]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
MFV r336946: 9238 ZFS Spacemap Encoding V2
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  * All rights reserved.
13  *
14  * Portions of this software were developed by Julien Ridoux at the University
15  * of Melbourne under sponsorship from the FreeBSD Foundation.
16  *
17  * Portions of this software were developed by Konstantin Belousov
18  * under sponsorship from the FreeBSD Foundation.
19  */
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 #include "opt_ntp.h"
25 #include "opt_ffclock.h"
26
27 #include <sys/param.h>
28 #include <sys/kernel.h>
29 #include <sys/limits.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/proc.h>
33 #include <sys/sbuf.h>
34 #include <sys/sleepqueue.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
37 #include <sys/systm.h>
38 #include <sys/timeffc.h>
39 #include <sys/timepps.h>
40 #include <sys/timetc.h>
41 #include <sys/timex.h>
42 #include <sys/vdso.h>
43
44 /*
45  * A large step happens on boot.  This constant detects such steps.
46  * It is relatively small so that ntp_update_second gets called enough
47  * in the typical 'missed a couple of seconds' case, but doesn't loop
48  * forever when the time step is large.
49  */
50 #define LARGE_STEP      200
51
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57
58 static u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61         static u_int now;
62
63         return (++now);
64 }
65
66 static struct timecounter dummy_timecounter = {
67         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69
70 struct timehands {
71         /* These fields must be initialized by the driver. */
72         struct timecounter      *th_counter;
73         int64_t                 th_adjustment;
74         uint64_t                th_scale;
75         u_int                   th_offset_count;
76         struct bintime          th_offset;
77         struct bintime          th_bintime;
78         struct timeval          th_microtime;
79         struct timespec         th_nanotime;
80         struct bintime          th_boottime;
81         /* Fields not to be copied in tc_windup start with th_generation. */
82         u_int                   th_generation;
83         struct timehands        *th_next;
84 };
85
86 static struct timehands th0;
87 static struct timehands th1 = {
88         .th_next = &th0
89 };
90 static struct timehands th0 = {
91         .th_counter = &dummy_timecounter,
92         .th_scale = (uint64_t)-1 / 1000000,
93         .th_offset = { .sec = 1 },
94         .th_generation = 1,
95         .th_next = &th1
96 };
97
98 static struct timehands *volatile timehands = &th0;
99 struct timecounter *timecounter = &dummy_timecounter;
100 static struct timecounter *timecounters = &dummy_timecounter;
101
102 int tc_min_ticktock_freq = 1;
103
104 volatile time_t time_second = 1;
105 volatile time_t time_uptime = 1;
106
107 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
108 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
109     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
110
111 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
112 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
113
114 static int timestepwarnings;
115 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
116     &timestepwarnings, 0, "Log time steps");
117
118 struct bintime bt_timethreshold;
119 struct bintime bt_tickthreshold;
120 sbintime_t sbt_timethreshold;
121 sbintime_t sbt_tickthreshold;
122 struct bintime tc_tick_bt;
123 sbintime_t tc_tick_sbt;
124 int tc_precexp;
125 int tc_timepercentage = TC_DEFAULTPERC;
126 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
127 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
128     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
129     sysctl_kern_timecounter_adjprecision, "I",
130     "Allowed time interval deviation in percents");
131
132 volatile int rtc_generation = 1;
133
134 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
135
136 static void tc_windup(struct bintime *new_boottimebin);
137 static void cpu_tick_calibrate(int);
138
139 void dtrace_getnanotime(struct timespec *tsp);
140
141 static int
142 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
143 {
144         struct timeval boottime;
145
146         getboottime(&boottime);
147
148 #ifndef __mips__
149 #ifdef SCTL_MASK32
150         int tv[2];
151
152         if (req->flags & SCTL_MASK32) {
153                 tv[0] = boottime.tv_sec;
154                 tv[1] = boottime.tv_usec;
155                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
156         }
157 #endif
158 #endif
159         return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
160 }
161
162 static int
163 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
164 {
165         u_int ncount;
166         struct timecounter *tc = arg1;
167
168         ncount = tc->tc_get_timecount(tc);
169         return (sysctl_handle_int(oidp, &ncount, 0, req));
170 }
171
172 static int
173 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
174 {
175         uint64_t freq;
176         struct timecounter *tc = arg1;
177
178         freq = tc->tc_frequency;
179         return (sysctl_handle_64(oidp, &freq, 0, req));
180 }
181
182 /*
183  * Return the difference between the timehands' counter value now and what
184  * was when we copied it to the timehands' offset_count.
185  */
186 static __inline u_int
187 tc_delta(struct timehands *th)
188 {
189         struct timecounter *tc;
190
191         tc = th->th_counter;
192         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
193             tc->tc_counter_mask);
194 }
195
196 /*
197  * Functions for reading the time.  We have to loop until we are sure that
198  * the timehands that we operated on was not updated under our feet.  See
199  * the comment in <sys/time.h> for a description of these 12 functions.
200  */
201
202 #ifdef FFCLOCK
203 void
204 fbclock_binuptime(struct bintime *bt)
205 {
206         struct timehands *th;
207         unsigned int gen;
208
209         do {
210                 th = timehands;
211                 gen = atomic_load_acq_int(&th->th_generation);
212                 *bt = th->th_offset;
213                 bintime_addx(bt, th->th_scale * tc_delta(th));
214                 atomic_thread_fence_acq();
215         } while (gen == 0 || gen != th->th_generation);
216 }
217
218 void
219 fbclock_nanouptime(struct timespec *tsp)
220 {
221         struct bintime bt;
222
223         fbclock_binuptime(&bt);
224         bintime2timespec(&bt, tsp);
225 }
226
227 void
228 fbclock_microuptime(struct timeval *tvp)
229 {
230         struct bintime bt;
231
232         fbclock_binuptime(&bt);
233         bintime2timeval(&bt, tvp);
234 }
235
236 void
237 fbclock_bintime(struct bintime *bt)
238 {
239         struct timehands *th;
240         unsigned int gen;
241
242         do {
243                 th = timehands;
244                 gen = atomic_load_acq_int(&th->th_generation);
245                 *bt = th->th_bintime;
246                 bintime_addx(bt, th->th_scale * tc_delta(th));
247                 atomic_thread_fence_acq();
248         } while (gen == 0 || gen != th->th_generation);
249 }
250
251 void
252 fbclock_nanotime(struct timespec *tsp)
253 {
254         struct bintime bt;
255
256         fbclock_bintime(&bt);
257         bintime2timespec(&bt, tsp);
258 }
259
260 void
261 fbclock_microtime(struct timeval *tvp)
262 {
263         struct bintime bt;
264
265         fbclock_bintime(&bt);
266         bintime2timeval(&bt, tvp);
267 }
268
269 void
270 fbclock_getbinuptime(struct bintime *bt)
271 {
272         struct timehands *th;
273         unsigned int gen;
274
275         do {
276                 th = timehands;
277                 gen = atomic_load_acq_int(&th->th_generation);
278                 *bt = th->th_offset;
279                 atomic_thread_fence_acq();
280         } while (gen == 0 || gen != th->th_generation);
281 }
282
283 void
284 fbclock_getnanouptime(struct timespec *tsp)
285 {
286         struct timehands *th;
287         unsigned int gen;
288
289         do {
290                 th = timehands;
291                 gen = atomic_load_acq_int(&th->th_generation);
292                 bintime2timespec(&th->th_offset, tsp);
293                 atomic_thread_fence_acq();
294         } while (gen == 0 || gen != th->th_generation);
295 }
296
297 void
298 fbclock_getmicrouptime(struct timeval *tvp)
299 {
300         struct timehands *th;
301         unsigned int gen;
302
303         do {
304                 th = timehands;
305                 gen = atomic_load_acq_int(&th->th_generation);
306                 bintime2timeval(&th->th_offset, tvp);
307                 atomic_thread_fence_acq();
308         } while (gen == 0 || gen != th->th_generation);
309 }
310
311 void
312 fbclock_getbintime(struct bintime *bt)
313 {
314         struct timehands *th;
315         unsigned int gen;
316
317         do {
318                 th = timehands;
319                 gen = atomic_load_acq_int(&th->th_generation);
