]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
Set the SBUF_INCLUDENUL flag in sbuf_new_for_sysctl() so that sysctl
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  */
15
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18
19 #include "opt_compat.h"
20 #include "opt_ntp.h"
21 #include "opt_ffclock.h"
22
23 #include <sys/param.h>
24 #include <sys/kernel.h>
25 #include <sys/limits.h>
26 #include <sys/lock.h>
27 #include <sys/mutex.h>
28 #include <sys/sysctl.h>
29 #include <sys/syslog.h>
30 #include <sys/systm.h>
31 #include <sys/timeffc.h>
32 #include <sys/timepps.h>
33 #include <sys/timetc.h>
34 #include <sys/timex.h>
35 #include <sys/vdso.h>
36
37 /*
38  * A large step happens on boot.  This constant detects such steps.
39  * It is relatively small so that ntp_update_second gets called enough
40  * in the typical 'missed a couple of seconds' case, but doesn't loop
41  * forever when the time step is large.
42  */
43 #define LARGE_STEP      200
44
45 /*
46  * Implement a dummy timecounter which we can use until we get a real one
47  * in the air.  This allows the console and other early stuff to use
48  * time services.
49  */
50
51 static u_int
52 dummy_get_timecount(struct timecounter *tc)
53 {
54         static u_int now;
55
56         return (++now);
57 }
58
59 static struct timecounter dummy_timecounter = {
60         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
61 };
62
63 struct timehands {
64         /* These fields must be initialized by the driver. */
65         struct timecounter      *th_counter;
66         int64_t                 th_adjustment;
67         uint64_t                th_scale;
68         u_int                   th_offset_count;
69         struct bintime          th_offset;
70         struct timeval          th_microtime;
71         struct timespec         th_nanotime;
72         /* Fields not to be copied in tc_windup start with th_generation. */
73         volatile u_int          th_generation;
74         struct timehands        *th_next;
75 };
76
77 static struct timehands th0;
78 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
79 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
80 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
81 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
82 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
83 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
84 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
85 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
86 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
87 static struct timehands th0 = {
88         &dummy_timecounter,
89         0,
90         (uint64_t)-1 / 1000000,
91         0,
92         {1, 0},
93         {0, 0},
94         {0, 0},
95         1,
96         &th1
97 };
98
99 static struct timehands *volatile timehands = &th0;
100 struct timecounter *timecounter = &dummy_timecounter;
101 static struct timecounter *timecounters = &dummy_timecounter;
102
103 int tc_min_ticktock_freq = 1;
104
105 volatile time_t time_second = 1;
106 volatile time_t time_uptime = 1;
107
108 struct bintime boottimebin;
109 struct timeval boottime;
110 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
111 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
112     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
113
114 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
115 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
116
117 static int timestepwarnings;
118 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
119     &timestepwarnings, 0, "Log time steps");
120
121 struct bintime bt_timethreshold;
122 struct bintime bt_tickthreshold;
123 sbintime_t sbt_timethreshold;
124 sbintime_t sbt_tickthreshold;
125 struct bintime tc_tick_bt;
126 sbintime_t tc_tick_sbt;
127 int tc_precexp;
128 int tc_timepercentage = TC_DEFAULTPERC;
129 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
130 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
131     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
132     sysctl_kern_timecounter_adjprecision, "I",
133     "Allowed time interval deviation in percents");
134
135 static void tc_windup(void);
136 static void cpu_tick_calibrate(int);
137
138 void dtrace_getnanotime(struct timespec *tsp);
139
140 static int
141 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
142 {
143 #ifndef __mips__
144 #ifdef SCTL_MASK32
145         int tv[2];
146
147         if (req->flags & SCTL_MASK32) {
148                 tv[0] = boottime.tv_sec;
149                 tv[1] = boottime.tv_usec;
150                 return SYSCTL_OUT(req, tv, sizeof(tv));
151         } else
152 #endif
153 #endif
154                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
155 }
156
157 static int
158 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
159 {
160         u_int ncount;
161         struct timecounter *tc = arg1;
162
163         ncount = tc->tc_get_timecount(tc);
164         return sysctl_handle_int(oidp, &ncount, 0, req);
165 }
166
167 static int
168 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
169 {
170         uint64_t freq;
171         struct timecounter *tc = arg1;
172
173         freq = tc->tc_frequency;
174         return sysctl_handle_64(oidp, &freq, 0, req);
175 }
176
177 /*
178  * Return the difference between the timehands' counter value now and what
179  * was when we copied it to the timehands' offset_count.
180  */
181 static __inline u_int
182 tc_delta(struct timehands *th)
183 {
184         struct timecounter *tc;
185
186         tc = th->th_counter;
187         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
188             tc->tc_counter_mask);
189 }
190
191 /*
192  * Functions for reading the time.  We have to loop until we are sure that
193  * the timehands that we operated on was not updated under our feet.  See
194  * the comment in <sys/time.h> for a description of these 12 functions.
195  */
196
197 #ifdef FFCLOCK
198 void
199 fbclock_binuptime(struct bintime *bt)
200 {
201         struct timehands *th;
202         unsigned int gen;
203
204         do {
205                 th = timehands;
206                 gen = th->th_generation;
207                 *bt = th->th_offset;
208                 bintime_addx(bt, th->th_scale * tc_delta(th));
209         } while (gen == 0 || gen != th->th_generation);
210 }
211
212 void
213 fbclock_nanouptime(struct timespec *tsp)
214 {
215         struct bintime bt;
216
217         fbclock_binuptime(&bt);
218         bintime2timespec(&bt, tsp);
219 }
220
221 void
222 fbclock_microuptime(struct timeval *tvp)
223 {
224         struct bintime bt;
225
226         fbclock_binuptime(&bt);
227         bintime2timeval(&bt, tvp);
228 }
229
230 void
231 fbclock_bintime(struct bintime *bt)
232 {
233
234         fbclock_binuptime(bt);
235         bintime_add(bt, &boottimebin);
236 }
237
238 void
239 fbclock_nanotime(struct timespec *tsp)
240 {
241         struct bintime bt;
242
243         fbclock_bintime(&bt);
244         bintime2timespec(&bt, tsp);
245 }
246
247 void
248 fbclock_microtime(struct timeval *tvp)
249 {
250         struct bintime bt;
251
252         fbclock_bintime(&bt);
253         bintime2timeval(&bt, tvp);
254 }
255
256 void
257 fbclock_getbinuptime(struct bintime *bt)
258 {
259         struct timehands *th;
260         unsigned int gen;
261
262         do {
263                 th = timehands;
264                 gen = th->th_generation;
265                 *bt = th->th_offset;
266         } while (gen == 0 || gen != th->th_generation);
267 }
268
269 void
270 fbclock_getnanouptime(struct timespec *tsp)
271 {
272         struct timehands *th;
273         unsigned int gen;
274
275         do {
276                 th = timehands;
277                 gen = th->th_generation;
278                 bintime2timespec(&th->th_offset, tsp);
279         } while (gen == 0 || gen != th->th_generation);
280 }
281
282 void
283 fbclock_getmicrouptime(struct timeval *tvp)
284 {
285         struct timehands *th;
286         unsigned int gen;
287
288         do {
289                 th = timehands;
290                 gen = th->th_generation;
291                 bintime2timeval(&th->th_offset, tvp);
292         } while (gen == 0 || gen != th->th_generation);
293 }
294
295 void
296 fbclock_getbintime(struct bintime *bt)
297 {
298         struct timehands *th;
299         unsigned int gen;
300
301         do {
