]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_tc.c
Make timehands count selectable at boottime.
[FreeBSD/FreeBSD.git] / sys / kern / kern_tc.c
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  * All rights reserved.
13  *
14  * Portions of this software were developed by Julien Ridoux at the University
15  * of Melbourne under sponsorship from the FreeBSD Foundation.
16  *
17  * Portions of this software were developed by Konstantin Belousov
18  * under sponsorship from the FreeBSD Foundation.
19  */
20
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23
24 #include "opt_ntp.h"
25 #include "opt_ffclock.h"
26
27 #include <sys/param.h>
28 #include <sys/kernel.h>
29 #include <sys/limits.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/proc.h>
33 #include <sys/sbuf.h>
34 #include <sys/sleepqueue.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
37 #include <sys/systm.h>
38 #include <sys/timeffc.h>
39 #include <sys/timepps.h>
40 #include <sys/timetc.h>
41 #include <sys/timex.h>
42 #include <sys/vdso.h>
43
44 /*
45  * A large step happens on boot.  This constant detects such steps.
46  * It is relatively small so that ntp_update_second gets called enough
47  * in the typical 'missed a couple of seconds' case, but doesn't loop
48  * forever when the time step is large.
49  */
50 #define LARGE_STEP      200
51
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57
58 static u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61         static u_int now;
62
63         return (++now);
64 }
65
66 static struct timecounter dummy_timecounter = {
67         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69
70 struct timehands {
71         /* These fields must be initialized by the driver. */
72         struct timecounter      *th_counter;
73         int64_t                 th_adjustment;
74         uint64_t                th_scale;
75         u_int                   th_offset_count;
76         struct bintime          th_offset;
77         struct bintime          th_bintime;
78         struct timeval          th_microtime;
79         struct timespec         th_nanotime;
80         struct bintime          th_boottime;
81         /* Fields not to be copied in tc_windup start with th_generation. */
82         u_int                   th_generation;
83         struct timehands        *th_next;
84 };
85
86 static struct timehands ths[16] = {
87     [0] =  {
88         .th_counter = &dummy_timecounter,
89         .th_scale = (uint64_t)-1 / 1000000,
90         .th_offset = { .sec = 1 },
91         .th_generation = 1,
92     },
93 };
94
95 static struct timehands *volatile timehands = &ths[0];
96 struct timecounter *timecounter = &dummy_timecounter;
97 static struct timecounter *timecounters = &dummy_timecounter;
98
99 int tc_min_ticktock_freq = 1;
100
101 volatile time_t time_second = 1;
102 volatile time_t time_uptime = 1;
103
104 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
105 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
106     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
107
108 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
109 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
110
111 static int timestepwarnings;
112 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
113     &timestepwarnings, 0, "Log time steps");
114
115 static int timehands_count = 2;
116 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count, CTLFLAG_RDTUN,
117     &timehands_count, 0, "Count of timehands in rotation");
118
119 struct bintime bt_timethreshold;
120 struct bintime bt_tickthreshold;
121 sbintime_t sbt_timethreshold;
122 sbintime_t sbt_tickthreshold;
123 struct bintime tc_tick_bt;
124 sbintime_t tc_tick_sbt;
125 int tc_precexp;
126 int tc_timepercentage = TC_DEFAULTPERC;
127 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
128 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
129     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
130     sysctl_kern_timecounter_adjprecision, "I",
131     "Allowed time interval deviation in percents");
132
133 volatile int rtc_generation = 1;
134
135 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
136
137 static void tc_windup(struct bintime *new_boottimebin);
138 static void cpu_tick_calibrate(int);
139
140 void dtrace_getnanotime(struct timespec *tsp);
141
142 static int
143 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
144 {
145         struct timeval boottime;
146
147         getboottime(&boottime);
148
149 /* i386 is the only arch which uses a 32bits time_t */
150 #ifdef __amd64__
151 #ifdef SCTL_MASK32
152         int tv[2];
153
154         if (req->flags & SCTL_MASK32) {
155                 tv[0] = boottime.tv_sec;
156                 tv[1] = boottime.tv_usec;
157                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
158         }
159 #endif
160 #endif
161         return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
162 }
163
164 static int
165 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
166 {
167         u_int ncount;
168         struct timecounter *tc = arg1;
169
170         ncount = tc->tc_get_timecount(tc);
171         return (sysctl_handle_int(oidp, &ncount, 0, req));
172 }
173
174 static int
175 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
176 {
177         uint64_t freq;
178         struct timecounter *tc = arg1;
179
180         freq = tc->tc_frequency;
181         return (sysctl_handle_64(oidp, &freq, 0, req));
182 }
183
184 /*
185  * Return the difference between the timehands' counter value now and what
186  * was when we copied it to the timehands' offset_count.
187  */
188 static __inline u_int
189 tc_delta(struct timehands *th)
190 {
191         struct timecounter *tc;
192
193         tc = th->th_counter;
194         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
195             tc->tc_counter_mask);
196 }
197
198 /*
199  * Functions for reading the time.  We have to loop until we are sure that
200  * the timehands that we operated on was not updated under our feet.  See
201  * the comment in <sys/time.h> for a description of these 12 functions.
202  */
203
204 #ifdef FFCLOCK
205 void
206 fbclock_binuptime(struct bintime *bt)
207 {
208         struct timehands *th;
209         unsigned int gen;
210
211         do {
212                 th = timehands;
213                 gen = atomic_load_acq_int(&th->th_generation);
214                 *bt = th->th_offset;
215                 bintime_addx(bt, th->th_scale * tc_delta(th));
216                 atomic_thread_fence_acq();
217         } while (gen == 0 || gen != th->th_generation);
218 }
219
220 void
221 fbclock_nanouptime(struct timespec *tsp)
222 {
223         struct bintime bt;
224
225         fbclock_binuptime(&bt);
226         bintime2timespec(&bt, tsp);
227 }
228
229 void
230 fbclock_microuptime(struct timeval *tvp)
231 {
232         struct bintime bt;
233
234         fbclock_binuptime(&bt);
235         bintime2timeval(&bt, tvp);
236 }
237
238 void
239 fbclock_bintime(struct bintime *bt)
240 {
241         struct timehands *th;
242         unsigned int gen;
243
244         do {
245                 th = timehands;
246                 gen = atomic_load_acq_int(&th->th_generation);
247                 *bt = th->th_bintime;
248                 bintime_addx(bt, th->th_scale * tc_delta(th));
249                 atomic_thread_fence_acq();
250         } while (gen == 0 || gen != th->th_generation);
251 }
252
253 void
254 fbclock_nanotime(struct timespec *tsp)
255 {
256         struct bintime bt;
257
258         fbclock_bintime(&bt);
259         bintime2timespec(&bt, tsp);
260 }
261
262 void
263 fbclock_microtime(struct timeval *tvp)
264 {
265         struct bintime bt;
266
267         fbclock_bintime(&bt);
268         bintime2timeval(&bt, tvp);
269 }
270
271 void
272 fbclock_getbinuptime(struct bintime *bt)
273 {
274         struct timehands *th;
275         unsigned int gen;
276
277         do {
278                 th = timehands;
279                 gen = atomic_load_acq_int(&th->th_generation);
280                 *bt = th->th_offset;
281                 atomic_thread_fence_acq();
282         } while (gen == 0 || gen != th->th_generation);
283 }
284
285 void
286 fbclock_getnanouptime(struct timespec *tsp)
287 {
288         struct timehands *th;
289         unsigned int gen;
290
291         do {
292                 th = timehands;
293                 gen = atomic_load_acq_int(&th->th_generation);
294                 bintime2timespec(&th->th_offset, tsp);
295                 atomic_thread_fence_acq();
296         } while (gen == 0 || gen != th->th_generation);
297 }
298
299 void
300 fbclock_getmicrouptime(struct timeval *tvp)
301 {
302         struct timehands *th;
303         unsigned int gen;
304
305         do {
306                 th = timehands;
307                 gen = atomic_load_acq_int(&th->th_generation);
308                 bintime2timeval(&th->th_offset, tvp);
309                 atomic_thread_fence_acq();
310         } while (gen == 0 || gen != th->th_generation);
311 }
312
313 void
314 fbclock_getbintime(struct bintime *bt)
315 {
316         struct timehands *th;
317         unsigned int gen;
