]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
Merge OpenSSL 1.1.1d.
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  * All rights reserved.
13  *
14  * Portions of this software were developed by Julien Ridoux at the University
15  * of Melbourne under sponsorship from the FreeBSD Foundation.
16  *
17  * Portions of this software were developed by Konstantin Belousov
18  * under sponsorship from the FreeBSD Foundation.
19  */
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 #include "opt_ntp.h"
25 #include "opt_ffclock.h"
26
27 #include <sys/param.h>
28 #include <sys/kernel.h>
29 #include <sys/limits.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/proc.h>
33 #include <sys/sbuf.h>
34 #include <sys/sleepqueue.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
37 #include <sys/systm.h>
38 #include <sys/timeffc.h>
39 #include <sys/timepps.h>
40 #include <sys/timetc.h>
41 #include <sys/timex.h>
42 #include <sys/vdso.h>
43
44 /*
45  * A large step happens on boot.  This constant detects such steps.
46  * It is relatively small so that ntp_update_second gets called enough
47  * in the typical 'missed a couple of seconds' case, but doesn't loop
48  * forever when the time step is large.
49  */
50 #define LARGE_STEP      200
51
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57
58 static u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61         static u_int now;
62
63         return (++now);
64 }
65
66 static struct timecounter dummy_timecounter = {
67         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69
70 struct timehands {
71         /* These fields must be initialized by the driver. */
72         struct timecounter      *th_counter;
73         int64_t                 th_adjustment;
74         uint64_t                th_scale;
75         u_int                   th_offset_count;
76         struct bintime          th_offset;
77         struct bintime          th_bintime;
78         struct timeval          th_microtime;
79         struct timespec         th_nanotime;
80         struct bintime          th_boottime;
81         /* Fields not to be copied in tc_windup start with th_generation. */
82         u_int                   th_generation;
83         struct timehands        *th_next;
84 };
85
86 static struct timehands ths[16] = {
87     [0] =  {
88         .th_counter = &dummy_timecounter,
89         .th_scale = (uint64_t)-1 / 1000000,
90         .th_offset = { .sec = 1 },
91         .th_generation = 1,
92     },
93 };
94
95 static struct timehands *volatile timehands = &ths[0];
96 struct timecounter *timecounter = &dummy_timecounter;
97 static struct timecounter *timecounters = &dummy_timecounter;
98
99 int tc_min_ticktock_freq = 1;
100
101 volatile time_t time_second = 1;
102 volatile time_t time_uptime = 1;
103
104 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
105 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
106     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
107
108 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
109 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
110
111 static int timestepwarnings;
112 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
113     &timestepwarnings, 0, "Log time steps");
114
115 static int timehands_count = 2;
116 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
117     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
118     &timehands_count, 0, "Count of timehands in rotation");
119
120 struct bintime bt_timethreshold;
121 struct bintime bt_tickthreshold;
122 sbintime_t sbt_timethreshold;
123 sbintime_t sbt_tickthreshold;
124 struct bintime tc_tick_bt;
125 sbintime_t tc_tick_sbt;
126 int tc_precexp;
127 int tc_timepercentage = TC_DEFAULTPERC;
128 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
129 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
130     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
131     sysctl_kern_timecounter_adjprecision, "I",
132     "Allowed time interval deviation in percents");
133
134 volatile int rtc_generation = 1;
135
136 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
137
138 static void tc_windup(struct bintime *new_boottimebin);
139 static void cpu_tick_calibrate(int);
140
141 void dtrace_getnanotime(struct timespec *tsp);
142
143 static int
144 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
145 {
146         struct timeval boottime;
147
148         getboottime(&boottime);
149
150 /* i386 is the only arch which uses a 32bits time_t */
151 #ifdef __amd64__
152 #ifdef SCTL_MASK32
153         int tv[2];
154
155         if (req->flags & SCTL_MASK32) {
156                 tv[0] = boottime.tv_sec;
157                 tv[1] = boottime.tv_usec;
158                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
159         }
160 #endif
161 #endif
162         return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
163 }
164
165 static int
166 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
167 {
168         u_int ncount;
169         struct timecounter *tc = arg1;
170
171         ncount = tc->tc_get_timecount(tc);
172         return (sysctl_handle_int(oidp, &ncount, 0, req));
173 }
174
175 static int
176 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
177 {
178         uint64_t freq;
179         struct timecounter *tc = arg1;
180
181         freq = tc->tc_frequency;
182         return (sysctl_handle_64(oidp, &freq, 0, req));
183 }
184
185 /*
186  * Return the difference between the timehands' counter value now and what
187  * was when we copied it to the timehands' offset_count.
188  */
189 static __inline u_int
190 tc_delta(struct timehands *th)
191 {
192         struct timecounter *tc;
193
194         tc = th->th_counter;
195         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
196             tc->tc_counter_mask);
197 }
198
199 /*
200  * Functions for reading the time.  We have to loop until we are sure that
201  * the timehands that we operated on was not updated under our feet.  See
202  * the comment in <sys/time.h> for a description of these 12 functions.
203  */
204
205 #ifdef FFCLOCK
206 void
207 fbclock_binuptime(struct bintime *bt)
208 {
209         struct timehands *th;
210         unsigned int gen;
211
212         do {
213                 th = timehands;
214                 gen = atomic_load_acq_int(&th->th_generation);
215                 *bt = th->th_offset;
216                 bintime_addx(bt, th->th_scale * tc_delta(th));
217                 atomic_thread_fence_acq();
218         } while (gen == 0 || gen != th->th_generation);
219 }
220
221 void
222 fbclock_nanouptime(struct timespec *tsp)
223 {
224         struct bintime bt;
225
226         fbclock_binuptime(&bt);
227         bintime2timespec(&bt, tsp);
228 }
229
230 void
231 fbclock_microuptime(struct timeval *tvp)
232 {
233         struct bintime bt;
234
235         fbclock_binuptime(&bt);
236         bintime2timeval(&bt, tvp);
237 }
238
239 void
240 fbclock_bintime(struct bintime *bt)
241 {
242         struct timehands *th;
243         unsigned int gen;
244
245         do {
246                 th = timehands;
247                 gen = atomic_load_acq_int(&th->th_generation);
248                 *bt = th->th_bintime;
249                 bintime_addx(bt, th->th_scale * tc_delta(th));
250                 atomic_thread_fence_acq();
251         } while (gen == 0 || gen != th->th_generation);
252 }
253
254 void
255 fbclock_nanotime(struct timespec *tsp)
256 {
257         struct bintime bt;
258
259         fbclock_bintime(&bt);
260         bintime2timespec(&bt, tsp);
261 }
262
263 void
264 fbclock_microtime(struct timeval *tvp)
265 {
266         struct bintime bt;
267
268         fbclock_bintime(&bt);
269         bintime2timeval(&bt, tvp);
270 }
271
272 void
273 fbclock_getbinuptime(struct bintime *bt)
274 {
275         struct timehands *th;
276         unsigned int gen;
277
278         do {
279                 th = timehands;
280                 gen = atomic_load_acq_int(&th->th_generation);
281                 *bt = th->th_offset;
282                 atomic_thread_fence_acq();
283         } while (gen == 0 || gen != th->th_generation);
284 }
285
286 void
287 fbclock_getnanouptime(struct timespec *tsp)
288 {
289         struct timehands *th;
290         unsigned int gen;
291
292         do {
293                 th = timehands;
294                 gen = atomic_load_acq_int(&th->th_generation);
295                 bintime2timespec(&th->th_offset, tsp);
296                 atomic_thread_fence_acq();
297         } while (gen == 0 || gen != th->th_generation);
298 }
299
300 void
301 fbclock_getmicrouptime(struct timeval *tvp)
302 {
303         struct timehands *th;
304         unsigned int gen;
305
306         do {
307                 th = timehands;
308                 gen = atomic_load_acq_int(&th->th_generation);
309                 bintime2timeval(&th->th_offset, tvp);
310                 atomic_thread_fence_acq();
311         } while (gen == 0 || gen != th->th_generation);
312 }
313
314 void
315 fbclock_getbintime(struct bintime *bt)
316 {
317         struct timehands *th;
318         unsigned int gen;
319
320         do {
