]> CyberLeo.Net >> Repos - FreeBSD/releng/10.1.git/blob - sys/kern/kern_thread.c
Document SA-14:25, SA-14:26
[FreeBSD/releng/10.1.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_kdtrace.h"
31 #include "opt_hwpmc_hooks.h"
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rangelock.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sdt.h>
45 #include <sys/smp.h>
46 #include <sys/sched.h>
47 #include <sys/sleepqueue.h>
48 #include <sys/selinfo.h>
49 #include <sys/turnstile.h>
50 #include <sys/ktr.h>
51 #include <sys/rwlock.h>
52 #include <sys/umtx.h>
53 #include <sys/cpuset.h>
54 #ifdef  HWPMC_HOOKS
55 #include <sys/pmckern.h>
56 #endif
57
58 #include <security/audit/audit.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/uma.h>
63 #include <sys/eventhandler.h>
64
65 SDT_PROVIDER_DECLARE(proc);
66 SDT_PROBE_DEFINE(proc, , , lwp__exit);
67
68
69 /*
70  * thread related storage.
71  */
72 static uma_zone_t thread_zone;
73
74 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75 static struct mtx zombie_lock;
76 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77
78 static void thread_zombie(struct thread *);
79
80 #define TID_BUFFER_SIZE 1024
81
82 struct mtx tid_lock;
83 static struct unrhdr *tid_unrhdr;
84 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
85 static int tid_head, tid_tail;
86 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
87
88 struct  tidhashhead *tidhashtbl;
89 u_long  tidhash;
90 struct  rwlock tidhash_lock;
91
92 static lwpid_t
93 tid_alloc(void)
94 {
95         lwpid_t tid;
96
97         tid = alloc_unr(tid_unrhdr);
98         if (tid != -1)
99                 return (tid);
100         mtx_lock(&tid_lock);
101         if (tid_head == tid_tail) {
102                 mtx_unlock(&tid_lock);
103                 return (-1);
104         }
105         tid = tid_buffer[tid_head];
106         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
107         mtx_unlock(&tid_lock);
108         return (tid);
109 }
110
111 static void
112 tid_free(lwpid_t tid)
113 {
114         lwpid_t tmp_tid = -1;
115
116         mtx_lock(&tid_lock);
117         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
118                 tmp_tid = tid_buffer[tid_head];
119                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
120         }
121         tid_buffer[tid_tail] = tid;
122         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
123         mtx_unlock(&tid_lock);
124         if (tmp_tid != -1)
125                 free_unr(tid_unrhdr, tmp_tid);
126 }
127
128 /*
129  * Prepare a thread for use.
130  */
131 static int
132 thread_ctor(void *mem, int size, void *arg, int flags)
133 {
134         struct thread   *td;
135
136         td = (struct thread *)mem;
137         td->td_state = TDS_INACTIVE;
138         td->td_oncpu = NOCPU;
139
140         td->td_tid = tid_alloc();
141
142         /*
143          * Note that td_critnest begins life as 1 because the thread is not
144          * running and is thereby implicitly waiting to be on the receiving
145          * end of a context switch.
146          */
147         td->td_critnest = 1;
148         td->td_lend_user_pri = PRI_MAX;
149         EVENTHANDLER_INVOKE(thread_ctor, td);
150 #ifdef AUDIT
151         audit_thread_alloc(td);
152 #endif
153         umtx_thread_alloc(td);
154         return (0);
155 }
156
157 /*
158  * Reclaim a thread after use.
159  */
160 static void
161 thread_dtor(void *mem, int size, void *arg)
162 {
163         struct thread *td;
164
165         td = (struct thread *)mem;
166
167 #ifdef INVARIANTS
168         /* Verify that this thread is in a safe state to free. */
169         switch (td->td_state) {
170         case TDS_INHIBITED:
171         case TDS_RUNNING:
172         case TDS_CAN_RUN:
173         case TDS_RUNQ:
174                 /*
175                  * We must never unlink a thread that is in one of
176                  * these states, because it is currently active.