320                 *bt = th->th_bintime;
321                 atomic_thread_fence_acq();
322         } while (gen == 0 || gen != th->th_generation);
323 }
324
325 void
326 fbclock_getnanotime(struct timespec *tsp)
327 {
328         struct timehands *th;
329         unsigned int gen;
330
331         do {
332                 th = timehands;
333                 gen = atomic_load_acq_int(&th->th_generation);
334                 *tsp = th->th_nanotime;
335                 atomic_thread_fence_acq();
336         } while (gen == 0 || gen != th->th_generation);
337 }
338
339 void
340 fbclock_getmicrotime(struct timeval *tvp)
341 {
342         struct timehands *th;
343         unsigned int gen;
344
345         do {
346                 th = timehands;
347                 gen = atomic_load_acq_int(&th->th_generation);
348                 *tvp = th->th_microtime;
349                 atomic_thread_fence_acq();
350         } while (gen == 0 || gen != th->th_generation);
351 }
352 #else /* !FFCLOCK */
353 void
354 binuptime(struct bintime *bt)
355 {
356         struct timehands *th;
357         u_int gen;
358
359         do {
360                 th = timehands;
361                 gen = atomic_load_acq_int(&th->th_generation);
362                 *bt = th->th_offset;
363                 bintime_addx(bt, th->th_scale * tc_delta(th));
364                 atomic_thread_fence_acq();
365         } while (gen == 0 || gen != th->th_generation);
366 }
367
368 void
369 nanouptime(struct timespec *tsp)
370 {
371         struct bintime bt;
372
373         binuptime(&bt);
374         bintime2timespec(&bt, tsp);
375 }
376
377 void
378 microuptime(struct timeval *tvp)
379 {
380         struct bintime bt;
381
382         binuptime(&bt);
383         bintime2timeval(&bt, tvp);
384 }
385
386 void
387 bintime(struct bintime *bt)
388 {
389         struct timehands *th;
390         u_int gen;
391
392         do {
393                 th = timehands;
394                 gen = atomic_load_acq_int(&th->th_generation);
395                 *bt = th->th_bintime;
396                 bintime_addx(bt, th->th_scale * tc_delta(th));
397                 atomic_thread_fence_acq();
398         } while (gen == 0 || gen != th->th_generation);
399 }
400
401 void
402 nanotime(struct timespec *tsp)
403 {
404         struct bintime bt;
405
406         bintime(&bt);
407         bintime2timespec(&bt, tsp);
408 }
409
410 void
411 microtime(struct timeval *tvp)
412 {
413         struct bintime bt;
414
415         bintime(&bt);
416         bintime2timeval(&bt, tvp);
417 }
418
419 void
420 getbinuptime(struct bintime *bt)
421 {
422         struct timehands *th;
423         u_int gen;
424
425         do {
426                 th = timehands;
427                 gen = atomic_load_acq_int(&th->th_generation);
428                 *bt = th->th_offset;
429                 atomic_thread_fence_acq();
430         } while (gen == 0 || gen != th->th_generation);
431 }
432
433 void
434 getnanouptime(struct timespec *tsp)
435 {
436         struct timehands *th;
437         u_int gen;
438
439         do {
440                 th = timehands;
441                 gen = atomic_load_acq_int(&th->th_generation);
442                 bintime2timespec(&th->th_offset, tsp);
443                 atomic_thread_fence_acq();
444         } while (gen == 0 || gen != th->th_generation);
445 }
446
447 void
448 getmicrouptime(struct timeval *tvp)
449 {
450         struct timehands *th;
451         u_int gen;
452
453         do {
454                 th = timehands;
455                 gen = atomic_load_acq_int(&th->th_generation);
456                 bintime2timeval(&th->th_offset, tvp);
457                 atomic_thread_fence_acq();
458         } while (gen == 0 || gen != th->th_generation);
459 }
460
461 void
462 getbintime(struct bintime *bt)
463 {
464         struct timehands *th;
465         u_int gen;
466
467         do {
468                 th = timehands;
469                 gen = atomic_load_acq_int(&th->th_generation);
470                 *bt = th->th_bintime;
471                 atomic_thread_fence_acq();
472         } while (gen == 0 || gen != th->th_generation);
473 }
474
475 void
476 getnanotime(struct timespec *tsp)
477 {
478         struct timehands *th;
479         u_int gen;
480
481         do {
482                 th = timehands;
483                 gen = atomic_load_acq_int(&th->th_generation);
484                 *tsp = th->th_nanotime;
485                 atomic_thread_fence_acq();
486         } while (gen == 0 || gen != th->th_generation);
487 }
488
489 void
490 getmicrotime(struct timeval *tvp)
491 {
492         struct timehands *th;
493         u_int gen;
494
495         do {
496                 th = timehands;
497                 gen = atomic_load_acq_int(&th->th_generation);
498                 *tvp = th->th_microtime;
499                 atomic_thread_fence_acq();
500         } while (gen == 0 || gen != th->th_generation);
501 }
502 #endif /* FFCLOCK */
503
504 void
505 getboottime(struct timeval *boottime)
506 {
507         struct bintime boottimebin;
508
509         getboottimebin(&boottimebin);
510         bintime2timeval(&boottimebin, boottime);
511 }
512
513 void
514 getboottimebin(struct bintime *boottimebin)
515 {
516         struct timehands *th;
517         u_int gen;
518
519         do {
520                 th = timehands;
521                 gen = atomic_load_acq_int(&th->th_generation);
522                 *boottimebin = th->th_boottime;
523                 atomic_thread_fence_acq();
524         } while (gen == 0 || gen != th->th_generation);
525 }
526
527 #ifdef FFCLOCK
528 /*
529  * Support for feed-forward synchronization algorithms. This is heavily inspired
530  * by the timehands mechanism but kept independent from it. *_windup() functions
531  * have some connection to avoid accessing the timecounter hardware more than
532  * necessary.
533  */
534
535 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
536 struct ffclock_estimate ffclock_estimate;
537 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
538 uint32_t ffclock_status;                /* Feed-forward clock status. */
539 int8_t ffclock_updated;                 /* New estimates are available. */
540 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
541
542 struct fftimehands {
543         struct ffclock_estimate cest;
544         struct bintime          tick_time;
545         struct bintime          tick_time_lerp;
546         ffcounter               tick_ffcount;
547         uint64_t                period_lerp;
548         volatile uint8_t        gen;
549         struct fftimehands      *next;
550 };
551
552 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
553
554 static struct fftimehands ffth[10];
555 static struct fftimehands *volatile fftimehands = ffth;
556
557 static void
558 ffclock_init(void)
559 {
560         struct fftimehands *cur;
561         struct fftimehands *last;
562
563         memset(ffth, 0, sizeof(ffth));
564
565         last = ffth + NUM_ELEMENTS(ffth) - 1;
566         for (cur = ffth; cur < last; cur++)
567                 cur->next = cur + 1;
568         last->next = ffth;
569
570         ffclock_updated = 0;
571         ffclock_status = FFCLOCK_STA_UNSYNC;
572         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
573 }
574
575 /*
576  * Reset the feed-forward clock estimates. Called from inittodr() to get things
577  * kick started and uses the timecounter nominal frequency as a first period
578  * estimate. Note: this function may be called several time just after boot.
579  * Note: this is the only function that sets the value of boot time for the
580  * monotonic (i.e. uptime) version of the feed-forward clock.
581  */
582 void
583 ffclock_reset_clock(struct timespec *ts)
584 {
585         struct timecounter *tc;
586         struct ffclock_estimate cest;
587
588         tc = timehands->th_counter;
589         memset(&cest, 0, sizeof(struct ffclock_estimate));
590
591         timespec2bintime(ts, &ffclock_boottime);
592         timespec2bintime(ts, &(cest.update_time));
593         ffclock_read_counter(&cest.update_ffcount);
594         cest.leapsec_next = 0;
595         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
596         cest.errb_abs = 0;
597         cest.errb_rate = 0;
598         cest.status = FFCLOCK_STA_UNSYNC;
599         cest.leapsec_total = 0;
600         cest.leapsec = 0;
601
602         mtx_lock(&ffclock_mtx);
603         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
604         ffclock_updated = INT8_MAX;
605         mtx_unlock(&ffclock_mtx);
606
607         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
608             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
609             (unsigned long)ts->tv_nsec);
610 }
611
612 /*
613  * Sub-routine to convert a time interval measured in RAW counter units to time
614  * in seconds stored in bintime format.
615  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
616  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
617  * extra cycles.