321                 th = timehands;
322                 gen = atomic_load_acq_int(&th->th_generation);
323                 *bt = th->th_bintime;
324                 atomic_thread_fence_acq();
325         } while (gen == 0 || gen != th->th_generation);
326 }
327
328 void
329 fbclock_getnanotime(struct timespec *tsp)
330 {
331         struct timehands *th;
332         unsigned int gen;
333
334         do {
335                 th = timehands;
336                 gen = atomic_load_acq_int(&th->th_generation);
337                 *tsp = th->th_nanotime;
338                 atomic_thread_fence_acq();
339         } while (gen == 0 || gen != th->th_generation);
340 }
341
342 void
343 fbclock_getmicrotime(struct timeval *tvp)
344 {
345         struct timehands *th;
346         unsigned int gen;
347
348         do {
349                 th = timehands;
350                 gen = atomic_load_acq_int(&th->th_generation);
351                 *tvp = th->th_microtime;
352                 atomic_thread_fence_acq();
353         } while (gen == 0 || gen != th->th_generation);
354 }
355 #else /* !FFCLOCK */
356 void
357 binuptime(struct bintime *bt)
358 {
359         struct timehands *th;
360         u_int gen;
361
362         do {
363                 th = timehands;
364                 gen = atomic_load_acq_int(&th->th_generation);
365                 *bt = th->th_offset;
366                 bintime_addx(bt, th->th_scale * tc_delta(th));
367                 atomic_thread_fence_acq();
368         } while (gen == 0 || gen != th->th_generation);
369 }
370
371 void
372 nanouptime(struct timespec *tsp)
373 {
374         struct bintime bt;
375
376         binuptime(&bt);
377         bintime2timespec(&bt, tsp);
378 }
379
380 void
381 microuptime(struct timeval *tvp)
382 {
383         struct bintime bt;
384
385         binuptime(&bt);
386         bintime2timeval(&bt, tvp);
387 }
388
389 void
390 bintime(struct bintime *bt)
391 {
392         struct timehands *th;
393         u_int gen;
394
395         do {
396                 th = timehands;
397                 gen = atomic_load_acq_int(&th->th_generation);
398                 *bt = th->th_bintime;
399                 bintime_addx(bt, th->th_scale * tc_delta(th));
400                 atomic_thread_fence_acq();
401         } while (gen == 0 || gen != th->th_generation);
402 }
403
404 void
405 nanotime(struct timespec *tsp)
406 {
407         struct bintime bt;
408
409         bintime(&bt);
410         bintime2timespec(&bt, tsp);
411 }
412
413 void
414 microtime(struct timeval *tvp)
415 {
416         struct bintime bt;
417
418         bintime(&bt);
419         bintime2timeval(&bt, tvp);
420 }
421
422 void
423 getbinuptime(struct bintime *bt)
424 {
425         struct timehands *th;
426         u_int gen;
427
428         do {
429                 th = timehands;
430                 gen = atomic_load_acq_int(&th->th_generation);
431                 *bt = th->th_offset;
432                 atomic_thread_fence_acq();
433         } while (gen == 0 || gen != th->th_generation);
434 }
435
436 void
437 getnanouptime(struct timespec *tsp)
438 {
439         struct timehands *th;
440         u_int gen;
441
442         do {
443                 th = timehands;
444                 gen = atomic_load_acq_int(&th->th_generation);
445                 bintime2timespec(&th->th_offset, tsp);
446                 atomic_thread_fence_acq();
447         } while (gen == 0 || gen != th->th_generation);
448 }
449
450 void
451 getmicrouptime(struct timeval *tvp)
452 {
453         struct timehands *th;
454         u_int gen;
455
456         do {
457                 th = timehands;
458                 gen = atomic_load_acq_int(&th->th_generation);
459                 bintime2timeval(&th->th_offset, tvp);
460                 atomic_thread_fence_acq();
461         } while (gen == 0 || gen != th->th_generation);
462 }
463
464 void
465 getbintime(struct bintime *bt)
466 {
467         struct timehands *th;
468         u_int gen;
469
470         do {
471                 th = timehands;
472                 gen = atomic_load_acq_int(&th->th_generation);
473                 *bt = th->th_bintime;
474                 atomic_thread_fence_acq();
475         } while (gen == 0 || gen != th->th_generation);
476 }
477
478 void
479 getnanotime(struct timespec *tsp)
480 {
481         struct timehands *th;
482         u_int gen;
483
484         do {
485                 th = timehands;
486                 gen = atomic_load_acq_int(&th->th_generation);
487                 *tsp = th->th_nanotime;
488                 atomic_thread_fence_acq();
489         } while (gen == 0 || gen != th->th_generation);
490 }
491
492 void
493 getmicrotime(struct timeval *tvp)
494 {
495         struct timehands *th;
496         u_int gen;
497
498         do {
499                 th = timehands;
500                 gen = atomic_load_acq_int(&th->th_generation);
501                 *tvp = th->th_microtime;
502                 atomic_thread_fence_acq();
503         } while (gen == 0 || gen != th->th_generation);
504 }
505 #endif /* FFCLOCK */
506
507 void
508 getboottime(struct timeval *boottime)
509 {
510         struct bintime boottimebin;
511
512         getboottimebin(&boottimebin);
513         bintime2timeval(&boottimebin, boottime);
514 }
515
516 void
517 getboottimebin(struct bintime *boottimebin)
518 {
519         struct timehands *th;
520         u_int gen;
521
522         do {
523                 th = timehands;
524                 gen = atomic_load_acq_int(&th->th_generation);
525                 *boottimebin = th->th_boottime;
526                 atomic_thread_fence_acq();
527         } while (gen == 0 || gen != th->th_generation);
528 }
529
530 #ifdef FFCLOCK
531 /*
532  * Support for feed-forward synchronization algorithms. This is heavily inspired
533  * by the timehands mechanism but kept independent from it. *_windup() functions
534  * have some connection to avoid accessing the timecounter hardware more than
535  * necessary.
536  */
537
538 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
539 struct ffclock_estimate ffclock_estimate;
540 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
541 uint32_t ffclock_status;                /* Feed-forward clock status. */
542 int8_t ffclock_updated;                 /* New estimates are available. */
543 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
544
545 struct fftimehands {
546         struct ffclock_estimate cest;
547         struct bintime          tick_time;
548         struct bintime          tick_time_lerp;
549         ffcounter               tick_ffcount;
550         uint64_t                period_lerp;
551         volatile uint8_t        gen;
552         struct fftimehands      *next;
553 };
554
555 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
556
557 static struct fftimehands ffth[10];
558 static struct fftimehands *volatile fftimehands = ffth;
559
560 static void
561 ffclock_init(void)
562 {
563         struct fftimehands *cur;
564         struct fftimehands *last;
565
566         memset(ffth, 0, sizeof(ffth));
567
568         last = ffth + NUM_ELEMENTS(ffth) - 1;
569         for (cur = ffth; cur < last; cur++)
570                 cur->next = cur + 1;
571         last->next = ffth;
572
573         ffclock_updated = 0;
574         ffclock_status = FFCLOCK_STA_UNSYNC;
575         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
576 }
577
578 /*
579  * Reset the feed-forward clock estimates. Called from inittodr() to get things
580  * kick started and uses the timecounter nominal frequency as a first period
581  * estimate. Note: this function may be called several time just after boot.
582  * Note: this is the only function that sets the value of boot time for the
583  * monotonic (i.e. uptime) version of the feed-forward clock.
584  */
585 void
586 ffclock_reset_clock(struct timespec *ts)
587 {
588         struct timecounter *tc;
589         struct ffclock_estimate cest;
590
591         tc = timehands->th_counter;
592         memset(&cest, 0, sizeof(struct ffclock_estimate));
593
594         timespec2bintime(ts, &ffclock_boottime);
595         timespec2bintime(ts, &(cest.update_time));
596         ffclock_read_counter(&cest.update_ffcount);
597         cest.leapsec_next = 0;
598         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
599         cest.errb_abs = 0;
600         cest.errb_rate = 0;
601         cest.status = FFCLOCK_STA_UNSYNC;
602         cest.leapsec_total = 0;
603         cest.leapsec = 0;
604
605         mtx_lock(&ffclock_mtx);
606         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
607         ffclock_updated = INT8_MAX;
608         mtx_unlock(&ffclock_mtx);
609
610         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
611             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
612             (unsigned long)ts->tv_nsec);
613 }
614
615 /*
616  * Sub-routine to convert a time interval measured in RAW counter units to time
617  * in seconds stored in bintime format.
618  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
619  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
620  * extra cycles.