177                  */
178                 panic("bad state for thread unlinking");
179                 /* NOTREACHED */
180         case TDS_INACTIVE:
181                 break;
182         default:
183                 panic("bad thread state");
184                 /* NOTREACHED */
185         }
186 #endif
187 #ifdef AUDIT
188         audit_thread_free(td);
189 #endif
190         /* Free all OSD associated to this thread. */
191         osd_thread_exit(td);
192
193         EVENTHANDLER_INVOKE(thread_dtor, td);
194         tid_free(td->td_tid);
195 }
196
197 /*
198  * Initialize type-stable parts of a thread (when newly created).
199  */
200 static int
201 thread_init(void *mem, int size, int flags)
202 {
203         struct thread *td;
204
205         td = (struct thread *)mem;
206
207         td->td_sleepqueue = sleepq_alloc();
208         td->td_turnstile = turnstile_alloc();
209         td->td_rlqe = NULL;
210         EVENTHANDLER_INVOKE(thread_init, td);
211         td->td_sched = (struct td_sched *)&td[1];
212         umtx_thread_init(td);
213         td->td_kstack = 0;
214         return (0);
215 }
216
217 /*
218  * Tear down type-stable parts of a thread (just before being discarded).
219  */
220 static void
221 thread_fini(void *mem, int size)
222 {
223         struct thread *td;
224
225         td = (struct thread *)mem;
226         EVENTHANDLER_INVOKE(thread_fini, td);
227         rlqentry_free(td->td_rlqe);
228         turnstile_free(td->td_turnstile);
229         sleepq_free(td->td_sleepqueue);
230         umtx_thread_fini(td);
231         seltdfini(td);
232 }
233
234 /*
235  * For a newly created process,
236  * link up all the structures and its initial threads etc.
237  * called from:
238  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
239  * proc_dtor() (should go away)
240  * proc_init()
241  */
242 void
243 proc_linkup0(struct proc *p, struct thread *td)
244 {
245         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
246         proc_linkup(p, td);
247 }
248
249 void
250 proc_linkup(struct proc *p, struct thread *td)
251 {
252
253         sigqueue_init(&p->p_sigqueue, p);
254         p->p_ksi = ksiginfo_alloc(1);
255         if (p->p_ksi != NULL) {
256                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
257                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
258         }
259         LIST_INIT(&p->p_mqnotifier);
260         p->p_numthreads = 0;
261         thread_link(td, p);
262 }
263
264 /*
265  * Initialize global thread allocation resources.
266  */
267 void
268 threadinit(void)
269 {
270
271         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
272
273         /*
274          * pid_max cannot be greater than PID_MAX.
275          * leave one number for thread0.
276          */
277         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
278
279         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
280             thread_ctor, thread_dtor, thread_init, thread_fini,
281             16 - 1, 0);
282         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
283         rw_init(&tidhash_lock, "tidhash");
284 }
285
286 /*
287  * Place an unused thread on the zombie list.
288  * Use the slpq as that must be unused by now.
289  */
290 void
291 thread_zombie(struct thread *td)
292 {
293         mtx_lock_spin(&zombie_lock);
294         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
295         mtx_unlock_spin(&zombie_lock);
296 }
297
298 /*
299  * Release a thread that has exited after cpu_throw().
300  */
301 void
302 thread_stash(struct thread *td)
303 {
304         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
305         thread_zombie(td);
306 }
307
308 /*
309  * Reap zombie resources.
310  */
311 void
312 thread_reap(void)
313 {
314         struct thread *td_first, *td_next;
315
316         /*
317          * Don't even bother to lock if none at this instant,
318          * we really don't care about the next instant..