618  */
619 static void
620 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
621 {
622         struct bintime bt2;
623         ffcounter delta, delta_max;
624
625         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
626         bintime_clear(bt);
627         do {
628                 if (ffdelta > delta_max)
629                         delta = delta_max;
630                 else
631                         delta = ffdelta;
632                 bt2.sec = 0;
633                 bt2.frac = period;
634                 bintime_mul(&bt2, (unsigned int)delta);
635                 bintime_add(bt, &bt2);
636                 ffdelta -= delta;
637         } while (ffdelta > 0);
638 }
639
640 /*
641  * Update the fftimehands.
642  * Push the tick ffcount and time(s) forward based on current clock estimate.
643  * The conversion from ffcounter to bintime relies on the difference clock
644  * principle, whose accuracy relies on computing small time intervals. If a new
645  * clock estimate has been passed by the synchronisation daemon, make it
646  * current, and compute the linear interpolation for monotonic time if needed.
647  */
648 static void
649 ffclock_windup(unsigned int delta)
650 {
651         struct ffclock_estimate *cest;
652         struct fftimehands *ffth;
653         struct bintime bt, gap_lerp;
654         ffcounter ffdelta;
655         uint64_t frac;
656         unsigned int polling;
657         uint8_t forward_jump, ogen;
658
659         /*
660          * Pick the next timehand, copy current ffclock estimates and move tick
661          * times and counter forward.
662          */
663         forward_jump = 0;
664         ffth = fftimehands->next;
665         ogen = ffth->gen;
666         ffth->gen = 0;
667         cest = &ffth->cest;
668         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
669         ffdelta = (ffcounter)delta;
670         ffth->period_lerp = fftimehands->period_lerp;
671
672         ffth->tick_time = fftimehands->tick_time;
673         ffclock_convert_delta(ffdelta, cest->period, &bt);
674         bintime_add(&ffth->tick_time, &bt);
675
676         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
677         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
678         bintime_add(&ffth->tick_time_lerp, &bt);
679
680         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
681
682         /*
683          * Assess the status of the clock, if the last update is too old, it is
684          * likely the synchronisation daemon is dead and the clock is free
685          * running.
686          */
687         if (ffclock_updated == 0) {
688                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
689                 ffclock_convert_delta(ffdelta, cest->period, &bt);
690                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
691                         ffclock_status |= FFCLOCK_STA_UNSYNC;
692         }
693
694         /*
695          * If available, grab updated clock estimates and make them current.
696          * Recompute time at this tick using the updated estimates. The clock
697          * estimates passed the feed-forward synchronisation daemon may result
698          * in time conversion that is not monotonically increasing (just after
699          * the update). time_lerp is a particular linear interpolation over the
700          * synchronisation algo polling period that ensures monotonicity for the
701          * clock ids requesting it.
702          */
703         if (ffclock_updated > 0) {
704                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
705                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
706                 ffth->tick_time = cest->update_time;
707                 ffclock_convert_delta(ffdelta, cest->period, &bt);
708                 bintime_add(&ffth->tick_time, &bt);
709
710                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
711                 if (ffclock_updated == INT8_MAX)
712                         ffth->tick_time_lerp = ffth->tick_time;
713
714                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
715                         forward_jump = 1;
716                 else
717                         forward_jump = 0;
718
719                 bintime_clear(&gap_lerp);
720                 if (forward_jump) {
721                         gap_lerp = ffth->tick_time;
722                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
723                 } else {
724                         gap_lerp = ffth->tick_time_lerp;
725                         bintime_sub(&gap_lerp, &ffth->tick_time);
726                 }
727
728                 /*
729                  * The reset from the RTC clock may be far from accurate, and
730                  * reducing the gap between real time and interpolated time
731                  * could take a very long time if the interpolated clock insists
732                  * on strict monotonicity. The clock is reset under very strict
733                  * conditions (kernel time is known to be wrong and
734                  * synchronization daemon has been restarted recently.
735                  * ffclock_boottime absorbs the jump to ensure boot time is
736                  * correct and uptime functions stay consistent.
737                  */
738                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
739                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
740                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
741                         if (forward_jump)
742                                 bintime_add(&ffclock_boottime, &gap_lerp);
743                         else
744                                 bintime_sub(&ffclock_boottime, &gap_lerp);
745                         ffth->tick_time_lerp = ffth->tick_time;
746                         bintime_clear(&gap_lerp);
747                 }
748
749                 ffclock_status = cest->status;
750                 ffth->period_lerp = cest->period;
751
752                 /*
753                  * Compute corrected period used for the linear interpolation of
754                  * time. The rate of linear interpolation is capped to 5000PPM
755                  * (5ms/s).
756                  */
757                 if (bintime_isset(&gap_lerp)) {
758                         ffdelta = cest->update_ffcount;
759                         ffdelta -= fftimehands->cest.update_ffcount;
760                         ffclock_convert_delta(ffdelta, cest->period, &bt);
761                         polling = bt.sec;
762                         bt.sec = 0;
763                         bt.frac = 5000000 * (uint64_t)18446744073LL;
764                         bintime_mul(&bt, polling);
765                         if (bintime_cmp(&gap_lerp, &bt, >))
766                                 gap_lerp = bt;
767
768                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
769                         frac = 0;
770                         if (gap_lerp.sec > 0) {
771                                 frac -= 1;
772                                 frac /= ffdelta / gap_lerp.sec;
773                         }
774                         frac += gap_lerp.frac / ffdelta;
775
776                         if (forward_jump)
777                                 ffth->period_lerp += frac;
778                         else
779                                 ffth->period_lerp -= frac;
780                 }
781
782                 ffclock_updated = 0;
783         }
784         if (++ogen == 0)
785                 ogen = 1;
786         ffth->gen = ogen;
787         fftimehands = ffth;
788 }
789
790 /*
791  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
792  * the old and new hardware counter cannot be read simultaneously. tc_windup()
793  * does read the two counters 'back to back', but a few cycles are effectively
794  * lost, and not accumulated in tick_ffcount. This is a fairly radical
795  * operation for a feed-forward synchronization daemon, and it is its job to not
796  * pushing irrelevant data to the kernel. Because there is no locking here,
797  * simply force to ignore pending or next update to give daemon a chance to
798  * realize the counter has changed.
799  */
800 static void
801 ffclock_change_tc(struct timehands *th)
802 {
803         struct fftimehands *ffth;
804         struct ffclock_estimate *cest;
805         struct timecounter *tc;
806         uint8_t ogen;
807
808         tc = th->th_counter;
809         ffth = fftimehands->next;
810         ogen = ffth->gen;
811         ffth->gen = 0;
812
813         cest = &ffth->cest;
814         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
815         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
816         cest->errb_abs = 0;
817         cest->errb_rate = 0;
818         cest->status |= FFCLOCK_STA_UNSYNC;
819
820         ffth->tick_ffcount = fftimehands->tick_ffcount;
821         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
822         ffth->tick_time = fftimehands->tick_time;
823         ffth->period_lerp = cest->period;
824
825         /* Do not lock but ignore next update from synchronization daemon. */
826         ffclock_updated--;
827
828         if (++ogen == 0)
829                 ogen = 1;
830         ffth->gen = ogen;
831         fftimehands = ffth;
832 }
833
834 /*
835  * Retrieve feed-forward counter and time of last kernel tick.
836  */
837 void
838 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
839 {
840         struct fftimehands *ffth;
841         uint8_t gen;
842
843         /*
844          * No locking but check generation has not changed. Also need to make
845          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
846          */
847         do {
848                 ffth = fftimehands;
849                 gen = ffth->gen;
850                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
851                         *bt = ffth->tick_time_lerp;
852                 else
853                         *bt = ffth->tick_time;
854                 *ffcount = ffth->tick_ffcount;
855         } while (gen == 0 || gen != ffth->gen);
856 }
857
858 /*
859  * Absolute clock conversion. Low level function to convert ffcounter to
860  * bintime. The ffcounter is converted using the current ffclock period estimate
861  * or the "interpolated period" to ensure monotonicity.
862  * NOTE: this conversion may have been deferred, and the clock updated since the
863  * hardware counter has been read.
