]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
Save on loginclass list locking by checking if caller already uses the struct
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  */
18
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21
22 #include "opt_compat.h"
23 #include "opt_ntp.h"
24 #include "opt_ffclock.h"
25
26 #include <sys/param.h>
27 #include <sys/kernel.h>
28 #include <sys/limits.h>
29 #include <sys/lock.h>
30 #include <sys/mutex.h>
31 #include <sys/proc.h>
32 #include <sys/sbuf.h>
33 #include <sys/sleepqueue.h>
34 #include <sys/sysctl.h>
35 #include <sys/syslog.h>
36 #include <sys/systm.h>
37 #include <sys/timeffc.h>
38 #include <sys/timepps.h>
39 #include <sys/timetc.h>
40 #include <sys/timex.h>
41 #include <sys/vdso.h>
42
43 /*
44  * A large step happens on boot.  This constant detects such steps.
45  * It is relatively small so that ntp_update_second gets called enough
46  * in the typical 'missed a couple of seconds' case, but doesn't loop
47  * forever when the time step is large.
48  */
49 #define LARGE_STEP      200
50
51 /*
52  * Implement a dummy timecounter which we can use until we get a real one
53  * in the air.  This allows the console and other early stuff to use
54  * time services.
55  */
56
57 static u_int
58 dummy_get_timecount(struct timecounter *tc)
59 {
60         static u_int now;
61
62         return (++now);
63 }
64
65 static struct timecounter dummy_timecounter = {
66         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
67 };
68
69 struct timehands {
70         /* These fields must be initialized by the driver. */
71         struct timecounter      *th_counter;
72         int64_t                 th_adjustment;
73         uint64_t                th_scale;
74         u_int                   th_offset_count;
75         struct bintime          th_offset;
76         struct bintime          th_bintime;
77         struct timeval          th_microtime;
78         struct timespec         th_nanotime;
79         struct bintime          th_boottime;
80         /* Fields not to be copied in tc_windup start with th_generation. */
81         u_int                   th_generation;
82         struct timehands        *th_next;
83 };
84
85 static struct timehands th0;
86 static struct timehands th1 = {
87         .th_next = &th0
88 };
89 static struct timehands th0 = {
90         .th_counter = &dummy_timecounter,
91         .th_scale = (uint64_t)-1 / 1000000,
92         .th_offset = { .sec = 1 },
93         .th_generation = 1,
94         .th_next = &th1
95 };
96
97 static struct timehands *volatile timehands = &th0;
98 struct timecounter *timecounter = &dummy_timecounter;
99 static struct timecounter *timecounters = &dummy_timecounter;
100
101 int tc_min_ticktock_freq = 1;
102
103 volatile time_t time_second = 1;
104 volatile time_t time_uptime = 1;
105
106 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
107 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
108     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
109
110 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
111 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
112
113 static int timestepwarnings;
114 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
115     &timestepwarnings, 0, "Log time steps");
116
117 struct bintime bt_timethreshold;
118 struct bintime bt_tickthreshold;
119 sbintime_t sbt_timethreshold;
120 sbintime_t sbt_tickthreshold;
121 struct bintime tc_tick_bt;
122 sbintime_t tc_tick_sbt;
123 int tc_precexp;
124 int tc_timepercentage = TC_DEFAULTPERC;
125 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
126 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
127     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
128     sysctl_kern_timecounter_adjprecision, "I",
129     "Allowed time interval deviation in percents");
130
131 volatile int rtc_generation = 1;
132
133 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
134
135 static void tc_windup(struct bintime *new_boottimebin);
136 static void cpu_tick_calibrate(int);
137
138 void dtrace_getnanotime(struct timespec *tsp);
139
140 static int
141 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
142 {
143         struct timeval boottime;
144
145         getboottime(&boottime);
146
147 #ifndef __mips__
148 #ifdef SCTL_MASK32
149         int tv[2];
150
151         if (req->flags & SCTL_MASK32) {
152                 tv[0] = boottime.tv_sec;
153                 tv[1] = boottime.tv_usec;
154                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
155         }
156 #endif
157 #endif
158         return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
159 }
160
161 static int
162 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
163 {
164         u_int ncount;
165         struct timecounter *tc = arg1;
166
167         ncount = tc->tc_get_timecount(tc);
168         return (sysctl_handle_int(oidp, &ncount, 0, req));
169 }
170
171 static int
172 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
173 {
174         uint64_t freq;
175         struct timecounter *tc = arg1;
176
177         freq = tc->tc_frequency;
178         return (sysctl_handle_64(oidp, &freq, 0, req));
179 }
180
181 /*
182  * Return the difference between the timehands' counter value now and what
183  * was when we copied it to the timehands' offset_count.
184  */
185 static __inline u_int
186 tc_delta(struct timehands *th)
187 {
188         struct timecounter *tc;
189
190         tc = th->th_counter;
191         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
192             tc->tc_counter_mask);
193 }
194
195 /*
196  * Functions for reading the time.  We have to loop until we are sure that
197  * the timehands that we operated on was not updated under our feet.  See
198  * the comment in <sys/time.h> for a description of these 12 functions.
199  */
200
201 #ifdef FFCLOCK
202 void
203 fbclock_binuptime(struct bintime *bt)
204 {
205         struct timehands *th;
206         unsigned int gen;
207
208         do {
209                 th = timehands;
210                 gen = atomic_load_acq_int(&th->th_generation);
211                 *bt = th->th_offset;
212                 bintime_addx(bt, th->th_scale * tc_delta(th));
213                 atomic_thread_fence_acq();
214         } while (gen == 0 || gen != th->th_generation);
215 }
216
217 void
218 fbclock_nanouptime(struct timespec *tsp)
219 {
220         struct bintime bt;
221
222         fbclock_binuptime(&bt);
223         bintime2timespec(&bt, tsp);
224 }
225
226 void
227 fbclock_microuptime(struct timeval *tvp)
228 {
229         struct bintime bt;
230
231         fbclock_binuptime(&bt);
232         bintime2timeval(&bt, tvp);
233 }
234
235 void
236 fbclock_bintime(struct bintime *bt)
237 {
238         struct timehands *th;
239         unsigned int gen;
240
241         do {
242                 th = timehands;
243                 gen = atomic_load_acq_int(&th->th_generation);
244                 *bt = th->th_bintime;
245                 bintime_addx(bt, th->th_scale * tc_delta(th));
246                 atomic_thread_fence_acq();
247         } while (gen == 0 || gen != th->th_generation);
248 }
249
250 void
251 fbclock_nanotime(struct timespec *tsp)
252 {
253         struct bintime bt;
254
255         fbclock_bintime(&bt);
256         bintime2timespec(&bt, tsp);
257 }
258
259 void
260 fbclock_microtime(struct timeval *tvp)
261 {
262         struct bintime bt;
263
264         fbclock_bintime(&bt);
265         bintime2timeval(&bt, tvp);
266 }
267
268 void
269 fbclock_getbinuptime(struct bintime *bt)
270 {
271         struct timehands *th;
272         unsigned int gen;
273
274         do {
275                 th = timehands;
276                 gen = atomic_load_acq_int(&th->th_generation);
277                 *bt = th->th_offset;
278                 atomic_thread_fence_acq();
279         } while (gen == 0 || gen != th->th_generation);
280 }
281
282 void
283 fbclock_getnanouptime(struct timespec *tsp)
284 {
285         struct timehands *th;
286         unsigned int gen;
287
288         do {
289                 th = timehands;
290                 gen = atomic_load_acq_int(&th->th_generation);
291                 bintime2timespec(&th->th_offset, tsp);
292                 atomic_thread_fence_acq();
293         } while (gen == 0 || gen != th->th_generation);
294 }
295
296 void
297 fbclock_getmicrouptime(struct timeval *tvp)
298 {
299         struct timehands *th;
300         unsigned int gen;
301
302         do {
303                 th = timehands;
304                 gen = atomic_load_acq_int(&th->th_generation);
305                 bintime2timeval(&th->th_offset, tvp);
306                 atomic_thread_fence_acq();
307         } while (gen == 0 || gen != th->th_generation);
308 }
309
310 void
311 fbclock_getbintime(struct bintime *bt)
312 {
313         struct timehands *th;
314         unsigned int gen;
315
316         do {
317                 th = timehands;
318                 gen = atomic_load_acq_int(&th->th_generation);