302                 th = timehands;
303                 gen = th->th_generation;
304                 *bt = th->th_offset;
305         } while (gen == 0 || gen != th->th_generation);
306         bintime_add(bt, &boottimebin);
307 }
308
309 void
310 fbclock_getnanotime(struct timespec *tsp)
311 {
312         struct timehands *th;
313         unsigned int gen;
314
315         do {
316                 th = timehands;
317                 gen = th->th_generation;
318                 *tsp = th->th_nanotime;
319         } while (gen == 0 || gen != th->th_generation);
320 }
321
322 void
323 fbclock_getmicrotime(struct timeval *tvp)
324 {
325         struct timehands *th;
326         unsigned int gen;
327
328         do {
329                 th = timehands;
330                 gen = th->th_generation;
331                 *tvp = th->th_microtime;
332         } while (gen == 0 || gen != th->th_generation);
333 }
334 #else /* !FFCLOCK */
335 void
336 binuptime(struct bintime *bt)
337 {
338         struct timehands *th;
339         u_int gen;
340
341         do {
342                 th = timehands;
343                 gen = th->th_generation;
344                 *bt = th->th_offset;
345                 bintime_addx(bt, th->th_scale * tc_delta(th));
346         } while (gen == 0 || gen != th->th_generation);
347 }
348
349 void
350 nanouptime(struct timespec *tsp)
351 {
352         struct bintime bt;
353
354         binuptime(&bt);
355         bintime2timespec(&bt, tsp);
356 }
357
358 void
359 microuptime(struct timeval *tvp)
360 {
361         struct bintime bt;
362
363         binuptime(&bt);
364         bintime2timeval(&bt, tvp);
365 }
366
367 void
368 bintime(struct bintime *bt)
369 {
370
371         binuptime(bt);
372         bintime_add(bt, &boottimebin);
373 }
374
375 void
376 nanotime(struct timespec *tsp)
377 {
378         struct bintime bt;
379
380         bintime(&bt);
381         bintime2timespec(&bt, tsp);
382 }
383
384 void
385 microtime(struct timeval *tvp)
386 {
387         struct bintime bt;
388
389         bintime(&bt);
390         bintime2timeval(&bt, tvp);
391 }
392
393 void
394 getbinuptime(struct bintime *bt)
395 {
396         struct timehands *th;
397         u_int gen;
398
399         do {
400                 th = timehands;
401                 gen = th->th_generation;
402                 *bt = th->th_offset;
403         } while (gen == 0 || gen != th->th_generation);
404 }
405
406 void
407 getnanouptime(struct timespec *tsp)
408 {
409         struct timehands *th;
410         u_int gen;
411
412         do {
413                 th = timehands;
414                 gen = th->th_generation;
415                 bintime2timespec(&th->th_offset, tsp);
416         } while (gen == 0 || gen != th->th_generation);
417 }
418
419 void
420 getmicrouptime(struct timeval *tvp)
421 {
422         struct timehands *th;
423         u_int gen;
424
425         do {
426                 th = timehands;
427                 gen = th->th_generation;
428                 bintime2timeval(&th->th_offset, tvp);
429         } while (gen == 0 || gen != th->th_generation);
430 }
431
432 void
433 getbintime(struct bintime *bt)
434 {
435         struct timehands *th;
436         u_int gen;
437
438         do {
439                 th = timehands;
440                 gen = th->th_generation;
441                 *bt = th->th_offset;
442         } while (gen == 0 || gen != th->th_generation);
443         bintime_add(bt, &boottimebin);
444 }
445
446 void
447 getnanotime(struct timespec *tsp)
448 {
449         struct timehands *th;
450         u_int gen;
451
452         do {
453                 th = timehands;
454                 gen = th->th_generation;
455                 *tsp = th->th_nanotime;
456         } while (gen == 0 || gen != th->th_generation);
457 }
458
459 void
460 getmicrotime(struct timeval *tvp)
461 {
462         struct timehands *th;
463         u_int gen;
464
465         do {
466                 th = timehands;
467                 gen = th->th_generation;
468                 *tvp = th->th_microtime;
469         } while (gen == 0 || gen != th->th_generation);
470 }
471 #endif /* FFCLOCK */
472
473 #ifdef FFCLOCK
474 /*
475  * Support for feed-forward synchronization algorithms. This is heavily inspired
476  * by the timehands mechanism but kept independent from it. *_windup() functions
477  * have some connection to avoid accessing the timecounter hardware more than
478  * necessary.
479  */
480
481 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
482 struct ffclock_estimate ffclock_estimate;
483 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
484 uint32_t ffclock_status;                /* Feed-forward clock status. */
485 int8_t ffclock_updated;                 /* New estimates are available. */
486 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
487
488 struct fftimehands {
489         struct ffclock_estimate cest;
490         struct bintime          tick_time;
491         struct bintime          tick_time_lerp;
492         ffcounter               tick_ffcount;
493         uint64_t                period_lerp;
494         volatile uint8_t        gen;
495         struct fftimehands      *next;
496 };
497
498 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
499
500 static struct fftimehands ffth[10];
501 static struct fftimehands *volatile fftimehands = ffth;
502
503 static void
504 ffclock_init(void)
505 {
506         struct fftimehands *cur;
507         struct fftimehands *last;
508
509         memset(ffth, 0, sizeof(ffth));
510
511         last = ffth + NUM_ELEMENTS(ffth) - 1;
512         for (cur = ffth; cur < last; cur++)
513                 cur->next = cur + 1;
514         last->next = ffth;
515
516         ffclock_updated = 0;
517         ffclock_status = FFCLOCK_STA_UNSYNC;
518         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
519 }
520
521 /*
522  * Reset the feed-forward clock estimates. Called from inittodr() to get things
523  * kick started and uses the timecounter nominal frequency as a first period
524  * estimate. Note: this function may be called several time just after boot.
525  * Note: this is the only function that sets the value of boot time for the
526  * monotonic (i.e. uptime) version of the feed-forward clock.
527  */
528 void
529 ffclock_reset_clock(struct timespec *ts)
530 {
531         struct timecounter *tc;
532         struct ffclock_estimate cest;
533
534         tc = timehands->th_counter;
535         memset(&cest, 0, sizeof(struct ffclock_estimate));
536
537         timespec2bintime(ts, &ffclock_boottime);
538         timespec2bintime(ts, &(cest.update_time));
539         ffclock_read_counter(&cest.update_ffcount);
540         cest.leapsec_next = 0;
541         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
542         cest.errb_abs = 0;
543         cest.errb_rate = 0;
544         cest.status = FFCLOCK_STA_UNSYNC;
545         cest.leapsec_total = 0;
546         cest.leapsec = 0;
547
548         mtx_lock(&ffclock_mtx);
549         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
550         ffclock_updated = INT8_MAX;
551         mtx_unlock(&ffclock_mtx);
552
553         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
554             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
555             (unsigned long)ts->tv_nsec);
556 }
557
558 /*
559  * Sub-routine to convert a time interval measured in RAW counter units to time
560  * in seconds stored in bintime format.
561  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
562  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
563  * extra cycles.
564  */
565 static void
566 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
567 {
568         struct bintime bt2;
569         ffcounter delta, delta_max;
570
571         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
572         bintime_clear(bt);
573         do {
574                 if (ffdelta > delta_max)
575                         delta = delta_max;
576                 else
577                         delta = ffdelta;
578                 bt2.sec = 0;
579                 bt2.frac = period;
580                 bintime_mul(&bt2, (unsigned int)delta);
581                 bintime_add(bt, &bt2);
582                 ffdelta -= delta;
583         } while (ffdelta > 0);
584 }
585
586 /*
587  * Update the fftimehands.
588  * Push the tick ffcount and time(s) forward based on current clock estimate.