621  */
622 static void
623 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
624 {
625         struct bintime bt2;
626         ffcounter delta, delta_max;
627
628         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
629         bintime_clear(bt);
630         do {
631                 if (ffdelta > delta_max)
632                         delta = delta_max;
633                 else
634                         delta = ffdelta;
635                 bt2.sec = 0;
636                 bt2.frac = period;
637                 bintime_mul(&bt2, (unsigned int)delta);
638                 bintime_add(bt, &bt2);
639                 ffdelta -= delta;
640         } while (ffdelta > 0);
641 }
642
643 /*
644  * Update the fftimehands.
645  * Push the tick ffcount and time(s) forward based on current clock estimate.
646  * The conversion from ffcounter to bintime relies on the difference clock
647  * principle, whose accuracy relies on computing small time intervals. If a new
648  * clock estimate has been passed by the synchronisation daemon, make it
649  * current, and compute the linear interpolation for monotonic time if needed.
650  */
651 static void
652 ffclock_windup(unsigned int delta)
653 {
654         struct ffclock_estimate *cest;
655         struct fftimehands *ffth;
656         struct bintime bt, gap_lerp;
657         ffcounter ffdelta;
658         uint64_t frac;
659         unsigned int polling;
660         uint8_t forward_jump, ogen;
661
662         /*
663          * Pick the next timehand, copy current ffclock estimates and move tick
664          * times and counter forward.
665          */
666         forward_jump = 0;
667         ffth = fftimehands->next;
668         ogen = ffth->gen;
669         ffth->gen = 0;
670         cest = &ffth->cest;
671         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
672         ffdelta = (ffcounter)delta;
673         ffth->period_lerp = fftimehands->period_lerp;
674
675         ffth->tick_time = fftimehands->tick_time;
676         ffclock_convert_delta(ffdelta, cest->period, &bt);
677         bintime_add(&ffth->tick_time, &bt);
678
679         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
680         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
681         bintime_add(&ffth->tick_time_lerp, &bt);
682
683         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
684
685         /*
686          * Assess the status of the clock, if the last update is too old, it is
687          * likely the synchronisation daemon is dead and the clock is free
688          * running.
689          */
690         if (ffclock_updated == 0) {
691                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
692                 ffclock_convert_delta(ffdelta, cest->period, &bt);
693                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
694                         ffclock_status |= FFCLOCK_STA_UNSYNC;
695         }
696
697         /*
698          * If available, grab updated clock estimates and make them current.
699          * Recompute time at this tick using the updated estimates. The clock
700          * estimates passed the feed-forward synchronisation daemon may result
701          * in time conversion that is not monotonically increasing (just after
702          * the update). time_lerp is a particular linear interpolation over the
703          * synchronisation algo polling period that ensures monotonicity for the
704          * clock ids requesting it.
705          */
706         if (ffclock_updated > 0) {
707                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
708                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
709                 ffth->tick_time = cest->update_time;
710                 ffclock_convert_delta(ffdelta, cest->period, &bt);
711                 bintime_add(&ffth->tick_time, &bt);
712
713                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
714                 if (ffclock_updated == INT8_MAX)
715                         ffth->tick_time_lerp = ffth->tick_time;
716
717                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
718                         forward_jump = 1;
719                 else
720                         forward_jump = 0;
721
722                 bintime_clear(&gap_lerp);
723                 if (forward_jump) {
724                         gap_lerp = ffth->tick_time;
725                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
726                 } else {
727                         gap_lerp = ffth->tick_time_lerp;
728                         bintime_sub(&gap_lerp, &ffth->tick_time);
729                 }
730
731                 /*
732                  * The reset from the RTC clock may be far from accurate, and
733                  * reducing the gap between real time and interpolated time
734                  * could take a very long time if the interpolated clock insists
735                  * on strict monotonicity. The clock is reset under very strict
736                  * conditions (kernel time is known to be wrong and
737                  * synchronization daemon has been restarted recently.
738                  * ffclock_boottime absorbs the jump to ensure boot time is
739                  * correct and uptime functions stay consistent.
740                  */
741                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
742                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
743                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
744                         if (forward_jump)
745                                 bintime_add(&ffclock_boottime, &gap_lerp);
746                         else
747                                 bintime_sub(&ffclock_boottime, &gap_lerp);
748                         ffth->tick_time_lerp = ffth->tick_time;
749                         bintime_clear(&gap_lerp);
750                 }
751
752                 ffclock_status = cest->status;
753                 ffth->period_lerp = cest->period;
754
755                 /*
756                  * Compute corrected period used for the linear interpolation of
757                  * time. The rate of linear interpolation is capped to 5000PPM
758                  * (5ms/s).
759                  */
760                 if (bintime_isset(&gap_lerp)) {
761                         ffdelta = cest->update_ffcount;
762                         ffdelta -= fftimehands->cest.update_ffcount;
763                         ffclock_convert_delta(ffdelta, cest->period, &bt);
764                         polling = bt.sec;
765                         bt.sec = 0;
766                         bt.frac = 5000000 * (uint64_t)18446744073LL;
767                         bintime_mul(&bt, polling);
768                         if (bintime_cmp(&gap_lerp, &bt, >))
769                                 gap_lerp = bt;
770
771                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
772                         frac = 0;
773                         if (gap_lerp.sec > 0) {
774                                 frac -= 1;
775                                 frac /= ffdelta / gap_lerp.sec;
776                         }
777                         frac += gap_lerp.frac / ffdelta;
778
779                         if (forward_jump)
780                                 ffth->period_lerp += frac;
781                         else
782                                 ffth->period_lerp -= frac;
783                 }
784
785                 ffclock_updated = 0;
786         }
787         if (++ogen == 0)
788                 ogen = 1;
789         ffth->gen = ogen;
790         fftimehands = ffth;
791 }
792
793 /*
794  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
795  * the old and new hardware counter cannot be read simultaneously. tc_windup()
796  * does read the two counters 'back to back', but a few cycles are effectively
797  * lost, and not accumulated in tick_ffcount. This is a fairly radical
798  * operation for a feed-forward synchronization daemon, and it is its job to not
799  * pushing irrelevant data to the kernel. Because there is no locking here,
800  * simply force to ignore pending or next update to give daemon a chance to
801  * realize the counter has changed.
802  */
803 static void
804 ffclock_change_tc(struct timehands *th)
805 {
806         struct fftimehands *ffth;
807         struct ffclock_estimate *cest;
808         struct timecounter *tc;
809         uint8_t ogen;
810
811         tc = th->th_counter;
812         ffth = fftimehands->next;
813         ogen = ffth->gen;
814         ffth->gen = 0;
815
816         cest = &ffth->cest;
817         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
818         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
819         cest->errb_abs = 0;
820         cest->errb_rate = 0;
821         cest->status |= FFCLOCK_STA_UNSYNC;
822
823         ffth->tick_ffcount = fftimehands->tick_ffcount;
824         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
825         ffth->tick_time = fftimehands->tick_time;
826         ffth->period_lerp = cest->period;
827
828         /* Do not lock but ignore next update from synchronization daemon. */
829         ffclock_updated--;
830
831         if (++ogen == 0)
832                 ogen = 1;
833         ffth->gen = ogen;
834         fftimehands = ffth;
835 }
836
837 /*
838  * Retrieve feed-forward counter and time of last kernel tick.
839  */
840 void
841 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
842 {
843         struct fftimehands *ffth;
844         uint8_t gen;
845
846         /*
847          * No locking but check generation has not changed. Also need to make
848          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
849          */
850         do {
851                 ffth = fftimehands;
852                 gen = ffth->gen;
853                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
854                         *bt = ffth->tick_time_lerp;
855                 else
856                         *bt = ffth->tick_time;
857                 *ffcount = ffth->tick_ffcount;
858         } while (gen == 0 || gen != ffth->gen);
859 }
860
861 /*
862  * Absolute clock conversion. Low level function to convert ffcounter to
863  * bintime. The ffcounter is converted using the current ffclock period estimate
864  * or the "interpolated period" to ensure monotonicity.
865  * NOTE: this conversion may have been deferred, and the clock updated since the
866  * hardware counter has been read.