319          */
320         if (!TAILQ_EMPTY(&zombie_threads)) {
321                 mtx_lock_spin(&zombie_lock);
322                 td_first = TAILQ_FIRST(&zombie_threads);
323                 if (td_first)
324                         TAILQ_INIT(&zombie_threads);
325                 mtx_unlock_spin(&zombie_lock);
326                 while (td_first) {
327                         td_next = TAILQ_NEXT(td_first, td_slpq);
328                         if (td_first->td_ucred)
329                                 crfree(td_first->td_ucred);
330                         thread_free(td_first);
331                         td_first = td_next;
332                 }
333         }
334 }
335
336 /*
337  * Allocate a thread.
338  */
339 struct thread *
340 thread_alloc(int pages)
341 {
342         struct thread *td;
343
344         thread_reap(); /* check if any zombies to get */
345
346         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
347         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
348         if (!vm_thread_new(td, pages)) {
349                 uma_zfree(thread_zone, td);
350                 return (NULL);
351         }
352         cpu_thread_alloc(td);
353         return (td);
354 }
355
356 int
357 thread_alloc_stack(struct thread *td, int pages)
358 {
359
360         KASSERT(td->td_kstack == 0,
361             ("thread_alloc_stack called on a thread with kstack"));
362         if (!vm_thread_new(td, pages))
363                 return (0);
364         cpu_thread_alloc(td);
365         return (1);
366 }
367
368 /*
369  * Deallocate a thread.
370  */
371 void
372 thread_free(struct thread *td)
373 {
374
375         lock_profile_thread_exit(td);
376         if (td->td_cpuset)
377                 cpuset_rel(td->td_cpuset);
378         td->td_cpuset = NULL;
379         cpu_thread_free(td);
380         if (td->td_kstack != 0)
381                 vm_thread_dispose(td);
382         uma_zfree(thread_zone, td);
383 }
384
385 /*
386  * Discard the current thread and exit from its context.
387  * Always called with scheduler locked.
388  *
389  * Because we can't free a thread while we're operating under its context,
390  * push the current thread into our CPU's deadthread holder. This means
391  * we needn't worry about someone else grabbing our context before we
392  * do a cpu_throw().
393  */
394 void
395 thread_exit(void)
396 {
397         uint64_t runtime, new_switchtime;
398         struct thread *td;
399         struct thread *td2;
400         struct proc *p;
401         int wakeup_swapper;
402
403         td = curthread;
404         p = td->td_proc;
405
406         PROC_SLOCK_ASSERT(p, MA_OWNED);
407         mtx_assert(&Giant, MA_NOTOWNED);
408
409         PROC_LOCK_ASSERT(p, MA_OWNED);
410         KASSERT(p != NULL, ("thread exiting without a process"));
411         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
412             (long)p->p_pid, td->td_name);
413         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
414
415 #ifdef AUDIT
416         AUDIT_SYSCALL_EXIT(0, td);
417 #endif
418         umtx_thread_exit(td);
419         /*
420          * drop FPU & debug register state storage, or any other
421          * architecture specific resources that
422          * would not be on a new untouched process.
423          */
424         cpu_thread_exit(td);    /* XXXSMP */
425
426         /*
427          * The last thread is left attached to the process
428          * So that the whole bundle gets recycled. Skip
429          * all this stuff if we never had threads.
430          * EXIT clears all sign of other threads when
431          * it goes to single threading, so the last thread always
432          * takes the short path.
433          */
434         if (p->p_flag & P_HADTHREADS) {
435                 if (p->p_numthreads > 1) {
436                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
437                         thread_unlink(td);
438                         td2 = FIRST_THREAD_IN_PROC(p);
439                         sched_exit_thread(td2, td);
440
441                         /*
442                          * The test below is NOT true if we are the
443                          * sole exiting thread. P_STOPPED_SINGLE is unset
444                          * in exit1() after it is the only survivor.
