]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
MF head @ r284358
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  */
15
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18
19 #include "opt_compat.h"
20 #include "opt_ntp.h"
21 #include "opt_ffclock.h"
22
23 #include <sys/param.h>
24 #include <sys/kernel.h>
25 #include <sys/limits.h>
26 #include <sys/lock.h>
27 #include <sys/mutex.h>
28 #include <sys/sbuf.h>
29 #include <sys/sysctl.h>
30 #include <sys/syslog.h>
31 #include <sys/systm.h>
32 #include <sys/timeffc.h>
33 #include <sys/timepps.h>
34 #include <sys/timetc.h>
35 #include <sys/timex.h>
36 #include <sys/vdso.h>
37
38 /*
39  * A large step happens on boot.  This constant detects such steps.
40  * It is relatively small so that ntp_update_second gets called enough
41  * in the typical 'missed a couple of seconds' case, but doesn't loop
42  * forever when the time step is large.
43  */
44 #define LARGE_STEP      200
45
46 /*
47  * Implement a dummy timecounter which we can use until we get a real one
48  * in the air.  This allows the console and other early stuff to use
49  * time services.
50  */
51
52 static u_int
53 dummy_get_timecount(struct timecounter *tc)
54 {
55         static u_int now;
56
57         return (++now);
58 }
59
60 static struct timecounter dummy_timecounter = {
61         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
62 };
63
64 struct timehands {
65         /* These fields must be initialized by the driver. */
66         struct timecounter      *th_counter;
67         int64_t                 th_adjustment;
68         uint64_t                th_scale;
69         u_int                   th_offset_count;
70         struct bintime          th_offset;
71         struct timeval          th_microtime;
72         struct timespec         th_nanotime;
73         /* Fields not to be copied in tc_windup start with th_generation. */
74         u_int                   th_generation;
75         struct timehands        *th_next;
76 };
77
78 static struct timehands th0;
79 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
80 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
81 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
82 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
83 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
84 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
85 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
86 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
87 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
88 static struct timehands th0 = {
89         &dummy_timecounter,
90         0,
91         (uint64_t)-1 / 1000000,
92         0,
93         {1, 0},
94         {0, 0},
95         {0, 0},
96         1,
97         &th1
98 };
99
100 static struct timehands *volatile timehands = &th0;
101 struct timecounter *timecounter = &dummy_timecounter;
102 static struct timecounter *timecounters = &dummy_timecounter;
103
104 int tc_min_ticktock_freq = 1;
105
106 volatile time_t time_second = 1;
107 volatile time_t time_uptime = 1;
108
109 struct bintime boottimebin;
110 struct timeval boottime;
111 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
112 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
113     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
114
115 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
116 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
117
118 static int timestepwarnings;
119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
120     &timestepwarnings, 0, "Log time steps");
121
122 struct bintime bt_timethreshold;
123 struct bintime bt_tickthreshold;
124 sbintime_t sbt_timethreshold;
125 sbintime_t sbt_tickthreshold;
126 struct bintime tc_tick_bt;
127 sbintime_t tc_tick_sbt;
128 int tc_precexp;
129 int tc_timepercentage = TC_DEFAULTPERC;
130 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
131 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
132     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
133     sysctl_kern_timecounter_adjprecision, "I",
134     "Allowed time interval deviation in percents");
135
136 static void tc_windup(void);
137 static void cpu_tick_calibrate(int);
138
139 void dtrace_getnanotime(struct timespec *tsp);
140
141 static int
142 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
143 {
144 #ifndef __mips__
145 #ifdef SCTL_MASK32
146         int tv[2];
147
148         if (req->flags & SCTL_MASK32) {
149                 tv[0] = boottime.tv_sec;
150                 tv[1] = boottime.tv_usec;
151                 return SYSCTL_OUT(req, tv, sizeof(tv));
152         } else
153 #endif
154 #endif
155                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
156 }
157
158 static int
159 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
160 {
161         u_int ncount;
162         struct timecounter *tc = arg1;
163
164         ncount = tc->tc_get_timecount(tc);
165         return sysctl_handle_int(oidp, &ncount, 0, req);
166 }
167
168 static int
169 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
170 {
171         uint64_t freq;
172         struct timecounter *tc = arg1;
173
174         freq = tc->tc_frequency;
175         return sysctl_handle_64(oidp, &freq, 0, req);
176 }
177
178 /*
179  * Return the difference between the timehands' counter value now and what
180  * was when we copied it to the timehands' offset_count.
181  */
182 static __inline u_int
183 tc_delta(struct timehands *th)
184 {
185         struct timecounter *tc;
186
187         tc = th->th_counter;
188         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
189             tc->tc_counter_mask);
190 }
191
192 static inline u_int
193 tc_getgen(struct timehands *th)
194 {
195
196 #ifdef SMP
197         return (atomic_load_acq_int(&th->th_generation));
198 #else
199         u_int gen;
200
201         gen = th->th_generation;
202         __compiler_membar();
203         return (gen);
204 #endif
205 }
206
207 static inline void
208 tc_setgen(struct timehands *th, u_int newgen)
209 {
210
211 #ifdef SMP
212         atomic_store_rel_int(&th->th_generation, newgen);
213 #else
214         __compiler_membar();
215         th->th_generation = newgen;
216 #endif
217 }
218
219 /*
220  * Functions for reading the time.  We have to loop until we are sure that
221  * the timehands that we operated on was not updated under our feet.  See
222  * the comment in <sys/time.h> for a description of these 12 functions.
223  */
224
225 #ifdef FFCLOCK
226 void
227 fbclock_binuptime(struct bintime *bt)
228 {
229         struct timehands *th;
230         unsigned int gen;
231
232         do {
233                 th = timehands;
234                 gen = tc_getgen(th);
235                 *bt = th->th_offset;
236                 bintime_addx(bt, th->th_scale * tc_delta(th));
237         } while (gen == 0 || gen != tc_getgen(th));
238 }
239
240 void
241 fbclock_nanouptime(struct timespec *tsp)
242 {
243         struct bintime bt;
244
245         fbclock_binuptime(&bt);
246         bintime2timespec(&bt, tsp);
247 }
248
249 void
250 fbclock_microuptime(struct timeval *tvp)
251 {
252         struct bintime bt;
253
254         fbclock_binuptime(&bt);
255         bintime2timeval(&bt, tvp);
256 }
257
258 void
259 fbclock_bintime(struct bintime *bt)
260 {
261
262         fbclock_binuptime(bt);
263         bintime_add(bt, &boottimebin);
264 }
265
266 void
267 fbclock_nanotime(struct timespec *tsp)
268 {
269         struct bintime bt;
270
271         fbclock_bintime(&bt);
272         bintime2timespec(&bt, tsp);
273 }
274
275 void
276 fbclock_microtime(struct timeval *tvp)
277 {
278         struct bintime bt;
279
280         fbclock_bintime(&bt);
281         bintime2timeval(&bt, tvp);
282 }
283
284 void
285 fbclock_getbinuptime(struct bintime *bt)
286 {
287         struct timehands *th;
288         unsigned int gen;
289
290         do {
291                 th = timehands;
292                 gen = tc_getgen(th);
293                 *bt = th->th_offset;
294         } while (gen == 0 || gen != tc_getgen(th));
295 }
296
297 void
298 fbclock_getnanouptime(struct timespec *tsp)
299 {
300         struct timehands *th;
301         unsigned int gen;
302
303         do {
304                 th = timehands;
305                 gen = tc_getgen(th);
306                 bintime2timespec(&th->th_offset, tsp);
307         } while (gen == 0 || gen != tc_getgen(th));
308 }
309
310 void
311 fbclock_getmicrouptime(struct timeval *tvp)
312 {
313         struct timehands *th;
314         unsigned int gen;
315
316         do {