867  */
868 void
869 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
870 {
871         struct fftimehands *ffth;
872         struct bintime bt2;
873         ffcounter ffdelta;
874         uint8_t gen;
875
876         /*
877          * No locking but check generation has not changed. Also need to make
878          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
879          */
880         do {
881                 ffth = fftimehands;
882                 gen = ffth->gen;
883                 if (ffcount > ffth->tick_ffcount)
884                         ffdelta = ffcount - ffth->tick_ffcount;
885                 else
886                         ffdelta = ffth->tick_ffcount - ffcount;
887
888                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
889                         *bt = ffth->tick_time_lerp;
890                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
891                 } else {
892                         *bt = ffth->tick_time;
893                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
894                 }
895
896                 if (ffcount > ffth->tick_ffcount)
897                         bintime_add(bt, &bt2);
898                 else
899                         bintime_sub(bt, &bt2);
900         } while (gen == 0 || gen != ffth->gen);
901 }
902
903 /*
904  * Difference clock conversion.
905  * Low level function to Convert a time interval measured in RAW counter units
906  * into bintime. The difference clock allows measuring small intervals much more
907  * reliably than the absolute clock.
908  */
909 void
910 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
911 {
912         struct fftimehands *ffth;
913         uint8_t gen;
914
915         /* No locking but check generation has not changed. */
916         do {
917                 ffth = fftimehands;
918                 gen = ffth->gen;
919                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
920         } while (gen == 0 || gen != ffth->gen);
921 }
922
923 /*
924  * Access to current ffcounter value.
925  */
926 void
927 ffclock_read_counter(ffcounter *ffcount)
928 {
929         struct timehands *th;
930         struct fftimehands *ffth;
931         unsigned int gen, delta;
932
933         /*
934          * ffclock_windup() called from tc_windup(), safe to rely on
935          * th->th_generation only, for correct delta and ffcounter.
936          */
937         do {
938                 th = timehands;
939                 gen = atomic_load_acq_int(&th->th_generation);
940                 ffth = fftimehands;
941                 delta = tc_delta(th);
942                 *ffcount = ffth->tick_ffcount;
943                 atomic_thread_fence_acq();
944         } while (gen == 0 || gen != th->th_generation);
945
946         *ffcount += delta;
947 }
948
949 void
950 binuptime(struct bintime *bt)
951 {
952
953         binuptime_fromclock(bt, sysclock_active);
954 }
955
956 void
957 nanouptime(struct timespec *tsp)
958 {
959
960         nanouptime_fromclock(tsp, sysclock_active);
961 }
962
963 void
964 microuptime(struct timeval *tvp)
965 {
966
967         microuptime_fromclock(tvp, sysclock_active);
968 }
969
970 void
971 bintime(struct bintime *bt)
972 {
973
974         bintime_fromclock(bt, sysclock_active);
975 }
976
977 void
978 nanotime(struct timespec *tsp)
979 {
980
981         nanotime_fromclock(tsp, sysclock_active);
982 }
983
984 void
985 microtime(struct timeval *tvp)
986 {
987
988         microtime_fromclock(tvp, sysclock_active);
989 }
990
991 void
992 getbinuptime(struct bintime *bt)
993 {
994
995         getbinuptime_fromclock(bt, sysclock_active);
996 }
997
998 void
999 getnanouptime(struct timespec *tsp)
1000 {
1001
1002         getnanouptime_fromclock(tsp, sysclock_active);
1003 }
1004
1005 void
1006 getmicrouptime(struct timeval *tvp)
1007 {
1008
1009         getmicrouptime_fromclock(tvp, sysclock_active);
1010 }
1011
1012 void
1013 getbintime(struct bintime *bt)
1014 {
1015
1016         getbintime_fromclock(bt, sysclock_active);
1017 }
1018
1019 void
1020 getnanotime(struct timespec *tsp)
1021 {
1022
1023         getnanotime_fromclock(tsp, sysclock_active);
1024 }
1025
1026 void
1027 getmicrotime(struct timeval *tvp)
1028 {
1029
1030         getmicrouptime_fromclock(tvp, sysclock_active);
1031 }
1032
1033 #endif /* FFCLOCK */
1034
1035 /*
1036  * This is a clone of getnanotime and used for walltimestamps.
1037  * The dtrace_ prefix prevents fbt from creating probes for
1038  * it so walltimestamp can be safely used in all fbt probes.
1039  */
1040 void
1041 dtrace_getnanotime(struct timespec *tsp)
1042 {
1043         struct timehands *th;
1044         u_int gen;
1045
1046         do {
1047                 th = timehands;
1048                 gen = atomic_load_acq_int(&th->th_generation);
1049                 *tsp = th->th_nanotime;
1050                 atomic_thread_fence_acq();
1051         } while (gen == 0 || gen != th->th_generation);
1052 }
1053
1054 /*
1055  * System clock currently providing time to the system. Modifiable via sysctl
1056  * when the FFCLOCK option is defined.
1057  */
1058 int sysclock_active = SYSCLOCK_FBCK;
1059
1060 /* Internal NTP status and error estimates. */
1061 extern int time_status;
1062 extern long time_esterror;
1063
1064 /*
1065  * Take a snapshot of sysclock data which can be used to compare system clocks
1066  * and generate timestamps after the fact.
1067  */
1068 void
1069 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1070 {
1071         struct fbclock_info *fbi;
1072         struct timehands *th;
1073         struct bintime bt;
1074         unsigned int delta, gen;
1075 #ifdef FFCLOCK
1076         ffcounter ffcount;
1077         struct fftimehands *ffth;
1078         struct ffclock_info *ffi;
1079         struct ffclock_estimate cest;
1080
1081         ffi = &clock_snap->ff_info;
1082 #endif
1083
1084         fbi = &clock_snap->fb_info;
1085         delta = 0;
1086
1087         do {
1088                 th = timehands;
1089                 gen = atomic_load_acq_int(&th->th_generation);
1090                 fbi->th_scale = th->th_scale;
1091                 fbi->tick_time = th->th_offset;
1092 #ifdef FFCLOCK
1093                 ffth = fftimehands;
1094                 ffi->tick_time = ffth->tick_time_lerp;
1095                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1096                 ffi->period = ffth->cest.period;
1097                 ffi->period_lerp = ffth->period_lerp;
1098                 clock_snap->ffcount = ffth->tick_ffcount;
1099                 cest = ffth->cest;
1100 #endif
1101                 if (!fast)
1102                         delta = tc_delta(th);
1103                 atomic_thread_fence_acq();
1104         } while (gen == 0 || gen != th->th_generation);
1105
1106         clock_snap->delta = delta;
1107         clock_snap->sysclock_active = sysclock_active;
1108
1109         /* Record feedback clock status and error. */
1110         clock_snap->fb_info.status = time_status;
1111         /* XXX: Very crude estimate of feedback clock error. */
1112         bt.sec = time_esterror / 1000000;
1113         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1114             (uint64_t)18446744073709ULL;
1115         clock_snap->fb_info.error = bt;
1116
1117 #ifdef FFCLOCK
1118         if (!fast)
1119                 clock_snap->ffcount += delta;
1120
1121         /* Record feed-forward clock leap second adjustment. */
1122         ffi->leapsec_adjustment = cest.leapsec_total;
1123         if (clock_snap->ffcount > cest.leapsec_next)
1124                 ffi->leapsec_adjustment -= cest.leapsec;
1125
1126         /* Record feed-forward clock status and error. */
1127         clock_snap->ff_info.status = cest.status;
1128         ffcount = clock_snap->ffcount - cest.update_ffcount;
1129         ffclock_convert_delta(ffcount, cest.period, &bt);
1130         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1131         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1132         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1133         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1134         clock_snap->ff_info.error = bt;
1135 #endif
1136 }
1137
1138 /*
1139  * Convert a sysclock snapshot into a struct bintime based on the specified
1140  * clock source and flags.
1141  */
1142 int
1143 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1144     int whichclock, uint32_t flags)
1145 {
1146         struct bintime boottimebin;
1147 #ifdef FFCLOCK
1148         struct bintime bt2;
1149         uint64_t period;
1150 #endif
1151
1152         switch (whichclock) {
1153         case SYSCLOCK_FBCK:
1154                 *bt = cs->fb_info.tick_time;
1155
1156                 /* If snapshot was created with !fast, delta will be >0. */
1157                 if (cs->delta > 0)
1158                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1159
1160                 if ((flags & FBCLOCK_UPTIME) == 0) {
1161                         getboottimebin(&boottimebin);
1162                         bintime_add(bt, &boottimebin);
1163                 }
1164                 break;
1165 #ifdef FFCLOCK
1166         case SYSCLOCK_FFWD:
1167                 if (flags & FFCLOCK_LERP) {
1168                         *bt = cs->ff_info.tick_time_lerp;
1169                         period = cs->ff_info.period_lerp;
1170                 } else {
1171                         *bt = cs->ff_info.tick_time;
1172                         period = cs->ff_info.period;
1173                 }
1174
1175                 /* If snapshot was created with !fast, delta will be >0. */
1176                 if (cs->delta > 0) {
1177                         ffclock_convert_delta(cs->delta, period, &bt2);
1178                         bintime_add(bt, &bt2);
1179                 }
1180
1181                 /* Leap second adjustment. */
1182                 if (flags & FFCLOCK_LEAPSEC)
1183                         bt->sec -= cs->ff_info.leapsec_adjustment;
1184
1185                 /* Boot time adjustment, for uptime/monotonic clocks. */
1186                 if (flags & FFCLOCK_UPTIME)
1187                         bintime_sub(bt, &ffclock_boottime);
1188                 break;
1189 #endif
1190         default:
1191                 return (EINVAL);
1192                 break;
1193         }
1194
1195         return (0);
1196 }
1197
1198 /*
1199  * Initialize a new timecounter and possibly use it.
