]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
MFV: nc(1) from OpenBSD 4.8.
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12
13 #include "opt_ntp.h"
14
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
23
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP      200
31
32 /*
33  * Implement a dummy timecounter which we can use until we get a real one
34  * in the air.  This allows the console and other early stuff to use
35  * time services.
36  */
37
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
40 {
41         static u_int now;
42
43         return (++now);
44 }
45
46 static struct timecounter dummy_timecounter = {
47         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48 };
49
50 struct timehands {
51         /* These fields must be initialized by the driver. */
52         struct timecounter      *th_counter;
53         int64_t                 th_adjustment;
54         uint64_t                th_scale;
55         u_int                   th_offset_count;
56         struct bintime          th_offset;
57         struct timeval          th_microtime;
58         struct timespec         th_nanotime;
59         /* Fields not to be copied in tc_windup start with th_generation. */
60         volatile u_int          th_generation;
61         struct timehands        *th_next;
62 };
63
64 static struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75         &dummy_timecounter,
76         0,
77         (uint64_t)-1 / 1000000,
78         0,
79         {1, 0},
80         {0, 0},
81         {0, 0},
82         1,
83         &th1
84 };
85
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
89
90 int tc_min_ticktock_freq = 1;
91
92 time_t time_second = 1;
93 time_t time_uptime = 1;
94
95 struct bintime boottimebin;
96 struct timeval boottime;
97 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
98 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
99     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
100
101 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
102 SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
103
104 static int timestepwarnings;
105 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106     &timestepwarnings, 0, "");
107
108 static void tc_windup(void);
109 static void cpu_tick_calibrate(int);
110
111 static int
112 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
113 {
114 #ifdef SCTL_MASK32
115         int tv[2];
116
117         if (req->flags & SCTL_MASK32) {
118                 tv[0] = boottime.tv_sec;
119                 tv[1] = boottime.tv_usec;
120                 return SYSCTL_OUT(req, tv, sizeof(tv));
121         } else
122 #endif
123                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
124 }
125
126 static int
127 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
128 {
129         u_int ncount;
130         struct timecounter *tc = arg1;
131
132         ncount = tc->tc_get_timecount(tc);
133         return sysctl_handle_int(oidp, &ncount, 0, req);
134 }
135
136 static int
137 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
138 {
139         uint64_t freq;
140         struct timecounter *tc = arg1;
141
142         freq = tc->tc_frequency;
143         return sysctl_handle_quad(oidp, &freq, 0, req);
144 }
145
146 /*
147  * Return the difference between the timehands' counter value now and what
148  * was when we copied it to the timehands' offset_count.
149  */
150 static __inline u_int
151 tc_delta(struct timehands *th)
152 {
153         struct timecounter *tc;
154
155         tc = th->th_counter;
156         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
157             tc->tc_counter_mask);
158 }
159
160 /*
161  * Functions for reading the time.  We have to loop until we are sure that
162  * the timehands that we operated on was not updated under our feet.  See
163  * the comment in <sys/time.h> for a description of these 12 functions.
164  */
165
166 void
167 binuptime(struct bintime *bt)
168 {
169         struct timehands *th;
170         u_int gen;
171
172         do {
173                 th = timehands;
174                 gen = th->th_generation;
175                 *bt = th->th_offset;
176                 bintime_addx(bt, th->th_scale * tc_delta(th));
177         } while (gen == 0 || gen != th->th_generation);
178 }
179
180 void
181 nanouptime(struct timespec *tsp)
182 {
183         struct bintime bt;
184
185         binuptime(&bt);
186         bintime2timespec(&bt, tsp);
187 }
188
189 void
190 microuptime(struct timeval *tvp)
191 {
192         struct bintime bt;
193
194         binuptime(&bt);
195         bintime2timeval(&bt, tvp);
196 }
197
198 void
199 bintime(struct bintime *bt)
200 {
201
202         binuptime(bt);
203         bintime_add(bt, &boottimebin);
204 }
205
206 void
207 nanotime(struct timespec *tsp)
208 {
209         struct bintime bt;
210
211         bintime(&bt);
212         bintime2timespec(&bt, tsp);
213 }
214
215 void
216 microtime(struct timeval *tvp)
217 {
218         struct bintime bt;
219
220         bintime(&bt);
221         bintime2timeval(&bt, tvp);
222 }
223
224 void
