]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
add -n option to suppress clearing the build tree and add -DNO_CLEAN
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/resourcevar.h>
41 #include <sys/smp.h>
42 #include <sys/sysctl.h>
43 #include <sys/sched.h>
44 #include <sys/sleepqueue.h>
45 #include <sys/selinfo.h>
46 #include <sys/turnstile.h>
47 #include <sys/ktr.h>
48 #include <sys/umtx.h>
49 #include <sys/cpuset.h>
50
51 #include <security/audit/audit.h>
52
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>
55 #include <vm/uma.h>
56 #include <sys/eventhandler.h>
57
58 /*
59  * thread related storage.
60  */
61 static uma_zone_t thread_zone;
62
63 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
64
65 int max_threads_per_proc = 1500;
66 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
67         &max_threads_per_proc, 0, "Limit on threads per proc");
68
69 int max_threads_hits;
70 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
71         &max_threads_hits, 0, "");
72
73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74 static struct mtx zombie_lock;
75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76
77 static void thread_zombie(struct thread *);
78
79 struct mtx tid_lock;
80 static struct unrhdr *tid_unrhdr;
81
82 /*
83  * Prepare a thread for use.
84  */
85 static int
86 thread_ctor(void *mem, int size, void *arg, int flags)
87 {
88         struct thread   *td;
89
90         td = (struct thread *)mem;
91         td->td_state = TDS_INACTIVE;
92         td->td_oncpu = NOCPU;
93
94         td->td_tid = alloc_unr(tid_unrhdr);
95         td->td_syscalls = 0;
96
97         /*
98          * Note that td_critnest begins life as 1 because the thread is not
99          * running and is thereby implicitly waiting to be on the receiving
100          * end of a context switch.
101          */
102         td->td_critnest = 1;
103         EVENTHANDLER_INVOKE(thread_ctor, td);
104 #ifdef AUDIT
105         audit_thread_alloc(td);
106 #endif
107         umtx_thread_alloc(td);
108         return (0);
109 }
110
111 /*
112  * Reclaim a thread after use.
113  */
114 static void
115 thread_dtor(void *mem, int size, void *arg)
116 {
117         struct thread *td;
118
119         td = (struct thread *)mem;
120
121 #ifdef INVARIANTS
122         /* Verify that this thread is in a safe state to free. */
123         switch (td->td_state) {
124         case TDS_INHIBITED:
125         case TDS_RUNNING:
126         case TDS_CAN_RUN:
127         case TDS_RUNQ:
128                 /*
129                  * We must never unlink a thread that is in one of
130                  * these states, because it is currently active.
131                  */
132                 panic("bad state for thread unlinking");
133                 /* NOTREACHED */
134         case TDS_INACTIVE:
135                 break;
136         default:
137                 panic("bad thread state");
138                 /* NOTREACHED */
139         }
140 #endif
141 #ifdef AUDIT
142         audit_thread_free(td);
143 #endif
144         EVENTHANDLER_INVOKE(thread_dtor, td);
145         free_unr(tid_unrhdr, td->td_tid);
146 }
147
148 /*
149  * Initialize type-stable parts of a thread (when newly created).
150  */
151 static int
152 thread_init(void *mem, int size, int flags)
153 {
154         struct thread *td;
155
156         td = (struct thread *)mem;
157
158         td->td_sleepqueue = sleepq_alloc();
159         td->td_turnstile = turnstile_alloc();
160         EVENTHANDLER_INVOKE(thread_init, td);
161         td->td_sched = (struct td_sched *)&td[1];
162         umtx_thread_init(td);
163         td->td_kstack = 0;
164         return (0);
165 }
166
167 /*
168  * Tear down type-stable parts of a thread (just before being discarded).
169  */
170 static void
171 thread_fini(void *mem, int size)
172 {
173         struct thread *td;
174
175         td = (struct thread *)mem;
176         EVENTHANDLER_INVOKE(thread_fini, td);
177         turnstile_free(td->td_turnstile);
178         sleepq_free(td->td_sleepqueue);
179         umtx_thread_fini(td);
180         seltdfini(td);
181 }
182
183 /*
184  * For a newly created process,
185  * link up all the structures and its initial threads etc.
186  * called from:
187  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
188  * proc_dtor() (should go away)
189  * proc_init()
190  */
191 void
192 proc_linkup0(struct proc *p, struct thread *td)
193 {
194         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
195         proc_linkup(p, td);
196 }
197
198 void
199 proc_linkup(struct proc *p, struct thread *td)
200 {
201
202         sigqueue_init(&p->p_sigqueue, p);
203         p->p_ksi = ksiginfo_alloc(1);
204         if (p->p_ksi != NULL) {
205                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
206                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
207         }
208         LIST_INIT(&p->p_mqnotifier);
209         p->p_numthreads = 0;
210         thread_link(td, p);
211 }
212
213 /*
214  * Initialize global thread allocation resources.
215  */
216 void
217 threadinit(void)
218 {
219
220         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
221         /* leave one number for thread0 */
222         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
223
224         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
225             thread_ctor, thread_dtor, thread_init, thread_fini,
226             16 - 1, 0);
227 }
228
229 /*
230  * Place an unused thread on the zombie list.