1200  */
1201 void
1202 tc_init(struct timecounter *tc)
1203 {
1204         u_int u;
1205         struct sysctl_oid *tc_root;
1206
1207         u = tc->tc_frequency / tc->tc_counter_mask;
1208         /* XXX: We need some margin here, 10% is a guess */
1209         u *= 11;
1210         u /= 10;
1211         if (u > hz && tc->tc_quality >= 0) {
1212                 tc->tc_quality = -2000;
1213                 if (bootverbose) {
1214                         printf("Timecounter \"%s\" frequency %ju Hz",
1215                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1216                         printf(" -- Insufficient hz, needs at least %u\n", u);
1217                 }
1218         } else if (tc->tc_quality >= 0 || bootverbose) {
1219                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1220                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1221                     tc->tc_quality);
1222         }
1223
1224         tc->tc_next = timecounters;
1225         timecounters = tc;
1226         /*
1227          * Set up sysctl tree for this counter.
1228          */
1229         tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1230             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1231             CTLFLAG_RW, 0, "timecounter description", "timecounter");
1232         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1233             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1234             "mask for implemented bits");
1235         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1236             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1237             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1238         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1239             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1240              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1241         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1242             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1243             "goodness of time counter");
1244         /*
1245          * Do not automatically switch if the current tc was specifically
1246          * chosen.  Never automatically use a timecounter with negative quality.
1247          * Even though we run on the dummy counter, switching here may be
1248          * worse since this timecounter may not be monotonic.
1249          */
1250         if (tc_chosen)
1251                 return;
1252         if (tc->tc_quality < 0)
1253                 return;
1254         if (tc->tc_quality < timecounter->tc_quality)
1255                 return;
1256         if (tc->tc_quality == timecounter->tc_quality &&
1257             tc->tc_frequency < timecounter->tc_frequency)
1258                 return;
1259         (void)tc->tc_get_timecount(tc);
1260         (void)tc->tc_get_timecount(tc);
1261         timecounter = tc;
1262 }
1263
1264 /* Report the frequency of the current timecounter. */
1265 uint64_t
1266 tc_getfrequency(void)
1267 {
1268
1269         return (timehands->th_counter->tc_frequency);
1270 }
1271
1272 static bool
1273 sleeping_on_old_rtc(struct thread *td)
1274 {
1275
1276         /*
1277          * td_rtcgen is modified by curthread when it is running,
1278          * and by other threads in this function.  By finding the thread
1279          * on a sleepqueue and holding the lock on the sleepqueue
1280          * chain, we guarantee that the thread is not running and that
1281          * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1282          * the thread that it was woken due to a real-time clock adjustment.
1283          * (The declaration of td_rtcgen refers to this comment.)
1284          */
1285         if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1286                 td->td_rtcgen = 0;
1287                 return (true);
1288         }
1289         return (false);
1290 }
1291
1292 static struct mtx tc_setclock_mtx;
1293 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1294
1295 /*
1296  * Step our concept of UTC.  This is done by modifying our estimate of
1297  * when we booted.
1298  */
1299 void
1300 tc_setclock(struct timespec *ts)
1301 {
1302         struct timespec tbef, taft;
1303         struct bintime bt, bt2;
1304
1305         timespec2bintime(ts, &bt);
1306         nanotime(&tbef);
1307         mtx_lock_spin(&tc_setclock_mtx);
1308         cpu_tick_calibrate(1);
1309         binuptime(&bt2);
1310         bintime_sub(&bt, &bt2);
1311
1312         /* XXX fiddle all the little crinkly bits around the fiords... */
1313         tc_windup(&bt);
1314         mtx_unlock_spin(&tc_setclock_mtx);
1315
1316         /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1317         atomic_add_rel_int(&rtc_generation, 2);
1318         sleepq_chains_remove_matching(sleeping_on_old_rtc);
1319         if (timestepwarnings) {
1320                 nanotime(&taft);
1321                 log(LOG_INFO,
1322                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1323                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1324                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1325                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1326         }
1327 }
1328
1329 /*
1330  * Initialize the next struct timehands in the ring and make
1331  * it the active timehands.  Along the way we might switch to a different
1332  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1333  */
1334 static void
1335 tc_windup(struct bintime *new_boottimebin)
1336 {
1337         struct bintime bt;
1338         struct timehands *th, *tho;
1339         uint64_t scale;
1340         u_int delta, ncount, ogen;
1341         int i;
1342         time_t t;
1343
1344         /*
1345          * Make the next timehands a copy of the current one, but do
1346          * not overwrite the generation or next pointer.  While we
1347          * update the contents, the generation must be zero.  We need
1348          * to ensure that the zero generation is visible before the
1349          * data updates become visible, which requires release fence.
1350          * For similar reasons, re-reading of the generation after the
1351          * data is read should use acquire fence.
1352          */
1353         tho = timehands;
1354         th = tho->th_next;
1355         ogen = th->th_generation;
1356         th->th_generation = 0;
1357         atomic_thread_fence_rel();
1358         memcpy(th, tho, offsetof(struct timehands, th_generation));
1359         if (new_boottimebin != NULL)
1360                 th->th_boottime = *new_boottimebin;
1361
1362         /*
1363          * Capture a timecounter delta on the current timecounter and if
1364          * changing timecounters, a counter value from the new timecounter.
1365          * Update the offset fields accordingly.
1366          */
1367         delta = tc_delta(th);
1368         if (th->th_counter != timecounter)
1369                 ncount = timecounter->tc_get_timecount(timecounter);
1370         else
1371                 ncount = 0;
1372 #ifdef FFCLOCK
1373         ffclock_windup(delta);
1374 #endif
1375         th->th_offset_count += delta;
1376         th->th_offset_count &= th->th_counter->tc_counter_mask;
1377         while (delta > th->th_counter->tc_frequency) {
1378                 /* Eat complete unadjusted seconds. */
1379                 delta -= th->th_counter->tc_frequency;
1380                 th->th_offset.sec++;
1381         }
1382         if ((delta > th->th_counter->tc_frequency / 2) &&
1383             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1384                 /* The product th_scale * delta just barely overflows. */
1385                 th->th_offset.sec++;
1386         }
1387         bintime_addx(&th->th_offset, th->th_scale * delta);
1388
1389         /*
1390          * Hardware latching timecounters may not generate interrupts on
1391          * PPS events, so instead we poll them.  There is a finite risk that
1392          * the hardware might capture a count which is later than the one we
1393          * got above, and therefore possibly in the next NTP second which might
1394          * have a different rate than the current NTP second.  It doesn't
1395          * matter in practice.
1396          */
1397         if (tho->th_counter->tc_poll_pps)
1398                 tho->th_counter->tc_poll_pps(tho->th_counter);
1399
1400         /*
1401          * Deal with NTP second processing.  The for loop normally
1402          * iterates at most once, but in extreme situations it might
1403          * keep NTP sane if timeouts are not run for several seconds.
1404          * At boot, the time step can be large when the TOD hardware
1405          * has been read, so on really large steps, we call
1406          * ntp_update_second only twice.  We need to call it twice in
1407          * case we missed a leap second.
