]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
vtruncbuf: add a comment explaining the purpose of the loop
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Julien Ridoux at the University
14  * of Melbourne under sponsorship from the FreeBSD Foundation.
15  *
16  * Portions of this software were developed by Konstantin Belousov
17  * under sponsorship from the FreeBSD Foundation.
18  */
19
20 #include <sys/cdefs.h>
21 #include "opt_ntp.h"
22 #include "opt_ffclock.h"
23
24 #include <sys/param.h>
25 #include <sys/kernel.h>
26 #include <sys/limits.h>
27 #include <sys/lock.h>
28 #include <sys/mutex.h>
29 #include <sys/proc.h>
30 #include <sys/sbuf.h>
31 #include <sys/sleepqueue.h>
32 #include <sys/sysctl.h>
33 #include <sys/syslog.h>
34 #include <sys/systm.h>
35 #include <sys/timeffc.h>
36 #include <sys/timepps.h>
37 #include <sys/timetc.h>
38 #include <sys/timex.h>
39 #include <sys/vdso.h>
40
41 /*
42  * A large step happens on boot.  This constant detects such steps.
43  * It is relatively small so that ntp_update_second gets called enough
44  * in the typical 'missed a couple of seconds' case, but doesn't loop
45  * forever when the time step is large.
46  */
47 #define LARGE_STEP      200
48
49 /*
50  * Implement a dummy timecounter which we can use until we get a real one
51  * in the air.  This allows the console and other early stuff to use
52  * time services.
53  */
54
55 static u_int
56 dummy_get_timecount(struct timecounter *tc)
57 {
58         static u_int now;
59
60         return (++now);
61 }
62
63 static struct timecounter dummy_timecounter = {
64         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
65 };
66
67 struct timehands {
68         /* These fields must be initialized by the driver. */
69         struct timecounter      *th_counter;
70         int64_t                 th_adjustment;
71         uint64_t                th_scale;
72         u_int                   th_large_delta;
73         u_int                   th_offset_count;
74         struct bintime          th_offset;
75         struct bintime          th_bintime;
76         struct timeval          th_microtime;
77         struct timespec         th_nanotime;
78         struct bintime          th_boottime;
79         /* Fields not to be copied in tc_windup start with th_generation. */
80         u_int                   th_generation;
81         struct timehands        *th_next;
82 };
83
84 static struct timehands ths[16] = {
85     [0] =  {
86         .th_counter = &dummy_timecounter,
87         .th_scale = (uint64_t)-1 / 1000000,
88         .th_large_delta = 1000000,
89         .th_offset = { .sec = 1 },
90         .th_generation = 1,
91     },
92 };
93
94 static struct timehands *volatile timehands = &ths[0];
95 struct timecounter *timecounter = &dummy_timecounter;
96 static struct timecounter *timecounters = &dummy_timecounter;
97
98 /* Mutex to protect the timecounter list. */
99 static struct mtx tc_lock;
100
101 int tc_min_ticktock_freq = 1;
102
103 volatile time_t time_second = 1;
104 volatile time_t time_uptime = 1;
105
106 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
107 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime,
108     CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
109     sysctl_kern_boottime, "S,timeval",
110     "System boottime");
111
112 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
113     "");
114 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc,
115     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
116     "");
117
118 static int timestepwarnings;
119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RWTUN,
120     &timestepwarnings, 0, "Log time steps");
121
122 static int timehands_count = 2;
123 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
124     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
125     &timehands_count, 0, "Count of timehands in rotation");
126
127 struct bintime bt_timethreshold;
128 struct bintime bt_tickthreshold;
129 sbintime_t sbt_timethreshold;
130 sbintime_t sbt_tickthreshold;
131 struct bintime tc_tick_bt;
132 sbintime_t tc_tick_sbt;
133 int tc_precexp;
134 int tc_timepercentage = TC_DEFAULTPERC;
135 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
136 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
137     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
138     sysctl_kern_timecounter_adjprecision, "I",
139     "Allowed time interval deviation in percents");
140
141 volatile int rtc_generation = 1;
142
143 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
144 static char tc_from_tunable[16];
145
146 static void tc_windup(struct bintime *new_boottimebin);
147 static void cpu_tick_calibrate(int);
148
149 void dtrace_getnanotime(struct timespec *tsp);
150 void dtrace_getnanouptime(struct timespec *tsp);
151
152 static int
153 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
154 {
155         struct timeval boottime;
156
157         getboottime(&boottime);
158
159 /* i386 is the only arch which uses a 32bits time_t */
160 #ifdef __amd64__
161 #ifdef SCTL_MASK32
162         int tv[2];
163
164         if (req->flags & SCTL_MASK32) {
165                 tv[0] = boottime.tv_sec;
166                 tv[1] = boottime.tv_usec;
167                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
168         }
169 #endif
170 #endif
171         return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
172 }
173
174 static int
175 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
176 {
177         u_int ncount;
178         struct timecounter *tc = arg1;
179
180         ncount = tc->tc_get_timecount(tc);
181         return (sysctl_handle_int(oidp, &ncount, 0, req));
182 }
183
184 static int
185 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
186 {
187         uint64_t freq;
188         struct timecounter *tc = arg1;
189
190         freq = tc->tc_frequency;
191         return (sysctl_handle_64(oidp, &freq, 0, req));
192 }
193
194 /*
195  * Return the difference between the timehands' counter value now and what
196  * was when we copied it to the timehands' offset_count.
197  */
198 static __inline u_int
199 tc_delta(struct timehands *th)
200 {
201         struct timecounter *tc;
202
203         tc = th->th_counter;
204         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
205             tc->tc_counter_mask);
206 }
207
208 static __inline void
209 bintime_add_tc_delta(struct bintime *bt, uint64_t scale,
210     uint64_t large_delta, uint64_t delta)
211 {
212         uint64_t x;
213
214         if (__predict_false(delta >= large_delta)) {
215                 /* Avoid overflow for scale * delta. */
216                 x = (scale >> 32) * delta;
217                 bt->sec += x >> 32;
218                 bintime_addx(bt, x << 32);
219                 bintime_addx(bt, (scale & 0xffffffff) * delta);
220         } else {
221                 bintime_addx(bt, scale * delta);
222         }
223 }
224
225 /*
226  * Functions for reading the time.  We have to loop until we are sure that
227  * the timehands that we operated on was not updated under our feet.  See
228  * the comment in <sys/time.h> for a description of these 12 functions.
