]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
This commit was generated by cvs2svn to compensate for changes in r172668,
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12
13 #include "opt_ntp.h"
14
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
23
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP      200
31
32 /*
33  * Implement a dummy timecounter which we can use until we get a real one
34  * in the air.  This allows the console and other early stuff to use
35  * time services.
36  */
37
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
40 {
41         static u_int now;
42
43         return (++now);
44 }
45
46 static struct timecounter dummy_timecounter = {
47         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48 };
49
50 struct timehands {
51         /* These fields must be initialized by the driver. */
52         struct timecounter      *th_counter;
53         int64_t                 th_adjustment;
54         u_int64_t               th_scale;
55         u_int                   th_offset_count;
56         struct bintime          th_offset;
57         struct timeval          th_microtime;
58         struct timespec         th_nanotime;
59         /* Fields not to be copied in tc_windup start with th_generation. */
60         volatile u_int          th_generation;
61         struct timehands        *th_next;
62 };
63
64 static struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75         &dummy_timecounter,
76         0,
77         (uint64_t)-1 / 1000000,
78         0,
79         {1, 0},
80         {0, 0},
81         {0, 0},
82         1,
83         &th1
84 };
85
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
89
90 time_t time_second = 1;
91 time_t time_uptime = 1;
92
93 static struct bintime boottimebin;
94 struct timeval boottime;
95 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
98
99 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100 SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
101
102 static int timestepwarnings;
103 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
104     &timestepwarnings, 0, "");
105
106 #define TC_STATS(foo) \
107         static u_int foo; \
108         SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
109         struct __hack
110
111 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
112 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
113 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
114 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
115 TC_STATS(nsetclock);
116
117 #undef TC_STATS
118
119 static void tc_windup(void);
120 static void cpu_tick_calibrate(int);
121
122 static int
123 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
124 {
125 #ifdef SCTL_MASK32
126         int tv[2];
127
128         if (req->flags & SCTL_MASK32) {
129                 tv[0] = boottime.tv_sec;
130                 tv[1] = boottime.tv_usec;
131                 return SYSCTL_OUT(req, tv, sizeof(tv));
132         } else
133 #endif
134                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
135 }
136
137 static int
138 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
139 {
140         u_int ncount;
141         struct timecounter *tc = arg1;
142
143         ncount = tc->tc_get_timecount(tc);
144         return sysctl_handle_int(oidp, &ncount, 0, req);
145 }
146
147 static int
148 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
149 {
150         u_int64_t freq;
151         struct timecounter *tc = arg1;
152
153         freq = tc->tc_frequency;
154         return sysctl_handle_quad(oidp, &freq, 0, req);
155 }
156
157 /*
158  * Return the difference between the timehands' counter value now and what
159  * was when we copied it to the timehands' offset_count.
160  */
161 static __inline u_int
162 tc_delta(struct timehands *th)
163 {
164         struct timecounter *tc;
165
166         tc = th->th_counter;
167         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
168             tc->tc_counter_mask);
169 }
170
171 /*
172  * Functions for reading the time.  We have to loop until we are sure that
173  * the timehands that we operated on was not updated under our feet.  See
174  * the comment in <sys/time.h> for a description of these 12 functions.