1408          */
1409         bt = th->th_offset;
1410         bintime_add(&bt, &th->th_boottime);
1411         i = bt.sec - tho->th_microtime.tv_sec;
1412         if (i > LARGE_STEP)
1413                 i = 2;
1414         for (; i > 0; i--) {
1415                 t = bt.sec;
1416                 ntp_update_second(&th->th_adjustment, &bt.sec);
1417                 if (bt.sec != t)
1418                         th->th_boottime.sec += bt.sec - t;
1419         }
1420         /* Update the UTC timestamps used by the get*() functions. */
1421         th->th_bintime = bt;
1422         bintime2timeval(&bt, &th->th_microtime);
1423         bintime2timespec(&bt, &th->th_nanotime);
1424
1425         /* Now is a good time to change timecounters. */
1426         if (th->th_counter != timecounter) {
1427 #ifndef __arm__
1428                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1429                         cpu_disable_c2_sleep++;
1430                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1431                         cpu_disable_c2_sleep--;
1432 #endif
1433                 th->th_counter = timecounter;
1434                 th->th_offset_count = ncount;
1435                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1436                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1437 #ifdef FFCLOCK
1438                 ffclock_change_tc(th);
1439 #endif
1440         }
1441
1442         /*-
1443          * Recalculate the scaling factor.  We want the number of 1/2^64
1444          * fractions of a second per period of the hardware counter, taking
1445          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1446          * processing provides us with.
1447          *
1448          * The th_adjustment is nanoseconds per second with 32 bit binary
1449          * fraction and we want 64 bit binary fraction of second:
1450          *
1451          *       x = a * 2^32 / 10^9 = a * 4.294967296
1452          *
1453          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1454          * we can only multiply by about 850 without overflowing, that
1455          * leaves no suitably precise fractions for multiply before divide.
1456          *
1457          * Divide before multiply with a fraction of 2199/512 results in a
1458          * systematic undercompensation of 10PPM of th_adjustment.  On a
1459          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1460          *
1461          * We happily sacrifice the lowest of the 64 bits of our result
1462          * to the goddess of code clarity.
1463          *
1464          */
1465         scale = (uint64_t)1 << 63;
1466         scale += (th->th_adjustment / 1024) * 2199;
1467         scale /= th->th_counter->tc_frequency;
1468         th->th_scale = scale * 2;
1469
1470         /*
1471          * Now that the struct timehands is again consistent, set the new
1472          * generation number, making sure to not make it zero.
1473          */
1474         if (++ogen == 0)
1475                 ogen = 1;
1476         atomic_store_rel_int(&th->th_generation, ogen);
1477
1478         /* Go live with the new struct timehands. */
1479 #ifdef FFCLOCK
1480         switch (sysclock_active) {
1481         case SYSCLOCK_FBCK:
1482 #endif
1483                 time_second = th->th_microtime.tv_sec;
1484                 time_uptime = th->th_offset.sec;
1485 #ifdef FFCLOCK
1486                 break;
1487         case SYSCLOCK_FFWD:
1488                 time_second = fftimehands->tick_time_lerp.sec;
1489                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1490                 break;
1491         }
1492 #endif
1493
1494         timehands = th;
1495         timekeep_push_vdso();
1496 }
1497
1498 /* Report or change the active timecounter hardware. */
1499 static int
1500 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1501 {
1502         char newname[32];
1503         struct timecounter *newtc, *tc;
1504         int error;
1505
1506         tc = timecounter;
1507         strlcpy(newname, tc->tc_name, sizeof(newname));
1508
1509         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1510         if (error != 0 || req->newptr == NULL)
1511                 return (error);
1512         /* Record that the tc in use now was specifically chosen. */
1513         tc_chosen = 1;
1514         if (strcmp(newname, tc->tc_name) == 0)
1515                 return (0);
1516         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1517                 if (strcmp(newname, newtc->tc_name) != 0)
1518                         continue;
1519
1520                 /* Warm up new timecounter. */
1521                 (void)newtc->tc_get_timecount(newtc);
1522                 (void)newtc->tc_get_timecount(newtc);
1523
1524                 timecounter = newtc;
1525
1526                 /*
1527                  * The vdso timehands update is deferred until the next
1528                  * 'tc_windup()'.
1529                  *
1530                  * This is prudent given that 'timekeep_push_vdso()' does not
1531                  * use any locking and that it can be called in hard interrupt
1532                  * context via 'tc_windup()'.
1533                  */
1534                 return (0);
1535         }
1536         return (EINVAL);
1537 }
1538
1539 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1540     0, 0, sysctl_kern_timecounter_hardware, "A",
1541     "Timecounter hardware selected");
1542
1543
1544 /* Report the available timecounter hardware. */
1545 static int
1546 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1547 {
1548         struct sbuf sb;
1549         struct timecounter *tc;
1550         int error;
1551
1552         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1553         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1554                 if (tc != timecounters)
1555                         sbuf_putc(&sb, ' ');
1556                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1557         }
1558         error = sbuf_finish(&sb);
1559         sbuf_delete(&sb);
1560         return (error);
1561 }
1562
1563 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1564     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1565
1566 /*
1567  * RFC 2783 PPS-API implementation.
1568  */
1569
1570 /*
1571  *  Return true if the driver is aware of the abi version extensions in the
1572  *  pps_state structure, and it supports at least the given abi version number.
1573  */
1574 static inline int
1575 abi_aware(struct pps_state *pps, int vers)
1576 {
1577
1578         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1579 }
1580
1581 static int
1582 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1583 {
1584         int err, timo;
1585         pps_seq_t aseq, cseq;
1586         struct timeval tv;
1587
1588         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1589                 return (EINVAL);
1590
1591         /*
1592          * If no timeout is requested, immediately return whatever values were
1593          * most recently captured.  If timeout seconds is -1, that's a request
1594          * to block without a timeout.  WITNESS won't let us sleep forever
1595          * without a lock (we really don't need a lock), so just repeatedly
1596          * sleep a long time.
1597          */
1598         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1599                 if (fapi->timeout.tv_sec == -1)
1600                         timo = 0x7fffffff;
1601                 else {
1602                         tv.tv_sec = fapi->timeout.tv_sec;
1603                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1604                         timo = tvtohz(&tv);
1605                 }
1606                 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1607                 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1608                 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1609                     cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1610                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1611                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1612                                         err = msleep_spin(pps, pps->driver_mtx,
1613                                             "ppsfch", timo);
1614                                 } else {
1615                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1616                                             "ppsfch", timo);
1617                                 }
1618                         } else {
1619                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1620                         }
1621                         if (err == EWOULDBLOCK) {
1622                                 if (fapi->timeout.tv_sec == -1) {
1623                                         continue;
1624                                 } else {
1625                                         return (ETIMEDOUT);
1626                                 }
1627                         } else if (err != 0) {
1628                                 return (err);
1629                         }
1630                 }
1631         }
1632
1633         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1634         fapi->pps_info_buf = pps->ppsinfo;
1635
1636         return (0);
1637 }
1638
1639 int
1640 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1641 {
1642         pps_params_t *app;
1643         struct pps_fetch_args *fapi;
1644 #ifdef FFCLOCK
1645         struct pps_fetch_ffc_args *fapi_ffc;
1646 #endif
1647 #ifdef PPS_SYNC
1648         struct pps_kcbind_args *kapi;
1649 #endif
1650
1651         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1652         switch (cmd) {
1653         case PPS_IOC_CREATE:
1654                 return (0);
1655         case PPS_IOC_DESTROY:
1656                 return (0);
1657         case PPS_IOC_SETPARAMS:
1658                 app = (pps_params_t *)data;
1659                 if (app->mode & ~pps->ppscap)
1660                         return (EINVAL);
1661 #ifdef FFCLOCK
1662                 /* Ensure only a single clock is selected for ffc timestamp. */
1663                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1664                         return (EINVAL);
1665 #endif
1666                 pps->ppsparam = *app;
1667                 return (0);
1668         case PPS_IOC_GETPARAMS:
1669                 app = (pps_params_t *)data;
1670                 *app = pps->ppsparam;
1671                 app->api_version = PPS_API_VERS_1;
1672                 return (0);
1673         case PPS_IOC_GETCAP:
1674                 *(int*)data = pps->ppscap;
1675                 return (0);
1676         case PPS_IOC_FETCH:
1677                 fapi = (struct pps_fetch_args *)data;
1678                 return (pps_fetch(fapi, pps));
1679 #ifdef FFCLOCK
1680         case PPS_IOC_FETCH_FFCOUNTER:
1681                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1682                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1683                     PPS_TSFMT_TSPEC)
1684                         return (EINVAL);
1685                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1686                         return (EOPNOTSUPP);
1687                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1688                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1689                 /* Overwrite timestamps if feedback clock selected. */
1690                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1691                 case PPS_TSCLK_FBCK:
1692                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1693                             pps->ppsinfo.assert_timestamp;
1694                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1695                             pps->ppsinfo.clear_timestamp;
1696                         break;
1697                 case PPS_TSCLK_FFWD:
1698                         break;
1699                 default:
1700                         break;
1701                 }
1702                 return (0);
1703 #endif /* FFCLOCK */
1704         case PPS_IOC_KCBIND:
1705 #ifdef PPS_SYNC
1706                 kapi = (struct pps_kcbind_args *)data;
1707                 /* XXX Only root should be able to do this */
1708                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1709                         return (EINVAL);
1710                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1711                         return (EINVAL);
1712                 if (kapi->edge & ~pps->ppscap)
1713                         return (EINVAL);
1714                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1715                     (pps->kcmode & KCMODE_ABIFLAG);
1716                 return (0);
1717 #else
1718                 return (EOPNOTSUPP);
1719 #endif
1720         default:
1721                 return (ENOIOCTL);
1722         }
1723 }
1724
1725 void
1726 pps_init(struct pps_state *pps)
1727 {
1728         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1729         if (pps->ppscap & PPS_CAPTUREASSERT)
1730                 pps->ppscap |= PPS_OFFSETASSERT;
1731         if (pps->ppscap & PPS_CAPTURECLEAR)
1732                 pps->ppscap |= PPS_OFFSETCLEAR;
1733 #ifdef FFCLOCK
1734         pps->ppscap |= PPS_TSCLK_MASK;
1735 #endif
1736         pps->kcmode &= ~KCMODE_ABIFLAG;
1737 }
1738
1739 void
1740 pps_init_abi(struct pps_state *pps)
1741 {
1742
1743         pps_init(pps);
1744         if (pps->driver_abi > 0) {
1745                 pps->kcmode |= KCMODE_ABIFLAG;
1746                 pps->kernel_abi = PPS_ABI_VERSION;
1747         }
1748 }
1749
1750 void
1751 pps_capture(struct pps_state *pps)
1752 {
1753         struct timehands *th;
1754
1755         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1756         th = timehands;
1757         pps->capgen = atomic_load_acq_int(&th->th_generation);
1758         pps->capth = th;
1759 #ifdef FFCLOCK
1760         pps->capffth = fftimehands;
1761 #endif
1762         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1763         atomic_thread_fence_acq();
1764         if (pps->capgen != th->th_generation)
1765                 pps->capgen = 0;
1766 }
1767
1768 void
1769 pps_event(struct pps_state *pps, int event)
1770 {
1771         struct bintime bt;
1772         struct timespec ts, *tsp, *osp;
1773         u_int tcount, *pcount;
1774         int foff;
1775         pps_seq_t *pseq;
1776 #ifdef FFCLOCK
1777         struct timespec *tsp_ffc;
1778         pps_seq_t *pseq_ffc;
1779         ffcounter *ffcount;
1780 #endif
1781 #ifdef PPS_SYNC
1782         int fhard;
1783 #endif
1784
1785         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1786         /* Nothing to do if not currently set to capture this event type. */
1787         if ((event & pps->ppsparam.mode) == 0)
1788                 return;
1789         /* If the timecounter was wound up underneath us, bail out. */
1790         if (pps->capgen == 0 || pps->capgen !=
1791             atomic_load_acq_int(&pps->capth->th_generation))
1792                 return;
1793
1794         /* Things would be easier with arrays. */
1795         if (event == PPS_CAPTUREASSERT) {
1796                 tsp = &pps->ppsinfo.assert_timestamp;
1797                 osp = &pps->ppsparam.assert_offset;
1798                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1799 #ifdef PPS_SYNC
1800                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1801 #endif
1802                 pcount = &pps->ppscount[0];
1803                 pseq = &pps->ppsinfo.assert_sequence;
1804 #ifdef FFCLOCK
1805                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1806                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1807                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1808 #endif
1809         } else {
1810                 tsp = &pps->ppsinfo.clear_timestamp;
1811                 osp = &pps->ppsparam.clear_offset;
1812                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1813 #ifdef PPS_SYNC
1814                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1815 #endif
1816                 pcount = &pps->ppscount[1];
1817                 pseq = &pps->ppsinfo.clear_sequence;
1818 #ifdef FFCLOCK
1819                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1820                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1821                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1822 #endif
1823         }
1824
1825         /*
1826          * If the timecounter changed, we cannot compare the count values, so
1827          * we have to drop the rest of the PPS-stuff until the next event.
1828          */
1829         if (pps->ppstc != pps->capth->th_counter) {
1830                 pps->ppstc = pps->capth->th_counter;
1831                 *pcount = pps->capcount;
1832                 pps->ppscount[2] = pps->capcount;
1833                 return;
1834         }
1835
1836         /* Convert the count to a timespec. */
1837         tcount = pps->capcount - pps->capth->th_offset_count;
1838         tcount &= pps->capth->th_counter->tc_counter_mask;
1839         bt = pps->capth->th_bintime;
1840         bintime_addx(&bt, pps->capth->th_scale * tcount);
1841         bintime2timespec(&bt, &ts);
1842
1843         /* If the timecounter was wound up underneath us, bail out. */
1844         atomic_thread_fence_acq();
1845         if (pps->capgen != pps->capth->th_generation)
1846                 return;
1847
1848         *pcount = pps->capcount;
1849         (*pseq)++;
1850         *tsp = ts;
1851
1852         if (foff) {
1853                 timespecadd(tsp, osp, tsp);
1854                 if (tsp->tv_nsec < 0) {
1855                         tsp->tv_nsec += 1000000000;
1856                         tsp->tv_sec -= 1;
1857                 }
1858         }
1859
1860 #ifdef FFCLOCK
1861         *ffcount = pps->capffth->tick_ffcount + tcount;
1862         bt = pps->capffth->tick_time;
1863         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1864         bintime_add(&bt, &pps->capffth->tick_time);
1865         bintime2timespec(&bt, &ts);
1866         (*pseq_ffc)++;
1867         *tsp_ffc = ts;
1868 #endif
1869
1870 #ifdef PPS_SYNC
1871         if (fhard) {
1872                 uint64_t scale;
1873
1874                 /*
1875                  * Feed the NTP PLL/FLL.
1876                  * The FLL wants to know how many (hardware) nanoseconds
1877                  * elapsed since the previous event.
1878                  */
1879                 tcount = pps->capcount - pps->ppscount[2];
1880                 pps->ppscount[2] = pps->capcount;
1881                 tcount &= pps->capth->th_counter->tc_counter_mask;
1882                 scale = (uint64_t)1 << 63;
1883                 scale /= pps->capth->th_counter->tc_frequency;
1884                 scale *= 2;
1885                 bt.sec = 0;
1886                 bt.frac = 0;
1887                 bintime_addx(&bt, scale * tcount);
1888                 bintime2timespec(&bt, &ts);
1889                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1890         }
1891 #endif
1892
1893         /* Wakeup anyone sleeping in pps_fetch().  */
1894         wakeup(pps);
1895 }
1896
1897 /*
1898  * Timecounters need to be updated every so often to prevent the hardware
1899  * counter from overflowing.  Updating also recalculates the cached values
1900  * used by the get*() family of functions, so their precision depends on
1901  * the update frequency.