317                 th = timehands;
318                 gen = tc_getgen(th);
319                 bintime2timeval(&th->th_offset, tvp);
320         } while (gen == 0 || gen != tc_getgen(th));
321 }
322
323 void
324 fbclock_getbintime(struct bintime *bt)
325 {
326         struct timehands *th;
327         unsigned int gen;
328
329         do {
330                 th = timehands;
331                 gen = tc_getgen(th);
332                 *bt = th->th_offset;
333         } while (gen == 0 || gen != tc_getgen(th));
334         bintime_add(bt, &boottimebin);
335 }
336
337 void
338 fbclock_getnanotime(struct timespec *tsp)
339 {
340         struct timehands *th;
341         unsigned int gen;
342
343         do {
344                 th = timehands;
345                 gen = tc_getgen(th);
346                 *tsp = th->th_nanotime;
347         } while (gen == 0 || gen != tc_getgen(th));
348 }
349
350 void
351 fbclock_getmicrotime(struct timeval *tvp)
352 {
353         struct timehands *th;
354         unsigned int gen;
355
356         do {
357                 th = timehands;
358                 gen = tc_getgen(th);
359                 *tvp = th->th_microtime;
360         } while (gen == 0 || gen != tc_getgen(th));
361 }
362 #else /* !FFCLOCK */
363 void
364 binuptime(struct bintime *bt)
365 {
366         struct timehands *th;
367         u_int gen;
368
369         do {
370                 th = timehands;
371                 gen = tc_getgen(th);
372                 *bt = th->th_offset;
373                 bintime_addx(bt, th->th_scale * tc_delta(th));
374         } while (gen == 0 || gen != tc_getgen(th));
375 }
376
377 void
378 nanouptime(struct timespec *tsp)
379 {
380         struct bintime bt;
381
382         binuptime(&bt);
383         bintime2timespec(&bt, tsp);
384 }
385
386 void
387 microuptime(struct timeval *tvp)
388 {
389         struct bintime bt;
390
391         binuptime(&bt);
392         bintime2timeval(&bt, tvp);
393 }
394
395 void
396 bintime(struct bintime *bt)
397 {
398
399         binuptime(bt);
400         bintime_add(bt, &boottimebin);
401 }
402
403 void
404 nanotime(struct timespec *tsp)
405 {
406         struct bintime bt;
407
408         bintime(&bt);
409         bintime2timespec(&bt, tsp);
410 }
411
412 void
413 microtime(struct timeval *tvp)
414 {
415         struct bintime bt;
416
417         bintime(&bt);
418         bintime2timeval(&bt, tvp);
419 }
420
421 void
422 getbinuptime(struct bintime *bt)
423 {
424         struct timehands *th;
425         u_int gen;
426
427         do {
428                 th = timehands;
429                 gen = tc_getgen(th);
430                 *bt = th->th_offset;
431         } while (gen == 0 || gen != tc_getgen(th));
432 }
433
434 void
435 getnanouptime(struct timespec *tsp)
436 {
437         struct timehands *th;
438         u_int gen;
439
440         do {
441                 th = timehands;
442                 gen = tc_getgen(th);
443                 bintime2timespec(&th->th_offset, tsp);
444         } while (gen == 0 || gen != tc_getgen(th));
445 }
446
447 void
448 getmicrouptime(struct timeval *tvp)
449 {
450         struct timehands *th;
451         u_int gen;
452
453         do {
454                 th = timehands;
455                 gen = tc_getgen(th);
456                 bintime2timeval(&th->th_offset, tvp);
457         } while (gen == 0 || gen != tc_getgen(th));
458 }
459
460 void
461 getbintime(struct bintime *bt)
462 {
463         struct timehands *th;
464         u_int gen;
465
466         do {
467                 th = timehands;
468                 gen = tc_getgen(th);
469                 *bt = th->th_offset;
470         } while (gen == 0 || gen != tc_getgen(th));
471         bintime_add(bt, &boottimebin);
472 }
473
474 void
475 getnanotime(struct timespec *tsp)
476 {
477         struct timehands *th;
478         u_int gen;
479
480         do {
481                 th = timehands;
482                 gen = tc_getgen(th);
483                 *tsp = th->th_nanotime;
484         } while (gen == 0 || gen != tc_getgen(th));
485 }
486
487 void
488 getmicrotime(struct timeval *tvp)
489 {
490         struct timehands *th;
491         u_int gen;
492
493         do {
494                 th = timehands;
495                 gen = tc_getgen(th);
496                 *tvp = th->th_microtime;
497         } while (gen == 0 || gen != tc_getgen(th));
498 }
499 #endif /* FFCLOCK */
500
501 #ifdef FFCLOCK
502 /*
503  * Support for feed-forward synchronization algorithms. This is heavily inspired
504  * by the timehands mechanism but kept independent from it. *_windup() functions
505  * have some connection to avoid accessing the timecounter hardware more than
506  * necessary.
507  */
508
509 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
510 struct ffclock_estimate ffclock_estimate;
511 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
512 uint32_t ffclock_status;                /* Feed-forward clock status. */
513 int8_t ffclock_updated;                 /* New estimates are available. */
514 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
515
516 struct fftimehands {
517         struct ffclock_estimate cest;
518         struct bintime          tick_time;
519         struct bintime          tick_time_lerp;
520         ffcounter               tick_ffcount;
521         uint64_t                period_lerp;
522         volatile uint8_t        gen;
523         struct fftimehands      *next;
524 };
525
526 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
527
528 static struct fftimehands ffth[10];
529 static struct fftimehands *volatile fftimehands = ffth;
530
531 static void
532 ffclock_init(void)
533 {
534         struct fftimehands *cur;
535         struct fftimehands *last;
536
537         memset(ffth, 0, sizeof(ffth));
538
539         last = ffth + NUM_ELEMENTS(ffth) - 1;
540         for (cur = ffth; cur < last; cur++)
541                 cur->next = cur + 1;
542         last->next = ffth;
543
544         ffclock_updated = 0;
545         ffclock_status = FFCLOCK_STA_UNSYNC;
546         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
547 }
548
549 /*
550  * Reset the feed-forward clock estimates. Called from inittodr() to get things
551  * kick started and uses the timecounter nominal frequency as a first period
552  * estimate. Note: this function may be called several time just after boot.
553  * Note: this is the only function that sets the value of boot time for the
554  * monotonic (i.e. uptime) version of the feed-forward clock.
555  */
556 void
557 ffclock_reset_clock(struct timespec *ts)
558 {
559         struct timecounter *tc;
560         struct ffclock_estimate cest;
561
562         tc = timehands->th_counter;
563         memset(&cest, 0, sizeof(struct ffclock_estimate));
564
565         timespec2bintime(ts, &ffclock_boottime);
566         timespec2bintime(ts, &(cest.update_time));
567         ffclock_read_counter(&cest.update_ffcount);
568         cest.leapsec_next = 0;
569         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
570         cest.errb_abs = 0;
571         cest.errb_rate = 0;
572         cest.status = FFCLOCK_STA_UNSYNC;
573         cest.leapsec_total = 0;
574         cest.leapsec = 0;
575
576         mtx_lock(&ffclock_mtx);
577         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
578         ffclock_updated = INT8_MAX;
579         mtx_unlock(&ffclock_mtx);
580
581         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
582             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
583             (unsigned long)ts->tv_nsec);
584 }
585
586 /*
587  * Sub-routine to convert a time interval measured in RAW counter units to time
588  * in seconds stored in bintime format.
589  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
590  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
591  * extra cycles.
592  */
593 static void
594 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
595 {
596         struct bintime bt2;
597         ffcounter delta, delta_max;
598
599         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
600         bintime_clear(bt);
601         do {
602                 if (ffdelta > delta_max)
603                         delta = delta_max;
604                 else
605                         delta = ffdelta;
606                 bt2.sec = 0;
607                 bt2.frac = period;
608                 bintime_mul(&bt2, (unsigned int)delta);
609                 bintime_add(bt, &bt2);
610                 ffdelta -= delta;
611         } while (ffdelta > 0);
612 }
613
614 /*
615  * Update the fftimehands.