229  */
230
231 static __inline void
232 bintime_off(struct bintime *bt, u_int off)
233 {
234         struct timehands *th;
235         struct bintime *btp;
236         uint64_t scale;
237         u_int delta, gen, large_delta;
238
239         do {
240                 th = timehands;
241                 gen = atomic_load_acq_int(&th->th_generation);
242                 btp = (struct bintime *)((vm_offset_t)th + off);
243                 *bt = *btp;
244                 scale = th->th_scale;
245                 delta = tc_delta(th);
246                 large_delta = th->th_large_delta;
247                 atomic_thread_fence_acq();
248         } while (gen == 0 || gen != th->th_generation);
249
250         bintime_add_tc_delta(bt, scale, large_delta, delta);
251 }
252 #define GETTHBINTIME(dst, member)                                       \
253 do {                                                                    \
254         _Static_assert(_Generic(((struct timehands *)NULL)->member,     \
255             struct bintime: 1, default: 0) == 1,                        \
256             "struct timehands member is not of struct bintime type");   \
257         bintime_off(dst, __offsetof(struct timehands, member));         \
258 } while (0)
259
260 static __inline void
261 getthmember(void *out, size_t out_size, u_int off)
262 {
263         struct timehands *th;
264         u_int gen;
265
266         do {
267                 th = timehands;
268                 gen = atomic_load_acq_int(&th->th_generation);
269                 memcpy(out, (char *)th + off, out_size);
270                 atomic_thread_fence_acq();
271         } while (gen == 0 || gen != th->th_generation);
272 }
273 #define GETTHMEMBER(dst, member)                                        \
274 do {                                                                    \
275         _Static_assert(_Generic(*dst,                                   \
276             __typeof(((struct timehands *)NULL)->member): 1,            \
277             default: 0) == 1,                                           \
278             "*dst and struct timehands member have different types");   \
279         getthmember(dst, sizeof(*dst), __offsetof(struct timehands,     \
280             member));                                                   \
281 } while (0)
282
283 #ifdef FFCLOCK
284 void
285 fbclock_binuptime(struct bintime *bt)
286 {
287
288         GETTHBINTIME(bt, th_offset);
289 }
290
291 void
292 fbclock_nanouptime(struct timespec *tsp)
293 {
294         struct bintime bt;
295
296         fbclock_binuptime(&bt);
297         bintime2timespec(&bt, tsp);
298 }
299
300 void
301 fbclock_microuptime(struct timeval *tvp)
302 {
303         struct bintime bt;
304
305         fbclock_binuptime(&bt);
306         bintime2timeval(&bt, tvp);
307 }
308
309 void
310 fbclock_bintime(struct bintime *bt)
311 {
312
313         GETTHBINTIME(bt, th_bintime);
314 }
315
316 void
317 fbclock_nanotime(struct timespec *tsp)
318 {
319         struct bintime bt;
320
321         fbclock_bintime(&bt);
322         bintime2timespec(&bt, tsp);
323 }
324
325 void
326 fbclock_microtime(struct timeval *tvp)
327 {
328         struct bintime bt;
329
330         fbclock_bintime(&bt);
331         bintime2timeval(&bt, tvp);
332 }
333
334 void
335 fbclock_getbinuptime(struct bintime *bt)
336 {
337
338         GETTHMEMBER(bt, th_offset);
339 }
340
341 void
342 fbclock_getnanouptime(struct timespec *tsp)
343 {
344         struct bintime bt;
345
346         GETTHMEMBER(&bt, th_offset);
347         bintime2timespec(&bt, tsp);
348 }
349
350 void
351 fbclock_getmicrouptime(struct timeval *tvp)
352 {
353         struct bintime bt;
354
355         GETTHMEMBER(&bt, th_offset);
356         bintime2timeval(&bt, tvp);
357 }
358
359 void
360 fbclock_getbintime(struct bintime *bt)
361 {
362
363         GETTHMEMBER(bt, th_bintime);
364 }
365
366 void
367 fbclock_getnanotime(struct timespec *tsp)
368 {
369
370         GETTHMEMBER(tsp, th_nanotime);
371 }
372
373 void
374 fbclock_getmicrotime(struct timeval *tvp)
375 {
376
377         GETTHMEMBER(tvp, th_microtime);
378 }
379 #else /* !FFCLOCK */
380
381 void
382 binuptime(struct bintime *bt)
383 {
384
385         GETTHBINTIME(bt, th_offset);
386 }
387
388 void
389 nanouptime(struct timespec *tsp)
390 {
391         struct bintime bt;
392
393         binuptime(&bt);
394         bintime2timespec(&bt, tsp);
395 }
396
397 void
398 microuptime(struct timeval *tvp)
399 {
400         struct bintime bt;
401
402         binuptime(&bt);
403         bintime2timeval(&bt, tvp);
404 }
405
406 void
407 bintime(struct bintime *bt)
408 {
409
410         GETTHBINTIME(bt, th_bintime);
411 }
412
413 void
414 nanotime(struct timespec *tsp)
415 {
416         struct bintime bt;
417
418         bintime(&bt);
419         bintime2timespec(&bt, tsp);
420 }
421
422 void
423 microtime(struct timeval *tvp)
424 {
425         struct bintime bt;
426
427         bintime(&bt);
428         bintime2timeval(&bt, tvp);
429 }
430
431 void
432 getbinuptime(struct bintime *bt)
433 {
434
435         GETTHMEMBER(bt, th_offset);
436 }
437
438 void
439 getnanouptime(struct timespec *tsp)
440 {
441         struct bintime bt;
442
443         GETTHMEMBER(&bt, th_offset);
444         bintime2timespec(&bt, tsp);
445 }
446
447 void
448 getmicrouptime(struct timeval *tvp)
449 {
450         struct bintime bt;
451
452         GETTHMEMBER(&bt, th_offset);
453         bintime2timeval(&bt, tvp);
454 }
455
456 void
457 getbintime(struct bintime *bt)
458 {
459
460         GETTHMEMBER(bt, th_bintime);
461 }
462
463 void
464 getnanotime(struct timespec *tsp)
465 {
466
467         GETTHMEMBER(tsp, th_nanotime);
468 }
469
470 void
471 getmicrotime(struct timeval *tvp)
472 {
473
474         GETTHMEMBER(tvp, th_microtime);
475 }
476 #endif /* FFCLOCK */
477
478 void
479 getboottime(struct timeval *boottime)
480 {
481         struct bintime boottimebin;
482
483         getboottimebin(&boottimebin);
484         bintime2timeval(&boottimebin, boottime);
485 }
486
487 void
488 getboottimebin(struct bintime *boottimebin)
489 {
490
491         GETTHMEMBER(boottimebin, th_boottime);
492 }
493
494 #ifdef FFCLOCK
495 /*
496  * Support for feed-forward synchronization algorithms. This is heavily inspired
497  * by the timehands mechanism but kept independent from it. *_windup() functions
498  * have some connection to avoid accessing the timecounter hardware more than
499  * necessary.
500  */
501
502 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
503 struct ffclock_estimate ffclock_estimate;
504 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
505 uint32_t ffclock_status;                /* Feed-forward clock status. */
506 int8_t ffclock_updated;                 /* New estimates are available. */
507 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
508
509 struct fftimehands {
510         struct ffclock_estimate cest;
511         struct bintime          tick_time;
512         struct bintime          tick_time_lerp;
513         ffcounter               tick_ffcount;
514         uint64_t                period_lerp;
515         volatile uint8_t        gen;
516         struct fftimehands      *next;
517 };
518
519 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
520
521 static struct fftimehands ffth[10];
522 static struct fftimehands *volatile fftimehands = ffth;
523
524 static void
525 ffclock_init(void)
526 {
527         struct fftimehands *cur;
528         struct fftimehands *last;
529
530         memset(ffth, 0, sizeof(ffth));
531
532         last = ffth + NUM_ELEMENTS(ffth) - 1;
533         for (cur = ffth; cur < last; cur++)
534                 cur->next = cur + 1;
535         last->next = ffth;
536
537         ffclock_updated = 0;
538         ffclock_status = FFCLOCK_STA_UNSYNC;
539         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
540 }
541
542 /*
543  * Reset the feed-forward clock estimates. Called from inittodr() to get things
544  * kick started and uses the timecounter nominal frequency as a first period
545  * estimate. Note: this function may be called several time just after boot.
546  * Note: this is the only function that sets the value of boot time for the
547  * monotonic (i.e. uptime) version of the feed-forward clock.
548  */
549 void
550 ffclock_reset_clock(struct timespec *ts)
551 {
552         struct timecounter *tc;
553         struct ffclock_estimate cest;
554
555         tc = timehands->th_counter;
556         memset(&cest, 0, sizeof(struct ffclock_estimate));
557
558         timespec2bintime(ts, &ffclock_boottime);
559         timespec2bintime(ts, &(cest.update_time));
560         ffclock_read_counter(&cest.update_ffcount);
561         cest.leapsec_next = 0;
562         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
563         cest.errb_abs = 0;
564         cest.errb_rate = 0;
565         cest.status = FFCLOCK_STA_UNSYNC;
566         cest.leapsec_total = 0;
567         cest.leapsec = 0;
568
569         mtx_lock(&ffclock_mtx);
570         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
571         ffclock_updated = INT8_MAX;
572         mtx_unlock(&ffclock_mtx);
573
574         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
575             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
576             (unsigned long)ts->tv_nsec);
577 }
578
579 /*
580  * Sub-routine to convert a time interval measured in RAW counter units to time
581  * in seconds stored in bintime format.
582  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
583  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
584  * extra cycles.
585  */
586 static void
587 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
588 {
589         struct bintime bt2;
590         ffcounter delta, delta_max;
591
592         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
593         bintime_clear(bt);
594         do {
595                 if (ffdelta > delta_max)
596                         delta = delta_max;
597                 else
598                         delta = ffdelta;
599                 bt2.sec = 0;
600                 bt2.frac = period;
601                 bintime_mul(&bt2, (unsigned int)delta);
602                 bintime_add(bt, &bt2);
603                 ffdelta -= delta;
604         } while (ffdelta > 0);
605 }
606
607 /*
608  * Update the fftimehands.
609  * Push the tick ffcount and time(s) forward based on current clock estimate.
610  * The conversion from ffcounter to bintime relies on the difference clock
611  * principle, whose accuracy relies on computing small time intervals. If a new
612  * clock estimate has been passed by the synchronisation daemon, make it
613  * current, and compute the linear interpolation for monotonic time if needed.
614  */
615 static void
616 ffclock_windup(unsigned int delta)
617 {
618         struct ffclock_estimate *cest;
619         struct fftimehands *ffth;
620         struct bintime bt, gap_lerp;
621         ffcounter ffdelta;
622         uint64_t frac;
623         unsigned int polling;
624         uint8_t forward_jump, ogen;
625
626         /*
627          * Pick the next timehand, copy current ffclock estimates and move tick
628          * times and counter forward.
