generation);
481                 *tsp = th->th_nanotime;
482                 atomic_thread_fence_acq();
483         } while (gen == 0 || gen != th->th_generation);
484 }
485
486 void
487 getmicrotime(struct timeval *tvp)
488 {
489         struct timehands *th;
490         u_int gen;
491
492         do {
493                 th = timehands;
494                 gen = atomic_load_acq_int(&th->th_generation);
495                 *tvp = th->th_microtime;
496                 atomic_thread_fence_acq();
497         } while (gen == 0 || gen != th->th_generation);
498 }
499 #endif /* FFCLOCK */
500
501 void
502 getboottime(struct timeval *boottime_x)
503 {
504         struct bintime boottimebin_x;
505
506         getboottimebin(&boottimebin_x);
507         bintime2timeval(&boottimebin_x, boottime_x);
508 }
509
510 void
511 getboottimebin(struct bintime *boottimebin_x)
512 {
513         struct timehands *th;
514         u_int gen;
515
516         do {
517                 th = timehands;
518                 gen = atomic_load_acq_int(&th->th_generation);
519                 *boottimebin_x = th->th_boottime;
520                 atomic_thread_fence_acq();
521         } while (gen == 0 || gen != th->th_generation);
522 }
523
524 #ifdef FFCLOCK
525 /*
526  * Support for feed-forward synchronization algorithms. This is heavily inspired
527  * by the timehands mechanism but kept independent from it. *_windup() functions
528  * have some connection to avoid accessing the timecounter hardware more than
529  * necessary.
530  */
531
532 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
533 struct ffclock_estimate ffclock_estimate;
534 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
535 uint32_t ffclock_status;                /* Feed-forward clock status. */
536 int8_t ffclock_updated;                 /* New estimates are available. */
537 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
538
539 struct fftimehands {
540         struct ffclock_estimate cest;
541         struct bintime          tick_time;
542         struct bintime          tick_time_lerp;
543         ffcounter               tick_ffcount;
544         uint64_t                period_lerp;
545         volatile uint8_t        gen;
546         struct fftimehands      *next;
547 };
548
549 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
550
551 static struct fftimehands ffth[10];
552 static struct fftimehands *volatile fftimehands = ffth;
553
554 static void
555 ffclock_init(void)
556 {
557         struct fftimehands *cur;
558         struct fftimehands *last;
559
560         memset(ffth, 0, sizeof(ffth));
561
562         last = ffth + NUM_ELEMENTS(ffth) - 1;
563         for (cur = ffth; cur < last; cur++)
564                 cur->next = cur + 1;
565         last->next = ffth;
566
567         ffclock_updated = 0;
568         ffclock_status = FFCLOCK_STA_UNSYNC;
569         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
570 }
571
572 /*
573  * Reset the feed-forward clock estimates. Called from inittodr() to get things
574  * kick started and uses the timecounter nominal frequency as a first period
575  * estimate. Note: this function may be called several time just after boot.
576  * Note: this is the only function that sets the value of boot time for the
577  * monotonic (i.e. uptime) version of the feed-forward clock.
578  */
579 void
580 ffclock_reset_clock(struct timespec *ts)
581 {
582         struct timecounter *tc;
583         struct ffclock_estimate cest;
584
585         tc = timehands->th_counter;
586         memset(&cest, 0, sizeof(struct ffclock_estimate));
587
588         timespec2bintime(ts, &ffclock_boottime);
589         timespec2bintime(ts, &(cest.update_time));
590         ffclock_read_counter(&cest.update_ffcount);
591         cest.leapsec_next = 0;
592         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
593         cest.errb_abs = 0;
594         cest.errb_rate = 0;
595         cest.status = FFCLOCK_STA_UNSYNC;
596         cest.leapsec_total = 0;
597         cest.leapsec = 0;
598
599         mtx_lock(&ffclock_mtx);
600         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
601         ffclock_updated = INT8_MAX;
602         mtx_unlock(&ffclock_mtx);
603
604         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
605             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
606             (unsigned long)ts->tv_nsec);
607 }
608
609 /*
610  * Sub-routine to convert a time interval measured in RAW counter units to time
611  * in seconds stored in bintime format.
612  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
613  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
614  * extra cycles.
615  */
616 static void
617 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
618 {
619         struct bintime bt2;
620         ffcounter delta, delta_max;
621
622         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
623         bintime_clear(bt);
624         do {
625                 if (ffdelta > delta_max)
626                         delta = delta_max;
627                 else
628                         delta = ffdelta;
629                 bt2.sec = 0;
630                 bt2.frac = period;
631                 bintime_mul(&bt2, (unsigned int)delta);
632                 bintime_add(bt, &bt2);
633                 ffdelta -= delta;
634         } while (ffdelta > 0);
635 }
636
637 /*
638  * Update the fftimehands.
639  * Push the tick ffcount and time(s) forward based on current clock estimate.
640  * The conversion from ffcounter to bintime relies on the difference clock
641  * principle, whose accuracy relies on computing small time intervals. If a new
642  * clock estimate has been passed by the synchronisation daemon, make it
643  * current, and compute the linear interpolation for monotonic time if needed.
644  */
645 static void
646 ffclock_windup(unsigned int delta)
647 {
648         struct ffclock_estimate *cest;
649         struct fftimehands *ffth;
650         struct bintime bt, gap_lerp;
651         ffcounter ffdelta;
652         uint64_t frac;
653         unsigned int polling;
654         uint8_t forward_jump, ogen;
655
656         /*
657          * Pick the next timehand, copy current ffclock estimates and move tick
658          * times and counter forward.
659          */
660         forward_jump = 0;
661         ffth = fftimehands->next;
662         ogen = ffth->gen;
663         ffth->gen = 0;
664         cest = &ffth->cest;
665         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
666         ffdelta = (ffcounter)delta;
667         ffth->period_lerp = fftimehands->period_lerp;
668
669         ffth->tick_time = fftimehands->tick_time;
670         ffclock_convert_delta(ffdelta, cest->period, &bt);
671         bintime_add(&ffth->tick_time, &bt);
672
673         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
674         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
675         bintime_add(&ffth->tick_time_lerp, &bt);
676
677         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
678
679         /*
680          * Assess the status of the clock, if the last update is too old, it is
681          * likely the synchronisation daemon is dead and the clock is free
682          * running.
683          */
684         if (ffclock_updated == 0) {
685                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
686                 ffclock_convert_delta(ffdelta, cest->period, &bt);
687                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
688                         ffclock_status |= FFCLOCK_STA_UNSYNC;
689         }
690
691         /*
692          * If available, grab updated clock estimates and make them current.
693          * Recompute time at this tick using the updated estimates. The clock
694          * estimates passed the feed-forward synchronisation daemon may result
695          * in time conversion that is not monotonically increasing (just after
696          * the update). time_lerp is a particular linear interpolation over the
697          * synchronisation algo polling period that ensures monotonicity for the
698          * clock ids requesting it.