616  * Push the tick ffcount and time(s) forward based on current clock estimate.
617  * The conversion from ffcounter to bintime relies on the difference clock
618  * principle, whose accuracy relies on computing small time intervals. If a new
619  * clock estimate has been passed by the synchronisation daemon, make it
620  * current, and compute the linear interpolation for monotonic time if needed.
621  */
622 static void
623 ffclock_windup(unsigned int delta)
624 {
625         struct ffclock_estimate *cest;
626         struct fftimehands *ffth;
627         struct bintime bt, gap_lerp;
628         ffcounter ffdelta;
629         uint64_t frac;
630         unsigned int polling;
631         uint8_t forward_jump, ogen;
632
633         /*
634          * Pick the next timehand, copy current ffclock estimates and move tick
635          * times and counter forward.
636          */
637         forward_jump = 0;
638         ffth = fftimehands->next;
639         ogen = ffth->gen;
640         ffth->gen = 0;
641         cest = &ffth->cest;
642         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
643         ffdelta = (ffcounter)delta;
644         ffth->period_lerp = fftimehands->period_lerp;
645
646         ffth->tick_time = fftimehands->tick_time;
647         ffclock_convert_delta(ffdelta, cest->period, &bt);
648         bintime_add(&ffth->tick_time, &bt);
649
650         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
651         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
652         bintime_add(&ffth->tick_time_lerp, &bt);
653
654         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
655
656         /*
657          * Assess the status of the clock, if the last update is too old, it is
658          * likely the synchronisation daemon is dead and the clock is free
659          * running.
660          */
661         if (ffclock_updated == 0) {
662                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
663                 ffclock_convert_delta(ffdelta, cest->period, &bt);
664                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
665                         ffclock_status |= FFCLOCK_STA_UNSYNC;
666         }
667
668         /*
669          * If available, grab updated clock estimates and make them current.
670          * Recompute time at this tick using the updated estimates. The clock
671          * estimates passed the feed-forward synchronisation daemon may result
672          * in time conversion that is not monotonically increasing (just after
673          * the update). time_lerp is a particular linear interpolation over the
674          * synchronisation algo polling period that ensures monotonicity for the
675          * clock ids requesting it.
676          */
677         if (ffclock_updated > 0) {
678                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
679                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
680                 ffth->tick_time = cest->update_time;
681                 ffclock_convert_delta(ffdelta, cest->period, &bt);
682                 bintime_add(&ffth->tick_time, &bt);
683
684                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
685                 if (ffclock_updated == INT8_MAX)
686                         ffth->tick_time_lerp = ffth->tick_time;
687
688                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
689                         forward_jump = 1;
690                 else
691                         forward_jump = 0;
692
693                 bintime_clear(&gap_lerp);
694                 if (forward_jump) {
695                         gap_lerp = ffth->tick_time;
696                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
697                 } else {
698                         gap_lerp = ffth->tick_time_lerp;
699                         bintime_sub(&gap_lerp, &ffth->tick_time);
700                 }
701
702                 /*
703                  * The reset from the RTC clock may be far from accurate, and
704                  * reducing the gap between real time and interpolated time
705                  * could take a very long time if the interpolated clock insists
706                  * on strict monotonicity. The clock is reset under very strict
707                  * conditions (kernel time is known to be wrong and
708                  * synchronization daemon has been restarted recently.
709                  * ffclock_boottime absorbs the jump to ensure boot time is
710                  * correct and uptime functions stay consistent.
711                  */
712                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
713                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
714                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
715                         if (forward_jump)
716                                 bintime_add(&ffclock_boottime, &gap_lerp);
717                         else
718                                 bintime_sub(&ffclock_boottime, &gap_lerp);
719                         ffth->tick_time_lerp = ffth->tick_time;
720                         bintime_clear(&gap_lerp);
721                 }
722
723                 ffclock_status = cest->status;
724                 ffth->period_lerp = cest->period;
725
726                 /*
727                  * Compute corrected period used for the linear interpolation of
728                  * time. The rate of linear interpolation is capped to 5000PPM
729                  * (5ms/s).
730                  */
731                 if (bintime_isset(&gap_lerp)) {
732                         ffdelta = cest->update_ffcount;
733                         ffdelta -= fftimehands->cest.update_ffcount;
734                         ffclock_convert_delta(ffdelta, cest->period, &bt);
735                         polling = bt.sec;
736                         bt.sec = 0;
737                         bt.frac = 5000000 * (uint64_t)18446744073LL;
738                         bintime_mul(&bt, polling);
739                         if (bintime_cmp(&gap_lerp, &bt, >))
740                                 gap_lerp = bt;
741
742                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
743                         frac = 0;
744                         if (gap_lerp.sec > 0) {
745                                 frac -= 1;
746                                 frac /= ffdelta / gap_lerp.sec;
747                         }
748                         frac += gap_lerp.frac / ffdelta;
749
750                         if (forward_jump)
751                                 ffth->period_lerp += frac;
752                         else
753                                 ffth->period_lerp -= frac;
754                 }
755
756                 ffclock_updated = 0;
757         }
758         if (++ogen == 0)
759                 ogen = 1;
760         ffth->gen = ogen;
761         fftimehands = ffth;
762 }
763
764 /*
765  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
766  * the old and new hardware counter cannot be read simultaneously. tc_windup()
767  * does read the two counters 'back to back', but a few cycles are effectively
768  * lost, and not accumulated in tick_ffcount. This is a fairly radical
769  * operation for a feed-forward synchronization daemon, and it is its job to not
770  * pushing irrelevant data to the kernel. Because there is no locking here,
771  * simply force to ignore pending or next update to give daemon a chance to
772  * realize the counter has changed.
773  */
774 static void
775 ffclock_change_tc(struct timehands *th)
776 {
777         struct fftimehands *ffth;
778         struct ffclock_estimate *cest;
779         struct timecounter *tc;
780         uint8_t ogen;
781
782         tc = th->th_counter;
783         ffth = fftimehands->next;
784         ogen = ffth->gen;
785         ffth->gen = 0;
786
787         cest = &ffth->cest;
788         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
789         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
790         cest->errb_abs = 0;
791         cest->errb_rate = 0;
792         cest->status |= FFCLOCK_STA_UNSYNC;
793
794         ffth->tick_ffcount = fftimehands->tick_ffcount;
795         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
796         ffth->tick_time = fftimehands->tick_time;
797         ffth->period_lerp = cest->period;
798
799         /* Do not lock but ignore next update from synchronization daemon. */
800         ffclock_updated--;
801
802         if (++ogen == 0)
803                 ogen = 1;
804         ffth->gen = ogen;
805         fftimehands = ffth;
806 }
807
808 /*
809  * Retrieve feed-forward counter and time of last kernel tick.
810  */
811 void
812 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
813 {
814         struct fftimehands *ffth;
815         uint8_t gen;
816
817         /*
818          * No locking but check generation has not changed. Also need to make
819          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
820          */
821         do {
822                 ffth = fftimehands;
823                 gen = ffth->gen;
824                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
825                         *bt = ffth->tick_time_lerp;
826                 else
827                         *bt = ffth->tick_time;
828                 *ffcount = ffth->tick_ffcount;
829         } while (gen == 0 || gen != ffth->gen);
830 }
831
832 /*
833  * Absolute clock conversion. Low level function to convert ffcounter to
834  * bintime. The ffcounter is converted using the current ffclock period estimate
835  * or the "interpolated period" to ensure monotonicity.
836  * NOTE: this conversion may have been deferred, and the clock updated since the
837  * hardware counter has been read.