319                 *bt = th->th_bintime;
320                 atomic_thread_fence_acq();
321         } while (gen == 0 || gen != th->th_generation);
322 }
323
324 void
325 fbclock_getnanotime(struct timespec *tsp)
326 {
327         struct timehands *th;
328         unsigned int gen;
329
330         do {
331                 th = timehands;
332                 gen = atomic_load_acq_int(&th->th_generation);
333                 *tsp = th->th_nanotime;
334                 atomic_thread_fence_acq();
335         } while (gen == 0 || gen != th->th_generation);
336 }
337
338 void
339 fbclock_getmicrotime(struct timeval *tvp)
340 {
341         struct timehands *th;
342         unsigned int gen;
343
344         do {
345                 th = timehands;
346                 gen = atomic_load_acq_int(&th->th_generation);
347                 *tvp = th->th_microtime;
348                 atomic_thread_fence_acq();
349         } while (gen == 0 || gen != th->th_generation);
350 }
351 #else /* !FFCLOCK */
352 void
353 binuptime(struct bintime *bt)
354 {
355         struct timehands *th;
356         u_int gen;
357
358         do {
359                 th = timehands;
360                 gen = atomic_load_acq_int(&th->th_generation);
361                 *bt = th->th_offset;
362                 bintime_addx(bt, th->th_scale * tc_delta(th));
363                 atomic_thread_fence_acq();
364         } while (gen == 0 || gen != th->th_generation);
365 }
366
367 void
368 nanouptime(struct timespec *tsp)
369 {
370         struct bintime bt;
371
372         binuptime(&bt);
373         bintime2timespec(&bt, tsp);
374 }
375
376 void
377 microuptime(struct timeval *tvp)
378 {
379         struct bintime bt;
380
381         binuptime(&bt);
382         bintime2timeval(&bt, tvp);
383 }
384
385 void
386 bintime(struct bintime *bt)
387 {
388         struct timehands *th;
389         u_int gen;
390
391         do {
392                 th = timehands;
393                 gen = atomic_load_acq_int(&th->th_generation);
394                 *bt = th->th_bintime;
395                 bintime_addx(bt, th->th_scale * tc_delta(th));
396                 atomic_thread_fence_acq();
397         } while (gen == 0 || gen != th->th_generation);
398 }
399
400 void
401 nanotime(struct timespec *tsp)
402 {
403         struct bintime bt;
404
405         bintime(&bt);
406         bintime2timespec(&bt, tsp);
407 }
408
409 void
410 microtime(struct timeval *tvp)
411 {
412         struct bintime bt;
413
414         bintime(&bt);
415         bintime2timeval(&bt, tvp);
416 }
417
418 void
419 getbinuptime(struct bintime *bt)
420 {
421         struct timehands *th;
422         u_int gen;
423
424         do {
425                 th = timehands;
426                 gen = atomic_load_acq_int(&th->th_generation);
427                 *bt = th->th_offset;
428                 atomic_thread_fence_acq();
429         } while (gen == 0 || gen != th->th_generation);
430 }
431
432 void
433 getnanouptime(struct timespec *tsp)
434 {
435         struct timehands *th;
436         u_int gen;
437
438         do {
439                 th = timehands;
440                 gen = atomic_load_acq_int(&th->th_generation);
441                 bintime2timespec(&th->th_offset, tsp);
442                 atomic_thread_fence_acq();
443         } while (gen == 0 || gen != th->th_generation);
444 }
445
446 void
447 getmicrouptime(struct timeval *tvp)
448 {
449         struct timehands *th;
450         u_int gen;
451
452         do {
453                 th = timehands;
454                 gen = atomic_load_acq_int(&th->th_generation);
455                 bintime2timeval(&th->th_offset, tvp);
456                 atomic_thread_fence_acq();
457         } while (gen == 0 || gen != th->th_generation);
458 }
459
460 void
461 getbintime(struct bintime *bt)
462 {
463         struct timehands *th;
464         u_int gen;
465
466         do {
467                 th = timehands;
468                 gen = atomic_load_acq_int(&th->th_generation);
469                 *bt = th->th_bintime;
470                 atomic_thread_fence_acq();
471         } while (gen == 0 || gen != th->th_generation);
472 }
473
474 void
475 getnanotime(struct timespec *tsp)
476 {
477         struct timehands *th;
478         u_int gen;
479
480         do {
481                 th = timehands;
482                 gen = atomic_load_acq_int(&th->th_generation);
483                 *tsp = th->th_nanotime;
484                 atomic_thread_fence_acq();
485         } while (gen == 0 || gen != th->th_generation);
486 }
487
488 void
489 getmicrotime(struct timeval *tvp)
490 {
491         struct timehands *th;
492         u_int gen;
493
494         do {
495                 th = timehands;
496                 gen = atomic_load_acq_int(&th->th_generation);
497                 *tvp = th->th_microtime;
498                 atomic_thread_fence_acq();
499         } while (gen == 0 || gen != th->th_generation);
500 }
501 #endif /* FFCLOCK */
502
503 void
504 getboottime(struct timeval *boottime)
505 {
506         struct bintime boottimebin;
507
508         getboottimebin(&boottimebin);
509         bintime2timeval(&boottimebin, boottime);
510 }
511
512 void
513 getboottimebin(struct bintime *boottimebin)
514 {
515         struct timehands *th;
516         u_int gen;
517
518         do {
519                 th = timehands;
520                 gen = atomic_load_acq_int(&th->th_generation);
521                 *boottimebin = th->th_boottime;
522                 atomic_thread_fence_acq();
523         } while (gen == 0 || gen != th->th_generation);
524 }
525
526 #ifdef FFCLOCK
527 /*
528  * Support for feed-forward synchronization algorithms. This is heavily inspired
529  * by the timehands mechanism but kept independent from it. *_windup() functions
530  * have some connection to avoid accessing the timecounter hardware more than
531  * necessary.
532  */
533
534 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
535 struct ffclock_estimate ffclock_estimate;
536 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
537 uint32_t ffclock_status;                /* Feed-forward clock status. */
538 int8_t ffclock_updated;                 /* New estimates are available. */
539 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
540
541 struct fftimehands {
542         struct ffclock_estimate cest;
543         struct bintime          tick_time;
544         struct bintime          tick_time_lerp;
545         ffcounter               tick_ffcount;
546         uint64_t                period_lerp;
547         volatile uint8_t        gen;
548         struct fftimehands      *next;
549 };
550
551 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
552
553 static struct fftimehands ffth[10];
554 static struct fftimehands *volatile fftimehands = ffth;
555
556 static void
557 ffclock_init(void)
558 {
559         struct fftimehands *cur;
560         struct fftimehands *last;
561
562         memset(ffth, 0, sizeof(ffth));
563
564         last = ffth + NUM_ELEMENTS(ffth) - 1;
565         for (cur = ffth; cur < last; cur++)
566                 cur->next = cur + 1;
567         last->next = ffth;
568
569         ffclock_updated = 0;
570         ffclock_status = FFCLOCK_STA_UNSYNC;
571         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
572 }
573
574 /*
575  * Reset the feed-forward clock estimates. Called from inittodr() to get things
576  * kick started and uses the timecounter nominal frequency as a first period
577  * estimate. Note: this function may be called several time just after boot.
578  * Note: this is the only function that sets the value of boot time for the
579  * monotonic (i.e. uptime) version of the feed-forward clock.
580  */
581 void
582 ffclock_reset_clock(struct timespec *ts)
583 {
584         struct timecounter *tc;
585         struct ffclock_estimate cest;
586
587         tc = timehands->th_counter;
588         memset(&cest, 0, sizeof(struct ffclock_estimate));
589
590         timespec2bintime(ts, &ffclock_boottime);
591         timespec2bintime(ts, &(cest.update_time));
592         ffclock_read_counter(&cest.update_ffcount);
593         cest.leapsec_next = 0;
594         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
595         cest.errb_abs = 0;
596         cest.errb_rate = 0;
597         cest.status = FFCLOCK_STA_UNSYNC;
598         cest.leapsec_total = 0;
599         cest.leapsec = 0;
600
601         mtx_lock(&ffclock_mtx);
602         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
603         ffclock_updated = INT8_MAX;
604         mtx_unlock(&ffclock_mtx);
605
606         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
607             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
608             (unsigned long)ts->tv_nsec);
609 }
610
611 /*
612  * Sub-routine to convert a time interval measured in RAW counter units to time
613  * in seconds stored in bintime format.
614  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
615  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
616  * extra cycles.