445                          */
446                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
447                                 if (p->p_numthreads == p->p_suspcount) {
448                                         thread_lock(p->p_singlethread);
449                                         wakeup_swapper = thread_unsuspend_one(
450                                                 p->p_singlethread);
451                                         thread_unlock(p->p_singlethread);
452                                         if (wakeup_swapper)
453                                                 kick_proc0();
454                                 }
455                         }
456
457                         PCPU_SET(deadthread, td);
458                 } else {
459                         /*
460                          * The last thread is exiting.. but not through exit()
461                          */
462                         panic ("thread_exit: Last thread exiting on its own");
463                 }
464         } 
465 #ifdef  HWPMC_HOOKS
466         /*
467          * If this thread is part of a process that is being tracked by hwpmc(4),
468          * inform the module of the thread's impending exit.
469          */
470         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
471                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
472 #endif
473         PROC_UNLOCK(p);
474
475         /* Do the same timestamp bookkeeping that mi_switch() would do. */
476         new_switchtime = cpu_ticks();
477         runtime = new_switchtime - PCPU_GET(switchtime);
478         td->td_runtime += runtime;
479         td->td_incruntime += runtime;
480         PCPU_SET(switchtime, new_switchtime);
481         PCPU_SET(switchticks, ticks);
482         PCPU_INC(cnt.v_swtch);
483
484         /* Save our resource usage in our process. */
485         td->td_ru.ru_nvcsw++;
486         ruxagg(p, td);
487         rucollect(&p->p_ru, &td->td_ru);
488
489         thread_lock(td);
490         PROC_SUNLOCK(p);
491         td->td_state = TDS_INACTIVE;
492 #ifdef WITNESS
493         witness_thread_exit(td);
494 #endif
495         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
496         sched_throw(td);
497         panic("I'm a teapot!");
498         /* NOTREACHED */
499 }
500
501 /*
502  * Do any thread specific cleanups that may be needed in wait()
503  * called with Giant, proc and schedlock not held.
504  */
505 void
506 thread_wait(struct proc *p)
507 {
508         struct thread *td;
509
510         mtx_assert(&Giant, MA_NOTOWNED);
511         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
512         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
513         td = FIRST_THREAD_IN_PROC(p);
514         /* Lock the last thread so we spin until it exits cpu_throw(). */
515         thread_lock(td);
516         thread_unlock(td);
517         lock_profile_thread_exit(td);
518         cpuset_rel(td->td_cpuset);
519         td->td_cpuset = NULL;
520         cpu_thread_clean(td);
521         crfree(td->td_ucred);
522         thread_reap();  /* check for zombie threads etc. */
523 }
524
525 /*
526  * Link a thread to a process.
527  * set up anything that needs to be initialized for it to
528  * be used by the process.
529  */
530 void
531 thread_link(struct thread *td, struct proc *p)
532 {
533
534         /*
535          * XXX This can't be enabled because it's called for proc0 before
536          * its lock has been created.
537          * PROC_LOCK_ASSERT(p, MA_OWNED);
538          */
539         td->td_state    = TDS_INACTIVE;
540         td->td_proc     = p;
541         td->td_flags    = TDF_INMEM;
542
543         LIST_INIT(&td->td_contested);
544         LIST_INIT(&td->td_lprof[0]);
545         LIST_INIT(&td->td_lprof[1]);
546         sigqueue_init(&td->td_sigqueue, p);
547         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
548         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
549         p->p_numthreads++;
550 }
551
552 /*
553  * Called from:
554  *  thread_exit()
555  */
556 void
557 thread_unlink(struct thread *td)
558 {
559         struct proc *p = td->td_proc;
560
561         PROC_LOCK_ASSERT(p, MA_OWNED);
562         TAILQ_REMOVE(&p->p_threads, td, td_plist);
563         p->p_numthreads--;
564         /* could clear a few other things here */
565         /* Must  NOT clear links to proc! */
566 }
567
568 static int
569 calc_remaining(struct proc *p, int mode)
570 {
571         int remaining;
572
573         PROC_LOCK_ASSERT(p, MA_OWNED);
574         PROC_SLOCK_ASSERT(p, MA_OWNED);
575         if (mode == SINGLE_EXIT)
576                 remaining = p->p_numthreads;
577         else if (mode == SINGLE_BOUNDARY)
578                 remaining = p->p_numthreads - p->p_boundary_count;
579         else if (mode == SINGLE_NO_EXIT)
580                 remaining = p->p_numthreads - p->p_suspcount;
581         else
582                 panic("calc_remaining: wrong mode %d", mode);
583         return (remaining);
584 }
585
586 /*
587  * Enforce single-threading.