838  */
839 void
840 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
841 {
842         struct fftimehands *ffth;
843         struct bintime bt2;
844         ffcounter ffdelta;
845         uint8_t gen;
846
847         /*
848          * No locking but check generation has not changed. Also need to make
849          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
850          */
851         do {
852                 ffth = fftimehands;
853                 gen = ffth->gen;
854                 if (ffcount > ffth->tick_ffcount)
855                         ffdelta = ffcount - ffth->tick_ffcount;
856                 else
857                         ffdelta = ffth->tick_ffcount - ffcount;
858
859                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
860                         *bt = ffth->tick_time_lerp;
861                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
862                 } else {
863                         *bt = ffth->tick_time;
864                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
865                 }
866
867                 if (ffcount > ffth->tick_ffcount)
868                         bintime_add(bt, &bt2);
869                 else
870                         bintime_sub(bt, &bt2);
871         } while (gen == 0 || gen != ffth->gen);
872 }
873
874 /*
875  * Difference clock conversion.
876  * Low level function to Convert a time interval measured in RAW counter units
877  * into bintime. The difference clock allows measuring small intervals much more
878  * reliably than the absolute clock.
879  */
880 void
881 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
882 {
883         struct fftimehands *ffth;
884         uint8_t gen;
885
886         /* No locking but check generation has not changed. */
887         do {
888                 ffth = fftimehands;
889                 gen = ffth->gen;
890                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
891         } while (gen == 0 || gen != ffth->gen);
892 }
893
894 /*
895  * Access to current ffcounter value.
896  */
897 void
898 ffclock_read_counter(ffcounter *ffcount)
899 {
900         struct timehands *th;
901         struct fftimehands *ffth;
902         unsigned int gen, delta;
903
904         /*
905          * ffclock_windup() called from tc_windup(), safe to rely on
906          * th->th_generation only, for correct delta and ffcounter.
907          */
908         do {
909                 th = timehands;
910                 gen = tc_getgen(th);
911                 ffth = fftimehands;
912                 delta = tc_delta(th);
913                 *ffcount = ffth->tick_ffcount;
914         } while (gen == 0 || gen != tc_getgen(th));
915
916         *ffcount += delta;
917 }
918
919 void
920 binuptime(struct bintime *bt)
921 {
922
923         binuptime_fromclock(bt, sysclock_active);
924 }
925
926 void
927 nanouptime(struct timespec *tsp)
928 {
929
930         nanouptime_fromclock(tsp, sysclock_active);
931 }
932
933 void
934 microuptime(struct timeval *tvp)
935 {
936
937         microuptime_fromclock(tvp, sysclock_active);
938 }
939
940 void
941 bintime(struct bintime *bt)
942 {
943
944         bintime_fromclock(bt, sysclock_active);
945 }
946
947 void
948 nanotime(struct timespec *tsp)
949 {
950
951         nanotime_fromclock(tsp, sysclock_active);
952 }
953
954 void
955 microtime(struct timeval *tvp)
956 {
957
958         microtime_fromclock(tvp, sysclock_active);
959 }
960
961 void
962 getbinuptime(struct bintime *bt)
963 {
964
965         getbinuptime_fromclock(bt, sysclock_active);
966 }
967
968 void
969 getnanouptime(struct timespec *tsp)
970 {
971
972         getnanouptime_fromclock(tsp, sysclock_active);
973 }
974
975 void
976 getmicrouptime(struct timeval *tvp)
977 {
978
979         getmicrouptime_fromclock(tvp, sysclock_active);
980 }
981
982 void
983 getbintime(struct bintime *bt)
984 {
985
986         getbintime_fromclock(bt, sysclock_active);
987 }
988
989 void
990 getnanotime(struct timespec *tsp)
991 {
992
993         getnanotime_fromclock(tsp, sysclock_active);
994 }
995
996 void
997 getmicrotime(struct timeval *tvp)
998 {
999
1000         getmicrouptime_fromclock(tvp, sysclock_active);
1001 }
1002
1003 #endif /* FFCLOCK */
1004
1005 /*
1006  * This is a clone of getnanotime and used for walltimestamps.
1007  * The dtrace_ prefix prevents fbt from creating probes for
1008  * it so walltimestamp can be safely used in all fbt probes.
1009  */
1010 void
1011 dtrace_getnanotime(struct timespec *tsp)
1012 {
1013         struct timehands *th;
1014         u_int gen;
1015
1016         do {
1017                 th = timehands;
1018                 gen = tc_getgen(th);
1019                 *tsp = th->th_nanotime;
1020         } while (gen == 0 || gen != tc_getgen(th));
1021 }
1022
1023 /*
1024  * System clock currently providing time to the system. Modifiable via sysctl
1025  * when the FFCLOCK option is defined.
1026  */
1027 int sysclock_active = SYSCLOCK_FBCK;
1028
1029 /* Internal NTP status and error estimates. */
1030 extern int time_status;
1031 extern long time_esterror;
1032
1033 /*
1034  * Take a snapshot of sysclock data which can be used to compare system clocks
1035  * and generate timestamps after the fact.
1036  */
1037 void
1038 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1039 {
1040         struct fbclock_info *fbi;
1041         struct timehands *th;
1042         struct bintime bt;
1043         unsigned int delta, gen;
1044 #ifdef FFCLOCK
1045         ffcounter ffcount;
1046         struct fftimehands *ffth;
1047         struct ffclock_info *ffi;
1048         struct ffclock_estimate cest;
1049
1050         ffi = &clock_snap->ff_info;
1051 #endif
1052
1053         fbi = &clock_snap->fb_info;
1054         delta = 0;
1055
1056         do {
1057                 th = timehands;
1058                 gen = tc_getgen(th);
1059                 fbi->th_scale = th->th_scale;
1060                 fbi->tick_time = th->th_offset;
1061 #ifdef FFCLOCK
1062                 ffth = fftimehands;
1063                 ffi->tick_time = ffth->tick_time_lerp;
1064                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1065                 ffi->period = ffth->cest.period;
1066                 ffi->period_lerp = ffth->period_lerp;
1067                 clock_snap->ffcount = ffth->tick_ffcount;
1068                 cest = ffth->cest;
1069 #endif
1070                 if (!fast)
1071                         delta = tc_delta(th);
1072         } while (gen == 0 || gen != tc_getgen(th));
1073
1074         clock_snap->delta = delta;
1075         clock_snap->sysclock_active = sysclock_active;
1076
1077         /* Record feedback clock status and error. */
1078         clock_snap->fb_info.status = time_status;
1079         /* XXX: Very crude estimate of feedback clock error. */
1080         bt.sec = time_esterror / 1000000;
1081         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1082             (uint64_t)18446744073709ULL;
1083         clock_snap->fb_info.error = bt;
1084
1085 #ifdef FFCLOCK
1086         if (!fast)
1087                 clock_snap->ffcount += delta;
1088
1089         /* Record feed-forward clock leap second adjustment. */
1090         ffi->leapsec_adjustment = cest.leapsec_total;
1091         if (clock_snap->ffcount > cest.leapsec_next)
1092                 ffi->leapsec_adjustment -= cest.leapsec;
1093
1094         /* Record feed-forward clock status and error. */
1095         clock_snap->ff_info.status = cest.status;
1096         ffcount = clock_snap->ffcount - cest.update_ffcount;
1097         ffclock_convert_delta(ffcount, cest.period, &bt);
1098         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1099         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1100         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1101         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1102         clock_snap->ff_info.error = bt;
1103 #endif
1104 }
1105
1106 /*
1107  * Convert a sysclock snapshot into a struct bintime based on the specified
1108  * clock source and flags.