175  */
176
177 void
178 binuptime(struct bintime *bt)
179 {
180         struct timehands *th;
181         u_int gen;
182
183         nbinuptime++;
184         do {
185                 th = timehands;
186                 gen = th->th_generation;
187                 *bt = th->th_offset;
188                 bintime_addx(bt, th->th_scale * tc_delta(th));
189         } while (gen == 0 || gen != th->th_generation);
190 }
191
192 void
193 nanouptime(struct timespec *tsp)
194 {
195         struct bintime bt;
196
197         nnanouptime++;
198         binuptime(&bt);
199         bintime2timespec(&bt, tsp);
200 }
201
202 void
203 microuptime(struct timeval *tvp)
204 {
205         struct bintime bt;
206
207         nmicrouptime++;
208         binuptime(&bt);
209         bintime2timeval(&bt, tvp);
210 }
211
212 void
213 bintime(struct bintime *bt)
214 {
215
216         nbintime++;
217         binuptime(bt);
218         bintime_add(bt, &boottimebin);
219 }
220
221 void
222 nanotime(struct timespec *tsp)
223 {
224         struct bintime bt;
225
226         nnanotime++;
227         bintime(&bt);
228         bintime2timespec(&bt, tsp);
229 }
230
231 void
232 microtime(struct timeval *tvp)
233 {
234         struct bintime bt;
235
236         nmicrotime++;
237         bintime(&bt);
238         bintime2timeval(&bt, tvp);
239 }
240
241 void
242 getbinuptime(struct bintime *bt)
243 {
244         struct timehands *th;
245         u_int gen;
246
247         ngetbinuptime++;
248         do {
249                 th = timehands;
250                 gen = th->th_generation;
251                 *bt = th->th_offset;
252         } while (gen == 0 || gen != th->th_generation);
253 }
254
255 void
256 getnanouptime(struct timespec *tsp)
257 {
258         struct timehands *th;
259         u_int gen;
260
261         ngetnanouptime++;
262         do {
263                 th = timehands;
264                 gen = th->th_generation;
265                 bintime2timespec(&th->th_offset, tsp);
266         } while (gen == 0 || gen != th->th_generation);
267 }
268
269 void
270 getmicrouptime(struct timeval *tvp)
271 {
272         struct timehands *th;
273         u_int gen;
274
275         ngetmicrouptime++;
276         do {
277                 th = timehands;
278                 gen = th->th_generation;
279                 bintime2timeval(&th->th_offset, tvp);
280         } while (gen == 0 || gen != th->th_generation);
281 }
282
283 void
284 getbintime(struct bintime *bt)
285 {
286         struct timehands *th;
287         u_int gen;
288
289         ngetbintime++;
290         do {
291                 th = timehands;
292                 gen = th->th_generation;
293                 *bt = th->th_offset;
294         } while (gen == 0 || gen != th->th_generation);
295         bintime_add(bt, &boottimebin);
296 }
297
298 void
299 getnanotime(struct timespec *tsp)
300 {
301         struct timehands *th;
302         u_int gen;
303
304         ngetnanotime++;
305         do {
306                 th = timehands;
307                 gen = th->th_generation;
308                 *tsp = th->th_nanotime;
309         } while (gen == 0 || gen != th->th_generation);
310 }
311
312 void
313 getmicrotime(struct timeval *tvp)
314 {
315         struct timehands *th;
316         u_int gen;
317
318         ngetmicrotime++;
319         do {
320                 th = timehands;
321                 gen = th->th_generation;
322                 *tvp = th->th_microtime;
323         } while (gen == 0 || gen != th->th_generation);
324 }
325
326 /*
327  * Initialize a new timecounter and possibly use it.
328  */
329 void
330 tc_init(struct timecounter *tc)
331 {
332         u_int u;
333         struct sysctl_oid *tc_root;
334
335         u = tc->tc_frequency / tc->tc_counter_mask;
336         /* XXX: We need some margin here, 10% is a guess */
337         u *= 11;
338         u /= 10;
339         if (u > hz && tc->tc_quality >= 0) {
340                 tc->tc_quality = -2000;
341                 if (bootverbose) {
342                         printf("Timecounter \"%s\" frequency %ju Hz",
343                             tc->tc_name, (uintmax_t)tc->tc_frequency);
344                         printf(" -- Insufficient hz, needs at least %u\n", u);
345                 }
346         } else if (tc->tc_quality >= 0 || bootverbose) {
347                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
348                     tc->tc_name, (uintmax_t)tc->tc_frequency,
349                     tc->tc_quality);
350         }
351
352         tc->tc_next = timecounters;
353         timecounters = tc;
354         /*
355          * Set up sysctl tree for this counter.