588  *
589  * Returns 1 if the caller must abort (another thread is waiting to
590  * exit the process or similar). Process is locked!
591  * Returns 0 when you are successfully the only thread running.
592  * A process has successfully single threaded in the suspend mode when
593  * There are no threads in user mode. Threads in the kernel must be
594  * allowed to continue until they get to the user boundary. They may even
595  * copy out their return values and data before suspending. They may however be
596  * accelerated in reaching the user boundary as we will wake up
597  * any sleeping threads that are interruptable. (PCATCH).
598  */
599 int
600 thread_single(int mode)
601 {
602         struct thread *td;
603         struct thread *td2;
604         struct proc *p;
605         int remaining, wakeup_swapper;
606
607         td = curthread;
608         p = td->td_proc;
609         mtx_assert(&Giant, MA_NOTOWNED);
610         PROC_LOCK_ASSERT(p, MA_OWNED);
611
612         if ((p->p_flag & P_HADTHREADS) == 0)
613                 return (0);
614
615         /* Is someone already single threading? */
616         if (p->p_singlethread != NULL && p->p_singlethread != td)
617                 return (1);
618
619         if (mode == SINGLE_EXIT) {
620                 p->p_flag |= P_SINGLE_EXIT;
621                 p->p_flag &= ~P_SINGLE_BOUNDARY;
622         } else {
623                 p->p_flag &= ~P_SINGLE_EXIT;
624                 if (mode == SINGLE_BOUNDARY)
625                         p->p_flag |= P_SINGLE_BOUNDARY;
626                 else
627                         p->p_flag &= ~P_SINGLE_BOUNDARY;
628         }
629         p->p_flag |= P_STOPPED_SINGLE;
630         PROC_SLOCK(p);
631         p->p_singlethread = td;
632         remaining = calc_remaining(p, mode);
633         while (remaining != 1) {
634                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
635                         goto stopme;
636                 wakeup_swapper = 0;
637                 FOREACH_THREAD_IN_PROC(p, td2) {
638                         if (td2 == td)
639                                 continue;
640                         thread_lock(td2);
641                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
642                         if (TD_IS_INHIBITED(td2)) {
643                                 switch (mode) {
644                                 case SINGLE_EXIT:
645                                         if (TD_IS_SUSPENDED(td2))
646                                                 wakeup_swapper |=
647                                                     thread_unsuspend_one(td2);
648                                         if (TD_ON_SLEEPQ(td2) &&
649                                             (td2->td_flags & TDF_SINTR))
650                                                 wakeup_swapper |=
651                                                     sleepq_abort(td2, EINTR);
652                                         break;
653                                 case SINGLE_BOUNDARY:
654                                         if (TD_IS_SUSPENDED(td2) &&
655                                             !(td2->td_flags & TDF_BOUNDARY))
656                                                 wakeup_swapper |=
657                                                     thread_unsuspend_one(td2);
658                                         if (TD_ON_SLEEPQ(td2) &&
659                                             (td2->td_flags & TDF_SINTR))
660                                                 wakeup_swapper |=
661                                                     sleepq_abort(td2, ERESTART);
662                                         break;
663                                 case SINGLE_NO_EXIT:
664                                         if (TD_IS_SUSPENDED(td2) &&
665                                             !(td2->td_flags & TDF_BOUNDARY))
666                                                 wakeup_swapper |=
667                                                     thread_unsuspend_one(td2);
668                                         if (TD_ON_SLEEPQ(td2) &&
669                                             (td2->td_flags & TDF_SINTR))
670                                                 wakeup_swapper |=
671                                                     sleepq_abort(td2, ERESTART);
672                                         break;
673                                 default:
674                                         break;
675                                 }
676                         }
677 #ifdef SMP
678                         else if (TD_IS_RUNNING(td2) && td != td2) {
679                                 forward_signal(td2);
680                         }
681 #endif
682                         thread_unlock(td2);
683                 }
684                 if (wakeup_swapper)
685                         kick_proc0();
686                 remaining = calc_remaining(p, mode);
687
688                 /*
689                  * Maybe we suspended some threads.. was it enough?