699          */
700         if (ffclock_updated > 0) {
701                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
702                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
703                 ffth->tick_time = cest->update_time;
704                 ffclock_convert_delta(ffdelta, cest->period, &bt);
705                 bintime_add(&ffth->tick_time, &bt);
706
707                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
708                 if (ffclock_updated == INT8_MAX)
709                         ffth->tick_time_lerp = ffth->tick_time;
710
711                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
712                         forward_jump = 1;
713                 else
714                         forward_jump = 0;
715
716                 bintime_clear(&gap_lerp);
717                 if (forward_jump) {
718                         gap_lerp = ffth->tick_time;
719                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
720                 } else {
721                         gap_lerp = ffth->tick_time_lerp;
722                         bintime_sub(&gap_lerp, &ffth->tick_time);
723                 }
724
725                 /*
726                  * The reset from the RTC clock may be far from accurate, and
727                  * reducing the gap between real time and interpolated time
728                  * could take a very long time if the interpolated clock insists
729                  * on strict monotonicity. The clock is reset under very strict
730                  * conditions (kernel time is known to be wrong and
731                  * synchronization daemon has been restarted recently.
732                  * ffclock_boottime absorbs the jump to ensure boot time is
733                  * correct and uptime functions stay consistent.
734                  */
735                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
736                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
737                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
738                         if (forward_jump)
739                                 bintime_add(&ffclock_boottime, &gap_lerp);
740                         else
741                                 bintime_sub(&ffclock_boottime, &gap_lerp);
742                         ffth->tick_time_lerp = ffth->tick_time;
743                         bintime_clear(&gap_lerp);
744                 }
745
746                 ffclock_status = cest->status;
747                 ffth->period_lerp = cest->period;
748
749                 /*
750                  * Compute corrected period used for the linear interpolation of
751                  * time. The rate of linear interpolation is capped to 5000PPM
752                  * (5ms/s).
753                  */
754                 if (bintime_isset(&gap_lerp)) {
755                         ffdelta = cest->update_ffcount;
756                         ffdelta -= fftimehands->cest.update_ffcount;
757                         ffclock_convert_delta(ffdelta, cest->period, &bt);
758                         polling = bt.sec;
759                         bt.sec = 0;
760                         bt.frac = 5000000 * (uint64_t)18446744073LL;
761                         bintime_mul(&bt, polling);
762                         if (bintime_cmp(&gap_lerp, &bt, >))
763                                 gap_lerp = bt;
764
765                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
766                         frac = 0;
767                         if (gap_lerp.sec > 0) {
768                                 frac -= 1;
769                                 frac /= ffdelta / gap_lerp.sec;
770                         }
771                         frac += gap_lerp.frac / ffdelta;
772
773                         if (forward_jump)
774                                 ffth->period_lerp += frac;
775                         else
776                                 ffth->period_lerp -= frac;
777                 }
778
779                 ffclock_updated = 0;
780         }
781         if (++ogen == 0)
782                 ogen = 1;
783         ffth->gen = ogen;
784         fftimehands = ffth;
785 }
786
787 /*
788  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
789  * the old and new hardware counter cannot be read simultaneously. tc_windup()
790  * does read the two counters 'back to back', but a few cycles are effectively
791  * lost, and not accumulated in tick_ffcount. This is a fairly radical
792  * operation for a feed-forward synchronization daemon, and it is its job to not
793  * pushing irrelevant data to the kernel. Because there is no locking here,
794  * simply force to ignore pending or next update to give daemon a chance to
795  * realize the counter has changed.
796  */
797 static void
798 ffclock_change_tc(struct timehands *th)
799 {
800         struct fftimehands *ffth;
801         struct ffclock_estimate *cest;
802         struct timecounter *tc;
803         uint8_t ogen;
804
805         tc = th->th_counter;
806         ffth = fftimehands->next;
807         ogen = ffth->gen;
808         ffth->gen = 0;
809
810         cest = &ffth->cest;
811         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
812         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
813         cest->errb_abs = 0;
814         cest->errb_rate = 0;
815         cest->status |= FFCLOCK_STA_UNSYNC;
816
817         ffth->tick_ffcount = fftimehands->tick_ffcount;
818         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
819         ffth->tick_time = fftimehands->tick_time;
820         ffth->period_lerp = cest->period;
821
822         /* Do not lock but ignore next update from synchronization daemon. */
823         ffclock_updated--;
824
825         if (++ogen == 0)
826                 ogen = 1;
827         ffth->gen = ogen;
828         fftimehands = ffth;
829 }
830
831 /*
832  * Retrieve feed-forward counter and time of last kernel tick.
833  */
834 void
835 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
836 {
837         struct fftimehands *ffth;
838         uint8_t gen;
839
840         /*
841          * No locking but check generation has not changed. Also need to make
842          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
843          */
844         do {
845                 ffth = fftimehands;
846                 gen = ffth->gen;
847                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
848                         *bt = ffth->tick_time_lerp;
849                 else
850                         *bt = ffth->tick_time;
851                 *ffcount = ffth->tick_ffcount;
852         } while (gen == 0 || gen != ffth->gen);
853 }
854
855 /*
856  * Absolute clock conversion. Low level function to convert ffcounter to
857  * bintime. The ffcounter is converted using the current ffclock period estimate
858  * or the "interpolated period" to ensure monotonicity.
859  * NOTE: this conversion may have been deferred, and the clock updated since the
860  * hardware counter has been read.
861  */
862 void
863 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
864 {
865         struct fftimehands *ffth;
866         struct bintime bt2;
867         ffcounter ffdelta;
868         uint8_t gen;
869
870         /*
871          * No locking but check generation has not changed. Also need to make
872          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
873          */
874         do {
875                 ffth = fftimehands;
876                 gen = ffth->gen;
877                 if (ffcount > ffth->tick_ffcount)
878                         ffdelta = ffcount - ffth->tick_ffcount;
879                 else
880                         ffdelta = ffth->tick_ffcount - ffcount;
881
882                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
883                         *bt = ffth->tick_time_lerp;
884                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
885                 } else {
886                         *bt = ffth->tick_time;
887                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
888                 }
889
890                 if (ffcount > ffth->tick_ffcount)
891                         bintime_add(bt, &bt2);
892                 else
893                         bintime_sub(bt, &bt2);
894         } while (gen == 0 || gen != ffth->gen);
895 }
896
897 /*
898  * Difference clock conversion.
899  * Low level function to Convert a time interval measured in RAW counter units
900  * into bintime. The difference clock allows measuring small intervals much more
901  * reliably than the absolute clock.