356          */
357         tc_root = SYSCTL_ADD_NODE(NULL,
358             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
359             CTLFLAG_RW, 0, "timecounter description");
360         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
361             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
362             "mask for implemented bits");
363         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
364             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
365             sysctl_kern_timecounter_get, "IU", "current timecounter value");
366         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
367             "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
368              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
369         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
370             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
371             "goodness of time counter");
372         /*
373          * Never automatically use a timecounter with negative quality.
374          * Even though we run on the dummy counter, switching here may be
375          * worse since this timecounter may not be monotonous.
376          */
377         if (tc->tc_quality < 0)
378                 return;
379         if (tc->tc_quality < timecounter->tc_quality)
380                 return;
381         if (tc->tc_quality == timecounter->tc_quality &&
382             tc->tc_frequency < timecounter->tc_frequency)
383                 return;
384         (void)tc->tc_get_timecount(tc);
385         (void)tc->tc_get_timecount(tc);
386         timecounter = tc;
387 }
388
389 /* Report the frequency of the current timecounter. */
390 u_int64_t
391 tc_getfrequency(void)
392 {
393
394         return (timehands->th_counter->tc_frequency);
395 }
396
397 /*
398  * Step our concept of UTC.  This is done by modifying our estimate of
399  * when we booted.
400  * XXX: not locked.
401  */
402 void
403 tc_setclock(struct timespec *ts)
404 {
405         struct timespec tbef, taft;
406         struct bintime bt, bt2;
407
408         cpu_tick_calibrate(1);
409         nsetclock++;
410         nanotime(&tbef);
411         timespec2bintime(ts, &bt);
412         binuptime(&bt2);
413         bintime_sub(&bt, &bt2);
414         bintime_add(&bt2, &boottimebin);
415         boottimebin = bt;
416         bintime2timeval(&bt, &boottime);
417
418         /* XXX fiddle all the little crinkly bits around the fiords... */
419         tc_windup();
420         nanotime(&taft);
421         if (timestepwarnings) {
422                 log(LOG_INFO,
423                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
424                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
425                     (intmax_t)taft.tv_sec, taft.tv_nsec,
426                     (intmax_t)ts->tv_sec, ts->tv_nsec);
427         }
428         cpu_tick_calibrate(1);
429 }
430
431 /*
432  * Initialize the next struct timehands in the ring and make
433  * it the active timehands.  Along the way we might switch to a different
434  * timecounter and/or do seconds processing in NTP.  Slightly magic.
435  */
436 static void
437 tc_windup(void)
438 {
439         struct bintime bt;
440         struct timehands *th, *tho;
441         u_int64_t scale;
442         u_int delta, ncount, ogen;
443         int i;
444         time_t t;
445
446         /*
447          * Make the next timehands a copy of the current one, but do not
448          * overwrite the generation or next pointer.  While we update
449          * the contents, the generation must be zero.
450          */
451         tho = timehands;
452         th = tho->th_next;
453         ogen = th->th_generation;
454         th->th_generation = 0;
455         bcopy(tho, th, offsetof(struct timehands, th_generation));
456
457         /*
458          * Capture a timecounter delta on the current timecounter and if
459          * changing timecounters, a counter value from the new timecounter.
460          * Update the offset fields accordingly.
461          */
462         delta = tc_delta(th);
463         if (th->th_counter != timecounter)
464                 ncount = timecounter->tc_get_timecount(timecounter);
465         else
466                 ncount = 0;
467         th->th_offset_count += delta;
468         th->th_offset_count &= th->th_counter->tc_counter_mask;
469         bintime_addx(&th->th_offset, th->th_scale * delta);
470
471         /*
472          * Hardware latching timecounters may not generate interrupts on
473          * PPS events, so instead we poll them.  There is a finite risk that
474          * the hardware might capture a count which is later than the one we
475          * got above, and therefore possibly in the next NTP second which might
476          * have a different rate than the current NTP second.  It doesn't
477          * matter in practice.