225 getbinuptime(struct bintime *bt)
226 {
227         struct timehands *th;
228         u_int gen;
229
230         do {
231                 th = timehands;
232                 gen = th->th_generation;
233                 *bt = th->th_offset;
234         } while (gen == 0 || gen != th->th_generation);
235 }
236
237 void
238 getnanouptime(struct timespec *tsp)
239 {
240         struct timehands *th;
241         u_int gen;
242
243         do {
244                 th = timehands;
245                 gen = th->th_generation;
246                 bintime2timespec(&th->th_offset, tsp);
247         } while (gen == 0 || gen != th->th_generation);
248 }
249
250 void
251 getmicrouptime(struct timeval *tvp)
252 {
253         struct timehands *th;
254         u_int gen;
255
256         do {
257                 th = timehands;
258                 gen = th->th_generation;
259                 bintime2timeval(&th->th_offset, tvp);
260         } while (gen == 0 || gen != th->th_generation);
261 }
262
263 void
264 getbintime(struct bintime *bt)
265 {
266         struct timehands *th;
267         u_int gen;
268
269         do {
270                 th = timehands;
271                 gen = th->th_generation;
272                 *bt = th->th_offset;
273         } while (gen == 0 || gen != th->th_generation);
274         bintime_add(bt, &boottimebin);
275 }
276
277 void
278 getnanotime(struct timespec *tsp)
279 {
280         struct timehands *th;
281         u_int gen;
282
283         do {
284                 th = timehands;
285                 gen = th->th_generation;
286                 *tsp = th->th_nanotime;
287         } while (gen == 0 || gen != th->th_generation);
288 }
289
290 void
291 getmicrotime(struct timeval *tvp)
292 {
293         struct timehands *th;
294         u_int gen;
295
296         do {
297                 th = timehands;
298                 gen = th->th_generation;
299                 *tvp = th->th_microtime;
300         } while (gen == 0 || gen != th->th_generation);
301 }
302
303 /*
304  * Initialize a new timecounter and possibly use it.
305  */
306 void
307 tc_init(struct timecounter *tc)
308 {
309         u_int u;
310         struct sysctl_oid *tc_root;
311
312         u = tc->tc_frequency / tc->tc_counter_mask;
313         /* XXX: We need some margin here, 10% is a guess */
314         u *= 11;
315         u /= 10;
316         if (u > hz && tc->tc_quality >= 0) {
317                 tc->tc_quality = -2000;
318                 if (bootverbose) {
319                         printf("Timecounter \"%s\" frequency %ju Hz",
320                             tc->tc_name, (uintmax_t)tc->tc_frequency);
321                         printf(" -- Insufficient hz, needs at least %u\n", u);
322                 }
323         } else if (tc->tc_quality >= 0 || bootverbose) {
324                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
325                     tc->tc_name, (uintmax_t)tc->tc_frequency,
326                     tc->tc_quality);
327         }
328
329         tc->tc_next = timecounters;
330         timecounters = tc;
331         /*
332          * Set up sysctl tree for this counter.
333          */
334         tc_root = SYSCTL_ADD_NODE(NULL,
335             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
336             CTLFLAG_RW, 0, "timecounter description");
337         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
338             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
339             "mask for implemented bits");
340         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
341             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
342             sysctl_kern_timecounter_get, "IU", "current timecounter value");
343         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
344             "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
345              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
346         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
347             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
348             "goodness of time counter");
349         /*
350          * Never automatically use a timecounter with negative quality.
351          * Even though we run on the dummy counter, switching here may be
352          * worse since this timecounter may not be monotonous.
353          */
354         if (tc->tc_quality < 0)
355                 return;
356         if (tc->tc_quality < timecounter->tc_quality)
357                 return;
358         if (tc->tc_quality == timecounter->tc_quality &&
359             tc->tc_frequency < timecounter->tc_frequency)
360                 return;
361         (void)tc->tc_get_timecount(tc);
362         (void)tc->tc_get_timecount(tc);
363         timecounter = tc;
364 }
365
366 /* Report the frequency of the current timecounter. */
367 uint64_t
368 tc_getfrequency(void)
369 {
370
371         return (timehands->th_counter->tc_frequency);
372 }
373
374 /*
375  * Step our concept of UTC.  This is done by modifying our estimate of
376  * when we booted.
377  * XXX: not locked.