617  */
618 static void
619 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
620 {
621         struct bintime bt2;
622         ffcounter delta, delta_max;
623
624         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
625         bintime_clear(bt);
626         do {
627                 if (ffdelta > delta_max)
628                         delta = delta_max;
629                 else
630                         delta = ffdelta;
631                 bt2.sec = 0;
632                 bt2.frac = period;
633                 bintime_mul(&bt2, (unsigned int)delta);
634                 bintime_add(bt, &bt2);
635                 ffdelta -= delta;
636         } while (ffdelta > 0);
637 }
638
639 /*
640  * Update the fftimehands.
641  * Push the tick ffcount and time(s) forward based on current clock estimate.
642  * The conversion from ffcounter to bintime relies on the difference clock
643  * principle, whose accuracy relies on computing small time intervals. If a new
644  * clock estimate has been passed by the synchronisation daemon, make it
645  * current, and compute the linear interpolation for monotonic time if needed.
646  */
647 static void
648 ffclock_windup(unsigned int delta)
649 {
650         struct ffclock_estimate *cest;
651         struct fftimehands *ffth;
652         struct bintime bt, gap_lerp;
653         ffcounter ffdelta;
654         uint64_t frac;
655         unsigned int polling;
656         uint8_t forward_jump, ogen;
657
658         /*
659          * Pick the next timehand, copy current ffclock estimates and move tick
660          * times and counter forward.
661          */
662         forward_jump = 0;
663         ffth = fftimehands->next;
664         ogen = ffth->gen;
665         ffth->gen = 0;
666         cest = &ffth->cest;
667         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
668         ffdelta = (ffcounter)delta;
669         ffth->period_lerp = fftimehands->period_lerp;
670
671         ffth->tick_time = fftimehands->tick_time;
672         ffclock_convert_delta(ffdelta, cest->period, &bt);
673         bintime_add(&ffth->tick_time, &bt);
674
675         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
676         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
677         bintime_add(&ffth->tick_time_lerp, &bt);
678
679         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
680
681         /*
682          * Assess the status of the clock, if the last update is too old, it is
683          * likely the synchronisation daemon is dead and the clock is free
684          * running.
685          */
686         if (ffclock_updated == 0) {
687                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
688                 ffclock_convert_delta(ffdelta, cest->period, &bt);
689                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
690                         ffclock_status |= FFCLOCK_STA_UNSYNC;
691         }
692
693         /*
694          * If available, grab updated clock estimates and make them current.
695          * Recompute time at this tick using the updated estimates. The clock
696          * estimates passed the feed-forward synchronisation daemon may result
697          * in time conversion that is not monotonically increasing (just after
698          * the update). time_lerp is a particular linear interpolation over the
699          * synchronisation algo polling period that ensures monotonicity for the
700          * clock ids requesting it.
701          */
702         if (ffclock_updated > 0) {
703                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
704                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
705                 ffth->tick_time = cest->update_time;
706                 ffclock_convert_delta(ffdelta, cest->period, &bt);
707                 bintime_add(&ffth->tick_time, &bt);
708
709                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
710                 if (ffclock_updated == INT8_MAX)
711                         ffth->tick_time_lerp = ffth->tick_time;
712
713                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
714                         forward_jump = 1;
715                 else
716                         forward_jump = 0;
717
718                 bintime_clear(&gap_lerp);
719                 if (forward_jump) {
720                         gap_lerp = ffth->tick_time;
721                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
722                 } else {
723                         gap_lerp = ffth->tick_time_lerp;
724                         bintime_sub(&gap_lerp, &ffth->tick_time);
725                 }
726
727                 /*
728                  * The reset from the RTC clock may be far from accurate, and
729                  * reducing the gap between real time and interpolated time
730                  * could take a very long time if the interpolated clock insists
731                  * on strict monotonicity. The clock is reset under very strict
732                  * conditions (kernel time is known to be wrong and
733                  * synchronization daemon has been restarted recently.
734                  * ffclock_boottime absorbs the jump to ensure boot time is
735                  * correct and uptime functions stay consistent.
736                  */
737                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
738                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
739                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
740                         if (forward_jump)
741                                 bintime_add(&ffclock_boottime, &gap_lerp);
742                         else
743                                 bintime_sub(&ffclock_boottime, &gap_lerp);
744                         ffth->tick_time_lerp = ffth->tick_time;
745                         bintime_clear(&gap_lerp);
746                 }
747
748                 ffclock_status = cest->status;
749                 ffth->period_lerp = cest->period;
750
751                 /*
752                  * Compute corrected period used for the linear interpolation of
753                  * time. The rate of linear interpolation is capped to 5000PPM
754                  * (5ms/s).
755                  */
756                 if (bintime_isset(&gap_lerp)) {
757                         ffdelta = cest->update_ffcount;
758                         ffdelta -= fftimehands->cest.update_ffcount;
759                         ffclock_convert_delta(ffdelta, cest->period, &bt);
760                         polling = bt.sec;
761                         bt.sec = 0;
762                         bt.frac = 5000000 * (uint64_t)18446744073LL;
763                         bintime_mul(&bt, polling);
764                         if (bintime_cmp(&gap_lerp, &bt, >))
765                                 gap_lerp = bt;
766
767                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
768                         frac = 0;
769                         if (gap_lerp.sec > 0) {
770                                 frac -= 1;
771                                 frac /= ffdelta / gap_lerp.sec;
772                         }
773                         frac += gap_lerp.frac / ffdelta;
774
775                         if (forward_jump)
776                                 ffth->period_lerp += frac;
777                         else
778                                 ffth->period_lerp -= frac;
779                 }
780
781                 ffclock_updated = 0;
782         }
783         if (++ogen == 0)
784                 ogen = 1;
785         ffth->gen = ogen;
786         fftimehands = ffth;
787 }
788
789 /*
790  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
791  * the old and new hardware counter cannot be read simultaneously. tc_windup()
792  * does read the two counters 'back to back', but a few cycles are effectively
793  * lost, and not accumulated in tick_ffcount. This is a fairly radical
794  * operation for a feed-forward synchronization daemon, and it is its job to not
795  * pushing irrelevant data to the kernel. Because there is no locking here,
796  * simply force to ignore pending or next update to give daemon a chance to
797  * realize the counter has changed.
798  */
799 static void
800 ffclock_change_tc(struct timehands *th)
801 {
802         struct fftimehands *ffth;
803         struct ffclock_estimate *cest;
804         struct timecounter *tc;
805         uint8_t ogen;
806
807         tc = th->th_counter;
808         ffth = fftimehands->next;
809         ogen = ffth->gen;
810         ffth->gen = 0;
811
812         cest = &ffth->cest;
813         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
814         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
815         cest->errb_abs = 0;
816         cest->errb_rate = 0;
817         cest->status |= FFCLOCK_STA_UNSYNC;
818
819         ffth->tick_ffcount = fftimehands->tick_ffcount;
820         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
821         ffth->tick_time = fftimehands->tick_time;
822         ffth->period_lerp = cest->period;
823
824         /* Do not lock but ignore next update from synchronization daemon. */
825         ffclock_updated--;
826
827         if (++ogen == 0)
828                 ogen = 1;
829         ffth->gen = ogen;
830         fftimehands = ffth;
831 }
832
833 /*
834  * Retrieve feed-forward counter and time of last kernel tick.
835  */
836 void
837 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
838 {
839         struct fftimehands *ffth;
840         uint8_t gen;
841
842         /*
843          * No locking but check generation has not changed. Also need to make
844          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
845          */
846         do {
847                 ffth = fftimehands;
848                 gen = ffth->gen;
849                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
850                         *bt = ffth->tick_time_lerp;
851                 else
852                         *bt = ffth->tick_time;
853                 *ffcount = ffth->tick_ffcount;
854         } while (gen == 0 || gen != ffth->gen);
855 }
856
857 /*
858  * Absolute clock conversion. Low level function to convert ffcounter to
859  * bintime. The ffcounter is converted using the current ffclock period estimate
860  * or the "interpolated period" to ensure monotonicity.
861  * NOTE: this conversion may have been deferred, and the clock updated since the
862  * hardware counter has been read.