478          */
479         if (tho->th_counter->tc_poll_pps)
480                 tho->th_counter->tc_poll_pps(tho->th_counter);
481
482         /*
483          * Deal with NTP second processing.  The for loop normally
484          * iterates at most once, but in extreme situations it might
485          * keep NTP sane if timeouts are not run for several seconds.
486          * At boot, the time step can be large when the TOD hardware
487          * has been read, so on really large steps, we call
488          * ntp_update_second only twice.  We need to call it twice in
489          * case we missed a leap second.
490          */
491         bt = th->th_offset;
492         bintime_add(&bt, &boottimebin);
493         i = bt.sec - tho->th_microtime.tv_sec;
494         if (i > LARGE_STEP)
495                 i = 2;
496         for (; i > 0; i--) {
497                 t = bt.sec;
498                 ntp_update_second(&th->th_adjustment, &bt.sec);
499                 if (bt.sec != t)
500                         boottimebin.sec += bt.sec - t;
501         }
502         /* Update the UTC timestamps used by the get*() functions. */
503         /* XXX shouldn't do this here.  Should force non-`get' versions. */
504         bintime2timeval(&bt, &th->th_microtime);
505         bintime2timespec(&bt, &th->th_nanotime);
506
507         /* Now is a good time to change timecounters. */
508         if (th->th_counter != timecounter) {
509                 th->th_counter = timecounter;
510                 th->th_offset_count = ncount;
511         }
512
513         /*-
514          * Recalculate the scaling factor.  We want the number of 1/2^64
515          * fractions of a second per period of the hardware counter, taking
516          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
517          * processing provides us with.
518          *
519          * The th_adjustment is nanoseconds per second with 32 bit binary
520          * fraction and we want 64 bit binary fraction of second:
521          *
522          *       x = a * 2^32 / 10^9 = a * 4.294967296
523          *
524          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
525          * we can only multiply by about 850 without overflowing, that
526          * leaves no suitably precise fractions for multiply before divide.
527          *
528          * Divide before multiply with a fraction of 2199/512 results in a
529          * systematic undercompensation of 10PPM of th_adjustment.  On a
530          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
531          *
532          * We happily sacrifice the lowest of the 64 bits of our result
533          * to the goddess of code clarity.
534          *
535          */
536         scale = (u_int64_t)1 << 63;
537         scale += (th->th_adjustment / 1024) * 2199;
538         scale /= th->th_counter->tc_frequency;
539         th->th_scale = scale * 2;
540
541         /*
542          * Now that the struct timehands is again consistent, set the new
543          * generation number, making sure to not make it zero.
544          */
545         if (++ogen == 0)
546                 ogen = 1;
547         th->th_generation = ogen;
548
549         /* Go live with the new struct timehands. */
550         time_second = th->th_microtime.tv_sec;
551         time_uptime = th->th_offset.sec;
552         timehands = th;
553 }
554
555 /* Report or change the active timecounter hardware. */
556 static int
557 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
558 {
559         char newname[32];
560         struct timecounter *newtc, *tc;
561         int error;
562
563         tc = timecounter;
564         strlcpy(newname, tc->tc_name, sizeof(newname));
565
566         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
567         if (error != 0 || req->newptr == NULL ||
568             strcmp(newname, tc->tc_name) == 0)
569                 return (error);
570         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
571                 if (strcmp(newname, newtc->tc_name) != 0)
572                         continue;
573
574                 /* Warm up new timecounter. */
575                 (void)newtc->tc_get_timecount(newtc);
576                 (void)newtc->tc_get_timecount(newtc);
577
578                 timecounter = newtc;
579                 return (0);
580         }
581         return (EINVAL);
582 }
583
584 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
585     0, 0, sysctl_kern_timecounter_hardware, "A", "");
586
587
588 /* Report or change the active timecounter hardware. */
589 static int
590 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
591 {
592         char buf[32], *spc;
593         struct timecounter *tc;
594         int error;
595
596         spc = "";
597         error = 0;
598         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
599                 sprintf(buf, "%s%s(%d)",
600                     spc, tc->tc_name, tc->tc_quality);
601                 error = SYSCTL_OUT(req, buf, strlen(buf));
602                 spc = " ";
603         }
604         return (error);
605 }
606
607 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
608     0, 0, sysctl_kern_timecounter_choice, "A", "");
609
610 /*
611  * RFC 2783 PPS-API implementation.