318
319         do {
320                 th = timehands;
321                 gen = atomic_load_acq_int(&th->th_generation);
322                 *bt = th->th_bintime;
323                 atomic_thread_fence_acq();
324         } while (gen == 0 || gen != th->th_generation);
325 }
326
327 void
328 fbclock_getnanotime(struct timespec *tsp)
329 {
330         struct timehands *th;
331         unsigned int gen;
332
333         do {
334                 th = timehands;
335                 gen = atomic_load_acq_int(&th->th_generation);
336                 *tsp = th->th_nanotime;
337                 atomic_thread_fence_acq();
338         } while (gen == 0 || gen != th->th_generation);
339 }
340
341 void
342 fbclock_getmicrotime(struct timeval *tvp)
343 {
344         struct timehands *th;
345         unsigned int gen;
346
347         do {
348                 th = timehands;
349                 gen = atomic_load_acq_int(&th->th_generation);
350                 *tvp = th->th_microtime;
351                 atomic_thread_fence_acq();
352         } while (gen == 0 || gen != th->th_generation);
353 }
354 #else /* !FFCLOCK */
355 void
356 binuptime(struct bintime *bt)
357 {
358         struct timehands *th;
359         u_int gen;
360
361         do {
362                 th = timehands;
363                 gen = atomic_load_acq_int(&th->th_generation);
364                 *bt = th->th_offset;
365                 bintime_addx(bt, th->th_scale * tc_delta(th));
366                 atomic_thread_fence_acq();
367         } while (gen == 0 || gen != th->th_generation);
368 }
369
370 void
371 nanouptime(struct timespec *tsp)
372 {
373         struct bintime bt;
374
375         binuptime(&bt);
376         bintime2timespec(&bt, tsp);
377 }
378
379 void
380 microuptime(struct timeval *tvp)
381 {
382         struct bintime bt;
383
384         binuptime(&bt);
385         bintime2timeval(&bt, tvp);
386 }
387
388 void
389 bintime(struct bintime *bt)
390 {
391         struct timehands *th;
392         u_int gen;
393
394         do {
395                 th = timehands;
396                 gen = atomic_load_acq_int(&th->th_generation);
397                 *bt = th->th_bintime;
398                 bintime_addx(bt, th->th_scale * tc_delta(th));
399                 atomic_thread_fence_acq();
400         } while (gen == 0 || gen != th->th_generation);
401 }
402
403 void
404 nanotime(struct timespec *tsp)
405 {
406         struct bintime bt;
407
408         bintime(&bt);
409         bintime2timespec(&bt, tsp);
410 }
411
412 void
413 microtime(struct timeval *tvp)
414 {
415         struct bintime bt;
416
417         bintime(&bt);
418         bintime2timeval(&bt, tvp);
419 }
420
421 void
422 getbinuptime(struct bintime *bt)
423 {
424         struct timehands *th;
425         u_int gen;
426
427         do {
428                 th = timehands;
429                 gen = atomic_load_acq_int(&th->th_generation);
430                 *bt = th->th_offset;
431                 atomic_thread_fence_acq();
432         } while (gen == 0 || gen != th->th_generation);
433 }
434
435 void
436 getnanouptime(struct timespec *tsp)
437 {
438         struct timehands *th;
439         u_int gen;
440
441         do {
442                 th = timehands;
443                 gen = atomic_load_acq_int(&th->th_generation);
444                 bintime2timespec(&th->th_offset, tsp);
445                 atomic_thread_fence_acq();
446         } while (gen == 0 || gen != th->th_generation);
447 }
448
449 void
450 getmicrouptime(struct timeval *tvp)
451 {
452         struct timehands *th;
453         u_int gen;
454
455         do {
456                 th = timehands;
457                 gen = atomic_load_acq_int(&th->th_generation);
458                 bintime2timeval(&th->th_offset, tvp);
459                 atomic_thread_fence_acq();
460         } while (gen == 0 || gen != th->th_generation);
461 }
462
463 void
464 getbintime(struct bintime *bt)
465 {
466         struct timehands *th;
467         u_int gen;
468
469         do {
470                 th = timehands;
471                 gen = atomic_load_acq_int(&th->th_generation);
472                 *bt = th->th_bintime;
473                 atomic_thread_fence_acq();
474         } while (gen == 0 || gen != th->th_generation);
475 }
476
477 void
478 getnanotime(struct timespec *tsp)
479 {
480         struct timehands *th;
481         u_int gen;
482
483         do {
484                 th = timehands;
485                 gen = atomic_load_acq_int(&th->th_generation);
486                 *tsp = th->th_nanotime;
487                 atomic_thread_fence_acq();
488         } while (gen == 0 || gen != th->th_generation);
489 }
490
491 void
492 getmicrotime(struct timeval *tvp)
493 {
494         struct timehands *th;
495         u_int gen;
496
497         do {
498                 th = timehands;
499                 gen = atomic_load_acq_int(&th->th_generation);
500                 *tvp = th->th_microtime;
501                 atomic_thread_fence_acq();
502         } while (gen == 0 || gen != th->th_generation);
503 }
504 #endif /* FFCLOCK */
505
506 void
507 getboottime(struct timeval *boottime)
508 {
509         struct bintime boottimebin;
510
511         getboottimebin(&boottimebin);
512         bintime2timeval(&boottimebin, boottime);
513 }
514
515 void
516 getboottimebin(struct bintime *boottimebin)
517 {
518         struct timehands *th;
519         u_int gen;
520
521         do {
522                 th = timehands;
523                 gen = atomic_load_acq_int(&th->th_generation);
524                 *boottimebin = th->th_boottime;
525                 atomic_thread_fence_acq();
526         } while (gen == 0 || gen != th->th_generation);
527 }
528
529 #ifdef FFCLOCK
530 /*
531  * Support for feed-forward synchronization algorithms. This is heavily inspired
532  * by the timehands mechanism but kept independent from it. *_windup() functions
533  * have some connection to avoid accessing the timecounter hardware more than
534  * necessary.
535  */
536
537 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
538 struct ffclock_estimate ffclock_estimate;
539 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
540 uint32_t ffclock_status;                /* Feed-forward clock status. */
541 int8_t ffclock_updated;                 /* New estimates are available. */
542 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
543
544 struct fftimehands {
545         struct ffclock_estimate cest;
546         struct bintime          tick_time;
547         struct bintime          tick_time_lerp;
548         ffcounter               tick_ffcount;
549         uint64_t                period_lerp;
550         volatile uint8_t        gen;
551         struct fftimehands      *next;
552 };
553
554 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
555
556 static struct fftimehands ffth[10];
557 static struct fftimehands *volatile fftimehands = ffth;
558
559 static void
560 ffclock_init(void)
561 {
562         struct fftimehands *cur;
563         struct fftimehands *last;
564
565         memset(ffth, 0, sizeof(ffth));
566
567         last = ffth + NUM_ELEMENTS(ffth) - 1;
568         for (cur = ffth; cur < last; cur++)
569                 cur->next = cur + 1;
570         last->next = ffth;
571
572         ffclock_updated = 0;
573         ffclock_status = FFCLOCK_STA_UNSYNC;
574         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
575 }
576
577 /*
578  * Reset the feed-forward clock estimates. Called from inittodr() to get things
579  * kick started and uses the timecounter nominal frequency as a first period
580  * estimate. Note: this function may be called several time just after boot.
581  * Note: this is the only function that sets the value of boot time for the
582  * monotonic (i.e. uptime) version of the feed-forward clock.
583  */
584 void
585 ffclock_reset_clock(struct timespec *ts)
586 {
587         struct timecounter *tc;
588         struct ffclock_estimate cest;
589
590         tc = timehands->th_counter;
591         memset(&cest, 0, sizeof(struct ffclock_estimate));
592
593         timespec2bintime(ts, &ffclock_boottime);
594         timespec2bintime(ts, &(cest.update_time));
595         ffclock_read_counter(&cest.update_ffcount);
596         cest.leapsec_next = 0;
597         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
598         cest.errb_abs = 0;
599         cest.errb_rate = 0;
600         cest.status = FFCLOCK_STA_UNSYNC;
601         cest.leapsec_total = 0;
602         cest.leapsec = 0;
603
604         mtx_lock(&ffclock_mtx);
605         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
606         ffclock_updated = INT8_MAX;
607         mtx_unlock(&ffclock_mtx);
608
609         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
610             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
611             (unsigned long)ts->tv_nsec);
612 }
613
614 /*
615  * Sub-routine to convert a time interval measured in RAW counter units to time
616  * in seconds stored in bintime format.
617  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
618  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
619  * extra cycles.