231  * Use the slpq as that must be unused by now.
232  */
233 void
234 thread_zombie(struct thread *td)
235 {
236         mtx_lock_spin(&zombie_lock);
237         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
238         mtx_unlock_spin(&zombie_lock);
239 }
240
241 /*
242  * Release a thread that has exited after cpu_throw().
243  */
244 void
245 thread_stash(struct thread *td)
246 {
247         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
248         thread_zombie(td);
249 }
250
251 /*
252  * Reap zombie resources.
253  */
254 void
255 thread_reap(void)
256 {
257         struct thread *td_first, *td_next;
258
259         /*
260          * Don't even bother to lock if none at this instant,
261          * we really don't care about the next instant..
262          */
263         if (!TAILQ_EMPTY(&zombie_threads)) {
264                 mtx_lock_spin(&zombie_lock);
265                 td_first = TAILQ_FIRST(&zombie_threads);
266                 if (td_first)
267                         TAILQ_INIT(&zombie_threads);
268                 mtx_unlock_spin(&zombie_lock);
269                 while (td_first) {
270                         td_next = TAILQ_NEXT(td_first, td_slpq);
271                         if (td_first->td_ucred)
272                                 crfree(td_first->td_ucred);
273                         thread_free(td_first);
274                         td_first = td_next;
275                 }
276         }
277 }
278
279 /*
280  * Allocate a thread.
281  */
282 struct thread *
283 thread_alloc(void)
284 {
285         struct thread *td;
286
287         thread_reap(); /* check if any zombies to get */
288
289         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
290         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
291         if (!vm_thread_new(td, 0)) {
292                 uma_zfree(thread_zone, td);
293                 return (NULL);
294         }
295         cpu_thread_alloc(td);
296         return (td);
297 }
298
299
300 /*
301  * Deallocate a thread.
302  */
303 void
304 thread_free(struct thread *td)
305 {
306         if (td->td_cpuset)
307                 cpuset_rel(td->td_cpuset);
308         td->td_cpuset = NULL;
309         cpu_thread_free(td);
310         if (td->td_altkstack != 0)
311                 vm_thread_dispose_altkstack(td);
312         if (td->td_kstack != 0)
313                 vm_thread_dispose(td);
314         uma_zfree(thread_zone, td);
315 }
316
317 /*
318  * Discard the current thread and exit from its context.
319  * Always called with scheduler locked.
320  *
321  * Because we can't free a thread while we're operating under its context,
322  * push the current thread into our CPU's deadthread holder. This means
323  * we needn't worry about someone else grabbing our context before we
324  * do a cpu_throw().
325  */
326 void
327 thread_exit(void)
328 {
329         uint64_t new_switchtime;
330         struct thread *td;
331         struct thread *td2;
332         struct proc *p;
333         int wakeup_swapper;
334
335         td = curthread;
336         p = td->td_proc;
337
338         PROC_SLOCK_ASSERT(p, MA_OWNED);
339         mtx_assert(&Giant, MA_NOTOWNED);
340
341         PROC_LOCK_ASSERT(p, MA_OWNED);
342         KASSERT(p != NULL, ("thread exiting without a process"));
343         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
344             (long)p->p_pid, td->td_name);
345         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
346
347 #ifdef AUDIT
348         AUDIT_SYSCALL_EXIT(0, td);
349 #endif
350         umtx_thread_exit(td);
351         /*
352          * drop FPU & debug register state storage, or any other
353          * architecture specific resources that
354          * would not be on a new untouched process.
355          */
356         cpu_thread_exit(td);    /* XXXSMP */
357
358         /* Do the same timestamp bookkeeping that mi_switch() would do. */
359         new_switchtime = cpu_ticks();
360         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
361         PCPU_SET(switchtime, new_switchtime);
362         PCPU_SET(switchticks, ticks);
363         PCPU_INC(cnt.v_swtch);
364         /* Save our resource usage in our process. */
365         td->td_ru.ru_nvcsw++;
366         rucollect(&p->p_ru, &td->td_ru);
367         /*
368          * The last thread is left attached to the process
369          * So that the whole bundle gets recycled. Skip
370          * all this stuff if we never had threads.
371          * EXIT clears all sign of other threads when
372          * it goes to single threading, so the last thread always
373          * takes the short path.
374          */
375         if (p->p_flag & P_HADTHREADS) {
376                 if (p->p_numthreads > 1) {
377                         thread_unlink(td);
378                         td2 = FIRST_THREAD_IN_PROC(p);
379                         sched_exit_thread(td2, td);
380
381                         /*
382                          * The test below is NOT true if we are the
383                          * sole exiting thread. P_STOPPED_SNGL is unset
384                          * in exit1() after it is the only survivor.