378  */
379 void
380 tc_setclock(struct timespec *ts)
381 {
382         struct timespec tbef, taft;
383         struct bintime bt, bt2;
384
385         cpu_tick_calibrate(1);
386         nanotime(&tbef);
387         timespec2bintime(ts, &bt);
388         binuptime(&bt2);
389         bintime_sub(&bt, &bt2);
390         bintime_add(&bt2, &boottimebin);
391         boottimebin = bt;
392         bintime2timeval(&bt, &boottime);
393
394         /* XXX fiddle all the little crinkly bits around the fiords... */
395         tc_windup();
396         nanotime(&taft);
397         if (timestepwarnings) {
398                 log(LOG_INFO,
399                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
400                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
401                     (intmax_t)taft.tv_sec, taft.tv_nsec,
402                     (intmax_t)ts->tv_sec, ts->tv_nsec);
403         }
404         cpu_tick_calibrate(1);
405 }
406
407 /*
408  * Initialize the next struct timehands in the ring and make
409  * it the active timehands.  Along the way we might switch to a different
410  * timecounter and/or do seconds processing in NTP.  Slightly magic.
411  */
412 static void
413 tc_windup(void)
414 {
415         struct bintime bt;
416         struct timehands *th, *tho;
417         uint64_t scale;
418         u_int delta, ncount, ogen;
419         int i;
420         time_t t;
421
422         /*
423          * Make the next timehands a copy of the current one, but do not
424          * overwrite the generation or next pointer.  While we update
425          * the contents, the generation must be zero.
426          */
427         tho = timehands;
428         th = tho->th_next;
429         ogen = th->th_generation;
430         th->th_generation = 0;
431         bcopy(tho, th, offsetof(struct timehands, th_generation));
432
433         /*
434          * Capture a timecounter delta on the current timecounter and if
435          * changing timecounters, a counter value from the new timecounter.
436          * Update the offset fields accordingly.
437          */
438         delta = tc_delta(th);
439         if (th->th_counter != timecounter)
440                 ncount = timecounter->tc_get_timecount(timecounter);
441         else
442                 ncount = 0;
443         th->th_offset_count += delta;
444         th->th_offset_count &= th->th_counter->tc_counter_mask;
445         bintime_addx(&th->th_offset, th->th_scale * delta);
446
447         /*
448          * Hardware latching timecounters may not generate interrupts on
449          * PPS events, so instead we poll them.  There is a finite risk that
450          * the hardware might capture a count which is later than the one we
451          * got above, and therefore possibly in the next NTP second which might
452          * have a different rate than the current NTP second.  It doesn't
453          * matter in practice.
454          */
455         if (tho->th_counter->tc_poll_pps)
456                 tho->th_counter->tc_poll_pps(tho->th_counter);
457
458         /*
459          * Deal with NTP second processing.  The for loop normally
460          * iterates at most once, but in extreme situations it might
461          * keep NTP sane if timeouts are not run for several seconds.
462          * At boot, the time step can be large when the TOD hardware
463          * has been read, so on really large steps, we call
464          * ntp_update_second only twice.  We need to call it twice in
465          * case we missed a leap second.
466          */
467         bt = th->th_offset;
468         bintime_add(&bt, &boottimebin);
469         i = bt.sec - tho->th_microtime.tv_sec;
470         if (i > LARGE_STEP)
471                 i = 2;
472         for (; i > 0; i--) {
473                 t = bt.sec;
474                 ntp_update_second(&th->th_adjustment, &bt.sec);
475                 if (bt.sec != t)
476                         boottimebin.sec += bt.sec - t;
477         }
478         /* Update the UTC timestamps used by the get*() functions. */
479         /* XXX shouldn't do this here.  Should force non-`get' versions. */
480         bintime2timeval(&bt, &th->th_microtime);
481         bintime2timespec(&bt, &th->th_nanotime);
482
483         /* Now is a good time to change timecounters. */
484         if (th->th_counter != timecounter) {
485                 th->th_counter = timecounter;
486                 th->th_offset_count = ncount;
487                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
488                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
489         }
490
491         /*-
492          * Recalculate the scaling factor.  We want the number of 1/2^64
493          * fractions of a second per period of the hardware counter, taking
494          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
495          * processing provides us with.
496          *
497          * The th_adjustment is nanoseconds per second with 32 bit binary
498          * fraction and we want 64 bit binary fraction of second:
499          *
500          *       x = a * 2^32 / 10^9 = a * 4.294967296
501          *
502          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
503          * we can only multiply by about 850 without overflowing, that
504          * leaves no suitably precise fractions for multiply before divide.