629          */
630         forward_jump = 0;
631         ffth = fftimehands->next;
632         ogen = ffth->gen;
633         ffth->gen = 0;
634         cest = &ffth->cest;
635         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
636         ffdelta = (ffcounter)delta;
637         ffth->period_lerp = fftimehands->period_lerp;
638
639         ffth->tick_time = fftimehands->tick_time;
640         ffclock_convert_delta(ffdelta, cest->period, &bt);
641         bintime_add(&ffth->tick_time, &bt);
642
643         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
644         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
645         bintime_add(&ffth->tick_time_lerp, &bt);
646
647         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
648
649         /*
650          * Assess the status of the clock, if the last update is too old, it is
651          * likely the synchronisation daemon is dead and the clock is free
652          * running.
653          */
654         if (ffclock_updated == 0) {
655                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
656                 ffclock_convert_delta(ffdelta, cest->period, &bt);
657                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
658                         ffclock_status |= FFCLOCK_STA_UNSYNC;
659         }
660
661         /*
662          * If available, grab updated clock estimates and make them current.
663          * Recompute time at this tick using the updated estimates. The clock
664          * estimates passed the feed-forward synchronisation daemon may result
665          * in time conversion that is not monotonically increasing (just after
666          * the update). time_lerp is a particular linear interpolation over the
667          * synchronisation algo polling period that ensures monotonicity for the
668          * clock ids requesting it.
669          */
670         if (ffclock_updated > 0) {
671                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
672                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
673                 ffth->tick_time = cest->update_time;
674                 ffclock_convert_delta(ffdelta, cest->period, &bt);
675                 bintime_add(&ffth->tick_time, &bt);
676
677                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
678                 if (ffclock_updated == INT8_MAX)
679                         ffth->tick_time_lerp = ffth->tick_time;
680
681                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
682                         forward_jump = 1;
683                 else
684                         forward_jump = 0;
685
686                 bintime_clear(&gap_lerp);
687                 if (forward_jump) {
688                         gap_lerp = ffth->tick_time;
689                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
690                 } else {
691                         gap_lerp = ffth->tick_time_lerp;
692                         bintime_sub(&gap_lerp, &ffth->tick_time);
693                 }
694
695                 /*
696                  * The reset from the RTC clock may be far from accurate, and
697                  * reducing the gap between real time and interpolated time
698                  * could take a very long time if the interpolated clock insists
699                  * on strict monotonicity. The clock is reset under very strict
700                  * conditions (kernel time is known to be wrong and
701                  * synchronization daemon has been restarted recently.
702                  * ffclock_boottime absorbs the jump to ensure boot time is
703                  * correct and uptime functions stay consistent.
704                  */
705                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
706                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
707                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
708                         if (forward_jump)
709                                 bintime_add(&ffclock_boottime, &gap_lerp);
710                         else
711                                 bintime_sub(&ffclock_boottime, &gap_lerp);
712                         ffth->tick_time_lerp = ffth->tick_time;
713                         bintime_clear(&gap_lerp);
714                 }
715
716                 ffclock_status = cest->status;
717                 ffth->period_lerp = cest->period;
718
719                 /*
720                  * Compute corrected period used for the linear interpolation of
721                  * time. The rate of linear interpolation is capped to 5000PPM
722                  * (5ms/s).
723                  */
724                 if (bintime_isset(&gap_lerp)) {
725                         ffdelta = cest->update_ffcount;
726                         ffdelta -= fftimehands->cest.update_ffcount;
727                         ffclock_convert_delta(ffdelta, cest->period, &bt);
728                         polling = bt.sec;
729                         bt.sec = 0;
730                         bt.frac = 5000000 * (uint64_t)18446744073LL;
731                         bintime_mul(&bt, polling);
732                         if (bintime_cmp(&gap_lerp, &bt, >))
733                                 gap_lerp = bt;
734
735                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
736                         frac = 0;
737                         if (gap_lerp.sec > 0) {
738                                 frac -= 1;
739                                 frac /= ffdelta / gap_lerp.sec;
740                         }
741                         frac += gap_lerp.frac / ffdelta;
742
743                         if (forward_jump)
744                                 ffth->period_lerp += frac;
745                         else
746                                 ffth->period_lerp -= frac;
747                 }
748
749                 ffclock_updated = 0;
750         }
751         if (++ogen == 0)
752                 ogen = 1;
753         ffth->gen = ogen;
754         fftimehands = ffth;
755 }
756
757 /*
758  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
759  * the old and new hardware counter cannot be read simultaneously. tc_windup()
760  * does read the two counters 'back to back', but a few cycles are effectively
761  * lost, and not accumulated in tick_ffcount. This is a fairly radical
762  * operation for a feed-forward synchronization daemon, and it is its job to not
763  * pushing irrelevant data to the kernel. Because there is no locking here,
764  * simply force to ignore pending or next update to give daemon a chance to
765  * realize the counter has changed.
766  */
767 static void
768 ffclock_change_tc(struct timehands *th)
769 {
770         struct fftimehands *ffth;
771         struct ffclock_estimate *cest;
772         struct timecounter *tc;
773         uint8_t ogen;
774
775         tc = th->th_counter;
776         ffth = fftimehands->next;
777         ogen = ffth->gen;
778         ffth->gen = 0;
779
780         cest = &ffth->cest;
781         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
782         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
783         cest->errb_abs = 0;
784         cest->errb_rate = 0;
785         cest->status |= FFCLOCK_STA_UNSYNC;
786
787         ffth->tick_ffcount = fftimehands->tick_ffcount;
788         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
789         ffth->tick_time = fftimehands->tick_time;
790         ffth->period_lerp = cest->period;
791
792         /* Do not lock but ignore next update from synchronization daemon. */
793         ffclock_updated--;
794
795         if (++ogen == 0)
796                 ogen = 1;
797         ffth->gen = ogen;
798         fftimehands = ffth;
799 }
800
801 /*
802  * Retrieve feed-forward counter and time of last kernel tick.
803  */
804 void
805 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
806 {
807         struct fftimehands *ffth;
808         uint8_t gen;
809
810         /*
811          * No locking but check generation has not changed. Also need to make
812          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
813          */
814         do {
815                 ffth = fftimehands;
816                 gen = ffth->gen;
817                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
818                         *bt = ffth->tick_time_lerp;
819                 else
820                         *bt = ffth->tick_time;
821                 *ffcount = ffth->tick_ffcount;
822         } while (gen == 0 || gen != ffth->gen);
823 }
824
825 /*
826  * Absolute clock conversion. Low level function to convert ffcounter to
827  * bintime. The ffcounter is converted using the current ffclock period estimate
828  * or the "interpolated period" to ensure monotonicity.
829  * NOTE: this conversion may have been deferred, and the clock updated since the
830  * hardware counter has been read.
831  */
832 void
833 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
834 {
835         struct fftimehands *ffth;
836         struct bintime bt2;
837         ffcounter ffdelta;
838         uint8_t gen;
839
840         /*
841          * No locking but check generation has not changed. Also need to make
842          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
843          */
844         do {
845                 ffth = fftimehands;
846                 gen = ffth->gen;
847                 if (ffcount > ffth->tick_ffcount)
848                         ffdelta = ffcount - ffth->tick_ffcount;
849                 else
850                         ffdelta = ffth->tick_ffcount - ffcount;
851
852                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
853                         *bt = ffth->tick_time_lerp;
854                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
855                 } else {
856                         *bt = ffth->tick_time;
857                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
858                 }
859
860                 if (ffcount > ffth->tick_ffcount)
861                         bintime_add(bt, &bt2);
862                 else
863                         bintime_sub(bt, &bt2);
864         } while (gen == 0 || gen != ffth->gen);
865 }
866
867 /*
868  * Difference clock conversion.
869  * Low level function to Convert a time interval measured in RAW counter units
870  * into bintime. The difference clock allows measuring small intervals much more
871  * reliably than the absolute clock.
872  */
873 void
874 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
875 {
876         struct fftimehands *ffth;
877         uint8_t gen;
878
879         /* No locking but check generation has not changed. */
880         do {
881                 ffth = fftimehands;
882                 gen = ffth->gen;
883                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
884         } while (gen == 0 || gen != ffth->gen);
885 }
886
887 /*
888  * Access to current ffcounter value.
889  */
890 void
891 ffclock_read_counter(ffcounter *ffcount)
892 {
893         struct timehands *th;
894         struct fftimehands *ffth;
895         unsigned int gen, delta;
896
897         /*
898          * ffclock_windup() called from tc_windup(), safe to rely on
899          * th->th_generation only, for correct delta and ffcounter.