902  */
903 void
904 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
905 {
906         struct fftimehands *ffth;
907         uint8_t gen;
908
909         /* No locking but check generation has not changed. */
910         do {
911                 ffth = fftimehands;
912                 gen = ffth->gen;
913                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
914         } while (gen == 0 || gen != ffth->gen);
915 }
916
917 /*
918  * Access to current ffcounter value.
919  */
920 void
921 ffclock_read_counter(ffcounter *ffcount)
922 {
923         struct timehands *th;
924         struct fftimehands *ffth;
925         unsigned int gen, delta;
926
927         /*
928          * ffclock_windup() called from tc_windup(), safe to rely on
929          * th->th_generation only, for correct delta and ffcounter.
930          */
931         do {
932                 th = timehands;
933                 gen = atomic_load_acq_int(&th->th_generation);
934                 ffth = fftimehands;
935                 delta = tc_delta(th);
936                 *ffcount = ffth->tick_ffcount;
937                 atomic_thread_fence_acq();
938         } while (gen == 0 || gen != th->th_generation);
939
940         *ffcount += delta;
941 }
942
943 void
944 binuptime(struct bintime *bt)
945 {
946
947         binuptime_fromclock(bt, sysclock_active);
948 }
949
950 void
951 nanouptime(struct timespec *tsp)
952 {
953
954         nanouptime_fromclock(tsp, sysclock_active);
955 }
956
957 void
958 microuptime(struct timeval *tvp)
959 {
960
961         microuptime_fromclock(tvp, sysclock_active);
962 }
963
964 void
965 bintime(struct bintime *bt)
966 {
967
968         bintime_fromclock(bt, sysclock_active);
969 }
970
971 void
972 nanotime(struct timespec *tsp)
973 {
974
975         nanotime_fromclock(tsp, sysclock_active);
976 }
977
978 void
979 microtime(struct timeval *tvp)
980 {
981
982         microtime_fromclock(tvp, sysclock_active);
983 }
984
985 void
986 getbinuptime(struct bintime *bt)
987 {
988
989         getbinuptime_fromclock(bt, sysclock_active);
990 }
991
992 void
993 getnanouptime(struct timespec *tsp)
994 {
995
996         getnanouptime_fromclock(tsp, sysclock_active);
997 }
998
999 void
1000 getmicrouptime(struct timeval *tvp)
1001 {
1002
1003         getmicrouptime_fromclock(tvp, sysclock_active);
1004 }
1005
1006 void
1007 getbintime(struct bintime *bt)
1008 {
1009
1010         getbintime_fromclock(bt, sysclock_active);
1011 }
1012
1013 void
1014 getnanotime(struct timespec *tsp)
1015 {
1016
1017         getnanotime_fromclock(tsp, sysclock_active);
1018 }
1019
1020 void
1021 getmicrotime(struct timeval *tvp)
1022 {
1023
1024         getmicrouptime_fromclock(tvp, sysclock_active);
1025 }
1026
1027 #endif /* FFCLOCK */
1028
1029 /*
1030  * This is a clone of getnanotime and used for walltimestamps.
1031  * The dtrace_ prefix prevents fbt from creating probes for
1032  * it so walltimestamp can be safely used in all fbt probes.
1033  */
1034 void
1035 dtrace_getnanotime(struct timespec *tsp)
1036 {
1037         struct timehands *th;
1038         u_int gen;
1039
1040         do {
1041                 th = timehands;
1042                 gen = atomic_load_acq_int(&th->th_generation);
1043                 *tsp = th->th_nanotime;
1044                 atomic_thread_fence_acq();
1045         } while (gen == 0 || gen != th->th_generation);
1046 }
1047
1048 /*
1049  * System clock currently providing time to the system. Modifiable via sysctl
1050  * when the FFCLOCK option is defined.
1051  */
1052 int sysclock_active = SYSCLOCK_FBCK;
1053
1054 /* Internal NTP status and error estimates. */
1055 extern int time_status;
1056 extern long time_esterror;
1057
1058 /*
1059  * Take a snapshot of sysclock data which can be used to compare system clocks
1060  * and generate timestamps after the fact.
1061  */
1062 void
1063 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1064 {
1065         struct fbclock_info *fbi;
1066         struct timehands *th;
1067         struct bintime bt;
1068         unsigned int delta, gen;
1069 #ifdef FFCLOCK
1070         ffcounter ffcount;
1071         struct fftimehands *ffth;
1072         struct ffclock_info *ffi;
1073         struct ffclock_estimate cest;
1074
1075         ffi = &clock_snap->ff_info;
1076 #endif
1077
1078         fbi = &clock_snap->fb_info;
1079         delta = 0;
1080
1081         do {
1082                 th = timehands;
1083                 gen = atomic_load_acq_int(&th->th_generation);
1084                 fbi->th_scale = th->th_scale;
1085                 fbi->tick_time = th->th_offset;
1086 #ifdef FFCLOCK
1087                 ffth = fftimehands;
1088                 ffi->tick_time = ffth->tick_time_lerp;
1089                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1090                 ffi->period = ffth->cest.period;
1091                 ffi->period_lerp = ffth->period_lerp;
1092                 clock_snap->ffcount = ffth->tick_ffcount;
1093                 cest = ffth->cest;
1094 #endif
1095                 if (!fast)
1096                         delta = tc_delta(th);
1097                 atomic_thread_fence_acq();
1098         } while (gen == 0 || gen != th->th_generation);
1099
1100         clock_snap->delta = delta;
1101         clock_snap->sysclock_active = sysclock_active;
1102
1103         /* Record feedback clock status and error. */
1104         clock_snap->fb_info.status = time_status;
1105         /* XXX: Very crude estimate of feedback clock error. */
1106         bt.sec = time_esterror / 1000000;
1107         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1108             (uint64_t)18446744073709ULL;
1109         clock_snap->fb_info.error = bt;
1110
1111 #ifdef FFCLOCK
1112         if (!fast)
1113                 clock_snap->ffcount += delta;
1114
1115         /* Record feed-forward clock leap second adjustment. */
1116         ffi->leapsec_adjustment = cest.leapsec_total;
1117         if (clock_snap->ffcount > cest.leapsec_next)
1118                 ffi->leapsec_adjustment -= cest.leapsec;
1119
1120         /* Record feed-forward clock status and error. */
1121         clock_snap->ff_info.status = cest.status;
1122         ffcount = clock_snap->ffcount - cest.update_ffcount;
1123         ffclock_convert_delta(ffcount, cest.period, &bt);
1124         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1125         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1126         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1127         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1128         clock_snap->ff_info.error = bt;
1129 #endif
1130 }
1131
1132 /*
1133  * Convert a sysclock snapshot into a struct bintime based on the specified
1134  * clock source and flags.