505          *
506          * Divide before multiply with a fraction of 2199/512 results in a
507          * systematic undercompensation of 10PPM of th_adjustment.  On a
508          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
509          *
510          * We happily sacrifice the lowest of the 64 bits of our result
511          * to the goddess of code clarity.
512          *
513          */
514         scale = (uint64_t)1 << 63;
515         scale += (th->th_adjustment / 1024) * 2199;
516         scale /= th->th_counter->tc_frequency;
517         th->th_scale = scale * 2;
518
519         /*
520          * Now that the struct timehands is again consistent, set the new
521          * generation number, making sure to not make it zero.
522          */
523         if (++ogen == 0)
524                 ogen = 1;
525         th->th_generation = ogen;
526
527         /* Go live with the new struct timehands. */
528         time_second = th->th_microtime.tv_sec;
529         time_uptime = th->th_offset.sec;
530         timehands = th;
531 }
532
533 /* Report or change the active timecounter hardware. */
534 static int
535 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
536 {
537         char newname[32];
538         struct timecounter *newtc, *tc;
539         int error;
540
541         tc = timecounter;
542         strlcpy(newname, tc->tc_name, sizeof(newname));
543
544         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
545         if (error != 0 || req->newptr == NULL ||
546             strcmp(newname, tc->tc_name) == 0)
547                 return (error);
548         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
549                 if (strcmp(newname, newtc->tc_name) != 0)
550                         continue;
551
552                 /* Warm up new timecounter. */
553                 (void)newtc->tc_get_timecount(newtc);
554                 (void)newtc->tc_get_timecount(newtc);
555
556                 timecounter = newtc;
557                 return (0);
558         }
559         return (EINVAL);
560 }
561
562 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
563     0, 0, sysctl_kern_timecounter_hardware, "A", "");
564
565
566 /* Report or change the active timecounter hardware. */
567 static int
568 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
569 {
570         char buf[32], *spc;
571         struct timecounter *tc;
572         int error;
573
574         spc = "";
575         error = 0;
576         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
577                 sprintf(buf, "%s%s(%d)",
578                     spc, tc->tc_name, tc->tc_quality);
579                 error = SYSCTL_OUT(req, buf, strlen(buf));
580                 spc = " ";
581         }
582         return (error);
583 }
584
585 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
586     0, 0, sysctl_kern_timecounter_choice, "A", "");
587
588 /*
589  * RFC 2783 PPS-API implementation.
590  */
591
592 int
593 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
594 {
595         pps_params_t *app;
596         struct pps_fetch_args *fapi;
597 #ifdef PPS_SYNC
598         struct pps_kcbind_args *kapi;
599 #endif
600
601         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
602         switch (cmd) {
603         case PPS_IOC_CREATE:
604                 return (0);
605         case PPS_IOC_DESTROY:
606                 return (0);
607         case PPS_IOC_SETPARAMS:
608                 app = (pps_params_t *)data;
609                 if (app->mode & ~pps->ppscap)
610                         return (EINVAL);
611                 pps->ppsparam = *app;
612                 return (0);
613         case PPS_IOC_GETPARAMS:
614                 app = (pps_params_t *)data;
615                 *app = pps->ppsparam;
616                 app->api_version = PPS_API_VERS_1;
617                 return (0);
618         case PPS_IOC_GETCAP:
619                 *(int*)data = pps->ppscap;
620                 return (0);
621         case PPS_IOC_FETCH:
622                 fapi = (struct pps_fetch_args *)data;
623                 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
624                         return (EINVAL);
625                 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
626                         return (EOPNOTSUPP);
627                 pps->ppsinfo.current_mode = pps->ppsparam.mode;
628                 fapi->pps_info_buf = pps->ppsinfo;
629                 return (0);
630         case PPS_IOC_KCBIND:
631 #ifdef PPS_SYNC
632                 kapi = (struct pps_kcbind_args *)data;
633                 /* XXX Only root should be able to do this */
634                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
635                         return (EINVAL);
636                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
637                         return (EINVAL);
638                 if (kapi->edge & ~pps->ppscap)
639                         return (EINVAL);
640                 pps->kcmode = kapi->edge;
641                 return (0);
642 #else
643                 return (EOPNOTSUPP);
644 #endif
645         default:
646                 return (ENOIOCTL);
647         }
648 }
649
650 void
651 pps_init(struct pps_state *pps)
652 {
653         pps->ppscap |= PPS_TSFMT_TSPEC;
654         if (pps->ppscap & PPS_CAPTUREASSERT)
655                 pps->ppscap |= PPS_OFFSETASSERT;
656         if (pps->ppscap & PPS_CAPTURECLEAR)
657                 pps->ppscap |= PPS_OFFSETCLEAR;
658 }
659
660 void
661 pps_capture(struct pps_state *pps)
662 {
663         struct timehands *th;
664
665         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
666         th = timehands;
667         pps->capgen = th->th_generation;
668         pps->capth = th;
669         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
670         if (pps->capgen != th->th_generation)
671                 pps->capgen = 0;
672 }
673
674 void
675 pps_event(struct pps_state *pps, int event)
676 {
677         struct bintime bt;
678         struct timespec ts, *tsp, *osp;
679         u_int tcount, *pcount;
680         int foff, fhard;
681         pps_seq_t *pseq;
682
683         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
684         /* If the timecounter was wound up underneath us, bail out. */
685         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
686                 return;
687
688         /* Things would be easier with arrays. */
689         if (event == PPS_CAPTUREASSERT) {
690                 tsp = &pps->ppsinfo.assert_timestamp;
691                 osp = &pps->ppsparam.assert_offset;
692                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
693                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
694                 pcount = &pps->ppscount[0];
695                 pseq = &pps->ppsinfo.assert_sequence;
696         } else {
697                 tsp = &pps->ppsinfo.clear_timestamp;
698                 osp = &pps->ppsparam.clear_offset;
699                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
700                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
701                 pcount = &pps->ppscount[1];
702                 pseq = &pps->ppsinfo.clear_sequence;
703         }
704
705         /*
706          * If the timecounter changed, we cannot compare the count values, so
707          * we have to drop the rest of the PPS-stuff until the next event.
708          */
709         if (pps->ppstc != pps->capth->th_counter) {
710                 pps->ppstc = pps->capth->th_counter;
711                 *pcount = pps->capcount;
712                 pps->ppscount[2] = pps->capcount;
713                 return;
714         }
715
716         /* Convert the count to a timespec. */
717         tcount = pps->capcount - pps->capth->th_offset_count;
718         tcount &= pps->capth->th_counter->tc_counter_mask;
719         bt = pps->capth->th_offset;
720         bintime_addx(&bt, pps->capth->th_scale * tcount);
721         bintime_add(&bt, &boottimebin);
722         bintime2timespec(&bt, &ts);
723
724         /* If the timecounter was wound up underneath us, bail out. */
725         if (pps->capgen != pps->capth->th_generation)
726                 return;
727
728         *pcount = pps->capcount;
729         (*pseq)++;
730         *tsp = ts;
731
732         if (foff) {
733                 timespecadd(tsp, osp);
734                 if (tsp->tv_nsec < 0) {
735                         tsp->tv_nsec += 1000000000;
736                         tsp->tv_sec -= 1;
737                 }
738         }
739 #ifdef PPS_SYNC
740         if (fhard) {
741                 uint64_t scale;
742
743                 /*
744                  * Feed the NTP PLL/FLL.
745                  * The FLL wants to know how many (hardware) nanoseconds
746                  * elapsed since the previous event.
747                  */
748                 tcount = pps->capcount - pps->ppscount[2];
749                 pps->ppscount[2] = pps->capcount;
750                 tcount &= pps->capth->th_counter->tc_counter_mask;
751                 scale = (uint64_t)1 << 63;
752                 scale /= pps->capth->th_counter->tc_frequency;
753                 scale *= 2;
754                 bt.sec = 0;
755                 bt.frac = 0;
756                 bintime_addx(&bt, scale * tcount);
757                 bintime2timespec(&bt, &ts);
758                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
759         }
760 #endif
761 }
762
763 /*
764  * Timecounters need to be updated every so often to prevent the hardware
765  * counter from overflowing.  Updating also recalculates the cached values
766  * used by the get*() family of functions, so their precision depends on
767  * the update frequency.
768  */
769
770 static int tc_tick;
771 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
772
773 void
774 tc_ticktock(int cnt)
775 {
776         static int count;
777
778         count += cnt;
779         if (count < tc_tick)
780                 return;
781         count = 0;
782         tc_windup();
783 }
784
785 static void
786 inittimecounter(void *dummy)
787 {
788         u_int p;
789
790         /*
791          * Set the initial timeout to
792          * max(1, <approx. number of hardclock ticks in a millisecond>).