620  */
621 static void
622 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
623 {
624         struct bintime bt2;
625         ffcounter delta, delta_max;
626
627         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
628         bintime_clear(bt);
629         do {
630                 if (ffdelta > delta_max)
631                         delta = delta_max;
632                 else
633                         delta = ffdelta;
634                 bt2.sec = 0;
635                 bt2.frac = period;
636                 bintime_mul(&bt2, (unsigned int)delta);
637                 bintime_add(bt, &bt2);
638                 ffdelta -= delta;
639         } while (ffdelta > 0);
640 }
641
642 /*
643  * Update the fftimehands.
644  * Push the tick ffcount and time(s) forward based on current clock estimate.
645  * The conversion from ffcounter to bintime relies on the difference clock
646  * principle, whose accuracy relies on computing small time intervals. If a new
647  * clock estimate has been passed by the synchronisation daemon, make it
648  * current, and compute the linear interpolation for monotonic time if needed.
649  */
650 static void
651 ffclock_windup(unsigned int delta)
652 {
653         struct ffclock_estimate *cest;
654         struct fftimehands *ffth;
655         struct bintime bt, gap_lerp;
656         ffcounter ffdelta;
657         uint64_t frac;
658         unsigned int polling;
659         uint8_t forward_jump, ogen;
660
661         /*
662          * Pick the next timehand, copy current ffclock estimates and move tick
663          * times and counter forward.
664          */
665         forward_jump = 0;
666         ffth = fftimehands->next;
667         ogen = ffth->gen;
668         ffth->gen = 0;
669         cest = &ffth->cest;
670         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
671         ffdelta = (ffcounter)delta;
672         ffth->period_lerp = fftimehands->period_lerp;
673
674         ffth->tick_time = fftimehands->tick_time;
675         ffclock_convert_delta(ffdelta, cest->period, &bt);
676         bintime_add(&ffth->tick_time, &bt);
677
678         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
679         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
680         bintime_add(&ffth->tick_time_lerp, &bt);
681
682         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
683
684         /*
685          * Assess the status of the clock, if the last update is too old, it is
686          * likely the synchronisation daemon is dead and the clock is free
687          * running.
688          */
689         if (ffclock_updated == 0) {
690                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
691                 ffclock_convert_delta(ffdelta, cest->period, &bt);
692                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
693                         ffclock_status |= FFCLOCK_STA_UNSYNC;
694         }
695
696         /*
697          * If available, grab updated clock estimates and make them current.
698          * Recompute time at this tick using the updated estimates. The clock
699          * estimates passed the feed-forward synchronisation daemon may result
700          * in time conversion that is not monotonically increasing (just after
701          * the update). time_lerp is a particular linear interpolation over the
702          * synchronisation algo polling period that ensures monotonicity for the
703          * clock ids requesting it.
704          */
705         if (ffclock_updated > 0) {
706                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
707                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
708                 ffth->tick_time = cest->update_time;
709                 ffclock_convert_delta(ffdelta, cest->period, &bt);
710                 bintime_add(&ffth->tick_time, &bt);
711
712                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
713                 if (ffclock_updated == INT8_MAX)
714                         ffth->tick_time_lerp = ffth->tick_time;
715
716                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
717                         forward_jump = 1;
718                 else
719                         forward_jump = 0;
720
721                 bintime_clear(&gap_lerp);
722                 if (forward_jump) {
723                         gap_lerp = ffth->tick_time;
724                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
725                 } else {
726                         gap_lerp = ffth->tick_time_lerp;
727                         bintime_sub(&gap_lerp, &ffth->tick_time);
728                 }
729
730                 /*
731                  * The reset from the RTC clock may be far from accurate, and
732                  * reducing the gap between real time and interpolated time
733                  * could take a very long time if the interpolated clock insists
734                  * on strict monotonicity. The clock is reset under very strict
735                  * conditions (kernel time is known to be wrong and
736                  * synchronization daemon has been restarted recently.
737                  * ffclock_boottime absorbs the jump to ensure boot time is
738                  * correct and uptime functions stay consistent.
739                  */
740                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
741                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
742                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
743                         if (forward_jump)
744                                 bintime_add(&ffclock_boottime, &gap_lerp);
745                         else
746                                 bintime_sub(&ffclock_boottime, &gap_lerp);
747                         ffth->tick_time_lerp = ffth->tick_time;
748                         bintime_clear(&gap_lerp);
749                 }
750
751                 ffclock_status = cest->status;
752                 ffth->period_lerp = cest->period;
753
754                 /*
755                  * Compute corrected period used for the linear interpolation of
756                  * time. The rate of linear interpolation is capped to 5000PPM
757                  * (5ms/s).
758                  */
759                 if (bintime_isset(&gap_lerp)) {
760                         ffdelta = cest->update_ffcount;
761                         ffdelta -= fftimehands->cest.update_ffcount;
762                         ffclock_convert_delta(ffdelta, cest->period, &bt);
763                         polling = bt.sec;
764                         bt.sec = 0;
765                         bt.frac = 5000000 * (uint64_t)18446744073LL;
766                         bintime_mul(&bt, polling);
767                         if (bintime_cmp(&gap_lerp, &bt, >))
768                                 gap_lerp = bt;
769
770                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
771                         frac = 0;
772                         if (gap_lerp.sec > 0) {
773                                 frac -= 1;
774                                 frac /= ffdelta / gap_lerp.sec;
775                         }
776                         frac += gap_lerp.frac / ffdelta;
777
778                         if (forward_jump)
779                                 ffth->period_lerp += frac;
780                         else
781                                 ffth->period_lerp -= frac;
782                 }
783
784                 ffclock_updated = 0;
785         }
786         if (++ogen == 0)
787                 ogen = 1;
788         ffth->gen = ogen;
789         fftimehands = ffth;
790 }
791
792 /*
793  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
794  * the old and new hardware counter cannot be read simultaneously. tc_windup()
795  * does read the two counters 'back to back', but a few cycles are effectively
796  * lost, and not accumulated in tick_ffcount. This is a fairly radical
797  * operation for a feed-forward synchronization daemon, and it is its job to not
798  * pushing irrelevant data to the kernel. Because there is no locking here,
799  * simply force to ignore pending or next update to give daemon a chance to
800  * realize the counter has changed.
801  */
802 static void
803 ffclock_change_tc(struct timehands *th)
804 {
805         struct fftimehands *ffth;
806         struct ffclock_estimate *cest;
807         struct timecounter *tc;
808         uint8_t ogen;
809
810         tc = th->th_counter;
811         ffth = fftimehands->next;
812         ogen = ffth->gen;
813         ffth->gen = 0;
814
815         cest = &ffth->cest;
816         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
817         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
818         cest->errb_abs = 0;
819         cest->errb_rate = 0;
820         cest->status |= FFCLOCK_STA_UNSYNC;
821
822         ffth->tick_ffcount = fftimehands->tick_ffcount;
823         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
824         ffth->tick_time = fftimehands->tick_time;
825         ffth->period_lerp = cest->period;
826
827         /* Do not lock but ignore next update from synchronization daemon. */
828         ffclock_updated--;
829
830         if (++ogen == 0)
831                 ogen = 1;
832         ffth->gen = ogen;
833         fftimehands = ffth;
834 }
835
836 /*
837  * Retrieve feed-forward counter and time of last kernel tick.
838  */
839 void
840 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
841 {
842         struct fftimehands *ffth;
843         uint8_t gen;
844
845         /*
846          * No locking but check generation has not changed. Also need to make
847          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
848          */
849         do {
850                 ffth = fftimehands;
851                 gen = ffth->gen;
852                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
853                         *bt = ffth->tick_time_lerp;
854                 else
855                         *bt = ffth->tick_time;
856                 *ffcount = ffth->tick_ffcount;
857         } while (gen == 0 || gen != ffth->gen);
858 }
859
860 /*
861  * Absolute clock conversion. Low level function to convert ffcounter to
862  * bintime. The ffcounter is converted using the current ffclock period estimate
863  * or the "interpolated period" to ensure monotonicity.
864  * NOTE: this conversion may have been deferred, and the clock updated since the
865  * hardware counter has been read.
866  */
867 void
868 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
869 {
870         struct fftimehands *ffth;
871         struct bintime bt2;
872         ffcounter ffdelta;
873         uint8_t gen;
874
875         /*
876          * No locking but check generation has not changed. Also need to make
877          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
878          */
879         do {
880                 ffth = fftimehands;
881                 gen = ffth->gen;
882                 if (ffcount > ffth->tick_ffcount)
883                         ffdelta = ffcount - ffth->tick_ffcount;
884                 else
885                         ffdelta = ffth->tick_ffcount - ffcount;
886
887                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
888                         *bt = ffth->tick_time_lerp;
889                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
890                 } else {
891                         *bt = ffth->tick_time;
892                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
893                 }
894
895                 if (ffcount > ffth->tick_ffcount)
896                         bintime_add(bt, &bt2);
897                 else
898                         bintime_sub(bt, &bt2);
899         } while (gen == 0 || gen != ffth->gen);
900 }
901
902 /*
903  * Difference clock conversion.