900          */
901         do {
902                 th = timehands;
903                 gen = atomic_load_acq_int(&th->th_generation);
904                 ffth = fftimehands;
905                 delta = tc_delta(th);
906                 *ffcount = ffth->tick_ffcount;
907                 atomic_thread_fence_acq();
908         } while (gen == 0 || gen != th->th_generation);
909
910         *ffcount += delta;
911 }
912
913 void
914 binuptime(struct bintime *bt)
915 {
916
917         binuptime_fromclock(bt, sysclock_active);
918 }
919
920 void
921 nanouptime(struct timespec *tsp)
922 {
923
924         nanouptime_fromclock(tsp, sysclock_active);
925 }
926
927 void
928 microuptime(struct timeval *tvp)
929 {
930
931         microuptime_fromclock(tvp, sysclock_active);
932 }
933
934 void
935 bintime(struct bintime *bt)
936 {
937
938         bintime_fromclock(bt, sysclock_active);
939 }
940
941 void
942 nanotime(struct timespec *tsp)
943 {
944
945         nanotime_fromclock(tsp, sysclock_active);
946 }
947
948 void
949 microtime(struct timeval *tvp)
950 {
951
952         microtime_fromclock(tvp, sysclock_active);
953 }
954
955 void
956 getbinuptime(struct bintime *bt)
957 {
958
959         getbinuptime_fromclock(bt, sysclock_active);
960 }
961
962 void
963 getnanouptime(struct timespec *tsp)
964 {
965
966         getnanouptime_fromclock(tsp, sysclock_active);
967 }
968
969 void
970 getmicrouptime(struct timeval *tvp)
971 {
972
973         getmicrouptime_fromclock(tvp, sysclock_active);
974 }
975
976 void
977 getbintime(struct bintime *bt)
978 {
979
980         getbintime_fromclock(bt, sysclock_active);
981 }
982
983 void
984 getnanotime(struct timespec *tsp)
985 {
986
987         getnanotime_fromclock(tsp, sysclock_active);
988 }
989
990 void
991 getmicrotime(struct timeval *tvp)
992 {
993
994         getmicrouptime_fromclock(tvp, sysclock_active);
995 }
996
997 #endif /* FFCLOCK */
998
999 /*
1000  * This is a clone of getnanotime and used for walltimestamps.
1001  * The dtrace_ prefix prevents fbt from creating probes for
1002  * it so walltimestamp can be safely used in all fbt probes.
1003  */
1004 void
1005 dtrace_getnanotime(struct timespec *tsp)
1006 {
1007
1008         GETTHMEMBER(tsp, th_nanotime);
1009 }
1010
1011 /*
1012  * This is a clone of getnanouptime used for time since boot.
1013  * The dtrace_ prefix prevents fbt from creating probes for
1014  * it so an uptime that can be safely used in all fbt probes.
1015  */
1016 void
1017 dtrace_getnanouptime(struct timespec *tsp)
1018 {
1019         struct bintime bt;
1020
1021         GETTHMEMBER(&bt, th_offset);
1022         bintime2timespec(&bt, tsp);
1023 }
1024
1025 /*
1026  * System clock currently providing time to the system. Modifiable via sysctl
1027  * when the FFCLOCK option is defined.
1028  */
1029 int sysclock_active = SYSCLOCK_FBCK;
1030
1031 /* Internal NTP status and error estimates. */
1032 extern int time_status;
1033 extern long time_esterror;
1034
1035 /*
1036  * Take a snapshot of sysclock data which can be used to compare system clocks
1037  * and generate timestamps after the fact.
1038  */
1039 void
1040 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1041 {
1042         struct fbclock_info *fbi;
1043         struct timehands *th;
1044         struct bintime bt;
1045         unsigned int delta, gen;
1046 #ifdef FFCLOCK
1047         ffcounter ffcount;
1048         struct fftimehands *ffth;
1049         struct ffclock_info *ffi;
1050         struct ffclock_estimate cest;
1051
1052         ffi = &clock_snap->ff_info;
1053 #endif
1054
1055         fbi = &clock_snap->fb_info;
1056         delta = 0;
1057
1058         do {
1059                 th = timehands;
1060                 gen = atomic_load_acq_int(&th->th_generation);
1061                 fbi->th_scale = th->th_scale;
1062                 fbi->tick_time = th->th_offset;
1063 #ifdef FFCLOCK
1064                 ffth = fftimehands;
1065                 ffi->tick_time = ffth->tick_time_lerp;
1066                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1067                 ffi->period = ffth->cest.period;
1068                 ffi->period_lerp = ffth->period_lerp;
1069                 clock_snap->ffcount = ffth->tick_ffcount;
1070                 cest = ffth->cest;
1071 #endif
1072                 if (!fast)
1073                         delta = tc_delta(th);
1074                 atomic_thread_fence_acq();
1075         } while (gen == 0 || gen != th->th_generation);
1076
1077         clock_snap->delta = delta;
1078         clock_snap->sysclock_active = sysclock_active;
1079
1080         /* Record feedback clock status and error. */
1081         clock_snap->fb_info.status = time_status;
1082         /* XXX: Very crude estimate of feedback clock error. */
1083         bt.sec = time_esterror / 1000000;
1084         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1085             (uint64_t)18446744073709ULL;
1086         clock_snap->fb_info.error = bt;
1087
1088 #ifdef FFCLOCK
1089         if (!fast)
1090                 clock_snap->ffcount += delta;
1091
1092         /* Record feed-forward clock leap second adjustment. */
1093         ffi->leapsec_adjustment = cest.leapsec_total;
1094         if (clock_snap->ffcount > cest.leapsec_next)
1095                 ffi->leapsec_adjustment -= cest.leapsec;
1096
1097         /* Record feed-forward clock status and error. */
1098         clock_snap->ff_info.status = cest.status;
1099         ffcount = clock_snap->ffcount - cest.update_ffcount;
1100         ffclock_convert_delta(ffcount, cest.period, &bt);
1101         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1102         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1103         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1104         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1105         clock_snap->ff_info.error = bt;
1106 #endif
1107 }
1108
1109 /*
1110  * Convert a sysclock snapshot into a struct bintime based on the specified
1111  * clock source and flags.
1112  */
1113 int
1114 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1115     int whichclock, uint32_t flags)
1116 {
1117         struct bintime boottimebin;
1118 #ifdef FFCLOCK
1119         struct bintime bt2;
1120         uint64_t period;
1121 #endif
1122
1123         switch (whichclock) {
1124         case SYSCLOCK_FBCK:
1125                 *bt = cs->fb_info.tick_time;
1126
1127                 /* If snapshot was created with !fast, delta will be >0. */
1128                 if (cs->delta > 0)
1129                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1130
1131                 if ((flags & FBCLOCK_UPTIME) == 0) {
1132                         getboottimebin(&boottimebin);
1133                         bintime_add(bt, &boottimebin);
1134                 }
1135                 break;
1136 #ifdef FFCLOCK
1137         case SYSCLOCK_FFWD:
1138                 if (flags & FFCLOCK_LERP) {
1139                         *bt = cs->ff_info.tick_time_lerp;
1140                         period = cs->ff_info.period_lerp;
1141                 } else {
1142                         *bt = cs->ff_info.tick_time;
1143                         period = cs->ff_info.period;
1144                 }
1145
1146                 /* If snapshot was created with !fast, delta will be >0. */
1147                 if (cs->delta > 0) {
1148                         ffclock_convert_delta(cs->delta, period, &bt2);
1149                         bintime_add(bt, &bt2);
1150                 }
1151
1152                 /* Leap second adjustment. */
1153                 if (flags & FFCLOCK_LEAPSEC)
1154                         bt->sec -= cs->ff_info.leapsec_adjustment;
1155
1156                 /* Boot time adjustment, for uptime/monotonic clocks. */
1157                 if (flags & FFCLOCK_UPTIME)
1158                         bintime_sub(bt, &ffclock_boottime);
1159                 break;
1160 #endif
1161         default:
1162                 return (EINVAL);
1163                 break;
1164         }
1165
1166         return (0);
1167 }
1168
1169 /*
1170  * Initialize a new timecounter and possibly use it.
1171  */
1172 void
1173 tc_init(struct timecounter *tc)
1174 {
1175         u_int u;
1176         struct sysctl_oid *tc_root;
1177
1178         u = tc->tc_frequency / tc->tc_counter_mask;
1179         /* XXX: We need some margin here, 10% is a guess */
1180         u *= 11;
1181         u /= 10;
1182         if (u > hz && tc->tc_quality >= 0) {
1183                 tc->tc_quality = -2000;
1184                 if (bootverbose) {
1185                         printf("Timecounter \"%s\" frequency %ju Hz",
1186                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1187                         printf(" -- Insufficient hz, needs at least %u\n", u);
1188                 }
1189         } else if (tc->tc_quality >= 0 || bootverbose) {
1190                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1191                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1192                     tc->tc_quality);
1193         }
1194
1195         /*
1196          * Set up sysctl tree for this counter.