1109  */
1110 int
1111 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1112     int whichclock, uint32_t flags)
1113 {
1114 #ifdef FFCLOCK
1115         struct bintime bt2;
1116         uint64_t period;
1117 #endif
1118
1119         switch (whichclock) {
1120         case SYSCLOCK_FBCK:
1121                 *bt = cs->fb_info.tick_time;
1122
1123                 /* If snapshot was created with !fast, delta will be >0. */
1124                 if (cs->delta > 0)
1125                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1126
1127                 if ((flags & FBCLOCK_UPTIME) == 0)
1128                         bintime_add(bt, &boottimebin);
1129                 break;
1130 #ifdef FFCLOCK
1131         case SYSCLOCK_FFWD:
1132                 if (flags & FFCLOCK_LERP) {
1133                         *bt = cs->ff_info.tick_time_lerp;
1134                         period = cs->ff_info.period_lerp;
1135                 } else {
1136                         *bt = cs->ff_info.tick_time;
1137                         period = cs->ff_info.period;
1138                 }
1139
1140                 /* If snapshot was created with !fast, delta will be >0. */
1141                 if (cs->delta > 0) {
1142                         ffclock_convert_delta(cs->delta, period, &bt2);
1143                         bintime_add(bt, &bt2);
1144                 }
1145
1146                 /* Leap second adjustment. */
1147                 if (flags & FFCLOCK_LEAPSEC)
1148                         bt->sec -= cs->ff_info.leapsec_adjustment;
1149
1150                 /* Boot time adjustment, for uptime/monotonic clocks. */
1151                 if (flags & FFCLOCK_UPTIME)
1152                         bintime_sub(bt, &ffclock_boottime);
1153                 break;
1154 #endif
1155         default:
1156                 return (EINVAL);
1157                 break;
1158         }
1159
1160         return (0);
1161 }
1162
1163 /*
1164  * Initialize a new timecounter and possibly use it.
1165  */
1166 void
1167 tc_init(struct timecounter *tc)
1168 {
1169         u_int u;
1170         struct sysctl_oid *tc_root;
1171
1172         u = tc->tc_frequency / tc->tc_counter_mask;
1173         /* XXX: We need some margin here, 10% is a guess */
1174         u *= 11;
1175         u /= 10;
1176         if (u > hz && tc->tc_quality >= 0) {
1177                 tc->tc_quality = -2000;
1178                 if (bootverbose) {
1179                         printf("Timecounter \"%s\" frequency %ju Hz",
1180                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1181                         printf(" -- Insufficient hz, needs at least %u\n", u);
1182                 }
1183         } else if (tc->tc_quality >= 0 || bootverbose) {
1184                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1185                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1186                     tc->tc_quality);
1187         }
1188
1189         tc->tc_next = timecounters;
1190         timecounters = tc;
1191         /*
1192          * Set up sysctl tree for this counter.
1193          */
1194         tc_root = SYSCTL_ADD_NODE(NULL,
1195             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1196             CTLFLAG_RW, 0, "timecounter description");
1197         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1198             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1199             "mask for implemented bits");
1200         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1201             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1202             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1203         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1204             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1205              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1206         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1207             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1208             "goodness of time counter");
1209         /*
1210          * Never automatically use a timecounter with negative quality.
1211          * Even though we run on the dummy counter, switching here may be
1212          * worse since this timecounter may not be monotonous.
1213          */
1214         if (tc->tc_quality < 0)
1215                 return;
1216         if (tc->tc_quality < timecounter->tc_quality)
1217                 return;
1218         if (tc->tc_quality == timecounter->tc_quality &&
1219             tc->tc_frequency < timecounter->tc_frequency)
1220                 return;
1221         (void)tc->tc_get_timecount(tc);
1222         (void)tc->tc_get_timecount(tc);
1223         timecounter = tc;
1224 }
1225
1226 /* Report the frequency of the current timecounter. */
1227 uint64_t
1228 tc_getfrequency(void)
1229 {
1230
1231         return (timehands->th_counter->tc_frequency);
1232 }
1233
1234 /*
1235  * Step our concept of UTC.  This is done by modifying our estimate of
1236  * when we booted.
1237  * XXX: not locked.
1238  */
1239 void
1240 tc_setclock(struct timespec *ts)
1241 {
1242         struct timespec tbef, taft;
1243         struct bintime bt, bt2;
1244
1245         cpu_tick_calibrate(1);
1246         nanotime(&tbef);
1247         timespec2bintime(ts, &bt);
1248         binuptime(&bt2);
1249         bintime_sub(&bt, &bt2);
1250         bintime_add(&bt2, &boottimebin);
1251         boottimebin = bt;
1252         bintime2timeval(&bt, &boottime);
1253
1254         /* XXX fiddle all the little crinkly bits around the fiords... */
1255         tc_windup();
1256         nanotime(&taft);
1257         if (timestepwarnings) {
1258                 log(LOG_INFO,
1259                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1260                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1261                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1262                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1263         }
1264         cpu_tick_calibrate(1);
1265 }
1266
1267 /*
1268  * Initialize the next struct timehands in the ring and make
1269  * it the active timehands.  Along the way we might switch to a different
1270  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1271  */
1272 static void
1273 tc_windup(void)
1274 {
1275         struct bintime bt;
1276         struct timehands *th, *tho;
1277         uint64_t scale;
1278         u_int delta, ncount, ogen;
1279         int i;
1280         time_t t;
1281
1282         /*
1283          * Make the next timehands a copy of the current one, but do not
1284          * overwrite the generation or next pointer.  While we update
1285          * the contents, the generation must be zero.
1286          */
1287         tho = timehands;
1288         th = tho->th_next;
1289         ogen = th->th_generation;
1290         tc_setgen(th, 0);
1291         bcopy(tho, th, offsetof(struct timehands, th_generation));
1292
1293         /*
1294          * Capture a timecounter delta on the current timecounter and if
1295          * changing timecounters, a counter value from the new timecounter.
1296          * Update the offset fields accordingly.
1297          */
1298         delta = tc_delta(th);
1299         if (th->th_counter != timecounter)
1300                 ncount = timecounter->tc_get_timecount(timecounter);
1301         else
1302                 ncount = 0;
1303 #ifdef FFCLOCK
1304         ffclock_windup(delta);
1305 #endif
1306         th->th_offset_count += delta;
1307         th->th_offset_count &= th->th_counter->tc_counter_mask;
1308         while (delta > th->th_counter->tc_frequency) {
1309                 /* Eat complete unadjusted seconds. */
1310                 delta -= th->th_counter->tc_frequency;
1311                 th->th_offset.sec++;
1312         }
1313         if ((delta > th->th_counter->tc_frequency / 2) &&
1314             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1315                 /* The product th_scale * delta just barely overflows. */
1316                 th->th_offset.sec++;
1317         }
1318         bintime_addx(&th->th_offset, th->th_scale * delta);
1319
1320         /*
1321          * Hardware latching timecounters may not generate interrupts on
1322          * PPS events, so instead we poll them.  There is a finite risk that
1323          * the hardware might capture a count which is later than the one we
1324          * got above, and therefore possibly in the next NTP second which might
1325          * have a different rate than the current NTP second.  It doesn't
1326          * matter in practice.
1327          */
1328         if (tho->th_counter->tc_poll_pps)
1329                 tho->th_counter->tc_poll_pps(tho->th_counter);
1330
1331         /*
1332          * Deal with NTP second processing.  The for loop normally
1333          * iterates at most once, but in extreme situations it might
1334          * keep NTP sane if timeouts are not run for several seconds.
1335          * At boot, the time step can be large when the TOD hardware
1336          * has been read, so on really large steps, we call
1337          * ntp_update_second only twice.  We need to call it twice in
1338          * case we missed a leap second.