612  */
613
614 int
615 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
616 {
617         pps_params_t *app;
618         struct pps_fetch_args *fapi;
619 #ifdef PPS_SYNC
620         struct pps_kcbind_args *kapi;
621 #endif
622
623         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
624         switch (cmd) {
625         case PPS_IOC_CREATE:
626                 return (0);
627         case PPS_IOC_DESTROY:
628                 return (0);
629         case PPS_IOC_SETPARAMS:
630                 app = (pps_params_t *)data;
631                 if (app->mode & ~pps->ppscap)
632                         return (EINVAL);
633                 pps->ppsparam = *app;
634                 return (0);
635         case PPS_IOC_GETPARAMS:
636                 app = (pps_params_t *)data;
637                 *app = pps->ppsparam;
638                 app->api_version = PPS_API_VERS_1;
639                 return (0);
640         case PPS_IOC_GETCAP:
641                 *(int*)data = pps->ppscap;
642                 return (0);
643         case PPS_IOC_FETCH:
644                 fapi = (struct pps_fetch_args *)data;
645                 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
646                         return (EINVAL);
647                 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
648                         return (EOPNOTSUPP);
649                 pps->ppsinfo.current_mode = pps->ppsparam.mode;
650                 fapi->pps_info_buf = pps->ppsinfo;
651                 return (0);
652         case PPS_IOC_KCBIND:
653 #ifdef PPS_SYNC
654                 kapi = (struct pps_kcbind_args *)data;
655                 /* XXX Only root should be able to do this */
656                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
657                         return (EINVAL);
658                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
659                         return (EINVAL);
660                 if (kapi->edge & ~pps->ppscap)
661                         return (EINVAL);
662                 pps->kcmode = kapi->edge;
663                 return (0);
664 #else
665                 return (EOPNOTSUPP);
666 #endif
667         default:
668                 return (ENOIOCTL);
669         }
670 }
671
672 void
673 pps_init(struct pps_state *pps)
674 {
675         pps->ppscap |= PPS_TSFMT_TSPEC;
676         if (pps->ppscap & PPS_CAPTUREASSERT)
677                 pps->ppscap |= PPS_OFFSETASSERT;
678         if (pps->ppscap & PPS_CAPTURECLEAR)
679                 pps->ppscap |= PPS_OFFSETCLEAR;
680 }
681
682 void
683 pps_capture(struct pps_state *pps)
684 {
685         struct timehands *th;
686
687         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
688         th = timehands;
689         pps->capgen = th->th_generation;
690         pps->capth = th;
691         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
692         if (pps->capgen != th->th_generation)
693                 pps->capgen = 0;
694 }
695
696 void
697 pps_event(struct pps_state *pps, int event)
698 {
699         struct bintime bt;
700         struct timespec ts, *tsp, *osp;
701         u_int tcount, *pcount;
702         int foff, fhard;
703         pps_seq_t *pseq;
704
705         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
706         /* If the timecounter was wound up underneath us, bail out. */
707         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
708                 return;
709
710         /* Things would be easier with arrays. */
711         if (event == PPS_CAPTUREASSERT) {
712                 tsp = &pps->ppsinfo.assert_timestamp;
713                 osp = &pps->ppsparam.assert_offset;
714                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
715                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
716                 pcount = &pps->ppscount[0];
717                 pseq = &pps->ppsinfo.assert_sequence;
718         } else {
719                 tsp = &pps->ppsinfo.clear_timestamp;
720                 osp = &pps->ppsparam.clear_offset;
721                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
722                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
723                 pcount = &pps->ppscount[1];
724                 pseq = &pps->ppsinfo.clear_sequence;
725         }
726
727         /*
728          * If the timecounter changed, we cannot compare the count values, so
729          * we have to drop the rest of the PPS-stuff until the next event.