1197          */
1198         tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1199             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1200             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1201             "timecounter description", "timecounter");
1202         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1203             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1204             "mask for implemented bits");
1205         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1206             "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1207             sizeof(*tc), sysctl_kern_timecounter_get, "IU",
1208             "current timecounter value");
1209         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1210             "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1211             sizeof(*tc), sysctl_kern_timecounter_freq, "QU",
1212             "timecounter frequency");
1213         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1214             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1215             "goodness of time counter");
1216
1217         mtx_lock(&tc_lock);
1218         tc->tc_next = timecounters;
1219         timecounters = tc;
1220
1221         /*
1222          * Do not automatically switch if the current tc was specifically
1223          * chosen.  Never automatically use a timecounter with negative quality.
1224          * Even though we run on the dummy counter, switching here may be
1225          * worse since this timecounter may not be monotonic.
1226          */
1227         if (tc_chosen)
1228                 goto unlock;
1229         if (tc->tc_quality < 0)
1230                 goto unlock;
1231         if (tc_from_tunable[0] != '\0' &&
1232             strcmp(tc->tc_name, tc_from_tunable) == 0) {
1233                 tc_chosen = 1;
1234                 tc_from_tunable[0] = '\0';
1235         } else {
1236                 if (tc->tc_quality < timecounter->tc_quality)
1237                         goto unlock;
1238                 if (tc->tc_quality == timecounter->tc_quality &&
1239                     tc->tc_frequency < timecounter->tc_frequency)
1240                         goto unlock;
1241         }
1242         (void)tc->tc_get_timecount(tc);
1243         timecounter = tc;
1244 unlock:
1245         mtx_unlock(&tc_lock);
1246 }
1247
1248 /* Report the frequency of the current timecounter. */
1249 uint64_t
1250 tc_getfrequency(void)
1251 {
1252
1253         return (timehands->th_counter->tc_frequency);
1254 }
1255
1256 static bool
1257 sleeping_on_old_rtc(struct thread *td)
1258 {
1259
1260         /*
1261          * td_rtcgen is modified by curthread when it is running,
1262          * and by other threads in this function.  By finding the thread
1263          * on a sleepqueue and holding the lock on the sleepqueue
1264          * chain, we guarantee that the thread is not running and that
1265          * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1266          * the thread that it was woken due to a real-time clock adjustment.
1267          * (The declaration of td_rtcgen refers to this comment.)
1268          */
1269         if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1270                 td->td_rtcgen = 0;
1271                 return (true);
1272         }
1273         return (false);
1274 }
1275
1276 static struct mtx tc_setclock_mtx;
1277 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1278
1279 /*
1280  * Step our concept of UTC.  This is done by modifying our estimate of
1281  * when we booted.
1282  */
1283 void
1284 tc_setclock(struct timespec *ts)
1285 {
1286         struct timespec tbef, taft;
1287         struct bintime bt, bt2;
1288
1289         timespec2bintime(ts, &bt);
1290         nanotime(&tbef);
1291         mtx_lock_spin(&tc_setclock_mtx);
1292         cpu_tick_calibrate(1);
1293         binuptime(&bt2);
1294         bintime_sub(&bt, &bt2);
1295
1296         /* XXX fiddle all the little crinkly bits around the fiords... */
1297         tc_windup(&bt);
1298         mtx_unlock_spin(&tc_setclock_mtx);
1299
1300         /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1301         atomic_add_rel_int(&rtc_generation, 2);
1302         sleepq_chains_remove_matching(sleeping_on_old_rtc);
1303         if (timestepwarnings) {
1304                 nanotime(&taft);
1305                 log(LOG_INFO,
1306                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1307                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1308                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1309                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1310         }
1311 }
1312
1313 /*
1314  * Recalculate the scaling factor.  We want the number of 1/2^64
1315  * fractions of a second per period of the hardware counter, taking
1316  * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1317  * processing provides us with.
1318  *
1319  * The th_adjustment is nanoseconds per second with 32 bit binary
1320  * fraction and we want 64 bit binary fraction of second:
1321  *
1322  *       x = a * 2^32 / 10^9 = a * 4.294967296
1323  *
1324  * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1325  * we can only multiply by about 850 without overflowing, that
1326  * leaves no suitably precise fractions for multiply before divide.
1327  *
1328  * Divide before multiply with a fraction of 2199/512 results in a
1329  * systematic undercompensation of 10PPM of th_adjustment.  On a
1330  * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1331  *
1332  * We happily sacrifice the lowest of the 64 bits of our result
1333  * to the goddess of code clarity.
1334  */
1335 static void
1336 recalculate_scaling_factor_and_large_delta(struct timehands *th)
1337 {
1338         uint64_t scale;
1339
1340         scale = (uint64_t)1 << 63;
1341         scale += (th->th_adjustment / 1024) * 2199;
1342         scale /= th->th_counter->tc_frequency;
1343         th->th_scale = scale * 2;
1344         th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX);
1345 }
1346
1347 /*
1348  * Initialize the next struct timehands in the ring and make
1349  * it the active timehands.  Along the way we might switch to a different
1350  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1351  */
1352 static void
1353 tc_windup(struct bintime *new_boottimebin)
1354 {
1355         struct bintime bt;
1356         struct timecounter *tc;
1357         struct timehands *th, *tho;
1358         u_int delta, ncount, ogen;
1359         int i;
1360         time_t t;
1361
1362         /*
1363          * Make the next timehands a copy of the current one, but do
1364          * not overwrite the generation or next pointer.  While we
1365          * update the contents, the generation must be zero.  We need
1366          * to ensure that the zero generation is visible before the
1367          * data updates become visible, which requires release fence.
1368          * For similar reasons, re-reading of the generation after the
1369          * data is read should use acquire fence.
1370          */
1371         tho = timehands;
1372         th = tho->th_next;
1373         ogen = th->th_generation;
1374         th->th_generation = 0;
1375         atomic_thread_fence_rel();
1376         memcpy(th, tho, offsetof(struct timehands, th_generation));
1377         if (new_boottimebin != NULL)
1378                 th->th_boottime = *new_boottimebin;
1379
1380         /*
1381          * Capture a timecounter delta on the current timecounter and if
1382          * changing timecounters, a counter value from the new timecounter.
1383          * Update the offset fields accordingly.
1384          */
1385         tc = atomic_load_ptr(&timecounter);
1386         delta = tc_delta(th);
1387         if (th->th_counter != tc)
1388                 ncount = tc->tc_get_timecount(tc);
1389         else
1390                 ncount = 0;
1391 #ifdef FFCLOCK
1392         ffclock_windup(delta);
1393 #endif
1394         th->th_offset_count += delta;
1395         th->th_offset_count &= th->th_counter->tc_counter_mask;
1396         bintime_add_tc_delta(&th->th_offset, th->th_scale,
1397             th->th_large_delta, delta);
1398
1399         /*
1400          * Hardware latching timecounters may not generate interrupts on
1401          * PPS events, so instead we poll them.  There is a finite risk that
1402          * the hardware might capture a count which is later than the one we
1403          * got above, and therefore possibly in the next NTP second which might
1404          * have a different rate than the current NTP second.  It doesn't
1405          * matter in practice.
1406          */
1407         if (tho->th_counter->tc_poll_pps)
1408                 tho->th_counter->tc_poll_pps(tho->th_counter);
1409
1410         /*
1411          * Deal with NTP second processing.  The loop normally
1412          * iterates at most once, but in extreme situations it might
1413          * keep NTP sane if timeouts are not run for several seconds.
1414          * At boot, the time step can be large when the TOD hardware
1415          * has been read, so on really large steps, we call
1416          * ntp_update_second only twice.  We need to call it twice in
1417          * case we missed a leap second.
1418          */
1419         bt = th->th_offset;
1420         bintime_add(&bt, &th->th_boottime);
1421         i = bt.sec - tho->th_microtime.tv_sec;
1422         if (i > 0) {
1423                 if (i > LARGE_STEP)
1424                         i = 2;
1425
1426                 do {
1427                         t = bt.sec;
1428                         ntp_update_second(&th->th_adjustment, &bt.sec);
1429                         if (bt.sec != t)
1430                                 th->th_boottime.sec += bt.sec - t;
1431                         --i;
1432                 } while (i > 0);
1433
1434                 recalculate_scaling_factor_and_large_delta(th);
1435         }
1436
1437         /* Update the UTC timestamps used by the get*() functions. */
1438         th->th_bintime = bt;
1439         bintime2timeval(&bt, &th->th_microtime);
1440         bintime2timespec(&bt, &th->th_nanotime);
1441
1442         /* Now is a good time to change timecounters. */
1443         if (th->th_counter != tc) {
1444 #ifndef __arm__
1445                 if ((tc->tc_flags & TC_FLAGS_C2STOP) != 0)
1446                         cpu_disable_c2_sleep++;
1447                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1448                         cpu_disable_c2_sleep--;
1449 #endif
1450                 th->th_counter = tc;
1451                 th->th_offset_count = ncount;
1452                 tc_min_ticktock_freq = max(1, tc->tc_frequency /
1453                     (((uint64_t)tc->tc_counter_mask + 1) / 3));
1454                 recalculate_scaling_factor_and_large_delta(th);
1455 #ifdef FFCLOCK
1456                 ffclock_change_tc(th);
1457 #endif
1458         }
1459
1460         /*
1461          * Now that the struct timehands is again consistent, set the new
1462          * generation number, making sure to not make it zero.