864  */
865 void
866 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
867 {
868         struct fftimehands *ffth;
869         struct bintime bt2;
870         ffcounter ffdelta;
871         uint8_t gen;
872
873         /*
874          * No locking but check generation has not changed. Also need to make
875          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
876          */
877         do {
878                 ffth = fftimehands;
879                 gen = ffth->gen;
880                 if (ffcount > ffth->tick_ffcount)
881                         ffdelta = ffcount - ffth->tick_ffcount;
882                 else
883                         ffdelta = ffth->tick_ffcount - ffcount;
884
885                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
886                         *bt = ffth->tick_time_lerp;
887                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
888                 } else {
889                         *bt = ffth->tick_time;
890                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
891                 }
892
893                 if (ffcount > ffth->tick_ffcount)
894                         bintime_add(bt, &bt2);
895                 else
896                         bintime_sub(bt, &bt2);
897         } while (gen == 0 || gen != ffth->gen);
898 }
899
900 /*
901  * Difference clock conversion.
902  * Low level function to Convert a time interval measured in RAW counter units
903  * into bintime. The difference clock allows measuring small intervals much more
904  * reliably than the absolute clock.
905  */
906 void
907 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
908 {
909         struct fftimehands *ffth;
910         uint8_t gen;
911
912         /* No locking but check generation has not changed. */
913         do {
914                 ffth = fftimehands;
915                 gen = ffth->gen;
916                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
917         } while (gen == 0 || gen != ffth->gen);
918 }
919
920 /*
921  * Access to current ffcounter value.
922  */
923 void
924 ffclock_read_counter(ffcounter *ffcount)
925 {
926         struct timehands *th;
927         struct fftimehands *ffth;
928         unsigned int gen, delta;
929
930         /*
931          * ffclock_windup() called from tc_windup(), safe to rely on
932          * th->th_generation only, for correct delta and ffcounter.
933          */
934         do {
935                 th = timehands;
936                 gen = atomic_load_acq_int(&th->th_generation);
937                 ffth = fftimehands;
938                 delta = tc_delta(th);
939                 *ffcount = ffth->tick_ffcount;
940                 atomic_thread_fence_acq();
941         } while (gen == 0 || gen != th->th_generation);
942
943         *ffcount += delta;
944 }
945
946 void
947 binuptime(struct bintime *bt)
948 {
949
950         binuptime_fromclock(bt, sysclock_active);
951 }
952
953 void
954 nanouptime(struct timespec *tsp)
955 {
956
957         nanouptime_fromclock(tsp, sysclock_active);
958 }
959
960 void
961 microuptime(struct timeval *tvp)
962 {
963
964         microuptime_fromclock(tvp, sysclock_active);
965 }
966
967 void
968 bintime(struct bintime *bt)
969 {
970
971         bintime_fromclock(bt, sysclock_active);
972 }
973
974 void
975 nanotime(struct timespec *tsp)
976 {
977
978         nanotime_fromclock(tsp, sysclock_active);
979 }
980
981 void
982 microtime(struct timeval *tvp)
983 {
984
985         microtime_fromclock(tvp, sysclock_active);
986 }
987
988 void
989 getbinuptime(struct bintime *bt)
990 {
991
992         getbinuptime_fromclock(bt, sysclock_active);
993 }
994
995 void
996 getnanouptime(struct timespec *tsp)
997 {
998
999         getnanouptime_fromclock(tsp, sysclock_active);
1000 }
1001
1002 void
1003 getmicrouptime(struct timeval *tvp)
1004 {
1005
1006         getmicrouptime_fromclock(tvp, sysclock_active);
1007 }
1008
1009 void
1010 getbintime(struct bintime *bt)
1011 {
1012
1013         getbintime_fromclock(bt, sysclock_active);
1014 }
1015
1016 void
1017 getnanotime(struct timespec *tsp)
1018 {
1019
1020         getnanotime_fromclock(tsp, sysclock_active);
1021 }
1022
1023 void
1024 getmicrotime(struct timeval *tvp)
1025 {
1026
1027         getmicrouptime_fromclock(tvp, sysclock_active);
1028 }
1029
1030 #endif /* FFCLOCK */
1031
1032 /*
1033  * This is a clone of getnanotime and used for walltimestamps.
1034  * The dtrace_ prefix prevents fbt from creating probes for
1035  * it so walltimestamp can be safely used in all fbt probes.
1036  */
1037 void
1038 dtrace_getnanotime(struct timespec *tsp)
1039 {
1040         struct timehands *th;
1041         u_int gen;
1042
1043         do {
1044                 th = timehands;
1045                 gen = atomic_load_acq_int(&th->th_generation);
1046                 *tsp = th->th_nanotime;
1047                 atomic_thread_fence_acq();
1048         } while (gen == 0 || gen != th->th_generation);
1049 }
1050
1051 /*
1052  * System clock currently providing time to the system. Modifiable via sysctl
1053  * when the FFCLOCK option is defined.
1054  */
1055 int sysclock_active = SYSCLOCK_FBCK;
1056
1057 /* Internal NTP status and error estimates. */
1058 extern int time_status;
1059 extern long time_esterror;
1060
1061 /*
1062  * Take a snapshot of sysclock data which can be used to compare system clocks
1063  * and generate timestamps after the fact.
1064  */
1065 void
1066 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1067 {
1068         struct fbclock_info *fbi;
1069         struct timehands *th;
1070         struct bintime bt;
1071         unsigned int delta, gen;
1072 #ifdef FFCLOCK
1073         ffcounter ffcount;
1074         struct fftimehands *ffth;
1075         struct ffclock_info *ffi;
1076         struct ffclock_estimate cest;
1077
1078         ffi = &clock_snap->ff_info;
1079 #endif
1080
1081         fbi = &clock_snap->fb_info;
1082         delta = 0;
1083
1084         do {
1085                 th = timehands;
1086                 gen = atomic_load_acq_int(&th->th_generation);
1087                 fbi->th_scale = th->th_scale;
1088                 fbi->tick_time = th->th_offset;
1089 #ifdef FFCLOCK
1090                 ffth = fftimehands;
1091                 ffi->tick_time = ffth->tick_time_lerp;
1092                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1093                 ffi->period = ffth->cest.period;
1094                 ffi->period_lerp = ffth->period_lerp;
1095                 clock_snap->ffcount = ffth->tick_ffcount;
1096                 cest = ffth->cest;
1097 #endif
1098                 if (!fast)
1099                         delta = tc_delta(th);
1100                 atomic_thread_fence_acq();
1101         } while (gen == 0 || gen != th->th_generation);
1102
1103         clock_snap->delta = delta;
1104         clock_snap->sysclock_active = sysclock_active;
1105
1106         /* Record feedback clock status and error. */
1107         clock_snap->fb_info.status = time_status;
1108         /* XXX: Very crude estimate of feedback clock error. */
1109         bt.sec = time_esterror / 1000000;
1110         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1111             (uint64_t)18446744073709ULL;
1112         clock_snap->fb_info.error = bt;
1113
1114 #ifdef FFCLOCK
1115         if (!fast)
1116                 clock_snap->ffcount += delta;
1117
1118         /* Record feed-forward clock leap second adjustment. */
1119         ffi->leapsec_adjustment = cest.leapsec_total;
1120         if (clock_snap->ffcount > cest.leapsec_next)
1121                 ffi->leapsec_adjustment -= cest.leapsec;
1122
1123         /* Record feed-forward clock status and error. */
1124         clock_snap->ff_info.status = cest.status;
1125         ffcount = clock_snap->ffcount - cest.update_ffcount;
1126         ffclock_convert_delta(ffcount, cest.period, &bt);
1127         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1128         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1129         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1130         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1131         clock_snap->ff_info.error = bt;
1132 #endif
1133 }
1134
1135 /*
1136  * Convert a sysclock snapshot into a struct bintime based on the specified
1137  * clock source and flags.