1339          */
1340         bt = th->th_offset;
1341         bintime_add(&bt, &boottimebin);
1342         i = bt.sec - tho->th_microtime.tv_sec;
1343         if (i > LARGE_STEP)
1344                 i = 2;
1345         for (; i > 0; i--) {
1346                 t = bt.sec;
1347                 ntp_update_second(&th->th_adjustment, &bt.sec);
1348                 if (bt.sec != t)
1349                         boottimebin.sec += bt.sec - t;
1350         }
1351         /* Update the UTC timestamps used by the get*() functions. */
1352         /* XXX shouldn't do this here.  Should force non-`get' versions. */
1353         bintime2timeval(&bt, &th->th_microtime);
1354         bintime2timespec(&bt, &th->th_nanotime);
1355
1356         /* Now is a good time to change timecounters. */
1357         if (th->th_counter != timecounter) {
1358 #ifndef __arm__
1359                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1360                         cpu_disable_c2_sleep++;
1361                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1362                         cpu_disable_c2_sleep--;
1363 #endif
1364                 th->th_counter = timecounter;
1365                 th->th_offset_count = ncount;
1366                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1367                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1368 #ifdef FFCLOCK
1369                 ffclock_change_tc(th);
1370 #endif
1371         }
1372
1373         /*-
1374          * Recalculate the scaling factor.  We want the number of 1/2^64
1375          * fractions of a second per period of the hardware counter, taking
1376          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1377          * processing provides us with.
1378          *
1379          * The th_adjustment is nanoseconds per second with 32 bit binary
1380          * fraction and we want 64 bit binary fraction of second:
1381          *
1382          *       x = a * 2^32 / 10^9 = a * 4.294967296
1383          *
1384          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1385          * we can only multiply by about 850 without overflowing, that
1386          * leaves no suitably precise fractions for multiply before divide.
1387          *
1388          * Divide before multiply with a fraction of 2199/512 results in a
1389          * systematic undercompensation of 10PPM of th_adjustment.  On a
1390          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1391          *
1392          * We happily sacrifice the lowest of the 64 bits of our result
1393          * to the goddess of code clarity.
1394          *
1395          */
1396         scale = (uint64_t)1 << 63;
1397         scale += (th->th_adjustment / 1024) * 2199;
1398         scale /= th->th_counter->tc_frequency;
1399         th->th_scale = scale * 2;
1400
1401         /*
1402          * Now that the struct timehands is again consistent, set the new
1403          * generation number, making sure to not make it zero.
1404          */
1405         if (++ogen == 0)
1406                 ogen = 1;
1407         tc_setgen(th, ogen);
1408
1409         /* Go live with the new struct timehands. */
1410 #ifdef FFCLOCK
1411         switch (sysclock_active) {
1412         case SYSCLOCK_FBCK:
1413 #endif
1414                 time_second = th->th_microtime.tv_sec;
1415                 time_uptime = th->th_offset.sec;
1416 #ifdef FFCLOCK
1417                 break;
1418         case SYSCLOCK_FFWD:
1419                 time_second = fftimehands->tick_time_lerp.sec;
1420                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1421                 break;
1422         }
1423 #endif
1424
1425         timehands = th;
1426         timekeep_push_vdso();
1427 }
1428
1429 /* Report or change the active timecounter hardware. */
1430 static int
1431 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1432 {
1433         char newname[32];
1434         struct timecounter *newtc, *tc;
1435         int error;
1436
1437         tc = timecounter;
1438         strlcpy(newname, tc->tc_name, sizeof(newname));
1439
1440         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1441         if (error != 0 || req->newptr == NULL ||
1442             strcmp(newname, tc->tc_name) == 0)
1443                 return (error);
1444         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1445                 if (strcmp(newname, newtc->tc_name) != 0)
1446                         continue;
1447
1448                 /* Warm up new timecounter. */
1449                 (void)newtc->tc_get_timecount(newtc);
1450                 (void)newtc->tc_get_timecount(newtc);
1451
1452                 timecounter = newtc;
1453
1454                 /*
1455                  * The vdso timehands update is deferred until the next
1456                  * 'tc_windup()'.
1457                  *
1458                  * This is prudent given that 'timekeep_push_vdso()' does not
1459                  * use any locking and that it can be called in hard interrupt
1460                  * context via 'tc_windup()'.
1461                  */
1462                 return (0);
1463         }
1464         return (EINVAL);
1465 }
1466
1467 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1468     0, 0, sysctl_kern_timecounter_hardware, "A",
1469     "Timecounter hardware selected");
1470
1471
1472 /* Report or change the active timecounter hardware. */
1473 static int
1474 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1475 {
1476         struct sbuf sb;
1477         struct timecounter *tc;
1478         int error;
1479
1480         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1481         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1482                 if (tc != timecounters)
1483                         sbuf_putc(&sb, ' ');
1484                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1485         }
1486         error = sbuf_finish(&sb);
1487         sbuf_delete(&sb);
1488         return (error);
1489 }
1490
1491 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1492     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1493
1494 /*
1495  * RFC 2783 PPS-API implementation.
1496  */
1497
1498 /*
1499  *  Return true if the driver is aware of the abi version extensions in the
1500  *  pps_state structure, and it supports at least the given abi version number.
1501  */
1502 static inline int
1503 abi_aware(struct pps_state *pps, int vers)
1504 {
1505
1506         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1507 }
1508
1509 static int
1510 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1511 {
1512         int err, timo;
1513         pps_seq_t aseq, cseq;
1514         struct timeval tv;
1515
1516         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1517                 return (EINVAL);
1518
1519         /*
1520          * If no timeout is requested, immediately return whatever values were
1521          * most recently captured.  If timeout seconds is -1, that's a request
1522          * to block without a timeout.  WITNESS won't let us sleep forever
1523          * without a lock (we really don't need a lock), so just repeatedly
1524          * sleep a long time.
1525          */
1526         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1527                 if (fapi->timeout.tv_sec == -1)
1528                         timo = 0x7fffffff;
1529                 else {
1530                         tv.tv_sec = fapi->timeout.tv_sec;
1531                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1532                         timo = tvtohz(&tv);
1533                 }
1534                 aseq = pps->ppsinfo.assert_sequence;
1535                 cseq = pps->ppsinfo.clear_sequence;
1536                 while (aseq == pps->ppsinfo.assert_sequence &&
1537                     cseq == pps->ppsinfo.clear_sequence) {
1538                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1539                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1540                                         err = msleep_spin(pps, pps->driver_mtx,
1541                                             "ppsfch", timo);
1542                                 } else {
1543                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1544                                             "ppsfch", timo);
1545                                 }
1546                         } else {
1547                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1548                         }
1549                         if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
1550                                 continue;
1551                         } else if (err != 0) {
1552                                 return (err);
1553                         }
1554                 }
1555         }
1556
1557         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1558         fapi->pps_info_buf = pps->ppsinfo;
1559
1560         return (0);
1561 }
1562
1563 int
1564 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1565 {
1566         pps_params_t *app;
1567         struct pps_fetch_args *fapi;
1568 #ifdef FFCLOCK
1569         struct pps_fetch_ffc_args *fapi_ffc;
1570 #endif
1571 #ifdef PPS_SYNC
1572         struct pps_kcbind_args *kapi;
1573 #endif
1574
1575         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1576         switch (cmd) {
1577         case PPS_IOC_CREATE:
1578                 return (0);
1579         case PPS_IOC_DESTROY:
1580                 return (0);
1581         case PPS_IOC_SETPARAMS:
1582                 app = (pps_params_t *)data;
1583                 if (app->mode & ~pps->ppscap)
1584                         return (EINVAL);
1585 #ifdef FFCLOCK
1586                 /* Ensure only a single clock is selected for ffc timestamp. */
1587                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1588                         return (EINVAL);
1589 #endif
1590                 pps->ppsparam = *app;
1591                 return (0);
1592         case PPS_IOC_GETPARAMS:
1593                 app = (pps_params_t *)data;
1594                 *app = pps->ppsparam;
1595                 app->api_version = PPS_API_VERS_1;
1596                 return (0);
1597         case PPS_IOC_GETCAP:
1598                 *(int*)data = pps->ppscap;
1599                 return (0);
1600         case PPS_IOC_FETCH:
1601                 fapi = (struct pps_fetch_args *)data;
1602                 return (pps_fetch(fapi, pps));
1603 #ifdef FFCLOCK
1604         case PPS_IOC_FETCH_FFCOUNTER:
1605                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1606                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1607                     PPS_TSFMT_TSPEC)
1608                         return (EINVAL);
1609                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1610                         return (EOPNOTSUPP);
1611                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1612                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1613                 /* Overwrite timestamps if feedback clock selected. */
1614                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1615                 case PPS_TSCLK_FBCK:
1616                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1617                             pps->ppsinfo.assert_timestamp;
1618                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1619                             pps->ppsinfo.clear_timestamp;
1620                         break;
1621                 case PPS_TSCLK_FFWD:
1622                         break;
1623                 default:
1624                         break;
1625                 }
1626                 return (0);
1627 #endif /* FFCLOCK */
1628         case PPS_IOC_KCBIND:
1629 #ifdef PPS_SYNC
1630                 kapi = (struct pps_kcbind_args *)data;
1631                 /* XXX Only root should be able to do this */
1632                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1633                         return (EINVAL);
1634                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1635                         return (EINVAL);
1636                 if (kapi->edge & ~pps->ppscap)
1637                         return (EINVAL);
1638                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1639                     (pps->kcmode & KCMODE_ABIFLAG);
1640                 return (0);
1641 #else
1642                 return (EOPNOTSUPP);
1643 #endif
1644         default:
1645                 return (ENOIOCTL);
1646         }
1647 }
1648
1649 void
1650 pps_init(struct pps_state *pps)
1651 {
1652         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1653         if (pps->ppscap & PPS_CAPTUREASSERT)
1654                 pps->ppscap |= PPS_OFFSETASSERT;
1655         if (pps->ppscap & PPS_CAPTURECLEAR)
1656                 pps->ppscap |= PPS_OFFSETCLEAR;
1657 #ifdef FFCLOCK
1658         pps->ppscap |= PPS_TSCLK_MASK;
1659 #endif
1660         pps->kcmode &= ~KCMODE_ABIFLAG;
1661 }
1662
1663 void
1664 pps_init_abi(struct pps_state *pps)
1665 {
1666
1667         pps_init(pps);
1668         if (pps->driver_abi > 0) {
1669                 pps->kcmode |= KCMODE_ABIFLAG;
1670                 pps->kernel_abi = PPS_ABI_VERSION;
1671         }
1672 }
1673
1674 void
1675 pps_capture(struct pps_state *pps)
1676 {
1677         struct timehands *th;
1678
1679         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1680         th = timehands;
1681         pps->capgen = tc_getgen(th);
1682         pps->capth = th;
1683 #ifdef FFCLOCK
1684         pps->capffth = fftimehands;
1685 #endif
1686         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1687         if (pps->capgen != tc_getgen(th))
1688                 pps->capgen = 0;
1689 }
1690
1691 void
1692 pps_event(struct pps_state *pps, int event)
1693 {
1694         struct bintime bt;
1695         struct timespec ts, *tsp, *osp;
1696         u_int tcount, *pcount;
1697         int foff, fhard;
1698         pps_seq_t *pseq;
1699 #ifdef FFCLOCK
1700         struct timespec *tsp_ffc;
1701         pps_seq_t *pseq_ffc;
1702         ffcounter *ffcount;
1703 #endif
1704
1705         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1706         /* If the timecounter was wound up underneath us, bail out. */
1707         if (pps->capgen == 0 || pps->capgen != tc_getgen(pps->capth))
1708                 return;
1709
1710         /* Things would be easier with arrays. */
1711         if (event == PPS_CAPTUREASSERT) {
1712                 tsp = &pps->ppsinfo.assert_timestamp;
1713                 osp = &pps->ppsparam.assert_offset;
1714                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1715                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1716                 pcount = &pps->ppscount[0];
1717                 pseq = &pps->ppsinfo.assert_sequence;
1718 #ifdef FFCLOCK
1719                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1720                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1721                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1722 #endif
1723         } else {
1724                 tsp = &pps->ppsinfo.clear_timestamp;
1725                 osp = &pps->ppsparam.clear_offset;
1726                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1727                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1728                 pcount = &pps->ppscount[1];
1729                 pseq = &pps->ppsinfo.clear_sequence;
1730 #ifdef FFCLOCK
1731                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1732                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1733                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1734 #endif
1735         }
1736
1737         /*
1738          * If the timecounter changed, we cannot compare the count values, so
1739          * we have to drop the rest of the PPS-stuff until the next event.
1740          */
1741         if (pps->ppstc != pps->capth->th_counter) {
1742                 pps->ppstc = pps->capth->th_counter;
1743                 *pcount = pps->capcount;
1744                 pps->ppscount[2] = pps->capcount;
1745                 return;
1746         }
1747
1748         /* Convert the count to a timespec. */
1749         tcount = pps->capcount - pps->capth->th_offset_count;
1750         tcount &= pps->capth->th_counter->tc_counter_mask;
1751         bt = pps->capth->th_offset;
1752         bintime_addx(&bt, pps->capth->th_scale * tcount);
1753         bintime_add(&bt, &boottimebin);
1754         bintime2timespec(&bt, &ts);
1755
1756         /* If the timecounter was wound up underneath us, bail out. */
1757         if (pps->capgen != tc_getgen(pps->capth))
1758                 return;
1759
1760         *pcount = pps->capcount;
1761         (*pseq)++;
1762         *tsp = ts;
1763
1764         if (foff) {
1765                 timespecadd(tsp, osp);
1766                 if (tsp->tv_nsec < 0) {
1767                         tsp->tv_nsec += 1000000000;
1768                         tsp->tv_sec -= 1;
1769                 }
1770         }
1771
1772 #ifdef FFCLOCK
1773         *ffcount = pps->capffth->tick_ffcount + tcount;
1774         bt = pps->capffth->tick_time;
1775         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1776         bintime_add(&bt, &pps->capffth->tick_time);
1777         bintime2timespec(&bt, &ts);
1778         (*pseq_ffc)++;
1779         *tsp_ffc = ts;
1780 #endif
1781
1782 #ifdef PPS_SYNC
1783         if (fhard) {
1784                 uint64_t scale;
1785
1786                 /*
1787                  * Feed the NTP PLL/FLL.
1788                  * The FLL wants to know how many (hardware) nanoseconds
1789                  * elapsed since the previous event.
1790                  */
1791                 tcount = pps->capcount - pps->ppscount[2];
1792                 pps->ppscount[2] = pps->capcount;
1793                 tcount &= pps->capth->th_counter->tc_counter_mask;
1794                 scale = (uint64_t)1 << 63;
1795                 scale /= pps->capth->th_counter->tc_frequency;
1796                 scale *= 2;
1797                 bt.sec = 0;
1798                 bt.frac = 0;
1799                 bintime_addx(&bt, scale * tcount);
1800                 bintime2timespec(&bt, &ts);
1801                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1802         }
1803 #endif
1804
1805         /* Wakeup anyone sleeping in pps_fetch().  */
1806         wakeup(pps);
1807 }
1808
1809 /*
1810  * Timecounters need to be updated every so often to prevent the hardware
1811  * counter from overflowing.  Updating also recalculates the cached values
1812  * used by the get*() family of functions, so their precision depends on
1813  * the update frequency.