863  */
864 void
865 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
866 {
867         struct fftimehands *ffth;
868         struct bintime bt2;
869         ffcounter ffdelta;
870         uint8_t gen;
871
872         /*
873          * No locking but check generation has not changed. Also need to make
874          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
875          */
876         do {
877                 ffth = fftimehands;
878                 gen = ffth->gen;
879                 if (ffcount > ffth->tick_ffcount)
880                         ffdelta = ffcount - ffth->tick_ffcount;
881                 else
882                         ffdelta = ffth->tick_ffcount - ffcount;
883
884                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
885                         *bt = ffth->tick_time_lerp;
886                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
887                 } else {
888                         *bt = ffth->tick_time;
889                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
890                 }
891
892                 if (ffcount > ffth->tick_ffcount)
893                         bintime_add(bt, &bt2);
894                 else
895                         bintime_sub(bt, &bt2);
896         } while (gen == 0 || gen != ffth->gen);
897 }
898
899 /*
900  * Difference clock conversion.
901  * Low level function to Convert a time interval measured in RAW counter units
902  * into bintime. The difference clock allows measuring small intervals much more
903  * reliably than the absolute clock.
904  */
905 void
906 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
907 {
908         struct fftimehands *ffth;
909         uint8_t gen;
910
911         /* No locking but check generation has not changed. */
912         do {
913                 ffth = fftimehands;
914                 gen = ffth->gen;
915                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
916         } while (gen == 0 || gen != ffth->gen);
917 }
918
919 /*
920  * Access to current ffcounter value.
921  */
922 void
923 ffclock_read_counter(ffcounter *ffcount)
924 {
925         struct timehands *th;
926         struct fftimehands *ffth;
927         unsigned int gen, delta;
928
929         /*
930          * ffclock_windup() called from tc_windup(), safe to rely on
931          * th->th_generation only, for correct delta and ffcounter.
932          */
933         do {
934                 th = timehands;
935                 gen = atomic_load_acq_int(&th->th_generation);
936                 ffth = fftimehands;
937                 delta = tc_delta(th);
938                 *ffcount = ffth->tick_ffcount;
939                 atomic_thread_fence_acq();
940         } while (gen == 0 || gen != th->th_generation);
941
942         *ffcount += delta;
943 }
944
945 void
946 binuptime(struct bintime *bt)
947 {
948
949         binuptime_fromclock(bt, sysclock_active);
950 }
951
952 void
953 nanouptime(struct timespec *tsp)
954 {
955
956         nanouptime_fromclock(tsp, sysclock_active);
957 }
958
959 void
960 microuptime(struct timeval *tvp)
961 {
962
963         microuptime_fromclock(tvp, sysclock_active);
964 }
965
966 void
967 bintime(struct bintime *bt)
968 {
969
970         bintime_fromclock(bt, sysclock_active);
971 }
972
973 void
974 nanotime(struct timespec *tsp)
975 {
976
977         nanotime_fromclock(tsp, sysclock_active);
978 }
979
980 void
981 microtime(struct timeval *tvp)
982 {
983
984         microtime_fromclock(tvp, sysclock_active);
985 }
986
987 void
988 getbinuptime(struct bintime *bt)
989 {
990
991         getbinuptime_fromclock(bt, sysclock_active);
992 }
993
994 void
995 getnanouptime(struct timespec *tsp)
996 {
997
998         getnanouptime_fromclock(tsp, sysclock_active);
999 }
1000
1001 void
1002 getmicrouptime(struct timeval *tvp)
1003 {
1004
1005         getmicrouptime_fromclock(tvp, sysclock_active);
1006 }
1007
1008 void
1009 getbintime(struct bintime *bt)
1010 {
1011
1012         getbintime_fromclock(bt, sysclock_active);
1013 }
1014
1015 void
1016 getnanotime(struct timespec *tsp)
1017 {
1018
1019         getnanotime_fromclock(tsp, sysclock_active);
1020 }
1021
1022 void
1023 getmicrotime(struct timeval *tvp)
1024 {
1025
1026         getmicrouptime_fromclock(tvp, sysclock_active);
1027 }
1028
1029 #endif /* FFCLOCK */
1030
1031 /*
1032  * This is a clone of getnanotime and used for walltimestamps.
1033  * The dtrace_ prefix prevents fbt from creating probes for
1034  * it so walltimestamp can be safely used in all fbt probes.
1035  */
1036 void
1037 dtrace_getnanotime(struct timespec *tsp)
1038 {
1039         struct timehands *th;
1040         u_int gen;
1041
1042         do {
1043                 th = timehands;
1044                 gen = atomic_load_acq_int(&th->th_generation);
1045                 *tsp = th->th_nanotime;
1046                 atomic_thread_fence_acq();
1047         } while (gen == 0 || gen != th->th_generation);
1048 }
1049
1050 /*
1051  * System clock currently providing time to the system. Modifiable via sysctl
1052  * when the FFCLOCK option is defined.
1053  */
1054 int sysclock_active = SYSCLOCK_FBCK;
1055
1056 /* Internal NTP status and error estimates. */
1057 extern int time_status;
1058 extern long time_esterror;
1059
1060 /*
1061  * Take a snapshot of sysclock data which can be used to compare system clocks
1062  * and generate timestamps after the fact.
1063  */
1064 void
1065 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1066 {
1067         struct fbclock_info *fbi;
1068         struct timehands *th;
1069         struct bintime bt;
1070         unsigned int delta, gen;
1071 #ifdef FFCLOCK
1072         ffcounter ffcount;
1073         struct fftimehands *ffth;
1074         struct ffclock_info *ffi;
1075         struct ffclock_estimate cest;
1076
1077         ffi = &clock_snap->ff_info;
1078 #endif
1079
1080         fbi = &clock_snap->fb_info;
1081         delta = 0;
1082
1083         do {
1084                 th = timehands;
1085                 gen = atomic_load_acq_int(&th->th_generation);
1086                 fbi->th_scale = th->th_scale;
1087                 fbi->tick_time = th->th_offset;
1088 #ifdef FFCLOCK
1089                 ffth = fftimehands;
1090                 ffi->tick_time = ffth->tick_time_lerp;
1091                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1092                 ffi->period = ffth->cest.period;
1093                 ffi->period_lerp = ffth->period_lerp;
1094                 clock_snap->ffcount = ffth->tick_ffcount;
1095                 cest = ffth->cest;
1096 #endif
1097                 if (!fast)
1098                         delta = tc_delta(th);
1099                 atomic_thread_fence_acq();
1100         } while (gen == 0 || gen != th->th_generation);
1101
1102         clock_snap->delta = delta;
1103         clock_snap->sysclock_active = sysclock_active;
1104
1105         /* Record feedback clock status and error. */
1106         clock_snap->fb_info.status = time_status;
1107         /* XXX: Very crude estimate of feedback clock error. */
1108         bt.sec = time_esterror / 1000000;
1109         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1110             (uint64_t)18446744073709ULL;
1111         clock_snap->fb_info.error = bt;
1112
1113 #ifdef FFCLOCK
1114         if (!fast)
1115                 clock_snap->ffcount += delta;
1116
1117         /* Record feed-forward clock leap second adjustment. */
1118         ffi->leapsec_adjustment = cest.leapsec_total;
1119         if (clock_snap->ffcount > cest.leapsec_next)
1120                 ffi->leapsec_adjustment -= cest.leapsec;
1121
1122         /* Record feed-forward clock status and error. */
1123         clock_snap->ff_info.status = cest.status;
1124         ffcount = clock_snap->ffcount - cest.update_ffcount;
1125         ffclock_convert_delta(ffcount, cest.period, &bt);
1126         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1127         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1128         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1129         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1130         clock_snap->ff_info.error = bt;
1131 #endif
1132 }
1133
1134 /*
1135  * Convert a sysclock snapshot into a struct bintime based on the specified
1136  * clock source and flags.