1138  */
1139 int
1140 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1141     int whichclock, uint32_t flags)
1142 {
1143         struct bintime boottimebin;
1144 #ifdef FFCLOCK
1145         struct bintime bt2;
1146         uint64_t period;
1147 #endif
1148
1149         switch (whichclock) {
1150         case SYSCLOCK_FBCK:
1151                 *bt = cs->fb_info.tick_time;
1152
1153                 /* If snapshot was created with !fast, delta will be >0. */
1154                 if (cs->delta > 0)
1155                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1156
1157                 if ((flags & FBCLOCK_UPTIME) == 0) {
1158                         getboottimebin(&boottimebin);
1159                         bintime_add(bt, &boottimebin);
1160                 }
1161                 break;
1162 #ifdef FFCLOCK
1163         case SYSCLOCK_FFWD:
1164                 if (flags & FFCLOCK_LERP) {
1165                         *bt = cs->ff_info.tick_time_lerp;
1166                         period = cs->ff_info.period_lerp;
1167                 } else {
1168                         *bt = cs->ff_info.tick_time;
1169                         period = cs->ff_info.period;
1170                 }
1171
1172                 /* If snapshot was created with !fast, delta will be >0. */
1173                 if (cs->delta > 0) {
1174                         ffclock_convert_delta(cs->delta, period, &bt2);
1175                         bintime_add(bt, &bt2);
1176                 }
1177
1178                 /* Leap second adjustment. */
1179                 if (flags & FFCLOCK_LEAPSEC)
1180                         bt->sec -= cs->ff_info.leapsec_adjustment;
1181
1182                 /* Boot time adjustment, for uptime/monotonic clocks. */
1183                 if (flags & FFCLOCK_UPTIME)
1184                         bintime_sub(bt, &ffclock_boottime);
1185                 break;
1186 #endif
1187         default:
1188                 return (EINVAL);
1189                 break;
1190         }
1191
1192         return (0);
1193 }
1194
1195 /*
1196  * Initialize a new timecounter and possibly use it.
1197  */
1198 void
1199 tc_init(struct timecounter *tc)
1200 {
1201         u_int u;
1202         struct sysctl_oid *tc_root;
1203
1204         u = tc->tc_frequency / tc->tc_counter_mask;
1205         /* XXX: We need some margin here, 10% is a guess */
1206         u *= 11;
1207         u /= 10;
1208         if (u > hz && tc->tc_quality >= 0) {
1209                 tc->tc_quality = -2000;
1210                 if (bootverbose) {
1211                         printf("Timecounter \"%s\" frequency %ju Hz",
1212                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1213                         printf(" -- Insufficient hz, needs at least %u\n", u);
1214                 }
1215         } else if (tc->tc_quality >= 0 || bootverbose) {
1216                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1217                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1218                     tc->tc_quality);
1219         }
1220
1221         tc->tc_next = timecounters;
1222         timecounters = tc;
1223         /*
1224          * Set up sysctl tree for this counter.
1225          */
1226         tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1227             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1228             CTLFLAG_RW, 0, "timecounter description", "timecounter");
1229         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1230             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1231             "mask for implemented bits");
1232         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1233             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1234             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1235         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1236             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1237              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1238         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1239             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1240             "goodness of time counter");
1241         /*
1242          * Do not automatically switch if the current tc was specifically
1243          * chosen.  Never automatically use a timecounter with negative quality.
1244          * Even though we run on the dummy counter, switching here may be
1245          * worse since this timecounter may not be monotonic.
1246          */
1247         if (tc_chosen)
1248                 return;
1249         if (tc->tc_quality < 0)
1250                 return;
1251         if (tc->tc_quality < timecounter->tc_quality)
1252                 return;
1253         if (tc->tc_quality == timecounter->tc_quality &&
1254             tc->tc_frequency < timecounter->tc_frequency)
1255                 return;
1256         (void)tc->tc_get_timecount(tc);
1257         (void)tc->tc_get_timecount(tc);
1258         timecounter = tc;
1259 }
1260
1261 /* Report the frequency of the current timecounter. */
1262 uint64_t
1263 tc_getfrequency(void)
1264 {
1265
1266         return (timehands->th_counter->tc_frequency);
1267 }
1268
1269 static bool
1270 sleeping_on_old_rtc(struct thread *td)
1271 {
1272
1273         /*
1274          * td_rtcgen is modified by curthread when it is running,
1275          * and by other threads in this function.  By finding the thread
1276          * on a sleepqueue and holding the lock on the sleepqueue
1277          * chain, we guarantee that the thread is not running and that
1278          * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1279          * the thread that it was woken due to a real-time clock adjustment.
1280          * (The declaration of td_rtcgen refers to this comment.)
1281          */
1282         if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1283                 td->td_rtcgen = 0;
1284                 return (true);
1285         }
1286         return (false);
1287 }
1288
1289 static struct mtx tc_setclock_mtx;
1290 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1291
1292 /*
1293  * Step our concept of UTC.  This is done by modifying our estimate of
1294  * when we booted.
1295  */
1296 void
1297 tc_setclock(struct timespec *ts)
1298 {
1299         struct timespec tbef, taft;
1300         struct bintime bt, bt2;
1301
1302         timespec2bintime(ts, &bt);
1303         nanotime(&tbef);
1304         mtx_lock_spin(&tc_setclock_mtx);
1305         cpu_tick_calibrate(1);
1306         binuptime(&bt2);
1307         bintime_sub(&bt, &bt2);
1308
1309         /* XXX fiddle all the little crinkly bits around the fiords... */
1310         tc_windup(&bt);
1311         mtx_unlock_spin(&tc_setclock_mtx);
1312
1313         /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1314         atomic_add_rel_int(&rtc_generation, 2);
1315         sleepq_chains_remove_matching(sleeping_on_old_rtc);
1316         if (timestepwarnings) {
1317                 nanotime(&taft);
1318                 log(LOG_INFO,
1319                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1320                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1321                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1322                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1323         }
1324 }
1325
1326 /*
1327  * Initialize the next struct timehands in the ring and make
1328  * it the active timehands.  Along the way we might switch to a different
1329  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1330  */
1331 static void
1332 tc_windup(struct bintime *new_boottimebin)
1333 {
1334         struct bintime bt;
1335         struct timehands *th, *tho;
1336         uint64_t scale;
1337         u_int delta, ncount, ogen;
1338         int i;
1339         time_t t;
1340
1341         /*
1342          * Make the next timehands a copy of the current one, but do
1343          * not overwrite the generation or next pointer.  While we
1344          * update the contents, the generation must be zero.  We need
1345          * to ensure that the zero generation is visible before the
1346          * data updates become visible, which requires release fence.
1347          * For similar reasons, re-reading of the generation after the
1348          * data is read should use acquire fence.
1349          */
1350         tho = timehands;
1351         th = tho->th_next;
1352         ogen = th->th_generation;
1353         th->th_generation = 0;
1354         atomic_thread_fence_rel();
1355         memcpy(th, tho, offsetof(struct timehands, th_generation));
1356         if (new_boottimebin != NULL)
1357                 th->th_boottime = *new_boottimebin;
1358
1359         /*
1360          * Capture a timecounter delta on the current timecounter and if
1361          * changing timecounters, a counter value from the new timecounter.
1362          * Update the offset fields accordingly.
1363          */
1364         delta = tc_delta(th);
1365         if (th->th_counter != timecounter)
1366                 ncount = timecounter->tc_get_timecount(timecounter);
1367         else
1368                 ncount = 0;
1369 #ifdef FFCLOCK
1370         ffclock_windup(delta);
1371 #endif
1372         th->th_offset_count += delta;
1373         th->th_offset_count &= th->th_counter->tc_counter_mask;
1374         while (delta > th->th_counter->tc_frequency) {
1375                 /* Eat complete unadjusted seconds. */
1376                 delta -= th->th_counter->tc_frequency;
1377                 th->th_offset.sec++;
1378         }
1379         if ((delta > th->th_counter->tc_frequency / 2) &&
1380             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1381                 /* The product th_scale * delta just barely overflows. */
1382                 th->th_offset.sec++;
1383         }
1384         bintime_addx(&th->th_offset, th->th_scale * delta);
1385
1386         /*
1387          * Hardware latching timecounters may not generate interrupts on
1388          * PPS events, so instead we poll them.  There is a finite risk that
1389          * the hardware might capture a count which is later than the one we
1390          * got above, and therefore possibly in the next NTP second which might
1391          * have a different rate than the current NTP second.  It doesn't
1392          * matter in practice.
1393          */
1394         if (tho->th_counter->tc_poll_pps)
1395                 tho->th_counter->tc_poll_pps(tho->th_counter);
1396
1397         /*
1398          * Deal with NTP second processing.  The for loop normally
1399          * iterates at most once, but in extreme situations it might
1400          * keep NTP sane if timeouts are not run for several seconds.
1401          * At boot, the time step can be large when the TOD hardware
1402          * has been read, so on really large steps, we call
1403          * ntp_update_second only twice.  We need to call it twice in
1404          * case we missed a leap second.