589  * The conversion from ffcounter to bintime relies on the difference clock
590  * principle, whose accuracy relies on computing small time intervals. If a new
591  * clock estimate has been passed by the synchronisation daemon, make it
592  * current, and compute the linear interpolation for monotonic time if needed.
593  */
594 static void
595 ffclock_windup(unsigned int delta)
596 {
597         struct ffclock_estimate *cest;
598         struct fftimehands *ffth;
599         struct bintime bt, gap_lerp;
600         ffcounter ffdelta;
601         uint64_t frac;
602         unsigned int polling;
603         uint8_t forward_jump, ogen;
604
605         /*
606          * Pick the next timehand, copy current ffclock estimates and move tick
607          * times and counter forward.
608          */
609         forward_jump = 0;
610         ffth = fftimehands->next;
611         ogen = ffth->gen;
612         ffth->gen = 0;
613         cest = &ffth->cest;
614         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
615         ffdelta = (ffcounter)delta;
616         ffth->period_lerp = fftimehands->period_lerp;
617
618         ffth->tick_time = fftimehands->tick_time;
619         ffclock_convert_delta(ffdelta, cest->period, &bt);
620         bintime_add(&ffth->tick_time, &bt);
621
622         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
623         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
624         bintime_add(&ffth->tick_time_lerp, &bt);
625
626         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
627
628         /*
629          * Assess the status of the clock, if the last update is too old, it is
630          * likely the synchronisation daemon is dead and the clock is free
631          * running.
632          */
633         if (ffclock_updated == 0) {
634                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
635                 ffclock_convert_delta(ffdelta, cest->period, &bt);
636                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
637                         ffclock_status |= FFCLOCK_STA_UNSYNC;
638         }
639
640         /*
641          * If available, grab updated clock estimates and make them current.
642          * Recompute time at this tick using the updated estimates. The clock
643          * estimates passed the feed-forward synchronisation daemon may result
644          * in time conversion that is not monotonically increasing (just after
645          * the update). time_lerp is a particular linear interpolation over the
646          * synchronisation algo polling period that ensures monotonicity for the
647          * clock ids requesting it.
648          */
649         if (ffclock_updated > 0) {
650                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
651                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
652                 ffth->tick_time = cest->update_time;
653                 ffclock_convert_delta(ffdelta, cest->period, &bt);
654                 bintime_add(&ffth->tick_time, &bt);
655
656                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
657                 if (ffclock_updated == INT8_MAX)
658                         ffth->tick_time_lerp = ffth->tick_time;
659
660                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
661                         forward_jump = 1;
662                 else
663                         forward_jump = 0;
664
665                 bintime_clear(&gap_lerp);
666                 if (forward_jump) {
667                         gap_lerp = ffth->tick_time;
668                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
669                 } else {
670                         gap_lerp = ffth->tick_time_lerp;
671                         bintime_sub(&gap_lerp, &ffth->tick_time);
672                 }
673
674                 /*
675                  * The reset from the RTC clock may be far from accurate, and
676                  * reducing the gap between real time and interpolated time
677                  * could take a very long time if the interpolated clock insists
678                  * on strict monotonicity. The clock is reset under very strict
679                  * conditions (kernel time is known to be wrong and
680                  * synchronization daemon has been restarted recently.
681                  * ffclock_boottime absorbs the jump to ensure boot time is
682                  * correct and uptime functions stay consistent.
683                  */
684                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
685                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
686                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
687                         if (forward_jump)
688                                 bintime_add(&ffclock_boottime, &gap_lerp);
689                         else
690                                 bintime_sub(&ffclock_boottime, &gap_lerp);
691                         ffth->tick_time_lerp = ffth->tick_time;
692                         bintime_clear(&gap_lerp);
693                 }
694
695                 ffclock_status = cest->status;
696                 ffth->period_lerp = cest->period;
697
698                 /*
699                  * Compute corrected period used for the linear interpolation of
700                  * time. The rate of linear interpolation is capped to 5000PPM
701                  * (5ms/s).
702                  */
703                 if (bintime_isset(&gap_lerp)) {
704                         ffdelta = cest->update_ffcount;
705                         ffdelta -= fftimehands->cest.update_ffcount;
706                         ffclock_convert_delta(ffdelta, cest->period, &bt);
707                         polling = bt.sec;
708                         bt.sec = 0;
709                         bt.frac = 5000000 * (uint64_t)18446744073LL;
710                         bintime_mul(&bt, polling);
711                         if (bintime_cmp(&gap_lerp, &bt, >))
712                                 gap_lerp = bt;
713
714                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
715                         frac = 0;
716                         if (gap_lerp.sec > 0) {
717                                 frac -= 1;
718                                 frac /= ffdelta / gap_lerp.sec;
719                         }
720                         frac += gap_lerp.frac / ffdelta;
721
722                         if (forward_jump)
723                                 ffth->period_lerp += frac;
724                         else
725                                 ffth->period_lerp -= frac;
726                 }
727
728                 ffclock_updated = 0;
729         }
730         if (++ogen == 0)
731                 ogen = 1;
732         ffth->gen = ogen;
733         fftimehands = ffth;
734 }
735
736 /*
737  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
738  * the old and new hardware counter cannot be read simultaneously. tc_windup()
739  * does read the two counters 'back to back', but a few cycles are effectively
740  * lost, and not accumulated in tick_ffcount. This is a fairly radical
741  * operation for a feed-forward synchronization daemon, and it is its job to not
742  * pushing irrelevant data to the kernel. Because there is no locking here,
743  * simply force to ignore pending or next update to give daemon a chance to
744  * realize the counter has changed.
745  */
746 static void
747 ffclock_change_tc(struct timehands *th)
748 {
749         struct fftimehands *ffth;
750         struct ffclock_estimate *cest;
751         struct timecounter *tc;
752         uint8_t ogen;
753
754         tc = th->th_counter;
755         ffth = fftimehands->next;
756         ogen = ffth->gen;
757         ffth->gen = 0;
758
759         cest = &ffth->cest;
760         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
761         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
762         cest->errb_abs = 0;
763         cest->errb_rate = 0;
764         cest->status |= FFCLOCK_STA_UNSYNC;
765
766         ffth->tick_ffcount = fftimehands->tick_ffcount;
767         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
768         ffth->tick_time = fftimehands->tick_time;
769         ffth->period_lerp = cest->period;
770
771         /* Do not lock but ignore next update from synchronization daemon. */
772         ffclock_updated--;
773
774         if (++ogen == 0)
775                 ogen = 1;
776         ffth->gen = ogen;
777         fftimehands = ffth;
778 }
779
780 /*
781  * Retrieve feed-forward counter and time of last kernel tick.
782  */
783 void
784 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
785 {
786         struct fftimehands *ffth;
787         uint8_t gen;
788
789         /*
790          * No locking but check generation has not changed. Also need to make
791          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
792          */
793         do {
794                 ffth = fftimehands;
795                 gen = ffth->gen;
796                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
797                         *bt = ffth->tick_time_lerp;
798                 else
799                         *bt = ffth->tick_time;
800                 *ffcount = ffth->tick_ffcount;
801         } while (gen == 0 || gen != ffth->gen);
802 }
803
804 /*
805  * Absolute clock conversion. Low level function to convert ffcounter to
806  * bintime. The ffcounter is converted using the current ffclock period estimate
807  * or the "interpolated period" to ensure monotonicity.
808  * NOTE: this conversion may have been deferred, and the clock updated since the
809  * hardware counter has been read.