1135  */
1136 int
1137 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1138     int whichclock, uint32_t flags)
1139 {
1140         struct bintime boottimebin_x;
1141 #ifdef FFCLOCK
1142         struct bintime bt2;
1143         uint64_t period;
1144 #endif
1145
1146         switch (whichclock) {
1147         case SYSCLOCK_FBCK:
1148                 *bt = cs->fb_info.tick_time;
1149
1150                 /* If snapshot was created with !fast, delta will be >0. */
1151                 if (cs->delta > 0)
1152                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1153
1154                 if ((flags & FBCLOCK_UPTIME) == 0) {
1155                         getboottimebin(&boottimebin_x);
1156                         bintime_add(bt, &boottimebin_x);
1157                 }
1158                 break;
1159 #ifdef FFCLOCK
1160         case SYSCLOCK_FFWD:
1161                 if (flags & FFCLOCK_LERP) {
1162                         *bt = cs->ff_info.tick_time_lerp;
1163                         period = cs->ff_info.period_lerp;
1164                 } else {
1165                         *bt = cs->ff_info.tick_time;
1166                         period = cs->ff_info.period;
1167                 }
1168
1169                 /* If snapshot was created with !fast, delta will be >0. */
1170                 if (cs->delta > 0) {
1171                         ffclock_convert_delta(cs->delta, period, &bt2);
1172                         bintime_add(bt, &bt2);
1173                 }
1174
1175                 /* Leap second adjustment. */
1176                 if (flags & FFCLOCK_LEAPSEC)
1177                         bt->sec -= cs->ff_info.leapsec_adjustment;
1178
1179                 /* Boot time adjustment, for uptime/monotonic clocks. */
1180                 if (flags & FFCLOCK_UPTIME)
1181                         bintime_sub(bt, &ffclock_boottime);
1182                 break;
1183 #endif
1184         default:
1185                 return (EINVAL);
1186                 break;
1187         }
1188
1189         return (0);
1190 }
1191
1192 /*
1193  * Initialize a new timecounter and possibly use it.
1194  */
1195 void
1196 tc_init(struct timecounter *tc)
1197 {
1198         u_int u;
1199         struct sysctl_oid *tc_root;
1200
1201         u = tc->tc_frequency / tc->tc_counter_mask;
1202         /* XXX: We need some margin here, 10% is a guess */
1203         u *= 11;
1204         u /= 10;
1205         if (u > hz && tc->tc_quality >= 0) {
1206                 tc->tc_quality = -2000;
1207                 if (bootverbose) {
1208                         printf("Timecounter \"%s\" frequency %ju Hz",
1209                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1210                         printf(" -- Insufficient hz, needs at least %u\n", u);
1211                 }
1212         } else if (tc->tc_quality >= 0 || bootverbose) {
1213                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1214                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1215                     tc->tc_quality);
1216         }
1217
1218         tc->tc_next = timecounters;
1219         timecounters = tc;
1220         /*
1221          * Set up sysctl tree for this counter.
1222          */
1223         tc_root = SYSCTL_ADD_NODE(NULL,
1224             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1225             CTLFLAG_RW, 0, "timecounter description");
1226         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1227             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1228             "mask for implemented bits");
1229         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1230             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1231             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1232         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1233             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1234              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1235         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1236             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1237             "goodness of time counter");
1238         /*
1239          * Do not automatically switch if the current tc was specifically
1240          * chosen.  Never automatically use a timecounter with negative quality.
1241          * Even though we run on the dummy counter, switching here may be
1242          * worse since this timecounter may not be monotonic.
1243          */
1244         if (tc_chosen)
1245                 return;
1246         if (tc->tc_quality < 0)
1247                 return;
1248         if (tc->tc_quality < timecounter->tc_quality)
1249                 return;
1250         if (tc->tc_quality == timecounter->tc_quality &&
1251             tc->tc_frequency < timecounter->tc_frequency)
1252                 return;
1253         (void)tc->tc_get_timecount(tc);
1254         (void)tc->tc_get_timecount(tc);
1255         timecounter = tc;
1256 }
1257
1258 /* Report the frequency of the current timecounter. */
1259 uint64_t
1260 tc_getfrequency(void)
1261 {
1262
1263         return (timehands->th_counter->tc_frequency);
1264 }
1265
1266 static struct mtx tc_setclock_mtx;
1267 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1268
1269 /*
1270  * Step our concept of UTC.  This is done by modifying our estimate of
1271  * when we booted.
1272  */
1273 void
1274 tc_setclock(struct timespec *ts)
1275 {
1276         struct timespec tbef, taft;
1277         struct bintime bt, bt2;
1278
1279         timespec2bintime(ts, &bt);
1280         nanotime(&tbef);
1281         mtx_lock_spin(&tc_setclock_mtx);
1282         cpu_tick_calibrate(1);
1283         binuptime(&bt2);
1284         bintime_sub(&bt, &bt2);
1285
1286         /* XXX fiddle all the little crinkly bits around the fiords... */
1287         tc_windup(&bt);
1288         mtx_unlock_spin(&tc_setclock_mtx);
1289         getboottimebin(&boottimebin);
1290         bintime2timeval(&boottimebin, &boottime);
1291         if (timestepwarnings) {
1292                 nanotime(&taft);
1293                 log(LOG_INFO,
1294                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1295                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1296                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1297                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1298         }
1299 }
1300
1301 /*
1302  * Initialize the next struct timehands in the ring and make
1303  * it the active timehands.  Along the way we might switch to a different
1304  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1305  */
1306 static void
1307 tc_windup(struct bintime *new_boottimebin)
1308 {
1309         struct bintime bt;
1310         struct timehands *th, *tho;
1311         uint64_t scale;
1312         u_int delta, ncount, ogen;
1313         int i;
1314         time_t t;
1315
1316         /*
1317          * Make the next timehands a copy of the current one, but do
1318          * not overwrite the generation or next pointer.  While we
1319          * update the contents, the generation must be zero.  We need
1320          * to ensure that the zero generation is visible before the
1321          * data updates become visible, which requires release fence.
1322          * For similar reasons, re-reading of the generation after the
1323          * data is read should use acquire fence.
1324          */
1325         tho = timehands;
1326         th = tho->th_next;
1327         ogen = th->th_generation;
1328         th->th_generation = 0;
1329         atomic_thread_fence_rel();
1330         bcopy(tho, th, offsetof(struct timehands, th_generation));
1331         if (new_boottimebin != NULL)
1332                 th->th_boottime = *new_boottimebin;
1333
1334         /*
1335          * Capture a timecounter delta on the current timecounter and if
1336          * changing timecounters, a counter value from the new timecounter.
1337          * Update the offset fields accordingly.