793          * People should probably not use the sysctl to set the timeout
794          * to smaller than its inital value, since that value is the
795          * smallest reasonable one.  If they want better timestamps they
796          * should use the non-"get"* functions.
797          */
798         if (hz > 1000)
799                 tc_tick = (hz + 500) / 1000;
800         else
801                 tc_tick = 1;
802         p = (tc_tick * 1000000) / hz;
803         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
804
805         /* warm up new timecounter (again) and get rolling. */
806         (void)timecounter->tc_get_timecount(timecounter);
807         (void)timecounter->tc_get_timecount(timecounter);
808         tc_windup();
809 }
810
811 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
812
813 /* Cpu tick handling -------------------------------------------------*/
814
815 static int cpu_tick_variable;
816 static uint64_t cpu_tick_frequency;
817
818 static uint64_t
819 tc_cpu_ticks(void)
820 {
821         static uint64_t base;
822         static unsigned last;
823         unsigned u;
824         struct timecounter *tc;
825
826         tc = timehands->th_counter;
827         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
828         if (u < last)
829                 base += (uint64_t)tc->tc_counter_mask + 1;
830         last = u;
831         return (u + base);
832 }
833
834 void
835 cpu_tick_calibration(void)
836 {
837         static time_t last_calib;
838
839         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
840                 cpu_tick_calibrate(0);
841                 last_calib = time_uptime;
842         }
843 }
844
845 /*
846  * This function gets called every 16 seconds on only one designated
847  * CPU in the system from hardclock() via cpu_tick_calibration()().
848  *
849  * Whenever the real time clock is stepped we get called with reset=1
850  * to make sure we handle suspend/resume and similar events correctly.
851  */
852
853 static void
854 cpu_tick_calibrate(int reset)
855 {
856         static uint64_t c_last;
857         uint64_t c_this, c_delta;
858         static struct bintime  t_last;
859         struct bintime t_this, t_delta;
860         uint32_t divi;
861
862         if (reset) {
863                 /* The clock was stepped, abort & reset */
864                 t_last.sec = 0;
865                 return;
866         }
867
868         /* we don't calibrate fixed rate cputicks */
869         if (!cpu_tick_variable)
870                 return;
871
872         getbinuptime(&t_this);
873         c_this = cpu_ticks();
874         if (t_last.sec != 0) {
875                 c_delta = c_this - c_last;
876                 t_delta = t_this;
877                 bintime_sub(&t_delta, &t_last);
878                 /*
879                  * Headroom:
880                  *      2^(64-20) / 16[s] =
881                  *      2^(44) / 16[s] =
882                  *      17.592.186.044.416 / 16 =
883                  *      1.099.511.627.776 [Hz]
884                  */
885                 divi = t_delta.sec << 20;
886                 divi |= t_delta.frac >> (64 - 20);
887                 c_delta <<= 20;
888                 c_delta /= divi;
889                 if (c_delta > cpu_tick_frequency) {
890                         if (0 && bootverbose)
891                                 printf("cpu_tick increased to %ju Hz\n",
892                                     c_delta);
893                         cpu_tick_frequency = c_delta;
894                 }
895         }
896         c_last = c_this;
897         t_last = t_this;
898 }
899
900 void
901 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
902 {
903
904         if (func == NULL) {
905                 cpu_ticks = tc_cpu_ticks;
906         } else {
907                 cpu_tick_frequency = freq;
908                 cpu_tick_variable = var;
909                 cpu_ticks = func;
910         }
911 }
912
913 uint64_t
914 cpu_tickrate(void)
915 {
916
917         if (cpu_ticks == tc_cpu_ticks) 
918                 return (tc_getfrequency());
919         return (cpu_tick_frequency);
920 }
921
922 /*
923  * We need to be slightly careful converting cputicks to microseconds.
924  * There is plenty of margin in 64 bits of microseconds (half a million
925  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
926  * before divide conversion (to retain precision) we find that the
927  * margin shrinks to 1.5 hours (one millionth of 146y).
928  * With a three prong approach we never lose significant bits, no
929  * matter what the cputick rate and length of timeinterval is.
930  */
931
932 uint64_t
933 cputick2usec(uint64_t tick)
934 {
935
936         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
937                 return (tick / (cpu_tickrate() / 1000000LL));
938         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
939                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
940         else
941                 return ((tick * 1000000LL) / cpu_tickrate());
942 }
943
944 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;