810  */
811 void
812 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
813 {
814         struct fftimehands *ffth;
815         struct bintime bt2;
816         ffcounter ffdelta;
817         uint8_t gen;
818
819         /*
820          * No locking but check generation has not changed. Also need to make
821          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
822          */
823         do {
824                 ffth = fftimehands;
825                 gen = ffth->gen;
826                 if (ffcount > ffth->tick_ffcount)
827                         ffdelta = ffcount - ffth->tick_ffcount;
828                 else
829                         ffdelta = ffth->tick_ffcount - ffcount;
830
831                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
832                         *bt = ffth->tick_time_lerp;
833                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
834                 } else {
835                         *bt = ffth->tick_time;
836                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
837                 }
838
839                 if (ffcount > ffth->tick_ffcount)
840                         bintime_add(bt, &bt2);
841                 else
842                         bintime_sub(bt, &bt2);
843         } while (gen == 0 || gen != ffth->gen);
844 }
845
846 /*
847  * Difference clock conversion.
848  * Low level function to Convert a time interval measured in RAW counter units
849  * into bintime. The difference clock allows measuring small intervals much more
850  * reliably than the absolute clock.
851  */
852 void
853 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
854 {
855         struct fftimehands *ffth;
856         uint8_t gen;
857
858         /* No locking but check generation has not changed. */
859         do {
860                 ffth = fftimehands;
861                 gen = ffth->gen;
862                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
863         } while (gen == 0 || gen != ffth->gen);
864 }
865
866 /*
867  * Access to current ffcounter value.
868  */
869 void
870 ffclock_read_counter(ffcounter *ffcount)
871 {
872         struct timehands *th;
873         struct fftimehands *ffth;
874         unsigned int gen, delta;
875
876         /*
877          * ffclock_windup() called from tc_windup(), safe to rely on
878          * th->th_generation only, for correct delta and ffcounter.
879          */
880         do {
881                 th = timehands;
882                 gen = th->th_generation;
883                 ffth = fftimehands;
884                 delta = tc_delta(th);
885                 *ffcount = ffth->tick_ffcount;
886         } while (gen == 0 || gen != th->th_generation);
887
888         *ffcount += delta;
889 }
890
891 void
892 binuptime(struct bintime *bt)
893 {
894
895         binuptime_fromclock(bt, sysclock_active);
896 }
897
898 void
899 nanouptime(struct timespec *tsp)
900 {
901
902         nanouptime_fromclock(tsp, sysclock_active);
903 }
904
905 void
906 microuptime(struct timeval *tvp)
907 {
908
909         microuptime_fromclock(tvp, sysclock_active);
910 }
911
912 void
913 bintime(struct bintime *bt)
914 {
915
916         bintime_fromclock(bt, sysclock_active);
917 }
918
919 void
920 nanotime(struct timespec *tsp)
921 {
922
923         nanotime_fromclock(tsp, sysclock_active);
924 }
925
926 void
927 microtime(struct timeval *tvp)
928 {
929
930         microtime_fromclock(tvp, sysclock_active);
931 }
932
933 void
934 getbinuptime(struct bintime *bt)
935 {
936
937         getbinuptime_fromclock(bt, sysclock_active);
938 }
939
940 void
941 getnanouptime(struct timespec *tsp)
942 {
943
944         getnanouptime_fromclock(tsp, sysclock_active);
945 }
946
947 void
948 getmicrouptime(struct timeval *tvp)
949 {
950
951         getmicrouptime_fromclock(tvp, sysclock_active);
952 }
953
954 void
955 getbintime(struct bintime *bt)
956 {
957
958         getbintime_fromclock(bt, sysclock_active);
959 }
960
961 void
962 getnanotime(struct timespec *tsp)
963 {
964
965         getnanotime_fromclock(tsp, sysclock_active);
966 }
967
968 void
969 getmicrotime(struct timeval *tvp)
970 {
971
972         getmicrouptime_fromclock(tvp, sysclock_active);
973 }
974
975 #endif /* FFCLOCK */
976
977 /*
978  * This is a clone of getnanotime and used for walltimestamps.
979  * The dtrace_ prefix prevents fbt from creating probes for
980  * it so walltimestamp can be safely used in all fbt probes.
981  */
982 void
983 dtrace_getnanotime(struct timespec *tsp)
984 {
985         struct timehands *th;
986         u_int gen;
987
988         do {
989                 th = timehands;
990                 gen = th->th_generation;
991                 *tsp = th->th_nanotime;
992         } while (gen == 0 || gen != th->th_generation);
993 }
994
995 /*
996  * System clock currently providing time to the system. Modifiable via sysctl
997  * when the FFCLOCK option is defined.
998  */
999 int sysclock_active = SYSCLOCK_FBCK;
1000
1001 /* Internal NTP status and error estimates. */
1002 extern int time_status;
1003 extern long time_esterror;
1004
1005 /*
1006  * Take a snapshot of sysclock data which can be used to compare system clocks
1007  * and generate timestamps after the fact.
1008  */
1009 void
1010 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1011 {
1012         struct fbclock_info *fbi;
1013         struct timehands *th;
1014         struct bintime bt;
1015         unsigned int delta, gen;
1016 #ifdef FFCLOCK
1017         ffcounter ffcount;
1018         struct fftimehands *ffth;
1019         struct ffclock_info *ffi;
1020         struct ffclock_estimate cest;
1021
1022         ffi = &clock_snap->ff_info;
1023 #endif
1024
1025         fbi = &clock_snap->fb_info;
1026         delta = 0;
1027
1028         do {
1029                 th = timehands;
1030                 gen = th->th_generation;
1031                 fbi->th_scale = th->th_scale;
1032                 fbi->tick_time = th->th_offset;
1033 #ifdef FFCLOCK
1034                 ffth = fftimehands;
1035                 ffi->tick_time = ffth->tick_time_lerp;
1036                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1037                 ffi->period = ffth->cest.period;
1038                 ffi->period_lerp = ffth->period_lerp;
1039                 clock_snap->ffcount = ffth->tick_ffcount;
1040                 cest = ffth->cest;
1041 #endif
1042                 if (!fast)
1043                         delta = tc_delta(th);
1044         } while (gen == 0 || gen != th->th_generation);
1045
1046         clock_snap->delta = delta;
1047         clock_snap->sysclock_active = sysclock_active;
1048
1049         /* Record feedback clock status and error. */
1050         clock_snap->fb_info.status = time_status;
1051         /* XXX: Very crude estimate of feedback clock error. */
1052         bt.sec = time_esterror / 1000000;
1053         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1054             (uint64_t)18446744073709ULL;
1055         clock_snap->fb_info.error = bt;
1056
1057 #ifdef FFCLOCK
1058         if (!fast)
1059                 clock_snap->ffcount += delta;
1060
1061         /* Record feed-forward clock leap second adjustment. */
1062         ffi->leapsec_adjustment = cest.leapsec_total;
1063         if (clock_snap->ffcount > cest.leapsec_next)
1064                 ffi->leapsec_adjustment -= cest.leapsec;
1065
1066         /* Record feed-forward clock status and error. */
1067         clock_snap->ff_info.status = cest.status;
1068         ffcount = clock_snap->ffcount - cest.update_ffcount;
1069         ffclock_convert_delta(ffcount, cest.period, &bt);
1070         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1071         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1072         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1073         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1074         clock_snap->ff_info.error = bt;
1075 #endif
1076 }
1077
1078 /*
1079  * Convert a sysclock snapshot into a struct bintime based on the specified
1080  * clock source and flags.