690                  */
691                 if (remaining == 1)
692                         break;
693
694 stopme:
695                 /*
696                  * Wake us up when everyone else has suspended.
697                  * In the mean time we suspend as well.
698                  */
699                 thread_suspend_switch(td);
700                 remaining = calc_remaining(p, mode);
701         }
702         if (mode == SINGLE_EXIT) {
703                 /*
704                  * Convert the process to an unthreaded process.  The
705                  * SINGLE_EXIT is called by exit1() or execve(), in
706                  * both cases other threads must be retired.
707                  */
708                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
709                 p->p_singlethread = NULL;
710                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
711
712                 /*
713                  * Wait for any remaining threads to exit cpu_throw().
714                  */
715                 while (p->p_exitthreads != 0) {
716                         PROC_SUNLOCK(p);
717                         PROC_UNLOCK(p);
718                         sched_relinquish(td);
719                         PROC_LOCK(p);
720                         PROC_SLOCK(p);
721                 }
722         }
723         PROC_SUNLOCK(p);
724         return (0);
725 }
726
727 /*
728  * Called in from locations that can safely check to see
729  * whether we have to suspend or at least throttle for a
730  * single-thread event (e.g. fork).
731  *
732  * Such locations include userret().
733  * If the "return_instead" argument is non zero, the thread must be able to
734  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
735  *
736  * The 'return_instead' argument tells the function if it may do a
737  * thread_exit() or suspend, or whether the caller must abort and back
738  * out instead.
739  *
740  * If the thread that set the single_threading request has set the
741  * P_SINGLE_EXIT bit in the process flags then this call will never return
742  * if 'return_instead' is false, but will exit.
743  *
744  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
745  *---------------+--------------------+---------------------
746  *       0       | returns 0          |   returns 0 or 1
747  *               | when ST ends       |   immediately
748  *---------------+--------------------+---------------------
749  *       1       | thread exits       |   returns 1
750  *               |                    |  immediately
751  * 0 = thread_exit() or suspension ok,
752  * other = return error instead of stopping the thread.
753  *
754  * While a full suspension is under effect, even a single threading
755  * thread would be suspended if it made this call (but it shouldn't).
756  * This call should only be made from places where
757  * thread_exit() would be safe as that may be the outcome unless
758  * return_instead is set.
759  */
760 int
761 thread_suspend_check(int return_instead)
762 {
763         struct thread *td;
764         struct proc *p;
765         int wakeup_swapper;
766
767         td = curthread;
768         p = td->td_proc;
769         mtx_assert(&Giant, MA_NOTOWNED);
770         PROC_LOCK_ASSERT(p, MA_OWNED);
771         while (P_SHOULDSTOP(p) ||
772               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
773                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
774                         KASSERT(p->p_singlethread != NULL,
775                             ("singlethread not set"));
776                         /*
777                          * The only suspension in action is a
778                          * single-threading. Single threader need not stop.
779                          * XXX Should be safe to access unlocked
780                          * as it can only be set to be true by us.
781                          */
782                         if (p->p_singlethread == td)
783                                 return (0);     /* Exempt from stopping. */
784                 }
785                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
786                         return (EINTR);
787
788                 /* Should we goto user boundary if we didn't come from there? */
789                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
790                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
791                         return (ERESTART);
792
793                 /*
794                  * Ignore suspend requests for stop signals if they
795                  * are deferred.