904  * Low level function to Convert a time interval measured in RAW counter units
905  * into bintime. The difference clock allows measuring small intervals much more
906  * reliably than the absolute clock.
907  */
908 void
909 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
910 {
911         struct fftimehands *ffth;
912         uint8_t gen;
913
914         /* No locking but check generation has not changed. */
915         do {
916                 ffth = fftimehands;
917                 gen = ffth->gen;
918                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
919         } while (gen == 0 || gen != ffth->gen);
920 }
921
922 /*
923  * Access to current ffcounter value.
924  */
925 void
926 ffclock_read_counter(ffcounter *ffcount)
927 {
928         struct timehands *th;
929         struct fftimehands *ffth;
930         unsigned int gen, delta;
931
932         /*
933          * ffclock_windup() called from tc_windup(), safe to rely on
934          * th->th_generation only, for correct delta and ffcounter.
935          */
936         do {
937                 th = timehands;
938                 gen = atomic_load_acq_int(&th->th_generation);
939                 ffth = fftimehands;
940                 delta = tc_delta(th);
941                 *ffcount = ffth->tick_ffcount;
942                 atomic_thread_fence_acq();
943         } while (gen == 0 || gen != th->th_generation);
944
945         *ffcount += delta;
946 }
947
948 void
949 binuptime(struct bintime *bt)
950 {
951
952         binuptime_fromclock(bt, sysclock_active);
953 }
954
955 void
956 nanouptime(struct timespec *tsp)
957 {
958
959         nanouptime_fromclock(tsp, sysclock_active);
960 }
961
962 void
963 microuptime(struct timeval *tvp)
964 {
965
966         microuptime_fromclock(tvp, sysclock_active);
967 }
968
969 void
970 bintime(struct bintime *bt)
971 {
972
973         bintime_fromclock(bt, sysclock_active);
974 }
975
976 void
977 nanotime(struct timespec *tsp)
978 {
979
980         nanotime_fromclock(tsp, sysclock_active);
981 }
982
983 void
984 microtime(struct timeval *tvp)
985 {
986
987         microtime_fromclock(tvp, sysclock_active);
988 }
989
990 void
991 getbinuptime(struct bintime *bt)
992 {
993
994         getbinuptime_fromclock(bt, sysclock_active);
995 }
996
997 void
998 getnanouptime(struct timespec *tsp)
999 {
1000
1001         getnanouptime_fromclock(tsp, sysclock_active);
1002 }
1003
1004 void
1005 getmicrouptime(struct timeval *tvp)
1006 {
1007
1008         getmicrouptime_fromclock(tvp, sysclock_active);
1009 }
1010
1011 void
1012 getbintime(struct bintime *bt)
1013 {
1014
1015         getbintime_fromclock(bt, sysclock_active);
1016 }
1017
1018 void
1019 getnanotime(struct timespec *tsp)
1020 {
1021
1022         getnanotime_fromclock(tsp, sysclock_active);
1023 }
1024
1025 void
1026 getmicrotime(struct timeval *tvp)
1027 {
1028
1029         getmicrouptime_fromclock(tvp, sysclock_active);
1030 }
1031
1032 #endif /* FFCLOCK */
1033
1034 /*
1035  * This is a clone of getnanotime and used for walltimestamps.
1036  * The dtrace_ prefix prevents fbt from creating probes for
1037  * it so walltimestamp can be safely used in all fbt probes.
1038  */
1039 void
1040 dtrace_getnanotime(struct timespec *tsp)
1041 {
1042         struct timehands *th;
1043         u_int gen;
1044
1045         do {
1046                 th = timehands;
1047                 gen = atomic_load_acq_int(&th->th_generation);
1048                 *tsp = th->th_nanotime;
1049                 atomic_thread_fence_acq();
1050         } while (gen == 0 || gen != th->th_generation);
1051 }
1052
1053 /*
1054  * System clock currently providing time to the system. Modifiable via sysctl
1055  * when the FFCLOCK option is defined.
1056  */
1057 int sysclock_active = SYSCLOCK_FBCK;
1058
1059 /* Internal NTP status and error estimates. */
1060 extern int time_status;
1061 extern long time_esterror;
1062
1063 /*
1064  * Take a snapshot of sysclock data which can be used to compare system clocks
1065  * and generate timestamps after the fact.
1066  */
1067 void
1068 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1069 {
1070         struct fbclock_info *fbi;
1071         struct timehands *th;
1072         struct bintime bt;
1073         unsigned int delta, gen;
1074 #ifdef FFCLOCK
1075         ffcounter ffcount;
1076         struct fftimehands *ffth;
1077         struct ffclock_info *ffi;
1078         struct ffclock_estimate cest;
1079
1080         ffi = &clock_snap->ff_info;
1081 #endif
1082
1083         fbi = &clock_snap->fb_info;
1084         delta = 0;
1085
1086         do {
1087                 th = timehands;
1088                 gen = atomic_load_acq_int(&th->th_generation);
1089                 fbi->th_scale = th->th_scale;
1090                 fbi->tick_time = th->th_offset;
1091 #ifdef FFCLOCK
1092                 ffth = fftimehands;
1093                 ffi->tick_time = ffth->tick_time_lerp;
1094                 ffi->tick_time_lerp = ffth->tick_time_lerp;
1095                 ffi->period = ffth->cest.period;
1096                 ffi->period_lerp = ffth->period_lerp;
1097                 clock_snap->ffcount = ffth->tick_ffcount;
1098                 cest = ffth->cest;
1099 #endif
1100                 if (!fast)
1101                         delta = tc_delta(th);
1102                 atomic_thread_fence_acq();
1103         } while (gen == 0 || gen != th->th_generation);
1104
1105         clock_snap->delta = delta;
1106         clock_snap->sysclock_active = sysclock_active;
1107
1108         /* Record feedback clock status and error. */
1109         clock_snap->fb_info.status = time_status;
1110         /* XXX: Very crude estimate of feedback clock error. */
1111         bt.sec = time_esterror / 1000000;
1112         bt.frac = ((time_esterror - bt.sec) * 1000000) *
1113             (uint64_t)18446744073709ULL;
1114         clock_snap->fb_info.error = bt;
1115
1116 #ifdef FFCLOCK
1117         if (!fast)
1118                 clock_snap->ffcount += delta;
1119
1120         /* Record feed-forward clock leap second adjustment. */
1121         ffi->leapsec_adjustment = cest.leapsec_total;
1122         if (clock_snap->ffcount > cest.leapsec_next)
1123                 ffi->leapsec_adjustment -= cest.leapsec;
1124
1125         /* Record feed-forward clock status and error. */
1126         clock_snap->ff_info.status = cest.status;
1127         ffcount = clock_snap->ffcount - cest.update_ffcount;
1128         ffclock_convert_delta(ffcount, cest.period, &bt);
1129         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1130         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1131         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1132         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1133         clock_snap->ff_info.error = bt;
1134 #endif
1135 }
1136
1137 /*
1138  * Convert a sysclock snapshot into a struct bintime based on the specified
1139  * clock source and flags.
1140  */
1141 int
1142 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1143     int whichclock, uint32_t flags)
1144 {
1145         struct bintime boottimebin;
1146 #ifdef FFCLOCK
1147         struct bintime bt2;
1148         uint64_t period;
1149 #endif
1150
1151         switch (whichclock) {
1152         case SYSCLOCK_FBCK:
1153                 *bt = cs->fb_info.tick_time;
1154
1155                 /* If snapshot was created with !fast, delta will be >0. */
1156                 if (cs->delta > 0)
1157                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1158
1159                 if ((flags & FBCLOCK_UPTIME) == 0) {
1160                         getboottimebin(&boottimebin);
1161                         bintime_add(bt, &boottimebin);
1162                 }
1163                 break;
1164 #ifdef FFCLOCK
1165         case SYSCLOCK_FFWD:
1166                 if (flags & FFCLOCK_LERP) {
1167                         *bt = cs->ff_info.tick_time_lerp;
1168                         period = cs->ff_info.period_lerp;
1169                 } else {
1170                         *bt = cs->ff_info.tick_time;
1171                         period = cs->ff_info.period;
1172                 }
1173
1174                 /* If snapshot was created with !fast, delta will be >0. */
1175                 if (cs->delta > 0) {
1176                         ffclock_convert_delta(cs->delta, period, &bt2);
1177                         bintime_add(bt, &bt2);
1178                 }
1179
1180                 /* Leap second adjustment. */
1181                 if (flags & FFCLOCK_LEAPSEC)
1182                         bt->sec -= cs->ff_info.leapsec_adjustment;
1183
1184                 /* Boot time adjustment, for uptime/monotonic clocks. */
1185                 if (flags & FFCLOCK_UPTIME)
1186                         bintime_sub(bt, &ffclock_boottime);
1187                 break;
1188 #endif
1189         default:
1190                 return (EINVAL);
1191                 break;
1192         }
1193
1194         return (0);
1195 }
1196
1197 /*
1198  * Initialize a new timecounter and possibly use it.