1081  */
1082 int
1083 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1084     int whichclock, uint32_t flags)
1085 {
1086 #ifdef FFCLOCK
1087         struct bintime bt2;
1088         uint64_t period;
1089 #endif
1090
1091         switch (whichclock) {
1092         case SYSCLOCK_FBCK:
1093                 *bt = cs->fb_info.tick_time;
1094
1095                 /* If snapshot was created with !fast, delta will be >0. */
1096                 if (cs->delta > 0)
1097                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1098
1099                 if ((flags & FBCLOCK_UPTIME) == 0)
1100                         bintime_add(bt, &boottimebin);
1101                 break;
1102 #ifdef FFCLOCK
1103         case SYSCLOCK_FFWD:
1104                 if (flags & FFCLOCK_LERP) {
1105                         *bt = cs->ff_info.tick_time_lerp;
1106                         period = cs->ff_info.period_lerp;
1107                 } else {
1108                         *bt = cs->ff_info.tick_time;
1109                         period = cs->ff_info.period;
1110                 }
1111
1112                 /* If snapshot was created with !fast, delta will be >0. */
1113                 if (cs->delta > 0) {
1114                         ffclock_convert_delta(cs->delta, period, &bt2);
1115                         bintime_add(bt, &bt2);
1116                 }
1117
1118                 /* Leap second adjustment. */
1119                 if (flags & FFCLOCK_LEAPSEC)
1120                         bt->sec -= cs->ff_info.leapsec_adjustment;
1121
1122                 /* Boot time adjustment, for uptime/monotonic clocks. */
1123                 if (flags & FFCLOCK_UPTIME)
1124                         bintime_sub(bt, &ffclock_boottime);
1125                 break;
1126 #endif
1127         default:
1128                 return (EINVAL);
1129                 break;
1130         }
1131
1132         return (0);
1133 }
1134
1135 /*
1136  * Initialize a new timecounter and possibly use it.
1137  */
1138 void
1139 tc_init(struct timecounter *tc)
1140 {
1141         u_int u;
1142         struct sysctl_oid *tc_root;
1143
1144         u = tc->tc_frequency / tc->tc_counter_mask;
1145         /* XXX: We need some margin here, 10% is a guess */
1146         u *= 11;
1147         u /= 10;
1148         if (u > hz && tc->tc_quality >= 0) {
1149                 tc->tc_quality = -2000;
1150                 if (bootverbose) {
1151                         printf("Timecounter \"%s\" frequency %ju Hz",
1152                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1153                         printf(" -- Insufficient hz, needs at least %u\n", u);
1154                 }
1155         } else if (tc->tc_quality >= 0 || bootverbose) {
1156                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1157                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1158                     tc->tc_quality);
1159         }
1160
1161         tc->tc_next = timecounters;
1162         timecounters = tc;
1163         /*
1164          * Set up sysctl tree for this counter.
1165          */
1166         tc_root = SYSCTL_ADD_NODE(NULL,
1167             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1168             CTLFLAG_RW, 0, "timecounter description");
1169         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1170             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1171             "mask for implemented bits");
1172         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1173             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1174             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1175         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1176             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1177              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1178         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1179             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1180             "goodness of time counter");
1181         /*
1182          * Never automatically use a timecounter with negative quality.
1183          * Even though we run on the dummy counter, switching here may be
1184          * worse since this timecounter may not be monotonous.
1185          */
1186         if (tc->tc_quality < 0)
1187                 return;
1188         if (tc->tc_quality < timecounter->tc_quality)
1189                 return;
1190         if (tc->tc_quality == timecounter->tc_quality &&
1191             tc->tc_frequency < timecounter->tc_frequency)
1192                 return;
1193         (void)tc->tc_get_timecount(tc);
1194         (void)tc->tc_get_timecount(tc);
1195         timecounter = tc;
1196 }
1197
1198 /* Report the frequency of the current timecounter. */
1199 uint64_t
1200 tc_getfrequency(void)
1201 {
1202
1203         return (timehands->th_counter->tc_frequency);
1204 }
1205
1206 /*
1207  * Step our concept of UTC.  This is done by modifying our estimate of
1208  * when we booted.
1209  * XXX: not locked.
1210  */
1211 void
1212 tc_setclock(struct timespec *ts)
1213 {
1214         struct timespec tbef, taft;
1215         struct bintime bt, bt2;
1216
1217         cpu_tick_calibrate(1);
1218         nanotime(&tbef);
1219         timespec2bintime(ts, &bt);
1220         binuptime(&bt2);
1221         bintime_sub(&bt, &bt2);
1222         bintime_add(&bt2, &boottimebin);
1223         boottimebin = bt;
1224         bintime2timeval(&bt, &boottime);
1225
1226         /* XXX fiddle all the little crinkly bits around the fiords... */
1227         tc_windup();
1228         nanotime(&taft);
1229         if (timestepwarnings) {
1230                 log(LOG_INFO,
1231                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1232                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1233                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1234                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1235         }
1236         cpu_tick_calibrate(1);
1237 }
1238
1239 /*
1240  * Initialize the next struct timehands in the ring and make
1241  * it the active timehands.  Along the way we might switch to a different
1242  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1243  */
1244 static void
1245 tc_windup(void)
1246 {
1247         struct bintime bt;
1248         struct timehands *th, *tho;
1249         uint64_t scale;
1250         u_int delta, ncount, ogen;
1251         int i;
1252         time_t t;
1253
1254         /*
1255          * Make the next timehands a copy of the current one, but do not
1256          * overwrite the generation or next pointer.  While we update
1257          * the contents, the generation must be zero.
1258          */
1259         tho = timehands;
1260         th = tho->th_next;
1261         ogen = th->th_generation;
1262         th->th_generation = 0;
1263         bcopy(tho, th, offsetof(struct timehands, th_generation));
1264
1265         /*
1266          * Capture a timecounter delta on the current timecounter and if
1267          * changing timecounters, a counter value from the new timecounter.
1268          * Update the offset fields accordingly.
1269          */
1270         delta = tc_delta(th);
1271         if (th->th_counter != timecounter)
1272                 ncount = timecounter->tc_get_timecount(timecounter);
1273         else
1274                 ncount = 0;
1275 #ifdef FFCLOCK
1276         ffclock_windup(delta);
1277 #endif
1278         th->th_offset_count += delta;
1279         th->th_offset_count &= th->th_counter->tc_counter_mask;
1280         while (delta > th->th_counter->tc_frequency) {
1281                 /* Eat complete unadjusted seconds. */
1282                 delta -= th->th_counter->tc_frequency;
1283                 th->th_offset.sec++;
1284         }
1285         if ((delta > th->th_counter->tc_frequency / 2) &&
1286             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1287                 /* The product th_scale * delta just barely overflows. */
1288                 th->th_offset.sec++;
1289         }
1290         bintime_addx(&th->th_offset, th->th_scale * delta);
1291
1292         /*
1293          * Hardware latching timecounters may not generate interrupts on
1294          * PPS events, so instead we poll them.  There is a finite risk that
1295          * the hardware might capture a count which is later than the one we
1296          * got above, and therefore possibly in the next NTP second which might
1297          * have a different rate than the current NTP second.  It doesn't
1298          * matter in practice.
1299          */
1300         if (tho->th_counter->tc_poll_pps)
1301                 tho->th_counter->tc_poll_pps(tho->th_counter);
1302
1303         /*
1304          * Deal with NTP second processing.  The for loop normally
1305          * iterates at most once, but in extreme situations it might
1306          * keep NTP sane if timeouts are not run for several seconds.
1307          * At boot, the time step can be large when the TOD hardware
1308          * has been read, so on really large steps, we call
1309          * ntp_update_second only twice.  We need to call it twice in
1310          * case we missed a leap second.