1902  */
1903
1904 static int tc_tick;
1905 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1906     "Approximate number of hardclock ticks in a millisecond");
1907
1908 void
1909 tc_ticktock(int cnt)
1910 {
1911         static int count;
1912
1913         if (mtx_trylock_spin(&tc_setclock_mtx)) {
1914                 count += cnt;
1915                 if (count >= tc_tick) {
1916                         count = 0;
1917                         tc_windup(NULL);
1918                 }
1919                 mtx_unlock_spin(&tc_setclock_mtx);
1920         }
1921 }
1922
1923 static void __inline
1924 tc_adjprecision(void)
1925 {
1926         int t;
1927
1928         if (tc_timepercentage > 0) {
1929                 t = (99 + tc_timepercentage) / tc_timepercentage;
1930                 tc_precexp = fls(t + (t >> 1)) - 1;
1931                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1932                 FREQ2BT(hz, &bt_tickthreshold);
1933                 bintime_shift(&bt_timethreshold, tc_precexp);
1934                 bintime_shift(&bt_tickthreshold, tc_precexp);
1935         } else {
1936                 tc_precexp = 31;
1937                 bt_timethreshold.sec = INT_MAX;
1938                 bt_timethreshold.frac = ~(uint64_t)0;
1939                 bt_tickthreshold = bt_timethreshold;
1940         }
1941         sbt_timethreshold = bttosbt(bt_timethreshold);
1942         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1943 }
1944
1945 static int
1946 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1947 {
1948         int error, val;
1949
1950         val = tc_timepercentage;
1951         error = sysctl_handle_int(oidp, &val, 0, req);
1952         if (error != 0 || req->newptr == NULL)
1953                 return (error);
1954         tc_timepercentage = val;
1955         if (cold)
1956                 goto done;
1957         tc_adjprecision();
1958 done:
1959         return (0);
1960 }
1961
1962 /* Set up the requested number of timehands. */
1963 static void
1964 inittimehands(void *dummy)
1965 {
1966         struct timehands *thp;
1967         int i;
1968
1969         TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
1970             &timehands_count);
1971         if (timehands_count < 1)
1972                 timehands_count = 1;
1973         if (timehands_count > nitems(ths))
1974                 timehands_count = nitems(ths);
1975         for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
1976                 thp->th_next = &ths[i];
1977         thp->th_next = &ths[0];
1978 }
1979 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);
1980
1981 static void
1982 inittimecounter(void *dummy)
1983 {
1984         u_int p;
1985         int tick_rate;
1986
1987         /*
1988          * Set the initial timeout to
1989          * max(1, <approx. number of hardclock ticks in a millisecond>).
1990          * People should probably not use the sysctl to set the timeout
1991          * to smaller than its initial value, since that value is the
1992          * smallest reasonable one.  If they want better timestamps they
1993          * should use the non-"get"* functions.
1994          */
1995         if (hz > 1000)
1996                 tc_tick = (hz + 500) / 1000;
1997         else
1998                 tc_tick = 1;
1999         tc_adjprecision();
2000         FREQ2BT(hz, &tick_bt);
2001         tick_sbt = bttosbt(tick_bt);
2002         tick_rate = hz / tc_tick;
2003         FREQ2BT(tick_rate, &tc_tick_bt);
2004         tc_tick_sbt = bttosbt(tc_tick_bt);
2005         p = (tc_tick * 1000000) / hz;
2006         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
2007
2008 #ifdef FFCLOCK
2009         ffclock_init();
2010 #endif
2011
2012         /* warm up new timecounter (again) and get rolling. */
2013         (void)timecounter->tc_get_timecount(timecounter);
2014         (void)timecounter->tc_get_timecount(timecounter);
2015         mtx_lock_spin(&tc_setclock_mtx);
2016         tc_windup(NULL);
2017         mtx_unlock_spin(&tc_setclock_mtx);
2018 }
2019
2020 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
2021
2022 /* Cpu tick handling -------------------------------------------------*/
2023
2024 static int cpu_tick_variable;
2025 static uint64_t cpu_tick_frequency;
2026
2027 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
2028 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
2029
2030 static uint64_t
2031 tc_cpu_ticks(void)
2032 {
2033         struct timecounter *tc;
2034         uint64_t res, *base;
2035         unsigned u, *last;
2036
2037         critical_enter();
2038         base = DPCPU_PTR(tc_cpu_ticks_base);
2039         last = DPCPU_PTR(tc_cpu_ticks_last);
2040         tc = timehands->th_counter;
2041         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2042         if (u < *last)
2043                 *base += (uint64_t)tc->tc_counter_mask + 1;
2044         *last = u;
2045         res = u + *base;
2046         critical_exit();
2047         return (res);
2048 }
2049
2050 void
2051 cpu_tick_calibration(void)
2052 {
2053         static time_t last_calib;
2054
2055         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2056                 cpu_tick_calibrate(0);
2057                 last_calib = time_uptime;
2058         }
2059 }
2060
2061 /*
2062  * This function gets called every 16 seconds on only one designated
2063  * CPU in the system from hardclock() via cpu_tick_calibration()().
2064  *
2065  * Whenever the real time clock is stepped we get called with reset=1
2066  * to make sure we handle suspend/resume and similar events correctly.
2067  */
2068
2069 static void
2070 cpu_tick_calibrate(int reset)
2071 {
2072         static uint64_t c_last;
2073         uint64_t c_this, c_delta;
2074         static struct bintime  t_last;
2075         struct bintime t_this, t_delta;
2076         uint32_t divi;
2077
2078         if (reset) {
2079                 /* The clock was stepped, abort & reset */
2080                 t_last.sec = 0;
2081                 return;
2082         }
2083
2084         /* we don't calibrate fixed rate cputicks */
2085         if (!cpu_tick_variable)
2086                 return;
2087
2088         getbinuptime(&t_this);
2089         c_this = cpu_ticks();
2090         if (t_last.sec != 0) {
2091                 c_delta = c_this - c_last;
2092                 t_delta = t_this;
2093                 bintime_sub(&t_delta, &t_last);
2094                 /*
2095                  * Headroom:
2096                  *      2^(64-20) / 16[s] =
2097                  *      2^(44) / 16[s] =
2098                  *      17.592.186.044.416 / 16 =
2099                  *      1.099.511.627.776 [Hz]
2100                  */
2101                 divi = t_delta.sec << 20;
2102                 divi |= t_delta.frac >> (64 - 20);
2103                 c_delta <<= 20;
2104                 c_delta /= divi;
2105                 if (c_delta > cpu_tick_frequency) {
2106                         if (0 && bootverbose)
2107                                 printf("cpu_tick increased to %ju Hz\n",
2108                                     c_delta);
2109                         cpu_tick_frequency = c_delta;
2110                 }
2111         }
2112         c_last = c_this;
2113         t_last = t_this;
2114 }
2115
2116 void
2117 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2118 {
2119
2120         if (func == NULL) {
2121                 cpu_ticks = tc_cpu_ticks;
2122         } else {
2123                 cpu_tick_frequency = freq;
2124                 cpu_tick_variable = var;
2125                 cpu_ticks = func;
2126         }
2127 }
2128
2129 uint64_t
2130 cpu_tickrate(void)
2131 {
2132
2133         if (cpu_ticks == tc_cpu_ticks) 
2134                 return (tc_getfrequency());
2135         return (cpu_tick_frequency);
2136 }
2137
2138 /*
2139  * We need to be slightly careful converting cputicks to microseconds.
2140  * There is plenty of margin in 64 bits of microseconds (half a million
2141  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2142  * before divide conversion (to retain precision) we find that the
2143  * margin shrinks to 1.5 hours (one millionth of 146y).
2144  * With a three prong approach we never lose significant bits, no
2145  * matter what the cputick rate and length of timeinterval is.
2146  */
2147
2148 uint64_t
2149 cputick2usec(uint64_t tick)
2150 {
2151
2152         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2153                 return (tick / (cpu_tickrate() / 1000000LL));
2154         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2155                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2156         else
2157                 return ((tick * 1000000LL) / cpu_tickrate());
2158 }
2159
2160 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2161
2162 static int vdso_th_enable = 1;
2163 static int
2164 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2165 {
2166         int old_vdso_th_enable, error;
2167
2168         old_vdso_th_enable = vdso_th_enable;
2169         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2170         if (error != 0)
2171                 return (error);
2172         vdso_th_enable = old_vdso_th_enable;
2173         return (0);
2174 }
2175 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2176     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2177     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2178
2179 uint32_t
2180 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2181 {
2182         struct timehands *th;
2183         uint32_t enabled;
2184
2185         th = timehands;
2186         vdso_th->th_scale = th->th_scale;
2187         vdso_th->th_offset_count = th->th_offset_count;
2188         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2189         vdso_th->th_offset = th->th_offset;
2190         vdso_th->th_boottime = th->th_boottime;
2191         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2192                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2193                     th->th_counter);
2194         } else
2195                 enabled = 0;
2196         if (!vdso_th_enable)
2197                 enabled = 0;
2198         return (enabled);
2199 }
2200
2201 #ifdef COMPAT_FREEBSD32
2202 uint32_t
2203 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2204 {
2205         struct timehands *th;
2206         uint32_t enabled;
2207
2208         th = timehands;
2209         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2210         vdso_th32->th_offset_count = th->th_offset_count;
2211         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2212         vdso_th32->th_offset.sec = th->th_offset.sec;
2213         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2214         vdso_th32->th_boottime.sec = th->th_boottime.sec;
2215         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2216         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2217                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2218                     th->th_counter);
2219         } else
2220                 enabled = 0;
2221         if (!vdso_th_enable)
2222                 enabled = 0;
2223         return (enabled);
2224 }
2225 #endif