1463          */
1464         if (++ogen == 0)
1465                 ogen = 1;
1466         atomic_store_rel_int(&th->th_generation, ogen);
1467
1468         /* Go live with the new struct timehands. */
1469 #ifdef FFCLOCK
1470         switch (sysclock_active) {
1471         case SYSCLOCK_FBCK:
1472 #endif
1473                 time_second = th->th_microtime.tv_sec;
1474                 time_uptime = th->th_offset.sec;
1475 #ifdef FFCLOCK
1476                 break;
1477         case SYSCLOCK_FFWD:
1478                 time_second = fftimehands->tick_time_lerp.sec;
1479                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1480                 break;
1481         }
1482 #endif
1483
1484         timehands = th;
1485         timekeep_push_vdso();
1486 }
1487
1488 /* Report or change the active timecounter hardware. */
1489 static int
1490 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1491 {
1492         char newname[32];
1493         struct timecounter *newtc, *tc;
1494         int error;
1495
1496         mtx_lock(&tc_lock);
1497         tc = timecounter;
1498         strlcpy(newname, tc->tc_name, sizeof(newname));
1499         mtx_unlock(&tc_lock);
1500
1501         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1502         if (error != 0 || req->newptr == NULL)
1503                 return (error);
1504
1505         mtx_lock(&tc_lock);
1506         /* Record that the tc in use now was specifically chosen. */
1507         tc_chosen = 1;
1508         if (strcmp(newname, tc->tc_name) == 0) {
1509                 mtx_unlock(&tc_lock);
1510                 return (0);
1511         }
1512         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1513                 if (strcmp(newname, newtc->tc_name) != 0)
1514                         continue;
1515
1516                 /* Warm up new timecounter. */
1517                 (void)newtc->tc_get_timecount(newtc);
1518
1519                 timecounter = newtc;
1520
1521                 /*
1522                  * The vdso timehands update is deferred until the next
1523                  * 'tc_windup()'.
1524                  *
1525                  * This is prudent given that 'timekeep_push_vdso()' does not
1526                  * use any locking and that it can be called in hard interrupt
1527                  * context via 'tc_windup()'.
1528                  */
1529                 break;
1530         }
1531         mtx_unlock(&tc_lock);
1532         return (newtc != NULL ? 0 : EINVAL);
1533 }
1534 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware,
1535     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 0, 0,
1536     sysctl_kern_timecounter_hardware, "A",
1537     "Timecounter hardware selected");
1538
1539 /* Report the available timecounter hardware. */
1540 static int
1541 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1542 {
1543         struct sbuf sb;
1544         struct timecounter *tc;
1545         int error;
1546
1547         error = sysctl_wire_old_buffer(req, 0);
1548         if (error != 0)
1549                 return (error);
1550         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1551         mtx_lock(&tc_lock);
1552         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1553                 if (tc != timecounters)
1554                         sbuf_putc(&sb, ' ');
1555                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1556         }
1557         mtx_unlock(&tc_lock);
1558         error = sbuf_finish(&sb);
1559         sbuf_delete(&sb);
1560         return (error);
1561 }
1562
1563 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice,
1564     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
1565     sysctl_kern_timecounter_choice, "A",
1566     "Timecounter hardware detected");
1567
1568 /*
1569  * RFC 2783 PPS-API implementation.
1570  */
1571
1572 /*
1573  *  Return true if the driver is aware of the abi version extensions in the
1574  *  pps_state structure, and it supports at least the given abi version number.
1575  */
1576 static inline int
1577 abi_aware(struct pps_state *pps, int vers)
1578 {
1579
1580         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1581 }
1582
1583 static int
1584 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1585 {
1586         int err, timo;
1587         pps_seq_t aseq, cseq;
1588         struct timeval tv;
1589
1590         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1591                 return (EINVAL);
1592
1593         /*
1594          * If no timeout is requested, immediately return whatever values were
1595          * most recently captured.  If timeout seconds is -1, that's a request
1596          * to block without a timeout.  WITNESS won't let us sleep forever
1597          * without a lock (we really don't need a lock), so just repeatedly
1598          * sleep a long time.
1599          */
1600         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1601                 if (fapi->timeout.tv_sec == -1)
1602                         timo = 0x7fffffff;
1603                 else {
1604                         tv.tv_sec = fapi->timeout.tv_sec;
1605                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1606                         timo = tvtohz(&tv);
1607                 }
1608                 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1609                 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1610                 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1611                     cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1612                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1613                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1614                                         err = msleep_spin(pps, pps->driver_mtx,
1615                                             "ppsfch", timo);
1616                                 } else {
1617                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1618                                             "ppsfch", timo);
1619                                 }
1620                         } else {
1621                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1622                         }
1623                         if (err == EWOULDBLOCK) {
1624                                 if (fapi->timeout.tv_sec == -1) {
1625                                         continue;
1626                                 } else {
1627                                         return (ETIMEDOUT);
1628                                 }
1629                         } else if (err != 0) {
1630                                 return (err);
1631                         }
1632                 }
1633         }
1634
1635         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1636         fapi->pps_info_buf = pps->ppsinfo;
1637
1638         return (0);
1639 }
1640
1641 int
1642 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1643 {
1644         pps_params_t *app;
1645         struct pps_fetch_args *fapi;
1646 #ifdef FFCLOCK
1647         struct pps_fetch_ffc_args *fapi_ffc;
1648 #endif
1649 #ifdef PPS_SYNC
1650         struct pps_kcbind_args *kapi;
1651 #endif
1652
1653         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1654         switch (cmd) {
1655         case PPS_IOC_CREATE:
1656                 return (0);
1657         case PPS_IOC_DESTROY:
1658                 return (0);
1659         case PPS_IOC_SETPARAMS:
1660                 app = (pps_params_t *)data;
1661                 if (app->mode & ~pps->ppscap)
1662                         return (EINVAL);
1663 #ifdef FFCLOCK
1664                 /* Ensure only a single clock is selected for ffc timestamp. */
1665                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1666                         return (EINVAL);
1667 #endif
1668                 pps->ppsparam = *app;
1669                 return (0);
1670         case PPS_IOC_GETPARAMS:
1671                 app = (pps_params_t *)data;
1672                 *app = pps->ppsparam;
1673                 app->api_version = PPS_API_VERS_1;
1674                 return (0);
1675         case PPS_IOC_GETCAP:
1676                 *(int*)data = pps->ppscap;
1677                 return (0);
1678         case PPS_IOC_FETCH:
1679                 fapi = (struct pps_fetch_args *)data;
1680                 return (pps_fetch(fapi, pps));
1681 #ifdef FFCLOCK
1682         case PPS_IOC_FETCH_FFCOUNTER:
1683                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1684                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1685                     PPS_TSFMT_TSPEC)
1686                         return (EINVAL);
1687                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1688                         return (EOPNOTSUPP);
1689                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1690                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1691                 /* Overwrite timestamps if feedback clock selected. */
1692                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1693                 case PPS_TSCLK_FBCK:
1694                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1695                             pps->ppsinfo.assert_timestamp;
1696                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1697                             pps->ppsinfo.clear_timestamp;
1698                         break;
1699                 case PPS_TSCLK_FFWD:
1700                         break;
1701                 default:
1702                         break;
1703                 }
1704                 return (0);
1705 #endif /* FFCLOCK */
1706         case PPS_IOC_KCBIND:
1707 #ifdef PPS_SYNC
1708                 kapi = (struct pps_kcbind_args *)data;
1709                 /* XXX Only root should be able to do this */
1710                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1711                         return (EINVAL);
1712                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1713                         return (EINVAL);