730          */
731         if (pps->ppstc != pps->capth->th_counter) {
732                 pps->ppstc = pps->capth->th_counter;
733                 *pcount = pps->capcount;
734                 pps->ppscount[2] = pps->capcount;
735                 return;
736         }
737
738         /* Convert the count to a timespec. */
739         tcount = pps->capcount - pps->capth->th_offset_count;
740         tcount &= pps->capth->th_counter->tc_counter_mask;
741         bt = pps->capth->th_offset;
742         bintime_addx(&bt, pps->capth->th_scale * tcount);
743         bintime_add(&bt, &boottimebin);
744         bintime2timespec(&bt, &ts);
745
746         /* If the timecounter was wound up underneath us, bail out. */
747         if (pps->capgen != pps->capth->th_generation)
748                 return;
749
750         *pcount = pps->capcount;
751         (*pseq)++;
752         *tsp = ts;
753
754         if (foff) {
755                 timespecadd(tsp, osp);
756                 if (tsp->tv_nsec < 0) {
757                         tsp->tv_nsec += 1000000000;
758                         tsp->tv_sec -= 1;
759                 }
760         }
761 #ifdef PPS_SYNC
762         if (fhard) {
763                 u_int64_t scale;
764
765                 /*
766                  * Feed the NTP PLL/FLL.
767                  * The FLL wants to know how many (hardware) nanoseconds
768                  * elapsed since the previous event.
769                  */
770                 tcount = pps->capcount - pps->ppscount[2];
771                 pps->ppscount[2] = pps->capcount;
772                 tcount &= pps->capth->th_counter->tc_counter_mask;
773                 scale = (u_int64_t)1 << 63;
774                 scale /= pps->capth->th_counter->tc_frequency;
775                 scale *= 2;
776                 bt.sec = 0;
777                 bt.frac = 0;
778                 bintime_addx(&bt, scale * tcount);
779                 bintime2timespec(&bt, &ts);
780                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
781         }
782 #endif
783 }
784
785 /*
786  * Timecounters need to be updated every so often to prevent the hardware
787  * counter from overflowing.  Updating also recalculates the cached values
788  * used by the get*() family of functions, so their precision depends on
789  * the update frequency.
790  */
791
792 static int tc_tick;
793 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
794
795 void
796 tc_ticktock(void)
797 {
798         static int count;
799         static time_t last_calib;
800
801         if (++count < tc_tick)
802                 return;
803         count = 0;
804         tc_windup();
805         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
806                 cpu_tick_calibrate(0);
807                 last_calib = time_uptime;
808         }
809 }
810
811 static void
812 inittimecounter(void *dummy)
813 {
814         u_int p;
815
816         /*
817          * Set the initial timeout to
818          * max(1, <approx. number of hardclock ticks in a millisecond>).
819          * People should probably not use the sysctl to set the timeout
820          * to smaller than its inital value, since that value is the
821          * smallest reasonable one.  If they want better timestamps they
822          * should use the non-"get"* functions.
823          */
824         if (hz > 1000)
825                 tc_tick = (hz + 500) / 1000;
826         else
827                 tc_tick = 1;
828         p = (tc_tick * 1000000) / hz;
829         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
830
831         /* warm up new timecounter (again) and get rolling. */
832         (void)timecounter->tc_get_timecount(timecounter);
833         (void)timecounter->tc_get_timecount(timecounter);
834 }
835
836 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
837
838 /* Cpu tick handling -------------------------------------------------*/
839
840 static int cpu_tick_variable;
841 static uint64_t cpu_tick_frequency;
842
843 static uint64_t
844 tc_cpu_ticks(void)
845 {
846         static uint64_t base;
847         static unsigned last;
848         unsigned u;
849         struct timecounter *tc;
850
851         tc = timehands->th_counter;
852         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
853         if (u < last)
854                 base += (uint64_t)tc->tc_counter_mask + 1;
855         last = u;
856         return (u + base);
857 }
858
859 /*
860  * This function gets called ever 16 seconds on only one designated
861  * CPU in the system from hardclock() via tc_ticktock().