1137  */
1138 int
1139 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1140     int whichclock, uint32_t flags)
1141 {
1142         struct bintime boottimebin;
1143 #ifdef FFCLOCK
1144         struct bintime bt2;
1145         uint64_t period;
1146 #endif
1147
1148         switch (whichclock) {
1149         case SYSCLOCK_FBCK:
1150                 *bt = cs->fb_info.tick_time;
1151
1152                 /* If snapshot was created with !fast, delta will be >0. */
1153                 if (cs->delta > 0)
1154                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1155
1156                 if ((flags & FBCLOCK_UPTIME) == 0) {
1157                         getboottimebin(&boottimebin);
1158                         bintime_add(bt, &boottimebin);
1159                 }
1160                 break;
1161 #ifdef FFCLOCK
1162         case SYSCLOCK_FFWD:
1163                 if (flags & FFCLOCK_LERP) {
1164                         *bt = cs->ff_info.tick_time_lerp;
1165                         period = cs->ff_info.period_lerp;
1166                 } else {
1167                         *bt = cs->ff_info.tick_time;
1168                         period = cs->ff_info.period;
1169                 }
1170
1171                 /* If snapshot was created with !fast, delta will be >0. */
1172                 if (cs->delta > 0) {
1173                         ffclock_convert_delta(cs->delta, period, &bt2);
1174                         bintime_add(bt, &bt2);
1175                 }
1176
1177                 /* Leap second adjustment. */
1178                 if (flags & FFCLOCK_LEAPSEC)
1179                         bt->sec -= cs->ff_info.leapsec_adjustment;
1180
1181                 /* Boot time adjustment, for uptime/monotonic clocks. */
1182                 if (flags & FFCLOCK_UPTIME)
1183                         bintime_sub(bt, &ffclock_boottime);
1184                 break;
1185 #endif
1186         default:
1187                 return (EINVAL);
1188                 break;
1189         }
1190
1191         return (0);
1192 }
1193
1194 /*
1195  * Initialize a new timecounter and possibly use it.
1196  */
1197 void
1198 tc_init(struct timecounter *tc)
1199 {
1200         u_int u;
1201         struct sysctl_oid *tc_root;
1202
1203         u = tc->tc_frequency / tc->tc_counter_mask;
1204         /* XXX: We need some margin here, 10% is a guess */
1205         u *= 11;
1206         u /= 10;
1207         if (u > hz && tc->tc_quality >= 0) {
1208                 tc->tc_quality = -2000;
1209                 if (bootverbose) {
1210                         printf("Timecounter \"%s\" frequency %ju Hz",
1211                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1212                         printf(" -- Insufficient hz, needs at least %u\n", u);
1213                 }
1214         } else if (tc->tc_quality >= 0 || bootverbose) {
1215                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1216                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1217                     tc->tc_quality);
1218         }
1219
1220         tc->tc_next = timecounters;
1221         timecounters = tc;
1222         /*
1223          * Set up sysctl tree for this counter.
1224          */
1225         tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1226             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1227             CTLFLAG_RW, 0, "timecounter description", "timecounter");
1228         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1229             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1230             "mask for implemented bits");
1231         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1232             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1233             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1234         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1235             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1236              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1237         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1238             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1239             "goodness of time counter");
1240         /*
1241          * Do not automatically switch if the current tc was specifically
1242          * chosen.  Never automatically use a timecounter with negative quality.
1243          * Even though we run on the dummy counter, switching here may be
1244          * worse since this timecounter may not be monotonic.
1245          */
1246         if (tc_chosen)
1247                 return;
1248         if (tc->tc_quality < 0)
1249                 return;
1250         if (tc->tc_quality < timecounter->tc_quality)
1251                 return;
1252         if (tc->tc_quality == timecounter->tc_quality &&
1253             tc->tc_frequency < timecounter->tc_frequency)
1254                 return;
1255         (void)tc->tc_get_timecount(tc);
1256         (void)tc->tc_get_timecount(tc);
1257         timecounter = tc;
1258 }
1259
1260 /* Report the frequency of the current timecounter. */
1261 uint64_t
1262 tc_getfrequency(void)
1263 {
1264
1265         return (timehands->th_counter->tc_frequency);
1266 }
1267
1268 static bool
1269 sleeping_on_old_rtc(struct thread *td)
1270 {
1271
1272         /*
1273          * td_rtcgen is modified by curthread when it is running,
1274          * and by other threads in this function.  By finding the thread
1275          * on a sleepqueue and holding the lock on the sleepqueue
1276          * chain, we guarantee that the thread is not running and that
1277          * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1278          * the thread that it was woken due to a real-time clock adjustment.
1279          * (The declaration of td_rtcgen refers to this comment.)
1280          */
1281         if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1282                 td->td_rtcgen = 0;
1283                 return (true);
1284         }
1285         return (false);
1286 }
1287
1288 static struct mtx tc_setclock_mtx;
1289 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1290
1291 /*
1292  * Step our concept of UTC.  This is done by modifying our estimate of
1293  * when we booted.
1294  */
1295 void
1296 tc_setclock(struct timespec *ts)
1297 {
1298         struct timespec tbef, taft;
1299         struct bintime bt, bt2;
1300
1301         timespec2bintime(ts, &bt);
1302         nanotime(&tbef);
1303         mtx_lock_spin(&tc_setclock_mtx);
1304         cpu_tick_calibrate(1);
1305         binuptime(&bt2);
1306         bintime_sub(&bt, &bt2);
1307
1308         /* XXX fiddle all the little crinkly bits around the fiords... */
1309         tc_windup(&bt);
1310         mtx_unlock_spin(&tc_setclock_mtx);
1311
1312         /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1313         atomic_add_rel_int(&rtc_generation, 2);
1314         sleepq_chains_remove_matching(sleeping_on_old_rtc);
1315         if (timestepwarnings) {
1316                 nanotime(&taft);
1317                 log(LOG_INFO,
1318                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1319                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1320                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1321                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1322         }
1323 }
1324
1325 /*
1326  * Initialize the next struct timehands in the ring and make
1327  * it the active timehands.  Along the way we might switch to a different
1328  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1329  */
1330 static void
1331 tc_windup(struct bintime *new_boottimebin)
1332 {
1333         struct bintime bt;
1334         struct timehands *th, *tho;
1335         uint64_t scale;
1336         u_int delta, ncount, ogen;
1337         int i;
1338         time_t t;
1339
1340         /*
1341          * Make the next timehands a copy of the current one, but do
1342          * not overwrite the generation or next pointer.  While we
1343          * update the contents, the generation must be zero.  We need
1344          * to ensure that the zero generation is visible before the
1345          * data updates become visible, which requires release fence.
1346          * For similar reasons, re-reading of the generation after the
1347          * data is read should use acquire fence.
1348          */
1349         tho = timehands;
1350         th = tho->th_next;
1351         ogen = th->th_generation;
1352         th->th_generation = 0;
1353         atomic_thread_fence_rel();
1354         bcopy(tho, th, offsetof(struct timehands, th_generation));
1355         if (new_boottimebin != NULL)
1356                 th->th_boottime = *new_boottimebin;
1357
1358         /*
1359          * Capture a timecounter delta on the current timecounter and if
1360          * changing timecounters, a counter value from the new timecounter.
1361          * Update the offset fields accordingly.
1362          */
1363         delta = tc_delta(th);
1364         if (th->th_counter != timecounter)
1365                 ncount = timecounter->tc_get_timecount(timecounter);
1366         else
1367                 ncount = 0;
1368 #ifdef FFCLOCK
1369         ffclock_windup(delta);
1370 #endif
1371         th->th_offset_count += delta;
1372         th->th_offset_count &= th->th_counter->tc_counter_mask;
1373         while (delta > th->th_counter->tc_frequency) {
1374                 /* Eat complete unadjusted seconds. */
1375                 delta -= th->th_counter->tc_frequency;
1376                 th->th_offset.sec++;
1377         }
1378         if ((delta > th->th_counter->tc_frequency / 2) &&
1379             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1380                 /* The product th_scale * delta just barely overflows. */
1381                 th->th_offset.sec++;
1382         }
1383         bintime_addx(&th->th_offset, th->th_scale * delta);
1384
1385         /*
1386          * Hardware latching timecounters may not generate interrupts on
1387          * PPS events, so instead we poll them.  There is a finite risk that
1388          * the hardware might capture a count which is later than the one we
1389          * got above, and therefore possibly in the next NTP second which might
1390          * have a different rate than the current NTP second.  It doesn't
1391          * matter in practice.
1392          */
1393         if (tho->th_counter->tc_poll_pps)
1394                 tho->th_counter->tc_poll_pps(tho->th_counter);
1395
1396         /*
1397          * Deal with NTP second processing.  The for loop normally
1398          * iterates at most once, but in extreme situations it might
1399          * keep NTP sane if timeouts are not run for several seconds.
1400          * At boot, the time step can be large when the TOD hardware
1401          * has been read, so on really large steps, we call
1402          * ntp_update_second only twice.  We need to call it twice in
1403          * case we missed a leap second.