1714                 if (kapi->edge & ~pps->ppscap)
1715                         return (EINVAL);
1716                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1717                     (pps->kcmode & KCMODE_ABIFLAG);
1718                 return (0);
1719 #else
1720                 return (EOPNOTSUPP);
1721 #endif
1722         default:
1723                 return (ENOIOCTL);
1724         }
1725 }
1726
1727 void
1728 pps_init(struct pps_state *pps)
1729 {
1730         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1731         if (pps->ppscap & PPS_CAPTUREASSERT)
1732                 pps->ppscap |= PPS_OFFSETASSERT;
1733         if (pps->ppscap & PPS_CAPTURECLEAR)
1734                 pps->ppscap |= PPS_OFFSETCLEAR;
1735 #ifdef FFCLOCK
1736         pps->ppscap |= PPS_TSCLK_MASK;
1737 #endif
1738         pps->kcmode &= ~KCMODE_ABIFLAG;
1739 }
1740
1741 void
1742 pps_init_abi(struct pps_state *pps)
1743 {
1744
1745         pps_init(pps);
1746         if (pps->driver_abi > 0) {
1747                 pps->kcmode |= KCMODE_ABIFLAG;
1748                 pps->kernel_abi = PPS_ABI_VERSION;
1749         }
1750 }
1751
1752 void
1753 pps_capture(struct pps_state *pps)
1754 {
1755         struct timehands *th;
1756
1757         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1758         th = timehands;
1759         pps->capgen = atomic_load_acq_int(&th->th_generation);
1760         pps->capth = th;
1761 #ifdef FFCLOCK
1762         pps->capffth = fftimehands;
1763 #endif
1764         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1765         atomic_thread_fence_acq();
1766         if (pps->capgen != th->th_generation)
1767                 pps->capgen = 0;
1768 }
1769
1770 void
1771 pps_event(struct pps_state *pps, int event)
1772 {
1773         struct bintime bt;
1774         struct timespec ts, *tsp, *osp;
1775         u_int tcount, *pcount;
1776         int foff;
1777         pps_seq_t *pseq;
1778 #ifdef FFCLOCK
1779         struct timespec *tsp_ffc;
1780         pps_seq_t *pseq_ffc;
1781         ffcounter *ffcount;
1782 #endif
1783 #ifdef PPS_SYNC
1784         int fhard;
1785 #endif
1786
1787         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1788         /* Nothing to do if not currently set to capture this event type. */
1789         if ((event & pps->ppsparam.mode) == 0)
1790                 return;
1791         /* If the timecounter was wound up underneath us, bail out. */
1792         if (pps->capgen == 0 || pps->capgen !=
1793             atomic_load_acq_int(&pps->capth->th_generation))
1794                 return;
1795
1796         /* Things would be easier with arrays. */
1797         if (event == PPS_CAPTUREASSERT) {
1798                 tsp = &pps->ppsinfo.assert_timestamp;
1799                 osp = &pps->ppsparam.assert_offset;
1800                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1801 #ifdef PPS_SYNC
1802                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1803 #endif
1804                 pcount = &pps->ppscount[0];
1805                 pseq = &pps->ppsinfo.assert_sequence;
1806 #ifdef FFCLOCK
1807                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1808                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1809                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1810 #endif
1811         } else {
1812                 tsp = &pps->ppsinfo.clear_timestamp;
1813                 osp = &pps->ppsparam.clear_offset;
1814                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1815 #ifdef PPS_SYNC
1816                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1817 #endif
1818                 pcount = &pps->ppscount[1];
1819                 pseq = &pps->ppsinfo.clear_sequence;
1820 #ifdef FFCLOCK
1821                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1822                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1823                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1824 #endif
1825         }
1826
1827         /*
1828          * If the timecounter changed, we cannot compare the count values, so
1829          * we have to drop the rest of the PPS-stuff until the next event.
1830          */
1831         if (pps->ppstc != pps->capth->th_counter) {
1832                 pps->ppstc = pps->capth->th_counter;
1833                 *pcount = pps->capcount;
1834                 pps->ppscount[2] = pps->capcount;
1835                 return;
1836         }
1837
1838         /* Convert the count to a timespec. */
1839         tcount = pps->capcount - pps->capth->th_offset_count;
1840         tcount &= pps->capth->th_counter->tc_counter_mask;
1841         bt = pps->capth->th_bintime;
1842         bintime_addx(&bt, pps->capth->th_scale * tcount);
1843         bintime2timespec(&bt, &ts);
1844
1845         /* If the timecounter was wound up underneath us, bail out. */
1846         atomic_thread_fence_acq();
1847         if (pps->capgen != pps->capth->th_generation)
1848                 return;
1849
1850         *pcount = pps->capcount;
1851         (*pseq)++;
1852         *tsp = ts;
1853
1854         if (foff) {
1855                 timespecadd(tsp, osp, tsp);
1856                 if (tsp->tv_nsec < 0) {
1857                         tsp->tv_nsec += 1000000000;
1858                         tsp->tv_sec -= 1;
1859                 }
1860         }
1861
1862 #ifdef FFCLOCK
1863         *ffcount = pps->capffth->tick_ffcount + tcount;
1864         bt = pps->capffth->tick_time;
1865         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1866         bintime_add(&bt, &pps->capffth->tick_time);
1867         bintime2timespec(&bt, &ts);
1868         (*pseq_ffc)++;
1869         *tsp_ffc = ts;
1870 #endif
1871
1872 #ifdef PPS_SYNC
1873         if (fhard) {
1874                 uint64_t scale;
1875
1876                 /*
1877                  * Feed the NTP PLL/FLL.
1878                  * The FLL wants to know how many (hardware) nanoseconds
1879                  * elapsed since the previous event.
1880                  */
1881                 tcount = pps->capcount - pps->ppscount[2];
1882                 pps->ppscount[2] = pps->capcount;
1883                 tcount &= pps->capth->th_counter->tc_counter_mask;
1884                 scale = (uint64_t)1 << 63;
1885                 scale /= pps->capth->th_counter->tc_frequency;
1886                 scale *= 2;
1887                 bt.sec = 0;
1888                 bt.frac = 0;
1889                 bintime_addx(&bt, scale * tcount);
1890                 bintime2timespec(&bt, &ts);
1891                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1892         }
1893 #endif
1894
1895         /* Wakeup anyone sleeping in pps_fetch().  */
1896         wakeup(pps);
1897 }
1898
1899 /*
1900  * Timecounters need to be updated every so often to prevent the hardware
1901  * counter from overflowing.  Updating also recalculates the cached values
1902  * used by the get*() family of functions, so their precision depends on
1903  * the update frequency.
1904  */
1905
1906 static int tc_tick;
1907 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1908     "Approximate number of hardclock ticks in a millisecond");
1909
1910 void
1911 tc_ticktock(int cnt)
1912 {
1913         static int count;
1914
1915         if (mtx_trylock_spin(&tc_setclock_mtx)) {
1916                 count += cnt;
1917                 if (count >= tc_tick) {
1918                         count = 0;
1919                         tc_windup(NULL);
1920                 }
1921                 mtx_unlock_spin(&tc_setclock_mtx);
1922         }
1923 }
1924
1925 static void __inline
1926 tc_adjprecision(void)
1927 {
1928         int t;
1929
1930         if (tc_timepercentage > 0) {
1931                 t = (99 + tc_timepercentage) / tc_timepercentage;
1932                 tc_precexp = fls(t + (t >> 1)) - 1;
1933                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1934                 FREQ2BT(hz, &bt_tickthreshold);
1935                 bintime_shift(&bt_timethreshold, tc_precexp);
1936                 bintime_shift(&bt_tickthreshold, tc_precexp);
1937         } else {
1938                 tc_precexp = 31;
1939                 bt_timethreshold.sec = INT_MAX;
1940                 bt_timethreshold.frac = ~(uint64_t)0;
1941                 bt_tickthreshold = bt_timethreshold;
1942         }
1943         sbt_timethreshold = bttosbt(bt_timethreshold);
1944         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1945 }
1946
1947 static int
1948 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1949 {
1950         int error, val;
1951
1952         val = tc_timepercentage;
1953         error = sysctl_handle_int(oidp, &val, 0, req);
1954         if (error != 0 || req->newptr == NULL)
1955                 return (error);
1956         tc_timepercentage = val;
1957         if (cold)
1958                 goto done;
1959         tc_adjprecision();
1960 done:
1961         return (0);
1962 }
1963
1964 /* Set up the requested number of timehands. */
1965 static void
1966 inittimehands(void *dummy)
1967 {
1968         struct timehands *thp;
1969         int i;
1970
1971         TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
1972             &timehands_count);
1973         if (timehands_count < 1)
1974                 timehands_count = 1;
1975         if (timehands_count > nitems(ths))
1976                 timehands_count = nitems(ths);
1977         for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
1978                 thp->th_next = &ths[i];
1979         thp->th_next = &ths[0];
1980
1981         TUNABLE_STR_FETCH("kern.timecounter.hardware", tc_from_tunable,
1982             sizeof(tc_from_tunable));
1983
1984         mtx_init(&tc_lock, "tc", NULL, MTX_DEF);
1985 }
1986 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);
1987
1988 static void
1989 inittimecounter(void *dummy)
1990 {
1991         u_int p;
1992         int tick_rate;
1993
1994         /*
1995          * Set the initial timeout to
1996          * max(1, <approx. number of hardclock ticks in a millisecond>).