862  *
863  * Whenever the real time clock is stepped we get called with reset=1
864  * to make sure we handle suspend/resume and similar events correctly.
865  */
866
867 static void
868 cpu_tick_calibrate(int reset)
869 {
870         static uint64_t c_last;
871         uint64_t c_this, c_delta;
872         static struct bintime  t_last;
873         struct bintime t_this, t_delta;
874         uint32_t divi;
875
876         if (reset) {
877                 /* The clock was stepped, abort & reset */
878                 t_last.sec = 0;
879                 return;
880         }
881
882         /* we don't calibrate fixed rate cputicks */
883         if (!cpu_tick_variable)
884                 return;
885
886         getbinuptime(&t_this);
887         c_this = cpu_ticks();
888         if (t_last.sec != 0) {
889                 c_delta = c_this - c_last;
890                 t_delta = t_this;
891                 bintime_sub(&t_delta, &t_last);
892                 /*
893                  * Validate that 16 +/- 1/256 seconds passed. 
894                  * After division by 16 this gives us a precision of
895                  * roughly 250PPM which is sufficient
896                  */
897                 if (t_delta.sec > 16 || (
898                     t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
899                         /* too long */
900                         if (bootverbose)
901                                 printf("%ju.%016jx too long\n",
902                                     (uintmax_t)t_delta.sec,
903                                     (uintmax_t)t_delta.frac);
904                 } else if (t_delta.sec < 15 ||
905                     (t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
906                         /* too short */
907                         if (bootverbose)
908                                 printf("%ju.%016jx too short\n",
909                                     (uintmax_t)t_delta.sec,
910                                     (uintmax_t)t_delta.frac);
911                 } else {
912                         /* just right */
913                         /*
914                          * Headroom:
915                          *      2^(64-20) / 16[s] =
916                          *      2^(44) / 16[s] =
917                          *      17.592.186.044.416 / 16 =
918                          *      1.099.511.627.776 [Hz]
919                          */
920                         divi = t_delta.sec << 20;
921                         divi |= t_delta.frac >> (64 - 20);
922                         c_delta <<= 20;
923                         c_delta /= divi;
924                         if (c_delta  > cpu_tick_frequency) {
925                                 if (0 && bootverbose)
926                                         printf("cpu_tick increased to %ju Hz\n",
927                                             c_delta);
928                                 cpu_tick_frequency = c_delta;
929                         }
930                 }
931         }
932         c_last = c_this;
933         t_last = t_this;
934 }
935
936 void
937 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
938 {
939
940         if (func == NULL) {
941                 cpu_ticks = tc_cpu_ticks;
942         } else {
943                 cpu_tick_frequency = freq;
944                 cpu_tick_variable = var;
945                 cpu_ticks = func;
946         }
947 }
948
949 uint64_t
950 cpu_tickrate(void)
951 {
952
953         if (cpu_ticks == tc_cpu_ticks) 
954                 return (tc_getfrequency());
955         return (cpu_tick_frequency);
956 }
957
958 /*
959  * We need to be slightly careful converting cputicks to microseconds.
960  * There is plenty of margin in 64 bits of microseconds (half a million
961  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
962  * before divide conversion (to retain precision) we find that the
963  * margin shrinks to 1.5 hours (one millionth of 146y).
964  * With a three prong approach we never lose significant bits, no
965  * matter what the cputick rate and length of timeinterval is.
966  */
967
968 uint64_t
969 cputick2usec(uint64_t tick)
970 {
971
972         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
973                 return (tick / (cpu_tickrate() / 1000000LL));
974         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
975                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
976         else
977                 return ((tick * 1000000LL) / cpu_tickrate());
978 }
979
980 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;