1405          */
1406         bt = th->th_offset;
1407         bintime_add(&bt, &th->th_boottime);
1408         i = bt.sec - tho->th_microtime.tv_sec;
1409         if (i > LARGE_STEP)
1410                 i = 2;
1411         for (; i > 0; i--) {
1412                 t = bt.sec;
1413                 ntp_update_second(&th->th_adjustment, &bt.sec);
1414                 if (bt.sec != t)
1415                         th->th_boottime.sec += bt.sec - t;
1416         }
1417         /* Update the UTC timestamps used by the get*() functions. */
1418         th->th_bintime = bt;
1419         bintime2timeval(&bt, &th->th_microtime);
1420         bintime2timespec(&bt, &th->th_nanotime);
1421
1422         /* Now is a good time to change timecounters. */
1423         if (th->th_counter != timecounter) {
1424 #ifndef __arm__
1425                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1426                         cpu_disable_c2_sleep++;
1427                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1428                         cpu_disable_c2_sleep--;
1429 #endif
1430                 th->th_counter = timecounter;
1431                 th->th_offset_count = ncount;
1432                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1433                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1434 #ifdef FFCLOCK
1435                 ffclock_change_tc(th);
1436 #endif
1437         }
1438
1439         /*-
1440          * Recalculate the scaling factor.  We want the number of 1/2^64
1441          * fractions of a second per period of the hardware counter, taking
1442          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1443          * processing provides us with.
1444          *
1445          * The th_adjustment is nanoseconds per second with 32 bit binary
1446          * fraction and we want 64 bit binary fraction of second:
1447          *
1448          *       x = a * 2^32 / 10^9 = a * 4.294967296
1449          *
1450          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1451          * we can only multiply by about 850 without overflowing, that
1452          * leaves no suitably precise fractions for multiply before divide.
1453          *
1454          * Divide before multiply with a fraction of 2199/512 results in a
1455          * systematic undercompensation of 10PPM of th_adjustment.  On a
1456          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1457          *
1458          * We happily sacrifice the lowest of the 64 bits of our result
1459          * to the goddess of code clarity.
1460          *
1461          */
1462         scale = (uint64_t)1 << 63;
1463         scale += (th->th_adjustment / 1024) * 2199;
1464         scale /= th->th_counter->tc_frequency;
1465         th->th_scale = scale * 2;
1466
1467         /*
1468          * Now that the struct timehands is again consistent, set the new
1469          * generation number, making sure to not make it zero.
1470          */
1471         if (++ogen == 0)
1472                 ogen = 1;
1473         atomic_store_rel_int(&th->th_generation, ogen);
1474
1475         /* Go live with the new struct timehands. */
1476 #ifdef FFCLOCK
1477         switch (sysclock_active) {
1478         case SYSCLOCK_FBCK:
1479 #endif
1480                 time_second = th->th_microtime.tv_sec;
1481                 time_uptime = th->th_offset.sec;
1482 #ifdef FFCLOCK
1483                 break;
1484         case SYSCLOCK_FFWD:
1485                 time_second = fftimehands->tick_time_lerp.sec;
1486                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1487                 break;
1488         }
1489 #endif
1490
1491         timehands = th;
1492         timekeep_push_vdso();
1493 }
1494
1495 /* Report or change the active timecounter hardware. */
1496 static int
1497 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1498 {
1499         char newname[32];
1500         struct timecounter *newtc, *tc;
1501         int error;
1502
1503         tc = timecounter;
1504         strlcpy(newname, tc->tc_name, sizeof(newname));
1505
1506         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1507         if (error != 0 || req->newptr == NULL)
1508                 return (error);
1509         /* Record that the tc in use now was specifically chosen. */
1510         tc_chosen = 1;
1511         if (strcmp(newname, tc->tc_name) == 0)
1512                 return (0);
1513         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1514                 if (strcmp(newname, newtc->tc_name) != 0)
1515                         continue;
1516
1517                 /* Warm up new timecounter. */
1518                 (void)newtc->tc_get_timecount(newtc);
1519                 (void)newtc->tc_get_timecount(newtc);
1520
1521                 timecounter = newtc;
1522
1523                 /*
1524                  * The vdso timehands update is deferred until the next
1525                  * 'tc_windup()'.
1526                  *
1527                  * This is prudent given that 'timekeep_push_vdso()' does not
1528                  * use any locking and that it can be called in hard interrupt
1529                  * context via 'tc_windup()'.
1530                  */
1531                 return (0);
1532         }
1533         return (EINVAL);
1534 }
1535
1536 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1537     0, 0, sysctl_kern_timecounter_hardware, "A",
1538     "Timecounter hardware selected");
1539
1540
1541 /* Report the available timecounter hardware. */
1542 static int
1543 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1544 {
1545         struct sbuf sb;
1546         struct timecounter *tc;
1547         int error;
1548
1549         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1550         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1551                 if (tc != timecounters)
1552                         sbuf_putc(&sb, ' ');
1553                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1554         }
1555         error = sbuf_finish(&sb);
1556         sbuf_delete(&sb);
1557         return (error);
1558 }
1559
1560 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1561     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1562
1563 /*
1564  * RFC 2783 PPS-API implementation.
1565  */
1566
1567 /*
1568  *  Return true if the driver is aware of the abi version extensions in the
1569  *  pps_state structure, and it supports at least the given abi version number.
1570  */
1571 static inline int
1572 abi_aware(struct pps_state *pps, int vers)
1573 {
1574
1575         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1576 }
1577
1578 static int
1579 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1580 {
1581         int err, timo;
1582         pps_seq_t aseq, cseq;
1583         struct timeval tv;
1584
1585         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1586                 return (EINVAL);
1587
1588         /*
1589          * If no timeout is requested, immediately return whatever values were
1590          * most recently captured.  If timeout seconds is -1, that's a request
1591          * to block without a timeout.  WITNESS won't let us sleep forever
1592          * without a lock (we really don't need a lock), so just repeatedly
1593          * sleep a long time.
1594          */
1595         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1596                 if (fapi->timeout.tv_sec == -1)
1597                         timo = 0x7fffffff;
1598                 else {
1599                         tv.tv_sec = fapi->timeout.tv_sec;
1600                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1601                         timo = tvtohz(&tv);
1602                 }
1603                 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1604                 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1605                 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1606                     cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1607                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1608                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1609                                         err = msleep_spin(pps, pps->driver_mtx,
1610                                             "ppsfch", timo);
1611                                 } else {
1612                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1613                                             "ppsfch", timo);
1614                                 }
1615                         } else {
1616                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1617                         }
1618                         if (err == EWOULDBLOCK) {
1619                                 if (fapi->timeout.tv_sec == -1) {
1620                                         continue;
1621                                 } else {
1622                                         return (ETIMEDOUT);
1623                                 }
1624                         } else if (err != 0) {
1625                                 return (err);
1626                         }
1627                 }
1628         }
1629
1630         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1631         fapi->pps_info_buf = pps->ppsinfo;
1632
1633         return (0);
1634 }
1635
1636 int
1637 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1638 {
1639         pps_params_t *app;
1640         struct pps_fetch_args *fapi;
1641 #ifdef FFCLOCK
1642         struct pps_fetch_ffc_args *fapi_ffc;
1643 #endif
1644 #ifdef PPS_SYNC
1645         struct pps_kcbind_args *kapi;
1646 #endif
1647
1648         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1649         switch (cmd) {
1650         case PPS_IOC_CREATE:
1651                 return (0);
1652         case PPS_IOC_DESTROY:
1653                 return (0);
1654         case PPS_IOC_SETPARAMS:
1655                 app = (pps_params_t *)data;
1656                 if (app->mode & ~pps->ppscap)
1657                         return (EINVAL);
1658 #ifdef FFCLOCK
1659                 /* Ensure only a single clock is selected for ffc timestamp. */
1660                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1661                         return (EINVAL);
1662 #endif
1663                 pps->ppsparam = *app;
1664                 return (0);
1665         case PPS_IOC_GETPARAMS:
1666                 app = (pps_params_t *)data;
1667                 *app = pps->ppsparam;
1668                 app->api_version = PPS_API_VERS_1;
1669                 return (0);
1670         case PPS_IOC_GETCAP:
1671                 *(int*)data = pps->ppscap;
1672                 return (0);
1673         case PPS_IOC_FETCH:
1674                 fapi = (struct pps_fetch_args *)data;
1675                 return (pps_fetch(fapi, pps));
1676 #ifdef FFCLOCK
1677         case PPS_IOC_FETCH_FFCOUNTER:
1678                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1679                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1680                     PPS_TSFMT_TSPEC)
1681                         return (EINVAL);
1682                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1683                         return (EOPNOTSUPP);
1684                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1685                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1686                 /* Overwrite timestamps if feedback clock selected. */
1687                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1688                 case PPS_TSCLK_FBCK:
1689                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1690                             pps->ppsinfo.assert_timestamp;
1691                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1692                             pps->ppsinfo.clear_timestamp;
1693                         break;
1694                 case PPS_TSCLK_FFWD:
1695                         break;
1696                 default:
1697                         break;
1698                 }
1699                 return (0);
1700 #endif /* FFCLOCK */
1701         case PPS_IOC_KCBIND:
1702 #ifdef PPS_SYNC
1703                 kapi = (struct pps_kcbind_args *)data;
1704                 /* XXX Only root should be able to do this */
1705                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1706                         return (EINVAL);
1707                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1708                         return (EINVAL);
1709                 if (kapi->edge & ~pps->ppscap)
1710                         return (EINVAL);
1711                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1712                     (pps->kcmode & KCMODE_ABIFLAG);
1713                 return (0);
1714 #else
1715                 return (EOPNOTSUPP);
1716 #endif
1717         default:
1718                 return (ENOIOCTL);
1719         }
1720 }
1721
1722 void
1723 pps_init(struct pps_state *pps)
1724 {
1725         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1726         if (pps->ppscap & PPS_CAPTUREASSERT)
1727                 pps->ppscap |= PPS_OFFSETASSERT;
1728         if (pps->ppscap & PPS_CAPTURECLEAR)
1729                 pps->ppscap |= PPS_OFFSETCLEAR;
1730 #ifdef FFCLOCK
1731         pps->ppscap |= PPS_TSCLK_MASK;
1732 #endif
1733         pps->kcmode &= ~KCMODE_ABIFLAG;
1734 }
1735
1736 void
1737 pps_init_abi(struct pps_state *pps)
1738 {
1739
1740         pps_init(pps);
1741         if (pps->driver_abi > 0) {
1742                 pps->kcmode |= KCMODE_ABIFLAG;
1743                 pps->kernel_abi = PPS_ABI_VERSION;
1744         }
1745 }
1746
1747 void
1748 pps_capture(struct pps_state *pps)
1749 {
1750         struct timehands *th;
1751
1752         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1753         th = timehands;
1754         pps->capgen = atomic_load_acq_int(&th->th_generation);
1755         pps->capth = th;
1756 #ifdef FFCLOCK
1757         pps->capffth = fftimehands;
1758 #endif
1759         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1760         atomic_thread_fence_acq();
1761         if (pps->capgen != th->th_generation)
1762                 pps->capgen = 0;
1763 }
1764
1765 void
1766 pps_event(struct pps_state *pps, int event)
1767 {
1768         struct bintime bt;
1769         struct timespec ts, *tsp, *osp;
1770         u_int tcount, *pcount;
1771         int foff;
1772         pps_seq_t *pseq;
1773 #ifdef FFCLOCK
1774         struct timespec *tsp_ffc;
1775         pps_seq_t *pseq_ffc;
1776         ffcounter *ffcount;
1777 #endif
1778 #ifdef PPS_SYNC
1779         int fhard;
1780 #endif
1781
1782         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1783         /* Nothing to do if not currently set to capture this event type. */
1784         if ((event & pps->ppsparam.mode) == 0)
1785                 return;
1786         /* If the timecounter was wound up underneath us, bail out. */
1787         if (pps->capgen == 0 || pps->capgen !=
1788             atomic_load_acq_int(&pps->capth->th_generation))
1789                 return;
1790
1791         /* Things would be easier with arrays. */
1792         if (event == PPS_CAPTUREASSERT) {
1793                 tsp = &pps->ppsinfo.assert_timestamp;
1794                 osp = &pps->ppsparam.assert_offset;
1795                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1796 #ifdef PPS_SYNC
1797                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1798 #endif
1799                 pcount = &pps->ppscount[0];
1800                 pseq = &pps->ppsinfo.assert_sequence;
1801 #ifdef FFCLOCK
1802                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1803                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1804                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1805 #endif
1806         } else {
1807                 tsp = &pps->ppsinfo.clear_timestamp;
1808                 osp = &pps->ppsparam.clear_offset;
1809                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1810 #ifdef PPS_SYNC
1811                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1812 #endif
1813                 pcount = &pps->ppscount[1];
1814                 pseq = &pps->ppsinfo.clear_sequence;
1815 #ifdef FFCLOCK
1816                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1817                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1818                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1819 #endif
1820         }
1821
1822         /*
1823          * If the timecounter changed, we cannot compare the count values, so
1824          * we have to drop the rest of the PPS-stuff until the next event.
1825          */
1826         if (pps->ppstc != pps->capth->th_counter) {
1827                 pps->ppstc = pps->capth->th_counter;
1828                 *pcount = pps->capcount;
1829                 pps->ppscount[2] = pps->capcount;
1830                 return;
1831         }
1832
1833         /* Convert the count to a timespec. */
1834         tcount = pps->capcount - pps->capth->th_offset_count;
1835         tcount &= pps->capth->th_counter->tc_counter_mask;
1836         bt = pps->capth->th_bintime;
1837         bintime_addx(&bt, pps->capth->th_scale * tcount);
1838         bintime2timespec(&bt, &ts);
1839
1840         /* If the timecounter was wound up underneath us, bail out. */
1841         atomic_thread_fence_acq();
1842         if (pps->capgen != pps->capth->th_generation)
1843                 return;
1844
1845         *pcount = pps->capcount;
1846         (*pseq)++;
1847         *tsp = ts;
1848
1849         if (foff) {
1850                 timespecadd(tsp, osp, tsp);
1851                 if (tsp->tv_nsec < 0) {
1852                         tsp->tv_nsec += 1000000000;
1853                         tsp->tv_sec -= 1;
1854                 }
1855         }
1856
1857 #ifdef FFCLOCK
1858         *ffcount = pps->capffth->tick_ffcount + tcount;
1859         bt = pps->capffth->tick_time;
1860         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1861         bintime_add(&bt, &pps->capffth->tick_time);
1862         bintime2timespec(&bt, &ts);
1863         (*pseq_ffc)++;
1864         *tsp_ffc = ts;
1865 #endif
1866
1867 #ifdef PPS_SYNC
1868         if (fhard) {
1869                 uint64_t scale;
1870
1871                 /*
1872                  * Feed the NTP PLL/FLL.
1873                  * The FLL wants to know how many (hardware) nanoseconds
1874                  * elapsed since the previous event.
1875                  */
1876                 tcount = pps->capcount - pps->ppscount[2];
1877                 pps->ppscount[2] = pps->capcount;
1878                 tcount &= pps->capth->th_counter->tc_counter_mask;
1879                 scale = (uint64_t)1 << 63;
1880                 scale /= pps->capth->th_counter->tc_frequency;
1881                 scale *= 2;
1882                 bt.sec = 0;
1883                 bt.frac = 0;
1884                 bintime_addx(&bt, scale * tcount);
1885                 bintime2timespec(&bt, &ts);
1886                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1887         }
1888 #endif
1889
1890         /* Wakeup anyone sleeping in pps_fetch().  */
1891         wakeup(pps);
1892 }
1893
1894 /*
1895  * Timecounters need to be updated every so often to prevent the hardware
1896  * counter from overflowing.  Updating also recalculates the cached values
1897  * used by the get*() family of functions, so their precision depends on
1898  * the update frequency.