796                  */
797                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG &&
798                     td->td_flags & TDF_SBDRY) {
799                         KASSERT(return_instead,
800                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
801                         return (0);
802                 }
803
804                 /*
805                  * If the process is waiting for us to exit,
806                  * this thread should just suicide.
807                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
808                  */
809                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
810                         PROC_UNLOCK(p);
811                         tidhash_remove(td);
812                         PROC_LOCK(p);
813                         tdsigcleanup(td);
814                         PROC_SLOCK(p);
815                         thread_stopped(p);
816                         thread_exit();
817                 }
818
819                 PROC_SLOCK(p);
820                 thread_stopped(p);
821                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
822                         if (p->p_numthreads == p->p_suspcount + 1) {
823                                 thread_lock(p->p_singlethread);
824                                 wakeup_swapper =
825                                     thread_unsuspend_one(p->p_singlethread);
826                                 thread_unlock(p->p_singlethread);
827                                 if (wakeup_swapper)
828                                         kick_proc0();
829                         }
830                 }
831                 PROC_UNLOCK(p);
832                 thread_lock(td);
833                 /*
834                  * When a thread suspends, it just
835                  * gets taken off all queues.
836                  */
837                 thread_suspend_one(td);
838                 if (return_instead == 0) {
839                         p->p_boundary_count++;
840                         td->td_flags |= TDF_BOUNDARY;
841                 }
842                 PROC_SUNLOCK(p);
843                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
844                 if (return_instead == 0)
845                         td->td_flags &= ~TDF_BOUNDARY;
846                 thread_unlock(td);
847                 PROC_LOCK(p);
848                 if (return_instead == 0) {
849                         PROC_SLOCK(p);
850                         p->p_boundary_count--;
851                         PROC_SUNLOCK(p);
852                 }
853         }
854         return (0);
855 }
856
857 void
858 thread_suspend_switch(struct thread *td)
859 {
860         struct proc *p;
861
862         p = td->td_proc;
863         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
864         PROC_LOCK_ASSERT(p, MA_OWNED);
865         PROC_SLOCK_ASSERT(p, MA_OWNED);
866         /*
867          * We implement thread_suspend_one in stages here to avoid
868          * dropping the proc lock while the thread lock is owned.
869          */
870         thread_stopped(p);
871         p->p_suspcount++;
872         PROC_UNLOCK(p);
873         thread_lock(td);
874         td->td_flags &= ~TDF_NEEDSUSPCHK;
875         TD_SET_SUSPENDED(td);
876         sched_sleep(td, 0);
877         PROC_SUNLOCK(p);
878         DROP_GIANT();
879         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
880         thread_unlock(td);
881         PICKUP_GIANT();
882         PROC_LOCK(p);
883         PROC_SLOCK(p);
884 }
885
886 void
887 thread_suspend_one(struct thread *td)
888 {
889         struct proc *p = td->td_proc;
890
891         PROC_SLOCK_ASSERT(p, MA_OWNED);
892         THREAD_LOCK_ASSERT(td, MA_OWNED);
893         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
894         p->p_suspcount++;
895         td->td_flags &= ~TDF_NEEDSUSPCHK;
896         TD_SET_SUSPENDED(td);
897         sched_sleep(td, 0);
898 }
899
900 int
901 thread_unsuspend_one(struct thread *td)
902 {
903         struct proc *p = td->td_proc;
904
905         PROC_SLOCK_ASSERT(p, MA_OWNED);
906         THREAD_LOCK_ASSERT(td, MA_OWNED);
907         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
908         TD_CLR_SUSPENDED(td);
909         p->p_suspcount--;
910         return (setrunnable(td));
911 }
912
913 /*
914  * Allow all threads blocked by single threading to continue running.