1338          */
1339         delta = tc_delta(th);
1340         if (th->th_counter != timecounter)
1341                 ncount = timecounter->tc_get_timecount(timecounter);
1342         else
1343                 ncount = 0;
1344 #ifdef FFCLOCK
1345         ffclock_windup(delta);
1346 #endif
1347         th->th_offset_count += delta;
1348         th->th_offset_count &= th->th_counter->tc_counter_mask;
1349         while (delta > th->th_counter->tc_frequency) {
1350                 /* Eat complete unadjusted seconds. */
1351                 delta -= th->th_counter->tc_frequency;
1352                 th->th_offset.sec++;
1353         }
1354         if ((delta > th->th_counter->tc_frequency / 2) &&
1355             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1356                 /* The product th_scale * delta just barely overflows. */
1357                 th->th_offset.sec++;
1358         }
1359         bintime_addx(&th->th_offset, th->th_scale * delta);
1360
1361         /*
1362          * Hardware latching timecounters may not generate interrupts on
1363          * PPS events, so instead we poll them.  There is a finite risk that
1364          * the hardware might capture a count which is later than the one we
1365          * got above, and therefore possibly in the next NTP second which might
1366          * have a different rate than the current NTP second.  It doesn't
1367          * matter in practice.
1368          */
1369         if (tho->th_counter->tc_poll_pps)
1370                 tho->th_counter->tc_poll_pps(tho->th_counter);
1371
1372         /*
1373          * Deal with NTP second processing.  The for loop normally
1374          * iterates at most once, but in extreme situations it might
1375          * keep NTP sane if timeouts are not run for several seconds.
1376          * At boot, the time step can be large when the TOD hardware
1377          * has been read, so on really large steps, we call
1378          * ntp_update_second only twice.  We need to call it twice in
1379          * case we missed a leap second.
1380          */
1381         bt = th->th_offset;
1382         bintime_add(&bt, &th->th_boottime);
1383         i = bt.sec - tho->th_microtime.tv_sec;
1384         if (i > LARGE_STEP)
1385                 i = 2;
1386         for (; i > 0; i--) {
1387                 t = bt.sec;
1388                 ntp_update_second(&th->th_adjustment, &bt.sec);
1389                 if (bt.sec != t)
1390                         th->th_boottime.sec += bt.sec - t;
1391         }
1392         th->th_bintime = th->th_offset;
1393         bintime_add(&th->th_bintime, &th->th_boottime);
1394         /* Update the UTC timestamps used by the get*() functions. */
1395         /* XXX shouldn't do this here.  Should force non-`get' versions. */
1396         bintime2timeval(&bt, &th->th_microtime);
1397         bintime2timespec(&bt, &th->th_nanotime);
1398
1399         /* Now is a good time to change timecounters. */
1400         if (th->th_counter != timecounter) {
1401 #ifndef __arm__
1402                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1403                         cpu_disable_c2_sleep++;
1404                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1405                         cpu_disable_c2_sleep--;
1406 #endif
1407                 th->th_counter = timecounter;
1408                 th->th_offset_count = ncount;
1409                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1410                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1411 #ifdef FFCLOCK
1412                 ffclock_change_tc(th);
1413 #endif
1414         }
1415
1416         /*-
1417          * Recalculate the scaling factor.  We want the number of 1/2^64
1418          * fractions of a second per period of the hardware counter, taking
1419          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1420          * processing provides us with.
1421          *
1422          * The th_adjustment is nanoseconds per second with 32 bit binary
1423          * fraction and we want 64 bit binary fraction of second:
1424          *
1425          *       x = a * 2^32 / 10^9 = a * 4.294967296
1426          *
1427          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1428          * we can only multiply by about 850 without overflowing, that
1429          * leaves no suitably precise fractions for multiply before divide.
1430          *
1431          * Divide before multiply with a fraction of 2199/512 results in a
1432          * systematic undercompensation of 10PPM of th_adjustment.  On a
1433          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1434          *
1435          * We happily sacrifice the lowest of the 64 bits of our result
1436          * to the goddess of code clarity.
1437          *
1438          */
1439         scale = (uint64_t)1 << 63;
1440         scale += (th->th_adjustment / 1024) * 2199;
1441         scale /= th->th_counter->tc_frequency;
1442         th->th_scale = scale * 2;
1443
1444         /*
1445          * Now that the struct timehands is again consistent, set the new
1446          * generation number, making sure to not make it zero.
1447          */
1448         if (++ogen == 0)
1449                 ogen = 1;
1450         atomic_store_rel_int(&th->th_generation, ogen);
1451
1452         /* Go live with the new struct timehands. */
1453 #ifdef FFCLOCK
1454         switch (sysclock_active) {
1455         case SYSCLOCK_FBCK:
1456 #endif
1457                 time_second = th->th_microtime.tv_sec;
1458                 time_uptime = th->th_offset.sec;
1459 #ifdef FFCLOCK
1460                 break;
1461         case SYSCLOCK_FFWD:
1462                 time_second = fftimehands->tick_time_lerp.sec;
1463                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1464                 break;
1465         }
1466 #endif
1467
1468         timehands = th;
1469         timekeep_push_vdso();
1470 }
1471
1472 /* Report or change the active timecounter hardware. */
1473 static int
1474 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1475 {
1476         char newname[32];
1477         struct timecounter *newtc, *tc;
1478         int error;
1479
1480         tc = timecounter;
1481         strlcpy(newname, tc->tc_name, sizeof(newname));
1482
1483         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1484         if (error != 0 || req->newptr == NULL)
1485                 return (error);
1486         /* Record that the tc in use now was specifically chosen. */
1487         tc_chosen = 1;
1488         if (strcmp(newname, tc->tc_name) == 0)
1489                 return (0);
1490         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1491                 if (strcmp(newname, newtc->tc_name) != 0)
1492                         continue;
1493
1494                 /* Warm up new timecounter. */
1495                 (void)newtc->tc_get_timecount(newtc);
1496                 (void)newtc->tc_get_timecount(newtc);
1497
1498                 timecounter = newtc;
1499
1500                 /*
1501                  * The vdso timehands update is deferred until the next
1502                  * 'tc_windup()'.
1503                  *
1504                  * This is prudent given that 'timekeep_push_vdso()' does not
1505                  * use any locking and that it can be called in hard interrupt
1506                  * context via 'tc_windup()'.
1507                  */
1508                 return (0);
1509         }
1510         return (EINVAL);
1511 }
1512
1513 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1514     0, 0, sysctl_kern_timecounter_hardware, "A",
1515     "Timecounter hardware selected");
1516
1517
1518 /* Report the available timecounter hardware. */
1519 static int
1520 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1521 {
1522         struct sbuf sb;
1523         struct timecounter *tc;
1524         int error;
1525
1526         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1527         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1528                 if (tc != timecounters)
1529                         sbuf_putc(&sb, ' ');
1530                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1531         }
1532         error = sbuf_finish(&sb);
1533         sbuf_delete(&sb);
1534         return (error);
1535 }
1536
1537 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1538     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1539
1540 /*
1541  * RFC 2783 PPS-API implementation.