1404          */
1405         bt = th->th_offset;
1406         bintime_add(&bt, &th->th_boottime);
1407         i = bt.sec - tho->th_microtime.tv_sec;
1408         if (i > LARGE_STEP)
1409                 i = 2;
1410         for (; i > 0; i--) {
1411                 t = bt.sec;
1412                 ntp_update_second(&th->th_adjustment, &bt.sec);
1413                 if (bt.sec != t)
1414                         th->th_boottime.sec += bt.sec - t;
1415         }
1416         /* Update the UTC timestamps used by the get*() functions. */
1417         th->th_bintime = bt;
1418         bintime2timeval(&bt, &th->th_microtime);
1419         bintime2timespec(&bt, &th->th_nanotime);
1420
1421         /* Now is a good time to change timecounters. */
1422         if (th->th_counter != timecounter) {
1423 #ifndef __arm__
1424                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1425                         cpu_disable_c2_sleep++;
1426                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1427                         cpu_disable_c2_sleep--;
1428 #endif
1429                 th->th_counter = timecounter;
1430                 th->th_offset_count = ncount;
1431                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1432                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1433 #ifdef FFCLOCK
1434                 ffclock_change_tc(th);
1435 #endif
1436         }
1437
1438         /*-
1439          * Recalculate the scaling factor.  We want the number of 1/2^64
1440          * fractions of a second per period of the hardware counter, taking
1441          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1442          * processing provides us with.
1443          *
1444          * The th_adjustment is nanoseconds per second with 32 bit binary
1445          * fraction and we want 64 bit binary fraction of second:
1446          *
1447          *       x = a * 2^32 / 10^9 = a * 4.294967296
1448          *
1449          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1450          * we can only multiply by about 850 without overflowing, that
1451          * leaves no suitably precise fractions for multiply before divide.
1452          *
1453          * Divide before multiply with a fraction of 2199/512 results in a
1454          * systematic undercompensation of 10PPM of th_adjustment.  On a
1455          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1456          *
1457          * We happily sacrifice the lowest of the 64 bits of our result
1458          * to the goddess of code clarity.
1459          *
1460          */
1461         scale = (uint64_t)1 << 63;
1462         scale += (th->th_adjustment / 1024) * 2199;
1463         scale /= th->th_counter->tc_frequency;
1464         th->th_scale = scale * 2;
1465
1466         /*
1467          * Now that the struct timehands is again consistent, set the new
1468          * generation number, making sure to not make it zero.
1469          */
1470         if (++ogen == 0)
1471                 ogen = 1;
1472         atomic_store_rel_int(&th->th_generation, ogen);
1473
1474         /* Go live with the new struct timehands. */
1475 #ifdef FFCLOCK
1476         switch (sysclock_active) {
1477         case SYSCLOCK_FBCK:
1478 #endif
1479                 time_second = th->th_microtime.tv_sec;
1480                 time_uptime = th->th_offset.sec;
1481 #ifdef FFCLOCK
1482                 break;
1483         case SYSCLOCK_FFWD:
1484                 time_second = fftimehands->tick_time_lerp.sec;
1485                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1486                 break;
1487         }
1488 #endif
1489
1490         timehands = th;
1491         timekeep_push_vdso();
1492 }
1493
1494 /* Report or change the active timecounter hardware. */
1495 static int
1496 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1497 {
1498         char newname[32];
1499         struct timecounter *newtc, *tc;
1500         int error;
1501
1502         tc = timecounter;
1503         strlcpy(newname, tc->tc_name, sizeof(newname));
1504
1505         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1506         if (error != 0 || req->newptr == NULL)
1507                 return (error);
1508         /* Record that the tc in use now was specifically chosen. */
1509         tc_chosen = 1;
1510         if (strcmp(newname, tc->tc_name) == 0)
1511                 return (0);
1512         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1513                 if (strcmp(newname, newtc->tc_name) != 0)
1514                         continue;
1515
1516                 /* Warm up new timecounter. */
1517                 (void)newtc->tc_get_timecount(newtc);
1518                 (void)newtc->tc_get_timecount(newtc);
1519
1520                 timecounter = newtc;
1521
1522                 /*
1523                  * The vdso timehands update is deferred until the next
1524                  * 'tc_windup()'.
1525                  *
1526                  * This is prudent given that 'timekeep_push_vdso()' does not
1527                  * use any locking and that it can be called in hard interrupt
1528                  * context via 'tc_windup()'.
1529                  */
1530                 return (0);
1531         }
1532         return (EINVAL);
1533 }
1534
1535 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1536     0, 0, sysctl_kern_timecounter_hardware, "A",
1537     "Timecounter hardware selected");
1538
1539
1540 /* Report the available timecounter hardware. */
1541 static int
1542 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1543 {
1544         struct sbuf sb;
1545         struct timecounter *tc;
1546         int error;
1547
1548         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1549         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1550                 if (tc != timecounters)
1551                         sbuf_putc(&sb, ' ');
1552                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1553         }
1554         error = sbuf_finish(&sb);
1555         sbuf_delete(&sb);
1556         return (error);
1557 }
1558
1559 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1560     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1561
1562 /*
1563  * RFC 2783 PPS-API implementation.
1564  */
1565
1566 /*
1567  *  Return true if the driver is aware of the abi version extensions in the
1568  *  pps_state structure, and it supports at least the given abi version number.
1569  */
1570 static inline int
1571 abi_aware(struct pps_state *pps, int vers)
1572 {
1573
1574         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1575 }
1576
1577 static int
1578 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1579 {
1580         int err, timo;
1581         pps_seq_t aseq, cseq;
1582         struct timeval tv;
1583
1584         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1585                 return (EINVAL);
1586
1587         /*
1588          * If no timeout is requested, immediately return whatever values were
1589          * most recently captured.  If timeout seconds is -1, that's a request
1590          * to block without a timeout.  WITNESS won't let us sleep forever
1591          * without a lock (we really don't need a lock), so just repeatedly
1592          * sleep a long time.
1593          */
1594         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1595                 if (fapi->timeout.tv_sec == -1)
1596                         timo = 0x7fffffff;
1597                 else {
1598                         tv.tv_sec = fapi->timeout.tv_sec;
1599                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1600                         timo = tvtohz(&tv);
1601                 }
1602                 aseq = pps->ppsinfo.assert_sequence;
1603                 cseq = pps->ppsinfo.clear_sequence;
1604                 while (aseq == pps->ppsinfo.assert_sequence &&
1605                     cseq == pps->ppsinfo.clear_sequence) {
1606                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1607                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1608                                         err = msleep_spin(pps, pps->driver_mtx,
1609                                             "ppsfch", timo);
1610                                 } else {
1611                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1612                                             "ppsfch", timo);
1613                                 }
1614                         } else {
1615                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1616                         }
1617                         if (err == EWOULDBLOCK) {
1618                                 if (fapi->timeout.tv_sec == -1) {
1619                                         continue;
1620                                 } else {
1621                                         return (ETIMEDOUT);
1622                                 }
1623                         } else if (err != 0) {
1624                                 return (err);
1625                         }
1626                 }
1627         }
1628
1629         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1630         fapi->pps_info_buf = pps->ppsinfo;
1631
1632         return (0);
1633 }
1634
1635 int
1636 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1637 {
1638         pps_params_t *app;
1639         struct pps_fetch_args *fapi;
1640 #ifdef FFCLOCK
1641         struct pps_fetch_ffc_args *fapi_ffc;
1642 #endif
1643 #ifdef PPS_SYNC
1644         struct pps_kcbind_args *kapi;
1645 #endif
1646
1647         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1648         switch (cmd) {
1649         case PPS_IOC_CREATE:
1650                 return (0);