915  */
916 void
917 thread_unsuspend(struct proc *p)
918 {
919         struct thread *td;
920         int wakeup_swapper;
921
922         PROC_LOCK_ASSERT(p, MA_OWNED);
923         PROC_SLOCK_ASSERT(p, MA_OWNED);
924         wakeup_swapper = 0;
925         if (!P_SHOULDSTOP(p)) {
926                 FOREACH_THREAD_IN_PROC(p, td) {
927                         thread_lock(td);
928                         if (TD_IS_SUSPENDED(td)) {
929                                 wakeup_swapper |= thread_unsuspend_one(td);
930                         }
931                         thread_unlock(td);
932                 }
933         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
934             (p->p_numthreads == p->p_suspcount)) {
935                 /*
936                  * Stopping everything also did the job for the single
937                  * threading request. Now we've downgraded to single-threaded,
938                  * let it continue.
939                  */
940                 thread_lock(p->p_singlethread);
941                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
942                 thread_unlock(p->p_singlethread);
943         }
944         if (wakeup_swapper)
945                 kick_proc0();
946 }
947
948 /*
949  * End the single threading mode..
950  */
951 void
952 thread_single_end(void)
953 {
954         struct thread *td;
955         struct proc *p;
956         int wakeup_swapper;
957
958         td = curthread;
959         p = td->td_proc;
960         PROC_LOCK_ASSERT(p, MA_OWNED);
961         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
962         PROC_SLOCK(p);
963         p->p_singlethread = NULL;
964         wakeup_swapper = 0;
965         /*
966          * If there are other threads they may now run,
967          * unless of course there is a blanket 'stop order'
968          * on the process. The single threader must be allowed
969          * to continue however as this is a bad place to stop.
970          */
971         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
972                 FOREACH_THREAD_IN_PROC(p, td) {
973                         thread_lock(td);
974                         if (TD_IS_SUSPENDED(td)) {
975                                 wakeup_swapper |= thread_unsuspend_one(td);
976                         }
977                         thread_unlock(td);
978                 }
979         }
980         PROC_SUNLOCK(p);
981         if (wakeup_swapper)
982                 kick_proc0();
983 }
984
985 struct thread *
986 thread_find(struct proc *p, lwpid_t tid)
987 {
988         struct thread *td;
989
990         PROC_LOCK_ASSERT(p, MA_OWNED);
991         FOREACH_THREAD_IN_PROC(p, td) {
992                 if (td->td_tid == tid)
993                         break;
994         }
995         return (td);
996 }
997
998 /* Locate a thread by number; return with proc lock held. */
999 struct thread *
1000 tdfind(lwpid_t tid, pid_t pid)
1001 {
1002 #define RUN_THRESH      16
1003         struct thread *td;
1004         int run = 0;
1005
1006         rw_rlock(&tidhash_lock);
1007         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1008                 if (td->td_tid == tid) {
1009                         if (pid != -1 && td->td_proc->p_pid != pid) {
1010                                 td = NULL;
1011                                 break;
1012                         }
1013                         PROC_LOCK(td->td_proc);
1014                         if (td->td_proc->p_state == PRS_NEW) {
1015                                 PROC_UNLOCK(td->td_proc);
1016                                 td = NULL;
1017                                 break;
1018                         }
1019                         if (run > RUN_THRESH) {
1020                                 if (rw_try_upgrade(&tidhash_lock)) {
1021                                         LIST_REMOVE(td, td_hash);
1022                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1023                                                 td, td_hash);
1024                                         rw_wunlock(&tidhash_lock);
1025                                         return (td);
1026                                 }
1027                         }
1028                         break;
1029                 }
1030                 run++;
1031         }
1032         rw_runlock(&tidhash_lock);
1033         return (td);
1034 }
1035
1036 void
1037 tidhash_add(struct thread *td)
1038 {
1039         rw_wlock(&tidhash_lock);
1040         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1041         rw_wunlock(&tidhash_lock);
1042 }
1043
1044 void
1045 tidhash_remove(struct thread *td)
1046 {
1047         rw_wlock(&tidhash_lock);
1048         LIST_REMOVE(td, td_hash);
1049         rw_wunlock(&tidhash_lock);
1050 }