1199  */
1200 void
1201 tc_init(struct timecounter *tc)
1202 {
1203         u_int u;
1204         struct sysctl_oid *tc_root;
1205
1206         u = tc->tc_frequency / tc->tc_counter_mask;
1207         /* XXX: We need some margin here, 10% is a guess */
1208         u *= 11;
1209         u /= 10;
1210         if (u > hz && tc->tc_quality >= 0) {
1211                 tc->tc_quality = -2000;
1212                 if (bootverbose) {
1213                         printf("Timecounter \"%s\" frequency %ju Hz",
1214                             tc->tc_name, (uintmax_t)tc->tc_frequency);
1215                         printf(" -- Insufficient hz, needs at least %u\n", u);
1216                 }
1217         } else if (tc->tc_quality >= 0 || bootverbose) {
1218                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1219                     tc->tc_name, (uintmax_t)tc->tc_frequency,
1220                     tc->tc_quality);
1221         }
1222
1223         tc->tc_next = timecounters;
1224         timecounters = tc;
1225         /*
1226          * Set up sysctl tree for this counter.
1227          */
1228         tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1229             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1230             CTLFLAG_RW, 0, "timecounter description", "timecounter");
1231         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1232             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1233             "mask for implemented bits");
1234         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1235             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1236             sysctl_kern_timecounter_get, "IU", "current timecounter value");
1237         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1238             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1239              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1240         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1241             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1242             "goodness of time counter");
1243         /*
1244          * Do not automatically switch if the current tc was specifically
1245          * chosen.  Never automatically use a timecounter with negative quality.
1246          * Even though we run on the dummy counter, switching here may be
1247          * worse since this timecounter may not be monotonic.
1248          */
1249         if (tc_chosen)
1250                 return;
1251         if (tc->tc_quality < 0)
1252                 return;
1253         if (tc->tc_quality < timecounter->tc_quality)
1254                 return;
1255         if (tc->tc_quality == timecounter->tc_quality &&
1256             tc->tc_frequency < timecounter->tc_frequency)
1257                 return;
1258         (void)tc->tc_get_timecount(tc);
1259         (void)tc->tc_get_timecount(tc);
1260         timecounter = tc;
1261 }
1262
1263 /* Report the frequency of the current timecounter. */
1264 uint64_t
1265 tc_getfrequency(void)
1266 {
1267
1268         return (timehands->th_counter->tc_frequency);
1269 }
1270
1271 static bool
1272 sleeping_on_old_rtc(struct thread *td)
1273 {
1274
1275         /*
1276          * td_rtcgen is modified by curthread when it is running,
1277          * and by other threads in this function.  By finding the thread
1278          * on a sleepqueue and holding the lock on the sleepqueue
1279          * chain, we guarantee that the thread is not running and that
1280          * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1281          * the thread that it was woken due to a real-time clock adjustment.
1282          * (The declaration of td_rtcgen refers to this comment.)
1283          */
1284         if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1285                 td->td_rtcgen = 0;
1286                 return (true);
1287         }
1288         return (false);
1289 }
1290
1291 static struct mtx tc_setclock_mtx;
1292 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1293
1294 /*
1295  * Step our concept of UTC.  This is done by modifying our estimate of
1296  * when we booted.
1297  */
1298 void
1299 tc_setclock(struct timespec *ts)
1300 {
1301         struct timespec tbef, taft;
1302         struct bintime bt, bt2;
1303
1304         timespec2bintime(ts, &bt);
1305         nanotime(&tbef);
1306         mtx_lock_spin(&tc_setclock_mtx);
1307         cpu_tick_calibrate(1);
1308         binuptime(&bt2);
1309         bintime_sub(&bt, &bt2);
1310
1311         /* XXX fiddle all the little crinkly bits around the fiords... */
1312         tc_windup(&bt);
1313         mtx_unlock_spin(&tc_setclock_mtx);
1314
1315         /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1316         atomic_add_rel_int(&rtc_generation, 2);
1317         sleepq_chains_remove_matching(sleeping_on_old_rtc);
1318         if (timestepwarnings) {
1319                 nanotime(&taft);
1320                 log(LOG_INFO,
1321                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1322                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1323                     (intmax_t)taft.tv_sec, taft.tv_nsec,
1324                     (intmax_t)ts->tv_sec, ts->tv_nsec);
1325         }
1326 }
1327
1328 /*
1329  * Initialize the next struct timehands in the ring and make
1330  * it the active timehands.  Along the way we might switch to a different
1331  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1332  */
1333 static void
1334 tc_windup(struct bintime *new_boottimebin)
1335 {
1336         struct bintime bt;
1337         struct timehands *th, *tho;
1338         uint64_t scale;
1339         u_int delta, ncount, ogen;
1340         int i;
1341         time_t t;
1342
1343         /*
1344          * Make the next timehands a copy of the current one, but do
1345          * not overwrite the generation or next pointer.  While we
1346          * update the contents, the generation must be zero.  We need
1347          * to ensure that the zero generation is visible before the
1348          * data updates become visible, which requires release fence.
1349          * For similar reasons, re-reading of the generation after the
1350          * data is read should use acquire fence.
1351          */
1352         tho = timehands;
1353         th = tho->th_next;
1354         ogen = th->th_generation;
1355         th->th_generation = 0;
1356         atomic_thread_fence_rel();
1357         memcpy(th, tho, offsetof(struct timehands, th_generation));
1358         if (new_boottimebin != NULL)
1359                 th->th_boottime = *new_boottimebin;
1360
1361         /*
1362          * Capture a timecounter delta on the current timecounter and if
1363          * changing timecounters, a counter value from the new timecounter.
1364          * Update the offset fields accordingly.
1365          */
1366         delta = tc_delta(th);
1367         if (th->th_counter != timecounter)
1368                 ncount = timecounter->tc_get_timecount(timecounter);
1369         else
1370                 ncount = 0;
1371 #ifdef FFCLOCK
1372         ffclock_windup(delta);
1373 #endif
1374         th->th_offset_count += delta;
1375         th->th_offset_count &= th->th_counter->tc_counter_mask;
1376         while (delta > th->th_counter->tc_frequency) {
1377                 /* Eat complete unadjusted seconds. */
1378                 delta -= th->th_counter->tc_frequency;
1379                 th->th_offset.sec++;
1380         }
1381         if ((delta > th->th_counter->tc_frequency / 2) &&
1382             (th->th_scale * delta < ((uint64_t)1 << 63))) {
1383                 /* The product th_scale * delta just barely overflows. */
1384                 th->th_offset.sec++;
1385         }
1386         bintime_addx(&th->th_offset, th->th_scale * delta);
1387
1388         /*
1389          * Hardware latching timecounters may not generate interrupts on
1390          * PPS events, so instead we poll them.  There is a finite risk that
1391          * the hardware might capture a count which is later than the one we
1392          * got above, and therefore possibly in the next NTP second which might
1393          * have a different rate than the current NTP second.  It doesn't
1394          * matter in practice.
1395          */
1396         if (tho->th_counter->tc_poll_pps)
1397                 tho->th_counter->tc_poll_pps(tho->th_counter);
1398
1399         /*
1400          * Deal with NTP second processing.  The for loop normally
1401          * iterates at most once, but in extreme situations it might
1402          * keep NTP sane if timeouts are not run for several seconds.
1403          * At boot, the time step can be large when the TOD hardware
1404          * has been read, so on really large steps, we call
1405          * ntp_update_second only twice.  We need to call it twice in
1406          * case we missed a leap second.