1542  */
1543
1544 /*
1545  *  Return true if the driver is aware of the abi version extensions in the
1546  *  pps_state structure, and it supports at least the given abi version number.
1547  */
1548 static inline int
1549 abi_aware(struct pps_state *pps, int vers)
1550 {
1551
1552         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1553 }
1554
1555 static int
1556 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1557 {
1558         int err, timo;
1559         pps_seq_t aseq, cseq;
1560         struct timeval tv;
1561
1562         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1563                 return (EINVAL);
1564
1565         /*
1566          * If no timeout is requested, immediately return whatever values were
1567          * most recently captured.  If timeout seconds is -1, that's a request
1568          * to block without a timeout.  WITNESS won't let us sleep forever
1569          * without a lock (we really don't need a lock), so just repeatedly
1570          * sleep a long time.
1571          */
1572         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1573                 if (fapi->timeout.tv_sec == -1)
1574                         timo = 0x7fffffff;
1575                 else {
1576                         tv.tv_sec = fapi->timeout.tv_sec;
1577                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1578                         timo = tvtohz(&tv);
1579                 }
1580                 aseq = pps->ppsinfo.assert_sequence;
1581                 cseq = pps->ppsinfo.clear_sequence;
1582                 while (aseq == pps->ppsinfo.assert_sequence &&
1583                     cseq == pps->ppsinfo.clear_sequence) {
1584                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1585                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1586                                         err = msleep_spin(pps, pps->driver_mtx,
1587                                             "ppsfch", timo);
1588                                 } else {
1589                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1590                                             "ppsfch", timo);
1591                                 }
1592                         } else {
1593                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1594                         }
1595                         if (err == EWOULDBLOCK) {
1596                                 if (fapi->timeout.tv_sec == -1) {
1597                                         continue;
1598                                 } else {
1599                                         return (ETIMEDOUT);
1600                                 }
1601                         } else if (err != 0) {
1602                                 return (err);
1603                         }
1604                 }
1605         }
1606
1607         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1608         fapi->pps_info_buf = pps->ppsinfo;
1609
1610         return (0);
1611 }
1612
1613 int
1614 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1615 {
1616         pps_params_t *app;
1617         struct pps_fetch_args *fapi;
1618 #ifdef FFCLOCK
1619         struct pps_fetch_ffc_args *fapi_ffc;
1620 #endif
1621 #ifdef PPS_SYNC
1622         struct pps_kcbind_args *kapi;
1623 #endif
1624
1625         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1626         switch (cmd) {
1627         case PPS_IOC_CREATE:
1628                 return (0);
1629         case PPS_IOC_DESTROY:
1630                 return (0);
1631         case PPS_IOC_SETPARAMS:
1632                 app = (pps_params_t *)data;
1633                 if (app->mode & ~pps->ppscap)
1634                         return (EINVAL);
1635 #ifdef FFCLOCK
1636                 /* Ensure only a single clock is selected for ffc timestamp. */
1637                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1638                         return (EINVAL);
1639 #endif
1640                 pps->ppsparam = *app;
1641                 return (0);
1642         case PPS_IOC_GETPARAMS:
1643                 app = (pps_params_t *)data;
1644                 *app = pps->ppsparam;
1645                 app->api_version = PPS_API_VERS_1;
1646                 return (0);
1647         case PPS_IOC_GETCAP:
1648                 *(int*)data = pps->ppscap;
1649                 return (0);
1650         case PPS_IOC_FETCH:
1651                 fapi = (struct pps_fetch_args *)data;
1652                 return (pps_fetch(fapi, pps));
1653 #ifdef FFCLOCK
1654         case PPS_IOC_FETCH_FFCOUNTER:
1655                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1656                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1657                     PPS_TSFMT_TSPEC)
1658                         return (EINVAL);
1659                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1660                         return (EOPNOTSUPP);
1661                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1662                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1663                 /* Overwrite timestamps if feedback clock selected. */
1664                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1665                 case PPS_TSCLK_FBCK:
1666                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1667                             pps->ppsinfo.assert_timestamp;
1668                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1669                             pps->ppsinfo.clear_timestamp;
1670                         break;
1671                 case PPS_TSCLK_FFWD:
1672                         break;
1673                 default:
1674                         break;
1675                 }
1676                 return (0);
1677 #endif /* FFCLOCK */
1678         case PPS_IOC_KCBIND:
1679 #ifdef PPS_SYNC
1680                 kapi = (struct pps_kcbind_args *)data;
1681                 /* XXX Only root should be able to do this */
1682                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1683                         return (EINVAL);
1684                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1685                         return (EINVAL);
1686                 if (kapi->edge & ~pps->ppscap)
1687                         return (EINVAL);
1688                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1689                     (pps->kcmode & KCMODE_ABIFLAG);
1690                 return (0);
1691 #else
1692                 return (EOPNOTSUPP);
1693 #endif
1694         default:
1695                 return (ENOIOCTL);
1696         }
1697 }
1698
1699 void
1700 pps_init(struct pps_state *pps)
1701 {
1702         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1703         if (pps->ppscap & PPS_CAPTUREASSERT)
1704                 pps->ppscap |= PPS_OFFSETASSERT;
1705         if (pps->ppscap & PPS_CAPTURECLEAR)
1706                 pps->ppscap |= PPS_OFFSETCLEAR;
1707 #ifdef FFCLOCK
1708         pps->ppscap |= PPS_TSCLK_MASK;
1709 #endif
1710         pps->kcmode &= ~KCMODE_ABIFLAG;
1711 }
1712
1713 void
1714 pps_init_abi(struct pps_state *pps)
1715 {
1716
1717         pps_init(pps);
1718         if (pps->driver_abi > 0) {
1719                 pps->kcmode |= KCMODE_ABIFLAG;
1720                 pps->kernel_abi = PPS_ABI_VERSION;
1721         }
1722 }
1723
1724 void
1725 pps_capture(struct pps_state *pps)
1726 {
1727         struct timehands *th;
1728
1729         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1730         th = timehands;
1731         pps->capgen = atomic_load_acq_int(&th->th_generation);
1732         pps->capth = th;
1733 #ifdef FFCLOCK
1734         pps->capffth = fftimehands;
1735 #endif
1736         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1737         atomic_thread_fence_acq();
1738         if (pps->capgen != th->th_generation)
1739                 pps->capgen = 0;
1740 }
1741
1742 void
1743 pps_event(struct pps_state *pps, int event)
1744 {
1745         struct bintime bt;
1746         struct timespec ts, *tsp, *osp;
1747         u_int tcount, *pcount;
1748         int foff;
1749         pps_seq_t *pseq;
1750 #ifdef FFCLOCK
1751         struct timespec *tsp_ffc;
1752         pps_seq_t *pseq_ffc;
1753         ffcounter *ffcount;
1754 #endif
1755 #ifdef PPS_SYNC
1756         int fhard;
1757 #endif
1758
1759         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1760         /* Nothing to do if not currently set to capture this event type. */
1761         if ((event & pps->ppsparam.mode) == 0)
1762                 return;
1763         /* If the timecounter was wound up underneath us, bail out. */
1764         if (pps->capgen == 0 || pps->capgen !=
1765             atomic_load_acq_int(&pps->capth->th_generation))
1766                 return;
1767
1768         /* Things would be easier with arrays. */
1769         if (event == PPS_CAPTUREASSERT) {
1770                 tsp = &pps->ppsinfo.assert_timestamp;
1771                 osp = &pps->ppsparam.assert_offset;
1772                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1773 #ifdef PPS_SYNC
1774                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1775 #endif
1776                 pcount = &pps->ppscount[0];
1777                 pseq = &pps->ppsinfo.assert_sequence;
1778 #ifdef FFCLOCK
1779                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1780                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1781                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1782 #endif
1783         } else {
1784                 tsp = &pps->ppsinfo.clear_timestamp;
1785                 osp = &pps->ppsparam.clear_offset;
1786                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1787 #ifdef PPS_SYNC
1788                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1789 #endif
1790                 pcount = &pps->ppscount[1];
1791                 pseq = &pps->ppsinfo.clear_sequence;
1792 #ifdef FFCLOCK
1793                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1794                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1795                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1796 #endif
1797         }
1798
1799         /*
1800          * If the timecounter changed, we cannot compare the count values, so
1801          * we have to drop the rest of the PPS-stuff until the next event.