1651         case PPS_IOC_DESTROY:
1652                 return (0);
1653         case PPS_IOC_SETPARAMS:
1654                 app = (pps_params_t *)data;
1655                 if (app->mode & ~pps->ppscap)
1656                         return (EINVAL);
1657 #ifdef FFCLOCK
1658                 /* Ensure only a single clock is selected for ffc timestamp. */
1659                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1660                         return (EINVAL);
1661 #endif
1662                 pps->ppsparam = *app;
1663                 return (0);
1664         case PPS_IOC_GETPARAMS:
1665                 app = (pps_params_t *)data;
1666                 *app = pps->ppsparam;
1667                 app->api_version = PPS_API_VERS_1;
1668                 return (0);
1669         case PPS_IOC_GETCAP:
1670                 *(int*)data = pps->ppscap;
1671                 return (0);
1672         case PPS_IOC_FETCH:
1673                 fapi = (struct pps_fetch_args *)data;
1674                 return (pps_fetch(fapi, pps));
1675 #ifdef FFCLOCK
1676         case PPS_IOC_FETCH_FFCOUNTER:
1677                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1678                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1679                     PPS_TSFMT_TSPEC)
1680                         return (EINVAL);
1681                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1682                         return (EOPNOTSUPP);
1683                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1684                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1685                 /* Overwrite timestamps if feedback clock selected. */
1686                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1687                 case PPS_TSCLK_FBCK:
1688                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1689                             pps->ppsinfo.assert_timestamp;
1690                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1691                             pps->ppsinfo.clear_timestamp;
1692                         break;
1693                 case PPS_TSCLK_FFWD:
1694                         break;
1695                 default:
1696                         break;
1697                 }
1698                 return (0);
1699 #endif /* FFCLOCK */
1700         case PPS_IOC_KCBIND:
1701 #ifdef PPS_SYNC
1702                 kapi = (struct pps_kcbind_args *)data;
1703                 /* XXX Only root should be able to do this */
1704                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1705                         return (EINVAL);
1706                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1707                         return (EINVAL);
1708                 if (kapi->edge & ~pps->ppscap)
1709                         return (EINVAL);
1710                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1711                     (pps->kcmode & KCMODE_ABIFLAG);
1712                 return (0);
1713 #else
1714                 return (EOPNOTSUPP);
1715 #endif
1716         default:
1717                 return (ENOIOCTL);
1718         }
1719 }
1720
1721 void
1722 pps_init(struct pps_state *pps)
1723 {
1724         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1725         if (pps->ppscap & PPS_CAPTUREASSERT)
1726                 pps->ppscap |= PPS_OFFSETASSERT;
1727         if (pps->ppscap & PPS_CAPTURECLEAR)
1728                 pps->ppscap |= PPS_OFFSETCLEAR;
1729 #ifdef FFCLOCK
1730         pps->ppscap |= PPS_TSCLK_MASK;
1731 #endif
1732         pps->kcmode &= ~KCMODE_ABIFLAG;
1733 }
1734
1735 void
1736 pps_init_abi(struct pps_state *pps)
1737 {
1738
1739         pps_init(pps);
1740         if (pps->driver_abi > 0) {
1741                 pps->kcmode |= KCMODE_ABIFLAG;
1742                 pps->kernel_abi = PPS_ABI_VERSION;
1743         }
1744 }
1745
1746 void
1747 pps_capture(struct pps_state *pps)
1748 {
1749         struct timehands *th;
1750
1751         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1752         th = timehands;
1753         pps->capgen = atomic_load_acq_int(&th->th_generation);
1754         pps->capth = th;
1755 #ifdef FFCLOCK
1756         pps->capffth = fftimehands;
1757 #endif
1758         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1759         atomic_thread_fence_acq();
1760         if (pps->capgen != th->th_generation)
1761                 pps->capgen = 0;
1762 }
1763
1764 void
1765 pps_event(struct pps_state *pps, int event)
1766 {
1767         struct bintime bt;
1768         struct timespec ts, *tsp, *osp;
1769         u_int tcount, *pcount;
1770         int foff;
1771         pps_seq_t *pseq;
1772 #ifdef FFCLOCK
1773         struct timespec *tsp_ffc;
1774         pps_seq_t *pseq_ffc;
1775         ffcounter *ffcount;
1776 #endif
1777 #ifdef PPS_SYNC
1778         int fhard;
1779 #endif
1780
1781         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1782         /* Nothing to do if not currently set to capture this event type. */
1783         if ((event & pps->ppsparam.mode) == 0)
1784                 return;
1785         /* If the timecounter was wound up underneath us, bail out. */
1786         if (pps->capgen == 0 || pps->capgen !=
1787             atomic_load_acq_int(&pps->capth->th_generation))
1788                 return;
1789
1790         /* Things would be easier with arrays. */
1791         if (event == PPS_CAPTUREASSERT) {
1792                 tsp = &pps->ppsinfo.assert_timestamp;
1793                 osp = &pps->ppsparam.assert_offset;
1794                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1795 #ifdef PPS_SYNC
1796                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1797 #endif
1798                 pcount = &pps->ppscount[0];
1799                 pseq = &pps->ppsinfo.assert_sequence;
1800 #ifdef FFCLOCK
1801                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1802                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1803                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1804 #endif
1805         } else {
1806                 tsp = &pps->ppsinfo.clear_timestamp;
1807                 osp = &pps->ppsparam.clear_offset;
1808                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1809 #ifdef PPS_SYNC
1810                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1811 #endif
1812                 pcount = &pps->ppscount[1];
1813                 pseq = &pps->ppsinfo.clear_sequence;
1814 #ifdef FFCLOCK
1815                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1816                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1817                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1818 #endif
1819         }
1820
1821         /*
1822          * If the timecounter changed, we cannot compare the count values, so
1823          * we have to drop the rest of the PPS-stuff until the next event.
1824          */
1825         if (pps->ppstc != pps->capth->th_counter) {
1826                 pps->ppstc = pps->capth->th_counter;
1827                 *pcount = pps->capcount;
1828                 pps->ppscount[2] = pps->capcount;
1829                 return;
1830         }
1831
1832         /* Convert the count to a timespec. */
1833         tcount = pps->capcount - pps->capth->th_offset_count;
1834         tcount &= pps->capth->th_counter->tc_counter_mask;
1835         bt = pps->capth->th_bintime;
1836         bintime_addx(&bt, pps->capth->th_scale * tcount);
1837         bintime2timespec(&bt, &ts);
1838
1839         /* If the timecounter was wound up underneath us, bail out. */
1840         atomic_thread_fence_acq();
1841         if (pps->capgen != pps->capth->th_generation)
1842                 return;
1843
1844         *pcount = pps->capcount;
1845         (*pseq)++;
1846         *tsp = ts;
1847
1848         if (foff) {
1849                 timespecadd(tsp, osp);
1850                 if (tsp->tv_nsec < 0) {
1851                         tsp->tv_nsec += 1000000000;
1852                         tsp->tv_sec -= 1;
1853                 }
1854         }
1855
1856 #ifdef FFCLOCK
1857         *ffcount = pps->capffth->tick_ffcount + tcount;
1858         bt = pps->capffth->tick_time;
1859         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1860         bintime_add(&bt, &pps->capffth->tick_time);
1861         bintime2timespec(&bt, &ts);
1862         (*pseq_ffc)++;
1863         *tsp_ffc = ts;
1864 #endif
1865
1866 #ifdef PPS_SYNC
1867         if (fhard) {
1868                 uint64_t scale;
1869
1870                 /*
1871                  * Feed the NTP PLL/FLL.
1872                  * The FLL wants to know how many (hardware) nanoseconds
1873                  * elapsed since the previous event.
1874                  */
1875                 tcount = pps->capcount - pps->ppscount[2];
1876                 pps->ppscount[2] = pps->capcount;
1877                 tcount &= pps->capth->th_counter->tc_counter_mask;
1878                 scale = (uint64_t)1 << 63;
1879                 scale /= pps->capth->th_counter->tc_frequency;
1880                 scale *= 2;
1881                 bt.sec = 0;
1882                 bt.frac = 0;
1883                 bintime_addx(&bt, scale * tcount);
1884                 bintime2timespec(&bt, &ts);
1885                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1886         }
1887 #endif
1888
1889         /* Wakeup anyone sleeping in pps_fetch().  */
1890         wakeup(pps);
1891 }
1892
1893 /*
1894  * Timecounters need to be updated every so often to prevent the hardware
1895  * counter from overflowing.  Updating also recalculates the cached values
1896  * used by the get*() family of functions, so their precision depends on
1897  * the update frequency.