1407          */
1408         bt = th->th_offset;
1409         bintime_add(&bt, &th->th_boottime);
1410         i = bt.sec - tho->th_microtime.tv_sec;
1411         if (i > LARGE_STEP)
1412                 i = 2;
1413         for (; i > 0; i--) {
1414                 t = bt.sec;
1415                 ntp_update_second(&th->th_adjustment, &bt.sec);
1416                 if (bt.sec != t)
1417                         th->th_boottime.sec += bt.sec - t;
1418         }
1419         /* Update the UTC timestamps used by the get*() functions. */
1420         th->th_bintime = bt;
1421         bintime2timeval(&bt, &th->th_microtime);
1422         bintime2timespec(&bt, &th->th_nanotime);
1423
1424         /* Now is a good time to change timecounters. */
1425         if (th->th_counter != timecounter) {
1426 #ifndef __arm__
1427                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1428                         cpu_disable_c2_sleep++;
1429                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1430                         cpu_disable_c2_sleep--;
1431 #endif
1432                 th->th_counter = timecounter;
1433                 th->th_offset_count = ncount;
1434                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1435                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1436 #ifdef FFCLOCK
1437                 ffclock_change_tc(th);
1438 #endif
1439         }
1440
1441         /*-
1442          * Recalculate the scaling factor.  We want the number of 1/2^64
1443          * fractions of a second per period of the hardware counter, taking
1444          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1445          * processing provides us with.
1446          *
1447          * The th_adjustment is nanoseconds per second with 32 bit binary
1448          * fraction and we want 64 bit binary fraction of second:
1449          *
1450          *       x = a * 2^32 / 10^9 = a * 4.294967296
1451          *
1452          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1453          * we can only multiply by about 850 without overflowing, that
1454          * leaves no suitably precise fractions for multiply before divide.
1455          *
1456          * Divide before multiply with a fraction of 2199/512 results in a
1457          * systematic undercompensation of 10PPM of th_adjustment.  On a
1458          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1459          *
1460          * We happily sacrifice the lowest of the 64 bits of our result
1461          * to the goddess of code clarity.
1462          *
1463          */
1464         scale = (uint64_t)1 << 63;
1465         scale += (th->th_adjustment / 1024) * 2199;
1466         scale /= th->th_counter->tc_frequency;
1467         th->th_scale = scale * 2;
1468
1469         /*
1470          * Now that the struct timehands is again consistent, set the new
1471          * generation number, making sure to not make it zero.
1472          */
1473         if (++ogen == 0)
1474                 ogen = 1;
1475         atomic_store_rel_int(&th->th_generation, ogen);
1476
1477         /* Go live with the new struct timehands. */
1478 #ifdef FFCLOCK
1479         switch (sysclock_active) {
1480         case SYSCLOCK_FBCK:
1481 #endif
1482                 time_second = th->th_microtime.tv_sec;
1483                 time_uptime = th->th_offset.sec;
1484 #ifdef FFCLOCK
1485                 break;
1486         case SYSCLOCK_FFWD:
1487                 time_second = fftimehands->tick_time_lerp.sec;
1488                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1489                 break;
1490         }
1491 #endif
1492
1493         timehands = th;
1494         timekeep_push_vdso();
1495 }
1496
1497 /* Report or change the active timecounter hardware. */
1498 static int
1499 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1500 {
1501         char newname[32];
1502         struct timecounter *newtc, *tc;
1503         int error;
1504
1505         tc = timecounter;
1506         strlcpy(newname, tc->tc_name, sizeof(newname));
1507
1508         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1509         if (error != 0 || req->newptr == NULL)
1510                 return (error);
1511         /* Record that the tc in use now was specifically chosen. */
1512         tc_chosen = 1;
1513         if (strcmp(newname, tc->tc_name) == 0)
1514                 return (0);
1515         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1516                 if (strcmp(newname, newtc->tc_name) != 0)
1517                         continue;
1518
1519                 /* Warm up new timecounter. */
1520                 (void)newtc->tc_get_timecount(newtc);
1521                 (void)newtc->tc_get_timecount(newtc);
1522
1523                 timecounter = newtc;
1524
1525                 /*
1526                  * The vdso timehands update is deferred until the next
1527                  * 'tc_windup()'.
1528                  *
1529                  * This is prudent given that 'timekeep_push_vdso()' does not
1530                  * use any locking and that it can be called in hard interrupt
1531                  * context via 'tc_windup()'.
1532                  */
1533                 return (0);
1534         }
1535         return (EINVAL);
1536 }
1537
1538 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1539     0, 0, sysctl_kern_timecounter_hardware, "A",
1540     "Timecounter hardware selected");
1541
1542
1543 /* Report the available timecounter hardware. */
1544 static int
1545 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1546 {
1547         struct sbuf sb;
1548         struct timecounter *tc;
1549         int error;
1550
1551         sbuf_new_for_sysctl(&sb, NULL, 0, req);
1552         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1553                 if (tc != timecounters)
1554                         sbuf_putc(&sb, ' ');
1555                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1556         }
1557         error = sbuf_finish(&sb);
1558         sbuf_delete(&sb);
1559         return (error);
1560 }
1561
1562 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1563     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1564
1565 /*
1566  * RFC 2783 PPS-API implementation.
1567  */
1568
1569 /*
1570  *  Return true if the driver is aware of the abi version extensions in the
1571  *  pps_state structure, and it supports at least the given abi version number.
1572  */
1573 static inline int
1574 abi_aware(struct pps_state *pps, int vers)
1575 {
1576
1577         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1578 }
1579
1580 static int
1581 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1582 {
1583         int err, timo;
1584         pps_seq_t aseq, cseq;
1585         struct timeval tv;
1586
1587         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1588                 return (EINVAL);
1589
1590         /*
1591          * If no timeout is requested, immediately return whatever values were
1592          * most recently captured.  If timeout seconds is -1, that's a request
1593          * to block without a timeout.  WITNESS won't let us sleep forever
1594          * without a lock (we really don't need a lock), so just repeatedly
1595          * sleep a long time.
1596          */
1597         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1598                 if (fapi->timeout.tv_sec == -1)
1599                         timo = 0x7fffffff;
1600                 else {
1601                         tv.tv_sec = fapi->timeout.tv_sec;
1602                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1603                         timo = tvtohz(&tv);
1604                 }
1605                 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1606                 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1607                 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1608                     cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1609                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1610                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
1611                                         err = msleep_spin(pps, pps->driver_mtx,
1612                                             "ppsfch", timo);
1613                                 } else {
1614                                         err = msleep(pps, pps->driver_mtx, PCATCH,
1615                                             "ppsfch", timo);
1616                                 }
1617                         } else {
1618                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
1619                         }
1620                         if (err == EWOULDBLOCK) {
1621                                 if (fapi->timeout.tv_sec == -1) {
1622                                         continue;
1623                                 } else {
1624                                         return (ETIMEDOUT);
1625                                 }
1626                         } else if (err != 0) {
1627                                 return (err);
1628                         }
1629                 }
1630         }
1631
1632         pps->ppsinfo.current_mode = pps->ppsparam.mode;
1633         fapi->pps_info_buf = pps->ppsinfo;
1634
1635         return (0);
1636 }
1637
1638 int
1639 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1640 {
1641         pps_params_t *app;
1642         struct pps_fetch_args *fapi;
1643 #ifdef FFCLOCK
1644         struct pps_fetch_ffc_args *fapi_ffc;
1645 #endif
1646 #ifdef PPS_SYNC
1647         struct pps_kcbind_args *kapi;
1648 #endif
1649
1650         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1651         switch (cmd) {
1652         case PPS_IOC_CREATE:
1653                 return (0);
1654         case PPS_IOC_DESTROY:
1655                 return (0);
1656         case PPS_IOC_SETPARAMS:
1657                 app = (pps_params_t *)data;
1658                 if (app->mode & ~pps->ppscap)
1659                         return (EINVAL);
1660 #ifdef FFCLOCK
1661                 /* Ensure only a single clock is selected for ffc timestamp. */
1662                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1663                         return (EINVAL);
1664 #endif
1665                 pps->ppsparam = *app;
1666                 return (0);
1667         case PPS_IOC_GETPARAMS:
1668                 app = (pps_params_t *)data;
1669                 *app = pps->ppsparam;
1670                 app->api_version = PPS_API_VERS_1;
1671                 return (0);
1672         case PPS_IOC_GETCAP:
1673                 *(int*)data = pps->ppscap;
1674                 return (0);
1675         case PPS_IOC_FETCH:
1676                 fapi = (struct pps_fetch_args *)data;
1677                 return (pps_fetch(fapi, pps));
1678 #ifdef FFCLOCK
1679         case PPS_IOC_FETCH_FFCOUNTER:
1680                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
1681                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1682                     PPS_TSFMT_TSPEC)
1683                         return (EINVAL);
1684                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1685                         return (EOPNOTSUPP);
1686                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1687                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1688                 /* Overwrite timestamps if feedback clock selected. */
1689                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1690                 case PPS_TSCLK_FBCK:
1691                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1692                             pps->ppsinfo.assert_timestamp;
1693                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1694                             pps->ppsinfo.clear_timestamp;
1695                         break;
1696                 case PPS_TSCLK_FFWD:
1697                         break;
1698                 default:
1699                         break;
1700                 }
1701                 return (0);
1702 #endif /* FFCLOCK */
1703         case PPS_IOC_KCBIND:
1704 #ifdef PPS_SYNC
1705                 kapi = (struct pps_kcbind_args *)data;
1706                 /* XXX Only root should be able to do this */
1707                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1708                         return (EINVAL);
1709                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1710                         return (EINVAL);
1711                 if (kapi->edge & ~pps->ppscap)
1712                         return (EINVAL);
1713                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1714                     (pps->kcmode & KCMODE_ABIFLAG);
1715                 return (0);
1716 #else
1717                 return (EOPNOTSUPP);
1718 #endif
1719         default:
1720                 return (ENOIOCTL);
1721         }
1722 }
1723
1724 void
1725 pps_init(struct pps_state *pps)
1726 {
1727         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1728         if (pps->ppscap & PPS_CAPTUREASSERT)
1729                 pps->ppscap |= PPS_OFFSETASSERT;
1730         if (pps->ppscap & PPS_CAPTURECLEAR)
1731                 pps->ppscap |= PPS_OFFSETCLEAR;
1732 #ifdef FFCLOCK
1733         pps->ppscap |= PPS_TSCLK_MASK;
1734 #endif
1735         pps->kcmode &= ~KCMODE_ABIFLAG;
1736 }
1737
1738 void
1739 pps_init_abi(struct pps_state *pps)
1740 {
1741
1742         pps_init(pps);
1743         if (pps->driver_abi > 0) {
1744                 pps->kcmode |= KCMODE_ABIFLAG;
1745                 pps->kernel_abi = PPS_ABI_VERSION;
1746         }
1747 }
1748
1749 void
1750 pps_capture(struct pps_state *pps)
1751 {
1752         struct timehands *th;
1753
1754         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1755         th = timehands;
1756         pps->capgen = atomic_load_acq_int(&th->th_generation);
1757         pps->capth = th;
1758 #ifdef FFCLOCK
1759         pps->capffth = fftimehands;
1760 #endif
1761         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1762         atomic_thread_fence_acq();
1763         if (pps->capgen != th->th_generation)
1764                 pps->capgen = 0;
1765 }
1766
1767 void
1768 pps_event(struct pps_state *pps, int event)
1769 {
1770         struct bintime bt;
1771         struct timespec ts, *tsp, *osp;
1772         u_int tcount, *pcount;
1773         int foff;
1774         pps_seq_t *pseq;
1775 #ifdef FFCLOCK
1776         struct timespec *tsp_ffc;
1777         pps_seq_t *pseq_ffc;
1778         ffcounter *ffcount;
1779 #endif
1780 #ifdef PPS_SYNC
1781         int fhard;
1782 #endif
1783
1784         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1785         /* Nothing to do if not currently set to capture this event type. */
1786         if ((event & pps->ppsparam.mode) == 0)
1787                 return;
1788         /* If the timecounter was wound up underneath us, bail out. */
1789         if (pps->capgen == 0 || pps->capgen !=
1790             atomic_load_acq_int(&pps->capth->th_generation))
1791                 return;
1792
1793         /* Things would be easier with arrays. */
1794         if (event == PPS_CAPTUREASSERT) {
1795                 tsp = &pps->ppsinfo.assert_timestamp;
1796                 osp = &pps->ppsparam.assert_offset;
1797                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1798 #ifdef PPS_SYNC
1799                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1800 #endif
1801                 pcount = &pps->ppscount[0];
1802                 pseq = &pps->ppsinfo.assert_sequence;
1803 #ifdef FFCLOCK
1804                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1805                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1806                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1807 #endif
1808         } else {
1809                 tsp = &pps->ppsinfo.clear_timestamp;
1810                 osp = &pps->ppsparam.clear_offset;
1811                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1812 #ifdef PPS_SYNC
1813                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1814 #endif
1815                 pcount = &pps->ppscount[1];
1816                 pseq = &pps->ppsinfo.clear_sequence;
1817 #ifdef FFCLOCK
1818                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1819                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1820                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1821 #endif
1822         }
1823
1824         /*
1825          * If the timecounter changed, we cannot compare the count values, so
1826          * we have to drop the rest of the PPS-stuff until the next event.
1827          */
1828         if (pps->ppstc != pps->capth->th_counter) {
1829                 pps->ppstc = pps->capth->th_counter;
1830                 *pcount = pps->capcount;
1831                 pps->ppscount[2] = pps->capcount;
1832                 return;
1833         }
1834
1835         /* Convert the count to a timespec. */
1836         tcount = pps->capcount - pps->capth->th_offset_count;
1837         tcount &= pps->capth->th_counter->tc_counter_mask;
1838         bt = pps->capth->th_bintime;
1839         bintime_addx(&bt, pps->capth->th_scale * tcount);
1840         bintime2timespec(&bt, &ts);
1841
1842         /* If the timecounter was wound up underneath us, bail out. */
1843         atomic_thread_fence_acq();
1844         if (pps->capgen != pps->capth->th_generation)
1845                 return;
1846
1847         *pcount = pps->capcount;
1848         (*pseq)++;
1849         *tsp = ts;
1850
1851         if (foff) {
1852                 timespecadd(tsp, osp, tsp);
1853                 if (tsp->tv_nsec < 0) {
1854                         tsp->tv_nsec += 1000000000;
1855                         tsp->tv_sec -= 1;
1856                 }
1857         }
1858
1859 #ifdef FFCLOCK
1860         *ffcount = pps->capffth->tick_ffcount + tcount;
1861         bt = pps->capffth->tick_time;
1862         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1863         bintime_add(&bt, &pps->capffth->tick_time);
1864         bintime2timespec(&bt, &ts);
1865         (*pseq_ffc)++;
1866         *tsp_ffc = ts;
1867 #endif
1868
1869 #ifdef PPS_SYNC
1870         if (fhard) {
1871                 uint64_t scale;
1872
1873                 /*
1874                  * Feed the NTP PLL/FLL.
1875                  * The FLL wants to know how many (hardware) nanoseconds
1876                  * elapsed since the previous event.
1877                  */
1878                 tcount = pps->capcount - pps->ppscount[2];
1879                 pps->ppscount[2] = pps->capcount;
1880                 tcount &= pps->capth->th_counter->tc_counter_mask;
1881                 scale = (uint64_t)1 << 63;
1882                 scale /= pps->capth->th_counter->tc_frequency;
1883                 scale *= 2;
1884                 bt.sec = 0;
1885                 bt.frac = 0;
1886                 bintime_addx(&bt, scale * tcount);
1887                 bintime2timespec(&bt, &ts);
1888                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1889         }
1890 #endif
1891
1892         /* Wakeup anyone sleeping in pps_fetch().  */
1893         wakeup(pps);
1894 }
1895
1896 /*
1897  * Timecounters need to be updated every so often to prevent the hardware
1898  * counter from overflowing.  Updating also recalculates the cached values
1899  * used by the get*() family of functions, so their precision depends on
1900  * the update frequency.