1899  */
1900
1901 static int tc_tick;
1902 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1903     "Approximate number of hardclock ticks in a millisecond");
1904
1905 void
1906 tc_ticktock(int cnt)
1907 {
1908         static int count;
1909
1910         if (mtx_trylock_spin(&tc_setclock_mtx)) {
1911                 count += cnt;
1912                 if (count >= tc_tick) {
1913                         count = 0;
1914                         tc_windup(NULL);
1915                 }
1916                 mtx_unlock_spin(&tc_setclock_mtx);
1917         }
1918 }
1919
1920 static void __inline
1921 tc_adjprecision(void)
1922 {
1923         int t;
1924
1925         if (tc_timepercentage > 0) {
1926                 t = (99 + tc_timepercentage) / tc_timepercentage;
1927                 tc_precexp = fls(t + (t >> 1)) - 1;
1928                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1929                 FREQ2BT(hz, &bt_tickthreshold);
1930                 bintime_shift(&bt_timethreshold, tc_precexp);
1931                 bintime_shift(&bt_tickthreshold, tc_precexp);
1932         } else {
1933                 tc_precexp = 31;
1934                 bt_timethreshold.sec = INT_MAX;
1935                 bt_timethreshold.frac = ~(uint64_t)0;
1936                 bt_tickthreshold = bt_timethreshold;
1937         }
1938         sbt_timethreshold = bttosbt(bt_timethreshold);
1939         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1940 }
1941
1942 static int
1943 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1944 {
1945         int error, val;
1946
1947         val = tc_timepercentage;
1948         error = sysctl_handle_int(oidp, &val, 0, req);
1949         if (error != 0 || req->newptr == NULL)
1950                 return (error);
1951         tc_timepercentage = val;
1952         if (cold)
1953                 goto done;
1954         tc_adjprecision();
1955 done:
1956         return (0);
1957 }
1958
1959 static void
1960 inittimecounter(void *dummy)
1961 {
1962         u_int p;
1963         int tick_rate;
1964
1965         /*
1966          * Set the initial timeout to
1967          * max(1, <approx. number of hardclock ticks in a millisecond>).
1968          * People should probably not use the sysctl to set the timeout
1969          * to smaller than its initial value, since that value is the
1970          * smallest reasonable one.  If they want better timestamps they
1971          * should use the non-"get"* functions.
1972          */
1973         if (hz > 1000)
1974                 tc_tick = (hz + 500) / 1000;
1975         else
1976                 tc_tick = 1;
1977         tc_adjprecision();
1978         FREQ2BT(hz, &tick_bt);
1979         tick_sbt = bttosbt(tick_bt);
1980         tick_rate = hz / tc_tick;
1981         FREQ2BT(tick_rate, &tc_tick_bt);
1982         tc_tick_sbt = bttosbt(tc_tick_bt);
1983         p = (tc_tick * 1000000) / hz;
1984         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1985
1986 #ifdef FFCLOCK
1987         ffclock_init();
1988 #endif
1989         /* warm up new timecounter (again) and get rolling. */
1990         (void)timecounter->tc_get_timecount(timecounter);
1991         (void)timecounter->tc_get_timecount(timecounter);
1992         mtx_lock_spin(&tc_setclock_mtx);
1993         tc_windup(NULL);
1994         mtx_unlock_spin(&tc_setclock_mtx);
1995 }
1996
1997 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1998
1999 /* Cpu tick handling -------------------------------------------------*/
2000
2001 static int cpu_tick_variable;
2002 static uint64_t cpu_tick_frequency;
2003
2004 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
2005 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
2006
2007 static uint64_t
2008 tc_cpu_ticks(void)
2009 {
2010         struct timecounter *tc;
2011         uint64_t res, *base;
2012         unsigned u, *last;
2013
2014         critical_enter();
2015         base = DPCPU_PTR(tc_cpu_ticks_base);
2016         last = DPCPU_PTR(tc_cpu_ticks_last);
2017         tc = timehands->th_counter;
2018         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2019         if (u < *last)
2020                 *base += (uint64_t)tc->tc_counter_mask + 1;
2021         *last = u;
2022         res = u + *base;
2023         critical_exit();
2024         return (res);
2025 }
2026
2027 void
2028 cpu_tick_calibration(void)
2029 {
2030         static time_t last_calib;
2031
2032         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2033                 cpu_tick_calibrate(0);
2034                 last_calib = time_uptime;
2035         }
2036 }
2037
2038 /*
2039  * This function gets called every 16 seconds on only one designated
2040  * CPU in the system from hardclock() via cpu_tick_calibration()().
2041  *
2042  * Whenever the real time clock is stepped we get called with reset=1
2043  * to make sure we handle suspend/resume and similar events correctly.
2044  */
2045
2046 static void
2047 cpu_tick_calibrate(int reset)
2048 {
2049         static uint64_t c_last;
2050         uint64_t c_this, c_delta;
2051         static struct bintime  t_last;
2052         struct bintime t_this, t_delta;
2053         uint32_t divi;
2054
2055         if (reset) {
2056                 /* The clock was stepped, abort & reset */
2057                 t_last.sec = 0;
2058                 return;
2059         }
2060
2061         /* we don't calibrate fixed rate cputicks */
2062         if (!cpu_tick_variable)
2063                 return;
2064
2065         getbinuptime(&t_this);
2066         c_this = cpu_ticks();
2067         if (t_last.sec != 0) {
2068                 c_delta = c_this - c_last;
2069                 t_delta = t_this;
2070                 bintime_sub(&t_delta, &t_last);
2071                 /*
2072                  * Headroom:
2073                  *      2^(64-20) / 16[s] =
2074                  *      2^(44) / 16[s] =
2075                  *      17.592.186.044.416 / 16 =
2076                  *      1.099.511.627.776 [Hz]
2077                  */
2078                 divi = t_delta.sec << 20;
2079                 divi |= t_delta.frac >> (64 - 20);
2080                 c_delta <<= 20;
2081                 c_delta /= divi;
2082                 if (c_delta > cpu_tick_frequency) {
2083                         if (0 && bootverbose)
2084                                 printf("cpu_tick increased to %ju Hz\n",
2085                                     c_delta);
2086                         cpu_tick_frequency = c_delta;
2087                 }
2088         }
2089         c_last = c_this;
2090         t_last = t_this;
2091 }
2092
2093 void
2094 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2095 {
2096
2097         if (func == NULL) {
2098                 cpu_ticks = tc_cpu_ticks;
2099         } else {
2100                 cpu_tick_frequency = freq;
2101                 cpu_tick_variable = var;
2102                 cpu_ticks = func;
2103         }
2104 }
2105
2106 uint64_t
2107 cpu_tickrate(void)
2108 {
2109
2110         if (cpu_ticks == tc_cpu_ticks) 
2111                 return (tc_getfrequency());
2112         return (cpu_tick_frequency);
2113 }
2114
2115 /*
2116  * We need to be slightly careful converting cputicks to microseconds.
2117  * There is plenty of margin in 64 bits of microseconds (half a million
2118  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2119  * before divide conversion (to retain precision) we find that the
2120  * margin shrinks to 1.5 hours (one millionth of 146y).
2121  * With a three prong approach we never lose significant bits, no
2122  * matter what the cputick rate and length of timeinterval is.
2123  */
2124
2125 uint64_t
2126 cputick2usec(uint64_t tick)
2127 {
2128
2129         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2130                 return (tick / (cpu_tickrate() / 1000000LL));
2131         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2132                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2133         else
2134                 return ((tick * 1000000LL) / cpu_tickrate());
2135 }
2136
2137 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2138
2139 static int vdso_th_enable = 1;
2140 static int
2141 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2142 {
2143         int old_vdso_th_enable, error;
2144
2145         old_vdso_th_enable = vdso_th_enable;
2146         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2147         if (error != 0)
2148                 return (error);
2149         vdso_th_enable = old_vdso_th_enable;
2150         return (0);
2151 }
2152 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2153     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2154     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2155
2156 uint32_t
2157 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2158 {
2159         struct timehands *th;
2160         uint32_t enabled;
2161
2162         th = timehands;
2163         vdso_th->th_scale = th->th_scale;
2164         vdso_th->th_offset_count = th->th_offset_count;
2165         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2166         vdso_th->th_offset = th->th_offset;
2167         vdso_th->th_boottime = th->th_boottime;
2168         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2169                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2170                     th->th_counter);
2171         } else
2172                 enabled = 0;
2173         if (!vdso_th_enable)
2174                 enabled = 0;
2175         return (enabled);
2176 }
2177
2178 #ifdef COMPAT_FREEBSD32
2179 uint32_t
2180 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2181 {
2182         struct timehands *th;
2183         uint32_t enabled;
2184
2185         th = timehands;
2186         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2187         vdso_th32->th_offset_count = th->th_offset_count;
2188         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2189         vdso_th32->th_offset.sec = th->th_offset.sec;
2190         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2191         vdso_th32->th_boottime.sec = th->th_boottime.sec;
2192         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2193         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2194                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2195                     th->th_counter);
2196         } else
2197                 enabled = 0;
2198         if (!vdso_th_enable)
2199                 enabled = 0;
2200         return (enabled);
2201 }
2202 #endif