1311          */
1312         bt = th->th_offset;
1313         bintime_add(&bt, &boottimebin);
1314         i = bt.sec - tho->th_microtime.tv_sec;
1315         if (i > LARGE_STEP)
1316                 i = 2;
1317         for (; i > 0; i--) {
1318                 t = bt.sec;
1319                 ntp_update_second(&th->th_adjustment, &bt.sec);
1320                 if (bt.sec != t)
1321                         boottimebin.sec += bt.sec - t;
1322         }
1323         /* Update the UTC timestamps used by the get*() functions. */
1324         /* XXX shouldn't do this here.  Should force non-`get' versions. */
1325         bintime2timeval(&bt, &th->th_microtime);
1326         bintime2timespec(&bt, &th->th_nanotime);
1327
1328         /* Now is a good time to change timecounters. */
1329         if (th->th_counter != timecounter) {
1330 #ifndef __arm__
1331                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1332                         cpu_disable_c2_sleep++;
1333                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1334                         cpu_disable_c2_sleep--;
1335 #endif
1336                 th->th_counter = timecounter;
1337                 th->th_offset_count = ncount;
1338                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1339                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1340 #ifdef FFCLOCK
1341                 ffclock_change_tc(th);
1342 #endif
1343         }
1344
1345         /*-
1346          * Recalculate the scaling factor.  We want the number of 1/2^64
1347          * fractions of a second per period of the hardware counter, taking
1348          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1349          * processing provides us with.
1350          *
1351          * The th_adjustment is nanoseconds per second with 32 bit binary
1352          * fraction and we want 64 bit binary fraction of second:
1353          *
1354          *       x = a * 2^32 / 10^9 = a * 4.294967296
1355          *
1356          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1357          * we can only multiply by about 850 without overflowing, that
1358          * leaves no suitably precise fractions for multiply before divide.
1359          *
1360          * Divide before multiply with a fraction of 2199/512 results in a
1361          * systematic undercompensation of 10PPM of th_adjustment.  On a
1362          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1363          *
1364          * We happily sacrifice the lowest of the 64 bits of our result
1365          * to the goddess of code clarity.
1366          *
1367          */
1368         scale = (uint64_t)1 << 63;
1369         scale += (th->th_adjustment / 1024) * 2199;
1370         scale /= th->th_counter->tc_frequency;
1371         th->th_scale = scale * 2;
1372
1373         /*
1374          * Now that the struct timehands is again consistent, set the new
1375          * generation number, making sure to not make it zero.
1376          */
1377         if (++ogen == 0)
1378                 ogen = 1;
1379         th->th_generation = ogen;
1380
1381         /* Go live with the new struct timehands. */
1382 #ifdef FFCLOCK
1383         switch (sysclock_active) {
1384         case SYSCLOCK_FBCK:
1385 #endif
1386                 time_second = th->th_microtime.tv_sec;
1387                 time_uptime = th->th_offset.sec;
1388 #ifdef FFCLOCK
1389                 break;
1390         case SYSCLOCK_FFWD:
1391                 time_second = fftimehands->tick_time_lerp.sec;
1392                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1393                 break;
1394         }
1395 #endif
1396
1397         timehands = th;
1398         timekeep_push_vdso();
1399 }
1400
1401 /* Report or change the active timecounter hardware. */
1402 static int
1403 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1404 {
1405         char newname[32];
1406         struct timecounter *newtc, *tc;
1407         int error;
1408
1409         tc = timecounter;
1410         strlcpy(newname, tc->tc_name, sizeof(newname));
1411
1412         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1413         if (error != 0 || req->newptr == NULL ||
1414             strcmp(newname, tc->tc_name) == 0)
1415                 return (error);
1416         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1417                 if (strcmp(newname, newtc->tc_name) != 0)
1418                         continue;
1419
1420                 /* Warm up new timecounter. */
1421                 (void)newtc->tc_get_timecount(newtc);
1422                 (void)newtc->tc_get_timecount(newtc);
1423
1424                 timecounter = newtc;
1425
1426                 /*
1427                  * The vdso timehands update is deferred until the next
1428                  * 'tc_windup()'.
1429                  *
1430                  * This is prudent given that 'timekeep_push_vdso()' does not
1431                  * use any locking and that it can be called in hard interrupt
1432                  * context via 'tc_windup()'.
1433                  */
1434                 return (0);
1435         }
1436         return (EINVAL);
1437 }
1438
1439 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1440     0, 0, sysctl_kern_timecounter_hardware, "A",
1441     "Timecounter hardware selected");
1442
1443
1444 /* Report or change the active timecounter hardware. */
1445 static int
1446 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1447 {
1448         char buf[32], *spc;
1449         struct timecounter *tc;
1450         int error;
1451
1452         spc = "";
1453         error = 0;
1454         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
1455                 sprintf(buf, "%s%s(%d)",
1456                     spc, tc->tc_name, tc->tc_quality);
1457                 error = SYSCTL_OUT(req, buf, strlen(buf));
1458                 spc = " ";
1459         }
1460         return (error);
1461 }
1462
1463 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1464     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1465
1466 /*
1467  * RFC 2783 PPS-API implementation.
1468  */
1469
1470 static int
1471 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1472 {
1473         int err, timo;
1474         pps_seq_t aseq, cseq;
1475         struct timeval tv;
1476
1477         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1478                 return (EINVAL);
1479
1480         /*
1481          * If no timeout is requested, immediately return whatever values were
1482          * most recently captured.  If timeout seconds is -1, that's a request
1483          * to block without a timeout.  WITNESS won't let us sleep forever
1484          * without a lock (we really don't need a lock), so just repeatedly
1485          * sleep a long time.
1486          */
1487         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1488                 if (fapi->timeout.tv_sec == -1)
1489                         timo = 0x7fffffff;
1490                 else {
1491                         tv.tv_sec = fapi->timeout.tv_sec;
1492                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1493                         timo = tvtohz(&tv);
1494                 }
1495                 aseq = pps->ppsinfo.assert_sequence;
1496                 cseq = pps->ppsinfo.clear_sequence;
1497                 while (aseq == pps->ppsinfo.assert_sequence &&
1498                     cseq == pps->ppsinfo.clear_sequence) {
1499                         if (pps->mtx != NULL)
1500                                 err = msleep(pps, pps->mtx, PCATCH, "ppsfch", timo);
1501                         else
1502                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1503                         if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
1504                                 continue;
1505                         } else if (err != 0) {
1506                                 return (err);
1507                         }
1508                 }
1509         }
1510
1511         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1512         fapi->pps_info_buf = pps->ppsinfo;
1513
1514         return (0);
1515 }
1516
1517 int
1518 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1519 {
1520         pps_params_t *app;
1521         struct pps_fetch_args *fapi;
1522 #ifdef FFCLOCK
1523         struct pps_fetch_ffc_args *fapi_ffc;
1524 #endif
1525 #ifdef PPS_SYNC
1526         struct pps_kcbind_args *kapi;
1527 #endif
1528
1529         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1530         switch (cmd) {
1531         case PPS_IOC_CREATE:
1532                 return (0);
1533         case PPS_IOC_DESTROY:
1534                 return (0);
1535         case PPS_IOC_SETPARAMS:
1536                 app = (pps_params_t *)data;
1537                 if (app->mode & ~pps->ppscap)
1538                         return (EINVAL);
1539 #ifdef FFCLOCK
1540                 /* Ensure only a single clock is selected for ffc timestamp. */
1541                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1542                         return (EINVAL);
1543 #endif
1544                 pps->ppsparam = *app;
1545                 return (0);
1546         case PPS_IOC_GETPARAMS:
1547                 app = (pps_params_t *)data;
1548                 *app = pps->ppsparam;
1549                 app->api_version = PPS_API_VERS_1;
1550                 return (0);
1551         case PPS_IOC_GETCAP:
1552                 *(int*)data = pps->ppscap;
1553                 return (0);
1554         case PPS_IOC_FETCH:
1555                 fapi = (struct pps_fetch_args *)data;
1556                 return (pps_fetch(fapi, pps));
1557 #ifdef FFCLOCK
1558         case PPS_IOC_FETCH_FFCOUNTER:
1559                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1560                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1561                     PPS_TSFMT_TSPEC)
1562                         return (EINVAL);
1563                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1564                         return (EOPNOTSUPP);
1565                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1566                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1567                 /* Overwrite timestamps if feedback clock selected. */
1568                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1569                 case PPS_TSCLK_FBCK:
1570                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1571                             pps->ppsinfo.assert_timestamp;
1572                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1573                             pps->ppsinfo.clear_timestamp;
1574                         break;
1575                 case PPS_TSCLK_FFWD:
1576                         break;
1577                 default:
1578                         break;
1579                 }
1580                 return (0);
1581 #endif /* FFCLOCK */
1582         case PPS_IOC_KCBIND:
1583 #ifdef PPS_SYNC
1584                 kapi = (struct pps_kcbind_args *)data;
1585                 /* XXX Only root should be able to do this */
1586                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1587                         return (EINVAL);
1588                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1589                         return (EINVAL);
1590                 if (kapi->edge & ~pps->ppscap)
1591                         return (EINVAL);
1592                 pps->kcmode = kapi->edge;
1593                 return (0);
1594 #else
1595                 return (EOPNOTSUPP);
1596 #endif
1597         default:
1598                 return (ENOIOCTL);
1599         }
1600 }
1601
1602 void
1603 pps_init(struct pps_state *pps)
1604 {
1605         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1606         if (pps->ppscap & PPS_CAPTUREASSERT)
1607                 pps->ppscap |= PPS_OFFSETASSERT;
1608         if (pps->ppscap & PPS_CAPTURECLEAR)
1609                 pps->ppscap |= PPS_OFFSETCLEAR;
1610 #ifdef FFCLOCK
1611         pps->ppscap |= PPS_TSCLK_MASK;
1612 #endif
1613 }
1614
1615 void
1616 pps_capture(struct pps_state *pps)
1617 {
1618         struct timehands *th;
1619
1620         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1621         th = timehands;
1622         pps->capgen = th->th_generation;
1623         pps->capth = th;
1624 #ifdef FFCLOCK
1625         pps->capffth = fftimehands;
1626 #endif
1627         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1628         if (pps->capgen != th->th_generation)
1629                 pps->capgen = 0;
1630 }
1631
1632 void
1633 pps_event(struct pps_state *pps, int event)
1634 {
1635         struct bintime bt;
1636         struct timespec ts, *tsp, *osp;
1637         u_int tcount, *pcount;
1638         int foff, fhard;
1639         pps_seq_t *pseq;
1640 #ifdef FFCLOCK
1641         struct timespec *tsp_ffc;
1642         pps_seq_t *pseq_ffc;
1643         ffcounter *ffcount;
1644 #endif
1645
1646         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1647         /* If the timecounter was wound up underneath us, bail out. */
1648         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
1649                 return;
1650
1651         /* Things would be easier with arrays. */
1652         if (event == PPS_CAPTUREASSERT) {
1653                 tsp = &pps->ppsinfo.assert_timestamp;
1654                 osp = &pps->ppsparam.assert_offset;
1655                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1656                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1657                 pcount = &pps->ppscount[0];
1658                 pseq = &pps->ppsinfo.assert_sequence;
1659 #ifdef FFCLOCK
1660                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1661                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1662                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1663 #endif
1664         } else {
1665                 tsp = &pps->ppsinfo.clear_timestamp;
1666                 osp = &pps->ppsparam.clear_offset;
1667                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1668                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1669                 pcount = &pps->ppscount[1];
1670                 pseq = &pps->ppsinfo.clear_sequence;
1671 #ifdef FFCLOCK
1672                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1673                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1674                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1675 #endif
1676         }
1677
1678         /*
1679          * If the timecounter changed, we cannot compare the count values, so
1680          * we have to drop the rest of the PPS-stuff until the next event.
1681          */
1682         if (pps->ppstc != pps->capth->th_counter) {
1683                 pps->ppstc = pps->capth->th_counter;
1684                 *pcount = pps->capcount;
1685                 pps->ppscount[2] = pps->capcount;
1686                 return;
1687         }
1688
1689         /* Convert the count to a timespec. */
1690         tcount = pps->capcount - pps->capth->th_offset_count;
1691         tcount &= pps->capth->th_counter->tc_counter_mask;
1692         bt = pps->capth->th_offset;
1693         bintime_addx(&bt, pps->capth->th_scale * tcount);
1694         bintime_add(&bt, &boottimebin);
1695         bintime2timespec(&bt, &ts);
1696
1697         /* If the timecounter was wound up underneath us, bail out. */
1698         if (pps->capgen != pps->capth->th_generation)
1699                 return;
1700
1701         *pcount = pps->capcount;
1702         (*pseq)++;
1703         *tsp = ts;
1704
1705         if (foff) {
1706                 timespecadd(tsp, osp);
1707                 if (tsp->tv_nsec < 0) {
1708                         tsp->tv_nsec += 1000000000;
1709                         tsp->tv_sec -= 1;
1710                 }
1711         }
1712
1713 #ifdef FFCLOCK
1714         *ffcount = pps->capffth->tick_ffcount + tcount;
1715         bt = pps->capffth->tick_time;
1716         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1717         bintime_add(&bt, &pps->capffth->tick_time);
1718         bintime2timespec(&bt, &ts);
1719         (*pseq_ffc)++;
1720         *tsp_ffc = ts;
1721 #endif
1722
1723 #ifdef PPS_SYNC
1724         if (fhard) {
1725                 uint64_t scale;
1726
1727                 /*
1728                  * Feed the NTP PLL/FLL.
1729                  * The FLL wants to know how many (hardware) nanoseconds
1730                  * elapsed since the previous event.
1731                  */
1732                 tcount = pps->capcount - pps->ppscount[2];
1733                 pps->ppscount[2] = pps->capcount;
1734                 tcount &= pps->capth->th_counter->tc_counter_mask;
1735                 scale = (uint64_t)1 << 63;
1736                 scale /= pps->capth->th_counter->tc_frequency;
1737                 scale *= 2;
1738                 bt.sec = 0;
1739                 bt.frac = 0;
1740                 bintime_addx(&bt, scale * tcount);
1741                 bintime2timespec(&bt, &ts);
1742                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1743         }
1744 #endif
1745
1746         /* Wakeup anyone sleeping in pps_fetch().  */
1747         wakeup(pps);
1748 }
1749
1750 /*
1751  * Timecounters need to be updated every so often to prevent the hardware
1752  * counter from overflowing.  Updating also recalculates the cached values
1753  * used by the get*() family of functions, so their precision depends on
1754  * the update frequency.
1755  */
1756
1757 static int tc_tick;
1758 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1759     "Approximate number of hardclock ticks in a millisecond");
1760
1761 void
1762 tc_ticktock(int cnt)
1763 {
1764         static int count;
1765
1766         count += cnt;
1767         if (count < tc_tick)
1768                 return;
1769         count = 0;
1770         tc_windup();
1771 }
1772
1773 static void __inline
1774 tc_adjprecision(void)
1775 {
1776         int t;
1777
1778         if (tc_timepercentage > 0) {
1779                 t = (99 + tc_timepercentage) / tc_timepercentage;
1780                 tc_precexp = fls(t + (t >> 1)) - 1;
1781                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1782                 FREQ2BT(hz, &bt_tickthreshold);
1783                 bintime_shift(&bt_timethreshold, tc_precexp);
1784                 bintime_shift(&bt_tickthreshold, tc_precexp);
1785         } else {
1786                 tc_precexp = 31;
1787                 bt_timethreshold.sec = INT_MAX;
1788                 bt_timethreshold.frac = ~(uint64_t)0;
1789                 bt_tickthreshold = bt_timethreshold;
1790         }
1791         sbt_timethreshold = bttosbt(bt_timethreshold);
1792         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1793 }
1794
1795 static int
1796 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1797 {
1798         int error, val;
1799
1800         val = tc_timepercentage;
1801         error = sysctl_handle_int(oidp, &val, 0, req);
1802         if (error != 0 || req->newptr == NULL)
1803                 return (error);
1804         tc_timepercentage = val;
1805         if (cold)
1806                 goto done;
1807         tc_adjprecision();
1808 done:
1809         return (0);
1810 }
1811
1812 static void
1813 inittimecounter(void *dummy)
1814 {
1815         u_int p;
1816         int tick_rate;
1817
1818         /*
1819          * Set the initial timeout to
1820          * max(1, <approx. number of hardclock ticks in a millisecond>).