1814  */
1815
1816 static int tc_tick;
1817 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1818     "Approximate number of hardclock ticks in a millisecond");
1819
1820 void
1821 tc_ticktock(int cnt)
1822 {
1823         static int count;
1824
1825         count += cnt;
1826         if (count < tc_tick)
1827                 return;
1828         count = 0;
1829         tc_windup();
1830 }
1831
1832 static void __inline
1833 tc_adjprecision(void)
1834 {
1835         int t;
1836
1837         if (tc_timepercentage > 0) {
1838                 t = (99 + tc_timepercentage) / tc_timepercentage;
1839                 tc_precexp = fls(t + (t >> 1)) - 1;
1840                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1841                 FREQ2BT(hz, &bt_tickthreshold);
1842                 bintime_shift(&bt_timethreshold, tc_precexp);
1843                 bintime_shift(&bt_tickthreshold, tc_precexp);
1844         } else {
1845                 tc_precexp = 31;
1846                 bt_timethreshold.sec = INT_MAX;
1847                 bt_timethreshold.frac = ~(uint64_t)0;
1848                 bt_tickthreshold = bt_timethreshold;
1849         }
1850         sbt_timethreshold = bttosbt(bt_timethreshold);
1851         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1852 }
1853
1854 static int
1855 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1856 {
1857         int error, val;
1858
1859         val = tc_timepercentage;
1860         error = sysctl_handle_int(oidp, &val, 0, req);
1861         if (error != 0 || req->newptr == NULL)
1862                 return (error);
1863         tc_timepercentage = val;
1864         if (cold)
1865                 goto done;
1866         tc_adjprecision();
1867 done:
1868         return (0);
1869 }
1870
1871 static void
1872 inittimecounter(void *dummy)
1873 {
1874         u_int p;
1875         int tick_rate;
1876
1877         /*
1878          * Set the initial timeout to
1879          * max(1, <approx. number of hardclock ticks in a millisecond>).
1880          * People should probably not use the sysctl to set the timeout
1881          * to smaller than its inital value, since that value is the
1882          * smallest reasonable one.  If they want better timestamps they
1883          * should use the non-"get"* functions.
1884          */
1885         if (hz > 1000)
1886                 tc_tick = (hz + 500) / 1000;
1887         else
1888                 tc_tick = 1;
1889         tc_adjprecision();
1890         FREQ2BT(hz, &tick_bt);
1891         tick_sbt = bttosbt(tick_bt);
1892         tick_rate = hz / tc_tick;
1893         FREQ2BT(tick_rate, &tc_tick_bt);
1894         tc_tick_sbt = bttosbt(tc_tick_bt);
1895         p = (tc_tick * 1000000) / hz;
1896         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1897
1898 #ifdef FFCLOCK
1899         ffclock_init();
1900 #endif
1901         /* warm up new timecounter (again) and get rolling. */
1902         (void)timecounter->tc_get_timecount(timecounter);
1903         (void)timecounter->tc_get_timecount(timecounter);
1904         tc_windup();
1905 }
1906
1907 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1908
1909 /* Cpu tick handling -------------------------------------------------*/
1910
1911 static int cpu_tick_variable;
1912 static uint64_t cpu_tick_frequency;
1913
1914 static uint64_t
1915 tc_cpu_ticks(void)
1916 {
1917         static uint64_t base;
1918         static unsigned last;
1919         unsigned u;
1920         struct timecounter *tc;
1921
1922         tc = timehands->th_counter;
1923         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1924         if (u < last)
1925                 base += (uint64_t)tc->tc_counter_mask + 1;
1926         last = u;
1927         return (u + base);
1928 }
1929
1930 void
1931 cpu_tick_calibration(void)
1932 {
1933         static time_t last_calib;
1934
1935         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1936                 cpu_tick_calibrate(0);
1937                 last_calib = time_uptime;
1938         }
1939 }
1940
1941 /*
1942  * This function gets called every 16 seconds on only one designated
1943  * CPU in the system from hardclock() via cpu_tick_calibration()().
1944  *
1945  * Whenever the real time clock is stepped we get called with reset=1
1946  * to make sure we handle suspend/resume and similar events correctly.
1947  */
1948
1949 static void
1950 cpu_tick_calibrate(int reset)
1951 {
1952         static uint64_t c_last;
1953         uint64_t c_this, c_delta;
1954         static struct bintime  t_last;
1955         struct bintime t_this, t_delta;
1956         uint32_t divi;
1957
1958         if (reset) {
1959                 /* The clock was stepped, abort & reset */
1960                 t_last.sec = 0;
1961                 return;
1962         }
1963
1964         /* we don't calibrate fixed rate cputicks */
1965         if (!cpu_tick_variable)
1966                 return;
1967
1968         getbinuptime(&t_this);
1969         c_this = cpu_ticks();
1970         if (t_last.sec != 0) {
1971                 c_delta = c_this - c_last;
1972                 t_delta = t_this;
1973                 bintime_sub(&t_delta, &t_last);
1974                 /*
1975                  * Headroom:
1976                  *      2^(64-20) / 16[s] =
1977                  *      2^(44) / 16[s] =
1978                  *      17.592.186.044.416 / 16 =
1979                  *      1.099.511.627.776 [Hz]
1980                  */
1981                 divi = t_delta.sec << 20;
1982                 divi |= t_delta.frac >> (64 - 20);
1983                 c_delta <<= 20;
1984                 c_delta /= divi;
1985                 if (c_delta > cpu_tick_frequency) {
1986                         if (0 && bootverbose)
1987                                 printf("cpu_tick increased to %ju Hz\n",
1988                                     c_delta);
1989                         cpu_tick_frequency = c_delta;
1990                 }
1991         }
1992         c_last = c_this;
1993         t_last = t_this;
1994 }
1995
1996 void
1997 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
1998 {
1999
2000         if (func == NULL) {
2001                 cpu_ticks = tc_cpu_ticks;
2002         } else {
2003                 cpu_tick_frequency = freq;
2004                 cpu_tick_variable = var;
2005                 cpu_ticks = func;
2006         }
2007 }
2008
2009 uint64_t
2010 cpu_tickrate(void)
2011 {
2012
2013         if (cpu_ticks == tc_cpu_ticks) 
2014                 return (tc_getfrequency());
2015         return (cpu_tick_frequency);
2016 }
2017
2018 /*
2019  * We need to be slightly careful converting cputicks to microseconds.
2020  * There is plenty of margin in 64 bits of microseconds (half a million
2021  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2022  * before divide conversion (to retain precision) we find that the
2023  * margin shrinks to 1.5 hours (one millionth of 146y).
2024  * With a three prong approach we never lose significant bits, no
2025  * matter what the cputick rate and length of timeinterval is.
2026  */
2027
2028 uint64_t
2029 cputick2usec(uint64_t tick)
2030 {
2031
2032         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2033                 return (tick / (cpu_tickrate() / 1000000LL));
2034         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2035                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2036         else
2037                 return ((tick * 1000000LL) / cpu_tickrate());
2038 }
2039
2040 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2041
2042 static int vdso_th_enable = 1;
2043 static int
2044 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2045 {
2046         int old_vdso_th_enable, error;
2047
2048         old_vdso_th_enable = vdso_th_enable;
2049         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2050         if (error != 0)
2051                 return (error);
2052         vdso_th_enable = old_vdso_th_enable;
2053         return (0);
2054 }
2055 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2056     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2057     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2058
2059 uint32_t
2060 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2061 {
2062         struct timehands *th;
2063         uint32_t enabled;
2064
2065         th = timehands;
2066         vdso_th->th_algo = VDSO_TH_ALGO_1;
2067         vdso_th->th_scale = th->th_scale;
2068         vdso_th->th_offset_count = th->th_offset_count;
2069         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2070         vdso_th->th_offset = th->th_offset;
2071         vdso_th->th_boottime = boottimebin;
2072         enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter);
2073         if (!vdso_th_enable)
2074                 enabled = 0;
2075         return (enabled);
2076 }
2077
2078 #ifdef COMPAT_FREEBSD32
2079 uint32_t
2080 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2081 {
2082         struct timehands *th;
2083         uint32_t enabled;
2084
2085         th = timehands;
2086         vdso_th32->th_algo = VDSO_TH_ALGO_1;
2087         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2088         vdso_th32->th_offset_count = th->th_offset_count;
2089         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2090         vdso_th32->th_offset.sec = th->th_offset.sec;
2091         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2092         vdso_th32->th_boottime.sec = boottimebin.sec;
2093         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
2094         enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter);
2095         if (!vdso_th_enable)
2096                 enabled = 0;
2097         return (enabled);
2098 }
2099 #endif