1901  */
1902
1903 static int tc_tick;
1904 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1905     "Approximate number of hardclock ticks in a millisecond");
1906
1907 void
1908 tc_ticktock(int cnt)
1909 {
1910         static int count;
1911
1912         if (mtx_trylock_spin(&tc_setclock_mtx)) {
1913                 count += cnt;
1914                 if (count >= tc_tick) {
1915                         count = 0;
1916                         tc_windup(NULL);
1917                 }
1918                 mtx_unlock_spin(&tc_setclock_mtx);
1919         }
1920 }
1921
1922 static void __inline
1923 tc_adjprecision(void)
1924 {
1925         int t;
1926
1927         if (tc_timepercentage > 0) {
1928                 t = (99 + tc_timepercentage) / tc_timepercentage;
1929                 tc_precexp = fls(t + (t >> 1)) - 1;
1930                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
1931                 FREQ2BT(hz, &bt_tickthreshold);
1932                 bintime_shift(&bt_timethreshold, tc_precexp);
1933                 bintime_shift(&bt_tickthreshold, tc_precexp);
1934         } else {
1935                 tc_precexp = 31;
1936                 bt_timethreshold.sec = INT_MAX;
1937                 bt_timethreshold.frac = ~(uint64_t)0;
1938                 bt_tickthreshold = bt_timethreshold;
1939         }
1940         sbt_timethreshold = bttosbt(bt_timethreshold);
1941         sbt_tickthreshold = bttosbt(bt_tickthreshold);
1942 }
1943
1944 static int
1945 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1946 {
1947         int error, val;
1948
1949         val = tc_timepercentage;
1950         error = sysctl_handle_int(oidp, &val, 0, req);
1951         if (error != 0 || req->newptr == NULL)
1952                 return (error);
1953         tc_timepercentage = val;
1954         if (cold)
1955                 goto done;
1956         tc_adjprecision();
1957 done:
1958         return (0);
1959 }
1960
1961 static void
1962 inittimecounter(void *dummy)
1963 {
1964         struct timehands *thp;
1965         u_int p;
1966         int i, tick_rate;
1967
1968         /*
1969          * Set the initial timeout to
1970          * max(1, <approx. number of hardclock ticks in a millisecond>).
1971          * People should probably not use the sysctl to set the timeout
1972          * to smaller than its initial value, since that value is the
1973          * smallest reasonable one.  If they want better timestamps they
1974          * should use the non-"get"* functions.
1975          */
1976         if (hz > 1000)
1977                 tc_tick = (hz + 500) / 1000;
1978         else
1979                 tc_tick = 1;
1980         tc_adjprecision();
1981         FREQ2BT(hz, &tick_bt);
1982         tick_sbt = bttosbt(tick_bt);
1983         tick_rate = hz / tc_tick;
1984         FREQ2BT(tick_rate, &tc_tick_bt);
1985         tc_tick_sbt = bttosbt(tc_tick_bt);
1986         p = (tc_tick * 1000000) / hz;
1987         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1988
1989 #ifdef FFCLOCK
1990         ffclock_init();
1991 #endif
1992
1993         /* Set up the requested number of timehands. */
1994         if (timehands_count < 1)
1995                 timehands_count = 1;
1996         if (timehands_count > nitems(ths))
1997                 timehands_count = nitems(ths);
1998         for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
1999                 thp->th_next = &ths[i];
2000         thp->th_next = &ths[0];
2001
2002         /* warm up new timecounter (again) and get rolling. */
2003         (void)timecounter->tc_get_timecount(timecounter);
2004         (void)timecounter->tc_get_timecount(timecounter);
2005         mtx_lock_spin(&tc_setclock_mtx);
2006         tc_windup(NULL);
2007         mtx_unlock_spin(&tc_setclock_mtx);
2008 }
2009
2010 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
2011
2012 /* Cpu tick handling -------------------------------------------------*/
2013
2014 static int cpu_tick_variable;
2015 static uint64_t cpu_tick_frequency;
2016
2017 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
2018 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
2019
2020 static uint64_t
2021 tc_cpu_ticks(void)
2022 {
2023         struct timecounter *tc;
2024         uint64_t res, *base;
2025         unsigned u, *last;
2026
2027         critical_enter();
2028         base = DPCPU_PTR(tc_cpu_ticks_base);
2029         last = DPCPU_PTR(tc_cpu_ticks_last);
2030         tc = timehands->th_counter;
2031         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2032         if (u < *last)
2033                 *base += (uint64_t)tc->tc_counter_mask + 1;
2034         *last = u;
2035         res = u + *base;
2036         critical_exit();
2037         return (res);
2038 }
2039
2040 void
2041 cpu_tick_calibration(void)
2042 {
2043         static time_t last_calib;
2044
2045         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2046                 cpu_tick_calibrate(0);
2047                 last_calib = time_uptime;
2048         }
2049 }
2050
2051 /*
2052  * This function gets called every 16 seconds on only one designated
2053  * CPU in the system from hardclock() via cpu_tick_calibration()().
2054  *
2055  * Whenever the real time clock is stepped we get called with reset=1
2056  * to make sure we handle suspend/resume and similar events correctly.
2057  */
2058
2059 static void
2060 cpu_tick_calibrate(int reset)
2061 {
2062         static uint64_t c_last;
2063         uint64_t c_this, c_delta;
2064         static struct bintime  t_last;
2065         struct bintime t_this, t_delta;
2066         uint32_t divi;
2067
2068         if (reset) {
2069                 /* The clock was stepped, abort & reset */
2070                 t_last.sec = 0;
2071                 return;
2072         }
2073
2074         /* we don't calibrate fixed rate cputicks */
2075         if (!cpu_tick_variable)
2076                 return;
2077
2078         getbinuptime(&t_this);
2079         c_this = cpu_ticks();
2080         if (t_last.sec != 0) {
2081                 c_delta = c_this - c_last;
2082                 t_delta = t_this;
2083                 bintime_sub(&t_delta, &t_last);
2084                 /*
2085                  * Headroom:
2086                  *      2^(64-20) / 16[s] =
2087                  *      2^(44) / 16[s] =
2088                  *      17.592.186.044.416 / 16 =
2089                  *      1.099.511.627.776 [Hz]
2090                  */
2091                 divi = t_delta.sec << 20;
2092                 divi |= t_delta.frac >> (64 - 20);
2093                 c_delta <<= 20;
2094                 c_delta /= divi;
2095                 if (c_delta > cpu_tick_frequency) {
2096                         if (0 && bootverbose)
2097                                 printf("cpu_tick increased to %ju Hz\n",
2098                                     c_delta);
2099                         cpu_tick_frequency = c_delta;
2100                 }
2101         }
2102         c_last = c_this;
2103         t_last = t_this;
2104 }
2105
2106 void
2107 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2108 {
2109
2110         if (func == NULL) {
2111                 cpu_ticks = tc_cpu_ticks;
2112         } else {
2113                 cpu_tick_frequency = freq;
2114                 cpu_tick_variable = var;
2115                 cpu_ticks = func;
2116         }
2117 }
2118
2119 uint64_t
2120 cpu_tickrate(void)
2121 {
2122
2123         if (cpu_ticks == tc_cpu_ticks) 
2124                 return (tc_getfrequency());
2125         return (cpu_tick_frequency);
2126 }
2127
2128 /*
2129  * We need to be slightly careful converting cputicks to microseconds.
2130  * There is plenty of margin in 64 bits of microseconds (half a million
2131  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2132  * before divide conversion (to retain precision) we find that the
2133  * margin shrinks to 1.5 hours (one millionth of 146y).
2134  * With a three prong approach we never lose significant bits, no
2135  * matter what the cputick rate and length of timeinterval is.
2136  */
2137
2138 uint64_t
2139 cputick2usec(uint64_t tick)
2140 {
2141
2142         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2143                 return (tick / (cpu_tickrate() / 1000000LL));
2144         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2145                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2146         else
2147                 return ((tick * 1000000LL) / cpu_tickrate());
2148 }
2149
2150 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2151
2152 static int vdso_th_enable = 1;
2153 static int
2154 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2155 {
2156         int old_vdso_th_enable, error;
2157
2158         old_vdso_th_enable = vdso_th_enable;
2159         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2160         if (error != 0)
2161                 return (error);
2162         vdso_th_enable = old_vdso_th_enable;
2163         return (0);
2164 }
2165 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2166     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2167     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2168
2169 uint32_t
2170 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2171 {
2172         struct timehands *th;
2173         uint32_t enabled;
2174
2175         th = timehands;
2176         vdso_th->th_scale = th->th_scale;
2177         vdso_th->th_offset_count = th->th_offset_count;
2178         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2179         vdso_th->th_offset = th->th_offset;
2180         vdso_th->th_boottime = th->th_boottime;
2181         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2182                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2183                     th->th_counter);
2184         } else
2185                 enabled = 0;
2186         if (!vdso_th_enable)
2187                 enabled = 0;
2188         return (enabled);
2189 }
2190
2191 #ifdef COMPAT_FREEBSD32
2192 uint32_t
2193 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2194 {
2195         struct timehands *th;
2196         uint32_t enabled;
2197
2198         th = timehands;
2199         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2200         vdso_th32->th_offset_count = th->th_offset_count;
2201         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2202         vdso_th32->th_offset.sec = th->th_offset.sec;
2203         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2204         vdso_th32->th_boottime.sec = th->th_boottime.sec;
2205         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2206         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2207                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2208                     th->th_counter);
2209         } else
2210                 enabled = 0;
2211         if (!vdso_th_enable)
2212                 enabled = 0;
2213         return (enabled);
2214 }
2215 #endif