1802          */
1803         if (pps->ppstc != pps->capth->th_counter) {
1804                 pps->ppstc = pps->capth->th_counter;
1805                 *pcount = pps->capcount;
1806                 pps->ppscount[2] = pps->capcount;
1807                 return;
1808         }
1809
1810         /* Convert the count to a timespec. */
1811         tcount = pps->capcount - pps->capth->th_offset_count;
1812         tcount &= pps->capth->th_counter->tc_counter_mask;
1813         bt = pps->capth->th_bintime;
1814         bintime_addx(&bt, pps->capth->th_scale * tcount);
1815         bintime2timespec(&bt, &ts);
1816
1817         /* If the timecounter was wound up underneath us, bail out. */
1818         atomic_thread_fence_acq();
1819         if (pps->capgen != pps->capth->th_generation)
1820                 return;
1821
1822         *pcount = pps->capcount;
1823         (*pseq)++;
1824         *tsp = ts;
1825
1826         if (foff) {
1827                 timespecadd(tsp, osp);
1828                 if (tsp->tv_nsec < 0) {
1829                         tsp->tv_nsec += 1000000000;
1830                         tsp->tv_sec -= 1;
1831                 }
1832         }
1833
1834 #ifdef FFCLOCK
1835         *ffcount = pps->capffth->tick_ffcount + tcount;
1836         bt = pps->capffth->tick_time;
1837         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1838         bintime_add(&bt, &pps->capffth->tick_time);
1839         bintime2timespec(&bt, &ts);
1840         (*pseq_ffc)++;
1841         *tsp_ffc = ts;
1842 #endif
1843
1844 #ifdef PPS_SYNC
1845         if (fhard) {
1846                 uint64_t scale;
1847
1848                 /*
1849                  * Feed the NTP PLL/FLL.
1850                  * The FLL wants to know how many (hardware) nanoseconds
1851                  * elapsed since the previous event.
1852                  */
1853                 tcount = pps->capcount - pps->ppscount[2];
1854                 pps->ppscount[2] = pps->capcount;
1855                 tcount &= pps->capth->th_counter->tc_counter_mask;
1856                 scale = (uint64_t)1 << 63;
1857                 scale /= pps->capth->th_counter->tc_frequency;
1858                 scale *= 2;
1859                 bt.sec = 0;
1860                 bt.frac = 0;
1861                 bintime_addx(&bt, scale * tcount);
1862                 bintime2timespec(&bt, &ts);
1863                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1864         }
1865 #endif
1866
1867         /* Wakeup anyone sleeping in pps_fetch().  */
1868         wakeup(pps);
1869 }
1870
1871 /*
1872  * Timecounters need to be updated every so often to prevent the hardware
1873  * counter from overflowing.  Updating also recalculates the cached values
1874  * used by the get*() family of functions, so their precision depends on
1875  * the update frequency.
1876  */
1877
1878 static int tc_tick;
1879 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1880     "Approximate number of hardclock ticks in a millisecond");
1881
1882 void
1883 tc_ticktock(int cnt)
1884 {
1885         static int count;
1886
1887         if (mtx_trylock_spin(&tc_setclock_mtx)) {
1888                 count += cnt;
1889                 if (count >= tc_tick) {
1890                         count = 0;
1891                         tc_windup(NULL);
1892                 }
1893                 mtx_unlock_spin(&tc_setclock_mtx);
1894         }
1895 }
1896
1897 static void __inline
1898 tc_adjprecision(void)
1899 {
1900         int t;
1901
1902         if (tc_timepercentage > 0) {
1903                 t = (99 + tc_timepercentage) / tc_timepercentage;
1904                 tc_precexp = fls(t + (t >> 1)) - 1;
1905                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1906                 FREQ2BT(hz, &bt_tickthreshold);
1907                 bintime_shift(&bt_timethreshold, tc_precexp);
1908                 bintime_shift(&bt_tickthreshold, tc_precexp);
1909         } else {
1910                 tc_precexp = 31;
1911                 bt_timethreshold.sec = INT_MAX;
1912                 bt_timethreshold.frac = ~(uint64_t)0;
1913                 bt_tickthreshold = bt_timethreshold;
1914         }
1915         sbt_timethreshold = bttosbt(bt_timethreshold);
1916         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1917 }
1918
1919 static int
1920 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1921 {
1922         int error, val;
1923
1924         val = tc_timepercentage;
1925         error = sysctl_handle_int(oidp, &val, 0, req);
1926         if (error != 0 || req->newptr == NULL)
1927                 return (error);
1928         tc_timepercentage = val;
1929         if (cold)
1930                 goto done;
1931         tc_adjprecision();
1932 done:
1933         return (0);
1934 }
1935
1936 static void
1937 inittimecounter(void *dummy)
1938 {
1939         u_int p;
1940         int tick_rate;
1941
1942         /*
1943          * Set the initial timeout to
1944          * max(1, <approx. number of hardclock ticks in a millisecond>).
1945          * People should probably not use the sysctl to set the timeout
1946          * to smaller than its initial value, since that value is the
1947          * smallest reasonable one.  If they want better timestamps they
1948          * should use the non-"get"* functions.