1898  */
1899
1900 static int tc_tick;
1901 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1902     "Approximate number of hardclock ticks in a millisecond");
1903
1904 void
1905 tc_ticktock(int cnt)
1906 {
1907         static int count;
1908
1909         if (mtx_trylock_spin(&tc_setclock_mtx)) {
1910                 count += cnt;
1911                 if (count >= tc_tick) {
1912                         count = 0;
1913                         tc_windup(NULL);
1914                 }
1915                 mtx_unlock_spin(&tc_setclock_mtx);
1916         }
1917 }
1918
1919 static void __inline
1920 tc_adjprecision(void)
1921 {
1922         int t;
1923
1924         if (tc_timepercentage > 0) {
1925                 t = (99 + tc_timepercentage) / tc_timepercentage;
1926                 tc_precexp = fls(t + (t >> 1)) - 1;
1927                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1928                 FREQ2BT(hz, &bt_tickthreshold);
1929                 bintime_shift(&bt_timethreshold, tc_precexp);
1930                 bintime_shift(&bt_tickthreshold, tc_precexp);
1931         } else {
1932                 tc_precexp = 31;
1933                 bt_timethreshold.sec = INT_MAX;
1934                 bt_timethreshold.frac = ~(uint64_t)0;
1935                 bt_tickthreshold = bt_timethreshold;
1936         }
1937         sbt_timethreshold = bttosbt(bt_timethreshold);
1938         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1939 }
1940
1941 static int
1942 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1943 {
1944         int error, val;
1945
1946         val = tc_timepercentage;
1947         error = sysctl_handle_int(oidp, &val, 0, req);
1948         if (error != 0 || req->newptr == NULL)
1949                 return (error);
1950         tc_timepercentage = val;
1951         if (cold)
1952                 goto done;
1953         tc_adjprecision();
1954 done:
1955         return (0);
1956 }
1957
1958 static void
1959 inittimecounter(void *dummy)
1960 {
1961         u_int p;
1962         int tick_rate;
1963
1964         /*
1965          * Set the initial timeout to
1966          * max(1, <approx. number of hardclock ticks in a millisecond>).
1967          * People should probably not use the sysctl to set the timeout
1968          * to smaller than its initial value, since that value is the
1969          * smallest reasonable one.  If they want better timestamps they
1970          * should use the non-"get"* functions.
1971          */
1972         if (hz > 1000)
1973                 tc_tick = (hz + 500) / 1000;
1974         else
1975                 tc_tick = 1;
1976         tc_adjprecision();
1977         FREQ2BT(hz, &tick_bt);
1978         tick_sbt = bttosbt(tick_bt);
1979         tick_rate = hz / tc_tick;
1980         FREQ2BT(tick_rate, &tc_tick_bt);
1981         tc_tick_sbt = bttosbt(tc_tick_bt);
1982         p = (tc_tick * 1000000) / hz;
1983         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1984
1985 #ifdef FFCLOCK
1986         ffclock_init();
1987 #endif
1988         /* warm up new timecounter (again) and get rolling. */
1989         (void)timecounter->tc_get_timecount(timecounter);
1990         (void)timecounter->tc_get_timecount(timecounter);
1991         mtx_lock_spin(&tc_setclock_mtx);
1992         tc_windup(NULL);
1993         mtx_unlock_spin(&tc_setclock_mtx);
1994 }
1995
1996 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1997
1998 /* Cpu tick handling -------------------------------------------------*/
1999
2000 static int cpu_tick_variable;
2001 static uint64_t cpu_tick_frequency;
2002
2003 static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base);
2004 static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last);
2005
2006 static uint64_t
2007 tc_cpu_ticks(void)
2008 {
2009         struct timecounter *tc;
2010         uint64_t res, *base;
2011         unsigned u, *last;
2012
2013         critical_enter();
2014         base = DPCPU_PTR(tc_cpu_ticks_base);
2015         last = DPCPU_PTR(tc_cpu_ticks_last);
2016         tc = timehands->th_counter;
2017         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2018         if (u < *last)
2019                 *base += (uint64_t)tc->tc_counter_mask + 1;
2020         *last = u;
2021         res = u + *base;
2022         critical_exit();
2023         return (res);
2024 }
2025
2026 void
2027 cpu_tick_calibration(void)
2028 {
2029         static time_t last_calib;
2030
2031         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2032                 cpu_tick_calibrate(0);
2033                 last_calib = time_uptime;
2034         }
2035 }
2036
2037 /*
2038  * This function gets called every 16 seconds on only one designated
2039  * CPU in the system from hardclock() via cpu_tick_calibration()().
2040  *
2041  * Whenever the real time clock is stepped we get called with reset=1
2042  * to make sure we handle suspend/resume and similar events correctly.
2043  */
2044
2045 static void
2046 cpu_tick_calibrate(int reset)
2047 {
2048         static uint64_t c_last;
2049         uint64_t c_this, c_delta;
2050         static struct bintime  t_last;
2051         struct bintime t_this, t_delta;
2052         uint32_t divi;
2053
2054         if (reset) {
2055                 /* The clock was stepped, abort & reset */
2056                 t_last.sec = 0;
2057                 return;
2058         }
2059
2060         /* we don't calibrate fixed rate cputicks */
2061         if (!cpu_tick_variable)
2062                 return;
2063
2064         getbinuptime(&t_this);
2065         c_this = cpu_ticks();
2066         if (t_last.sec != 0) {
2067                 c_delta = c_this - c_last;
2068                 t_delta = t_this;
2069                 bintime_sub(&t_delta, &t_last);
2070                 /*
2071                  * Headroom:
2072                  *      2^(64-20) / 16[s] =
2073                  *      2^(44) / 16[s] =
2074                  *      17.592.186.044.416 / 16 =
2075                  *      1.099.511.627.776 [Hz]
2076                  */
2077                 divi = t_delta.sec << 20;
2078                 divi |= t_delta.frac >> (64 - 20);
2079                 c_delta <<= 20;
2080                 c_delta /= divi;
2081                 if (c_delta > cpu_tick_frequency) {
2082                         if (0 && bootverbose)
2083                                 printf("cpu_tick increased to %ju Hz\n",
2084                                     c_delta);
2085                         cpu_tick_frequency = c_delta;
2086                 }
2087         }
2088         c_last = c_this;
2089         t_last = t_this;
2090 }
2091
2092 void
2093 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2094 {
2095
2096         if (func == NULL) {
2097                 cpu_ticks = tc_cpu_ticks;
2098         } else {
2099                 cpu_tick_frequency = freq;
2100                 cpu_tick_variable = var;
2101                 cpu_ticks = func;
2102         }
2103 }
2104
2105 uint64_t
2106 cpu_tickrate(void)
2107 {
2108
2109         if (cpu_ticks == tc_cpu_ticks) 
2110                 return (tc_getfrequency());
2111         return (cpu_tick_frequency);
2112 }
2113
2114 /*
2115  * We need to be slightly careful converting cputicks to microseconds.
2116  * There is plenty of margin in 64 bits of microseconds (half a million
2117  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2118  * before divide conversion (to retain precision) we find that the
2119  * margin shrinks to 1.5 hours (one millionth of 146y).
2120  * With a three prong approach we never lose significant bits, no
2121  * matter what the cputick rate and length of timeinterval is.
2122  */
2123
2124 uint64_t
2125 cputick2usec(uint64_t tick)
2126 {
2127
2128         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2129                 return (tick / (cpu_tickrate() / 1000000LL));
2130         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2131                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2132         else
2133                 return ((tick * 1000000LL) / cpu_tickrate());
2134 }
2135
2136 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2137
2138 static int vdso_th_enable = 1;
2139 static int
2140 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2141 {
2142         int old_vdso_th_enable, error;
2143
2144         old_vdso_th_enable = vdso_th_enable;
2145         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2146         if (error != 0)
2147                 return (error);
2148         vdso_th_enable = old_vdso_th_enable;
2149         return (0);
2150 }
2151 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2152     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2153     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2154
2155 uint32_t
2156 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2157 {
2158         struct timehands *th;
2159         uint32_t enabled;
2160
2161         th = timehands;
2162         vdso_th->th_scale = th->th_scale;
2163         vdso_th->th_offset_count = th->th_offset_count;
2164         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2165         vdso_th->th_offset = th->th_offset;
2166         vdso_th->th_boottime = th->th_boottime;
2167         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2168                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2169                     th->th_counter);
2170         } else
2171                 enabled = 0;
2172         if (!vdso_th_enable)
2173                 enabled = 0;
2174         return (enabled);
2175 }
2176
2177 #ifdef COMPAT_FREEBSD32
2178 uint32_t
2179 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2180 {
2181         struct timehands *th;
2182         uint32_t enabled;
2183
2184         th = timehands;
2185         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2186         vdso_th32->th_offset_count = th->th_offset_count;
2187         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2188         vdso_th32->th_offset.sec = th->th_offset.sec;
2189         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2190         vdso_th32->th_boottime.sec = th->th_boottime.sec;
2191         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2192         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2193                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2194                     th->th_counter);
2195         } else
2196                 enabled = 0;
2197         if (!vdso_th_enable)
2198                 enabled = 0;
2199         return (enabled);
2200 }
2201 #endif