1997          * People should probably not use the sysctl to set the timeout
1998          * to smaller than its initial value, since that value is the
1999          * smallest reasonable one.  If they want better timestamps they
2000          * should use the non-"get"* functions.
2001          */
2002         if (hz > 1000)
2003                 tc_tick = (hz + 500) / 1000;
2004         else
2005                 tc_tick = 1;
2006         tc_adjprecision();
2007         FREQ2BT(hz, &tick_bt);
2008         tick_sbt = bttosbt(tick_bt);
2009         tick_rate = hz / tc_tick;
2010         FREQ2BT(tick_rate, &tc_tick_bt);
2011         tc_tick_sbt = bttosbt(tc_tick_bt);
2012         p = (tc_tick * 1000000) / hz;
2013         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
2014
2015 #ifdef FFCLOCK
2016         ffclock_init();
2017 #endif
2018
2019         /* warm up new timecounter (again) and get rolling. */
2020         (void)timecounter->tc_get_timecount(timecounter);
2021         mtx_lock_spin(&tc_setclock_mtx);
2022         tc_windup(NULL);
2023         mtx_unlock_spin(&tc_setclock_mtx);
2024 }
2025
2026 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
2027
2028 /* Cpu tick handling -------------------------------------------------*/
2029
2030 static bool cpu_tick_variable;
2031 static uint64_t cpu_tick_frequency;
2032
2033 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
2034 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
2035
2036 static uint64_t
2037 tc_cpu_ticks(void)
2038 {
2039         struct timecounter *tc;
2040         uint64_t res, *base;
2041         unsigned u, *last;
2042
2043         critical_enter();
2044         base = DPCPU_PTR(tc_cpu_ticks_base);
2045         last = DPCPU_PTR(tc_cpu_ticks_last);
2046         tc = timehands->th_counter;
2047         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2048         if (u < *last)
2049                 *base += (uint64_t)tc->tc_counter_mask + 1;
2050         *last = u;
2051         res = u + *base;
2052         critical_exit();
2053         return (res);
2054 }
2055
2056 void
2057 cpu_tick_calibration(void)
2058 {
2059         static time_t last_calib;
2060
2061         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2062                 cpu_tick_calibrate(0);
2063                 last_calib = time_uptime;
2064         }
2065 }
2066
2067 /*
2068  * This function gets called every 16 seconds on only one designated
2069  * CPU in the system from hardclock() via cpu_tick_calibration()().
2070  *
2071  * Whenever the real time clock is stepped we get called with reset=1
2072  * to make sure we handle suspend/resume and similar events correctly.
2073  */
2074
2075 static void
2076 cpu_tick_calibrate(int reset)
2077 {
2078         static uint64_t c_last;
2079         uint64_t c_this, c_delta;
2080         static struct bintime  t_last;
2081         struct bintime t_this, t_delta;
2082         uint32_t divi;
2083
2084         if (reset) {
2085                 /* The clock was stepped, abort & reset */
2086                 t_last.sec = 0;
2087                 return;
2088         }
2089
2090         /* we don't calibrate fixed rate cputicks */
2091         if (!cpu_tick_variable)
2092                 return;
2093
2094         getbinuptime(&t_this);
2095         c_this = cpu_ticks();
2096         if (t_last.sec != 0) {
2097                 c_delta = c_this - c_last;
2098                 t_delta = t_this;
2099                 bintime_sub(&t_delta, &t_last);
2100                 /*
2101                  * Headroom:
2102                  *      2^(64-20) / 16[s] =
2103                  *      2^(44) / 16[s] =
2104                  *      17.592.186.044.416 / 16 =
2105                  *      1.099.511.627.776 [Hz]
2106                  */
2107                 divi = t_delta.sec << 20;
2108                 divi |= t_delta.frac >> (64 - 20);
2109                 c_delta <<= 20;
2110                 c_delta /= divi;
2111                 if (c_delta > cpu_tick_frequency) {
2112                         if (0 && bootverbose)
2113                                 printf("cpu_tick increased to %ju Hz\n",
2114                                     c_delta);
2115                         cpu_tick_frequency = c_delta;
2116                 }
2117         }
2118         c_last = c_this;
2119         t_last = t_this;
2120 }
2121
2122 void
2123 set_cputicker(cpu_tick_f *func, uint64_t freq, bool isvariable)
2124 {
2125
2126         if (func == NULL) {
2127                 cpu_ticks = tc_cpu_ticks;
2128         } else {
2129                 cpu_tick_frequency = freq;
2130                 cpu_tick_variable = isvariable;
2131                 cpu_ticks = func;
2132         }
2133 }
2134
2135 uint64_t
2136 cpu_tickrate(void)
2137 {
2138
2139         if (cpu_ticks == tc_cpu_ticks) 
2140                 return (tc_getfrequency());
2141         return (cpu_tick_frequency);
2142 }
2143
2144 /*
2145  * We need to be slightly careful converting cputicks to microseconds.
2146  * There is plenty of margin in 64 bits of microseconds (half a million
2147  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2148  * before divide conversion (to retain precision) we find that the
2149  * margin shrinks to 1.5 hours (one millionth of 146y).
2150  * With a three prong approach we never lose significant bits, no
2151  * matter what the cputick rate and length of timeinterval is.
2152  */
2153
2154 uint64_t
2155 cputick2usec(uint64_t tick)
2156 {
2157
2158         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2159                 return (tick / (cpu_tickrate() / 1000000LL));
2160         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2161                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2162         else
2163                 return ((tick * 1000000LL) / cpu_tickrate());
2164 }
2165
2166 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2167
2168 static int vdso_th_enable = 1;
2169 static int
2170 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2171 {
2172         int old_vdso_th_enable, error;
2173
2174         old_vdso_th_enable = vdso_th_enable;
2175         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2176         if (error != 0)
2177                 return (error);
2178         vdso_th_enable = old_vdso_th_enable;
2179         return (0);
2180 }
2181 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2182     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2183     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2184
2185 uint32_t
2186 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2187 {
2188         struct timehands *th;
2189         uint32_t enabled;
2190
2191         th = timehands;
2192         vdso_th->th_scale = th->th_scale;
2193         vdso_th->th_offset_count = th->th_offset_count;
2194         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2195         vdso_th->th_offset = th->th_offset;
2196         vdso_th->th_boottime = th->th_boottime;
2197         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2198                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2199                     th->th_counter);
2200         } else
2201                 enabled = 0;
2202         if (!vdso_th_enable)
2203                 enabled = 0;
2204         return (enabled);
2205 }
2206
2207 #ifdef COMPAT_FREEBSD32
2208 uint32_t
2209 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2210 {
2211         struct timehands *th;
2212         uint32_t enabled;
2213
2214         th = timehands;
2215         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2216         vdso_th32->th_offset_count = th->th_offset_count;
2217         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2218         vdso_th32->th_offset.sec = th->th_offset.sec;
2219         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2220         vdso_th32->th_boottime.sec = th->th_boottime.sec;
2221         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2222         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2223                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2224                     th->th_counter);
2225         } else
2226                 enabled = 0;
2227         if (!vdso_th_enable)
2228                 enabled = 0;
2229         return (enabled);
2230 }
2231 #endif
2232
2233 #include "opt_ddb.h"
2234 #ifdef DDB
2235 #include <ddb/ddb.h>
2236
2237 DB_SHOW_COMMAND(timecounter, db_show_timecounter)
2238 {
2239         struct timehands *th;
2240         struct timecounter *tc;
2241         u_int val1, val2;
2242
2243         th = timehands;
2244         tc = th->th_counter;
2245         val1 = tc->tc_get_timecount(tc);
2246         __compiler_membar();
2247         val2 = tc->tc_get_timecount(tc);
2248
2249         db_printf("timecounter %p %s\n", tc, tc->tc_name);
2250         db_printf("  mask %#x freq %ju qual %d flags %#x priv %p\n",
2251             tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality,
2252             tc->tc_flags, tc->tc_priv);
2253         db_printf("  val %#x %#x\n", val1, val2);
2254         db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n",
2255             (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale,
2256             th->th_large_delta, th->th_offset_count, th->th_generation);
2257         db_printf("  offset %jd %jd boottime %jd %jd\n",
2258             (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac,
2259             (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac);
2260 }
2261 #endif