1949          */
1950         if (hz > 1000)
1951                 tc_tick = (hz + 500) / 1000;
1952         else
1953                 tc_tick = 1;
1954         tc_adjprecision();
1955         FREQ2BT(hz, &tick_bt);
1956         tick_sbt = bttosbt(tick_bt);
1957         tick_rate = hz / tc_tick;
1958         FREQ2BT(tick_rate, &tc_tick_bt);
1959         tc_tick_sbt = bttosbt(tc_tick_bt);
1960         p = (tc_tick * 1000000) / hz;
1961         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1962
1963 #ifdef FFCLOCK
1964         ffclock_init();
1965 #endif
1966         /* warm up new timecounter (again) and get rolling. */
1967         (void)timecounter->tc_get_timecount(timecounter);
1968         (void)timecounter->tc_get_timecount(timecounter);
1969         mtx_lock_spin(&tc_setclock_mtx);
1970         tc_windup(NULL);
1971         mtx_unlock_spin(&tc_setclock_mtx);
1972 }
1973
1974 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1975
1976 /* Cpu tick handling -------------------------------------------------*/
1977
1978 static int cpu_tick_variable;
1979 static uint64_t cpu_tick_frequency;
1980
1981 static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base);
1982 static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last);
1983
1984 static uint64_t
1985 tc_cpu_ticks(void)
1986 {
1987         struct timecounter *tc;
1988         uint64_t res, *base;
1989         unsigned u, *last;
1990
1991         critical_enter();
1992         base = DPCPU_PTR(tc_cpu_ticks_base);
1993         last = DPCPU_PTR(tc_cpu_ticks_last);
1994         tc = timehands->th_counter;
1995         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1996         if (u < *last)
1997                 *base += (uint64_t)tc->tc_counter_mask + 1;
1998         *last = u;
1999         res = u + *base;
2000         critical_exit();
2001         return (res);
2002 }
2003
2004 void
2005 cpu_tick_calibration(void)
2006 {
2007         static time_t last_calib;
2008
2009         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2010                 cpu_tick_calibrate(0);
2011                 last_calib = time_uptime;
2012         }
2013 }
2014
2015 /*
2016  * This function gets called every 16 seconds on only one designated
2017  * CPU in the system from hardclock() via cpu_tick_calibration()().
2018  *
2019  * Whenever the real time clock is stepped we get called with reset=1
2020  * to make sure we handle suspend/resume and similar events correctly.
2021  */
2022
2023 static void
2024 cpu_tick_calibrate(int reset)
2025 {
2026         static uint64_t c_last;
2027         uint64_t c_this, c_delta;
2028         static struct bintime  t_last;
2029         struct bintime t_this, t_delta;
2030         uint32_t divi;
2031
2032         if (reset) {
2033                 /* The clock was stepped, abort & reset */
2034                 t_last.sec = 0;
2035                 return;
2036         }
2037
2038         /* we don't calibrate fixed rate cputicks */
2039         if (!cpu_tick_variable)
2040                 return;
2041
2042         getbinuptime(&t_this);
2043         c_this = cpu_ticks();
2044         if (t_last.sec != 0) {
2045                 c_delta = c_this - c_last;
2046                 t_delta = t_this;
2047                 bintime_sub(&t_delta, &t_last);
2048                 /*
2049                  * Headroom:
2050                  *      2^(64-20) / 16[s] =
2051                  *      2^(44) / 16[s] =
2052                  *      17.592.186.044.416 / 16 =
2053                  *      1.099.511.627.776 [Hz]
2054                  */
2055                 divi = t_delta.sec << 20;
2056                 divi |= t_delta.frac >> (64 - 20);
2057                 c_delta <<= 20;
2058                 c_delta /= divi;
2059                 if (c_delta > cpu_tick_frequency) {
2060                         if (0 && bootverbose)
2061                                 printf("cpu_tick increased to %ju Hz\n",
2062                                     c_delta);
2063                         cpu_tick_frequency = c_delta;
2064                 }
2065         }
2066         c_last = c_this;
2067         t_last = t_this;
2068 }
2069
2070 void
2071 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2072 {
2073
2074         if (func == NULL) {
2075                 cpu_ticks = tc_cpu_ticks;
2076         } else {
2077                 cpu_tick_frequency = freq;
2078                 cpu_tick_variable = var;
2079                 cpu_ticks = func;
2080         }
2081 }
2082
2083 uint64_t
2084 cpu_tickrate(void)
2085 {
2086
2087         if (cpu_ticks == tc_cpu_ticks) 
2088                 return (tc_getfrequency());
2089         return (cpu_tick_frequency);
2090 }
2091
2092 /*
2093  * We need to be slightly careful converting cputicks to microseconds.
2094  * There is plenty of margin in 64 bits of microseconds (half a million
2095  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2096  * before divide conversion (to retain precision) we find that the
2097  * margin shrinks to 1.5 hours (one millionth of 146y).
2098  * With a three prong approach we never lose significant bits, no
2099  * matter what the cputick rate and length of timeinterval is.
2100  */
2101
2102 uint64_t
2103 cputick2usec(uint64_t tick)
2104 {
2105
2106         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2107                 return (tick / (cpu_tickrate() / 1000000LL));
2108         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2109                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2110         else
2111                 return ((tick * 1000000LL) / cpu_tickrate());
2112 }
2113
2114 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2115
2116 static int vdso_th_enable = 1;
2117 static int
2118 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2119 {
2120         int old_vdso_th_enable, error;
2121
2122         old_vdso_th_enable = vdso_th_enable;
2123         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2124         if (error != 0)
2125                 return (error);
2126         vdso_th_enable = old_vdso_th_enable;
2127         return (0);
2128 }
2129 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2130     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2131     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2132
2133 uint32_t
2134 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2135 {
2136         struct timehands *th;
2137         uint32_t enabled;
2138
2139         th = timehands;
2140         vdso_th->th_scale = th->th_scale;
2141         vdso_th->th_offset_count = th->th_offset_count;
2142         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2143         vdso_th->th_offset = th->th_offset;
2144         vdso_th->th_boottime = th->th_boottime;
2145         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2146                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2147                     th->th_counter);
2148         } else
2149                 enabled = 0;
2150         if (!vdso_th_enable)
2151                 enabled = 0;
2152         return (enabled);
2153 }
2154
2155 #ifdef COMPAT_FREEBSD32
2156 uint32_t
2157 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2158 {
2159         struct timehands *th;
2160         uint32_t enabled;
2161
2162         th = timehands;
2163         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2164         vdso_th32->th_offset_count = th->th_offset_count;
2165         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2166         vdso_th32->th_offset.sec = th->th_offset.sec;
2167         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2168         vdso_th32->th_boottime.sec = th->th_boottime.sec;
2169         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2170         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2171                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2172                     th->th_counter);
2173         } else
2174                 enabled = 0;
2175         if (!vdso_th_enable)
2176                 enabled = 0;
2177         return (enabled);
2178 }
2179 #endif