1821          * People should probably not use the sysctl to set the timeout
1822          * to smaller than its inital value, since that value is the
1823          * smallest reasonable one.  If they want better timestamps they
1824          * should use the non-"get"* functions.
1825          */
1826         if (hz > 1000)
1827                 tc_tick = (hz + 500) / 1000;
1828         else
1829                 tc_tick = 1;
1830         tc_adjprecision();
1831         FREQ2BT(hz, &tick_bt);
1832         tick_sbt = bttosbt(tick_bt);
1833         tick_rate = hz / tc_tick;
1834         FREQ2BT(tick_rate, &tc_tick_bt);
1835         tc_tick_sbt = bttosbt(tc_tick_bt);
1836         p = (tc_tick * 1000000) / hz;
1837         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1838
1839 #ifdef FFCLOCK
1840         ffclock_init();
1841 #endif
1842         /* warm up new timecounter (again) and get rolling. */
1843         (void)timecounter->tc_get_timecount(timecounter);
1844         (void)timecounter->tc_get_timecount(timecounter);
1845         tc_windup();
1846 }
1847
1848 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1849
1850 /* Cpu tick handling -------------------------------------------------*/
1851
1852 static int cpu_tick_variable;
1853 static uint64_t cpu_tick_frequency;
1854
1855 static uint64_t
1856 tc_cpu_ticks(void)
1857 {
1858         static uint64_t base;
1859         static unsigned last;
1860         unsigned u;
1861         struct timecounter *tc;
1862
1863         tc = timehands->th_counter;
1864         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1865         if (u < last)
1866                 base += (uint64_t)tc->tc_counter_mask + 1;
1867         last = u;
1868         return (u + base);
1869 }
1870
1871 void
1872 cpu_tick_calibration(void)
1873 {
1874         static time_t last_calib;
1875
1876         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1877                 cpu_tick_calibrate(0);
1878                 last_calib = time_uptime;
1879         }
1880 }
1881
1882 /*
1883  * This function gets called every 16 seconds on only one designated
1884  * CPU in the system from hardclock() via cpu_tick_calibration()().
1885  *
1886  * Whenever the real time clock is stepped we get called with reset=1
1887  * to make sure we handle suspend/resume and similar events correctly.
1888  */
1889
1890 static void
1891 cpu_tick_calibrate(int reset)
1892 {
1893         static uint64_t c_last;
1894         uint64_t c_this, c_delta;
1895         static struct bintime  t_last;
1896         struct bintime t_this, t_delta;
1897         uint32_t divi;
1898
1899         if (reset) {
1900                 /* The clock was stepped, abort & reset */
1901                 t_last.sec = 0;
1902                 return;
1903         }
1904
1905         /* we don't calibrate fixed rate cputicks */
1906         if (!cpu_tick_variable)
1907                 return;
1908
1909         getbinuptime(&t_this);
1910         c_this = cpu_ticks();
1911         if (t_last.sec != 0) {
1912                 c_delta = c_this - c_last;
1913                 t_delta = t_this;
1914                 bintime_sub(&t_delta, &t_last);
1915                 /*
1916                  * Headroom:
1917                  *      2^(64-20) / 16[s] =
1918                  *      2^(44) / 16[s] =
1919                  *      17.592.186.044.416 / 16 =
1920                  *      1.099.511.627.776 [Hz]
1921                  */
1922                 divi = t_delta.sec << 20;
1923                 divi |= t_delta.frac >> (64 - 20);
1924                 c_delta <<= 20;
1925                 c_delta /= divi;
1926                 if (c_delta > cpu_tick_frequency) {
1927                         if (0 && bootverbose)
1928                                 printf("cpu_tick increased to %ju Hz\n",
1929                                     c_delta);
1930                         cpu_tick_frequency = c_delta;
1931                 }
1932         }
1933         c_last = c_this;
1934         t_last = t_this;
1935 }
1936
1937 void
1938 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
1939 {
1940
1941         if (func == NULL) {
1942                 cpu_ticks = tc_cpu_ticks;
1943         } else {
1944                 cpu_tick_frequency = freq;
1945                 cpu_tick_variable = var;
1946                 cpu_ticks = func;
1947         }
1948 }
1949
1950 uint64_t
1951 cpu_tickrate(void)
1952 {
1953
1954         if (cpu_ticks == tc_cpu_ticks) 
1955                 return (tc_getfrequency());
1956         return (cpu_tick_frequency);
1957 }
1958
1959 /*
1960  * We need to be slightly careful converting cputicks to microseconds.
1961  * There is plenty of margin in 64 bits of microseconds (half a million
1962  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
1963  * before divide conversion (to retain precision) we find that the
1964  * margin shrinks to 1.5 hours (one millionth of 146y).
1965  * With a three prong approach we never lose significant bits, no
1966  * matter what the cputick rate and length of timeinterval is.
1967  */
1968
1969 uint64_t
1970 cputick2usec(uint64_t tick)
1971 {
1972
1973         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
1974                 return (tick / (cpu_tickrate() / 1000000LL));
1975         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
1976                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
1977         else
1978                 return ((tick * 1000000LL) / cpu_tickrate());
1979 }
1980
1981 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
1982
1983 static int vdso_th_enable = 1;
1984 static int
1985 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
1986 {
1987         int old_vdso_th_enable, error;
1988
1989         old_vdso_th_enable = vdso_th_enable;
1990         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
1991         if (error != 0)
1992                 return (error);
1993         vdso_th_enable = old_vdso_th_enable;
1994         return (0);
1995 }
1996 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
1997     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1998     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
1999
2000 uint32_t
2001 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2002 {
2003         struct timehands *th;
2004         uint32_t enabled;
2005
2006         th = timehands;
2007         vdso_th->th_algo = VDSO_TH_ALGO_1;
2008         vdso_th->th_scale = th->th_scale;
2009         vdso_th->th_offset_count = th->th_offset_count;
2010         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2011         vdso_th->th_offset = th->th_offset;
2012         vdso_th->th_boottime = boottimebin;
2013         enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter);
2014         if (!vdso_th_enable)
2015                 enabled = 0;
2016         return (enabled);
2017 }
2018
2019 #ifdef COMPAT_FREEBSD32
2020 uint32_t
2021 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2022 {
2023         struct timehands *th;
2024         uint32_t enabled;
2025
2026         th = timehands;
2027         vdso_th32->th_algo = VDSO_TH_ALGO_1;
2028         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2029         vdso_th32->th_offset_count = th->th_offset_count;
2030         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2031         vdso_th32->th_offset.sec = th->th_offset.sec;
2032         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2033         vdso_th32->th_boottime.sec = boottimebin.sec;
2034         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
2035         enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter);
2036         if (!vdso_th_enable)
2037                 enabled = 0;
2038         return (enabled);
2039 }
2040 #endif