385                          */
386                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
387                                 if (p->p_numthreads == p->p_suspcount) {
388                                         thread_lock(p->p_singlethread);
389                                         wakeup_swapper = thread_unsuspend_one(
390                                                 p->p_singlethread);
391                                         thread_unlock(p->p_singlethread);
392                                         if (wakeup_swapper)
393                                                 kick_proc0();
394                                 }
395                         }
396
397                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
398                         PCPU_SET(deadthread, td);
399                 } else {
400                         /*
401                          * The last thread is exiting.. but not through exit()
402                          */
403                         panic ("thread_exit: Last thread exiting on its own");
404                 }
405         } 
406         PROC_UNLOCK(p);
407         thread_lock(td);
408         /* Save our tick information with both the thread and proc locked */
409         ruxagg(&p->p_rux, td);
410         PROC_SUNLOCK(p);
411         td->td_state = TDS_INACTIVE;
412 #ifdef WITNESS
413         witness_thread_exit(td);
414 #endif
415         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
416         sched_throw(td);
417         panic("I'm a teapot!");
418         /* NOTREACHED */
419 }
420
421 /*
422  * Do any thread specific cleanups that may be needed in wait()
423  * called with Giant, proc and schedlock not held.
424  */
425 void
426 thread_wait(struct proc *p)
427 {
428         struct thread *td;
429
430         mtx_assert(&Giant, MA_NOTOWNED);
431         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
432         td = FIRST_THREAD_IN_PROC(p);
433         /* Lock the last thread so we spin until it exits cpu_throw(). */
434         thread_lock(td);
435         thread_unlock(td);
436         /* Wait for any remaining threads to exit cpu_throw(). */
437         while (p->p_exitthreads)
438                 sched_relinquish(curthread);
439         cpuset_rel(td->td_cpuset);
440         td->td_cpuset = NULL;
441         cpu_thread_clean(td);
442         crfree(td->td_ucred);
443         thread_reap();  /* check for zombie threads etc. */
444 }
445
446 /*
447  * Link a thread to a process.
448  * set up anything that needs to be initialized for it to
449  * be used by the process.
450  */
451 void
452 thread_link(struct thread *td, struct proc *p)
453 {
454
455         /*
456          * XXX This can't be enabled because it's called for proc0 before
457          * its lock has been created.
458          * PROC_LOCK_ASSERT(p, MA_OWNED);
459          */
460         td->td_state    = TDS_INACTIVE;
461         td->td_proc     = p;
462         td->td_flags    = TDF_INMEM;
463
464         LIST_INIT(&td->td_contested);
465         LIST_INIT(&td->td_lprof[0]);
466         LIST_INIT(&td->td_lprof[1]);
467         sigqueue_init(&td->td_sigqueue, p);
468         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
469         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
470         p->p_numthreads++;
471 }
472
473 /*
474  * Convert a process with one thread to an unthreaded process.
475  */
476 void
477 thread_unthread(struct thread *td)
478 {
479         struct proc *p = td->td_proc;
480
481         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
482         p->p_flag &= ~P_HADTHREADS;
483 }
484
485 /*
486  * Called from:
487  *  thread_exit()
488  */
489 void
490 thread_unlink(struct thread *td)
491 {
492         struct proc *p = td->td_proc;
493
494         PROC_LOCK_ASSERT(p, MA_OWNED);
495         TAILQ_REMOVE(&p->p_threads, td, td_plist);
496         p->p_numthreads--;
497         /* could clear a few other things here */
498         /* Must  NOT clear links to proc! */
499 }
500
501 /*
502  * Enforce single-threading.
503  *
504  * Returns 1 if the caller must abort (another thread is waiting to
505  * exit the process or similar). Process is locked!
506  * Returns 0 when you are successfully the only thread running.
507  * A process has successfully single threaded in the suspend mode when
508  * There are no threads in user mode. Threads in the kernel must be
509  * allowed to continue until they get to the user boundary. They may even
510  * copy out their return values and data before suspending. They may however be
511  * accelerated in reaching the user boundary as we will wake up
512  * any sleeping threads that are interruptable. (PCATCH).
513  */
514 int
515 thread_single(int mode)
516 {
517         struct thread *td;
518         struct thread *td2;
519         struct proc *p;
520         int remaining, wakeup_swapper;
521
522         td = curthread;
523         p = td->td_proc;
524         mtx_assert(&Giant, MA_NOTOWNED);
525         PROC_LOCK_ASSERT(p, MA_OWNED);
526         KASSERT((td != NULL), ("curthread is NULL"));
527
528         if ((p->p_flag & P_HADTHREADS) == 0)
529                 return (0);
530
531         /* Is someone already single threading? */
532         if (p->p_singlethread != NULL && p->p_singlethread != td)
533                 return (1);
534
535         if (mode == SINGLE_EXIT) {
536                 p->p_flag |= P_SINGLE_EXIT;
537                 p->p_flag &= ~P_SINGLE_BOUNDARY;
538         } else {
539                 p->p_flag &= ~P_SINGLE_EXIT;
540                 if (mode == SINGLE_BOUNDARY)
541                         p->p_flag |= P_SINGLE_BOUNDARY;
542                 else
543                         p->p_flag &= ~P_SINGLE_BOUNDARY;
544         }
545         p->p_flag |= P_STOPPED_SINGLE;
546         PROC_SLOCK(p);
547         p->p_singlethread = td;
548         if (mode == SINGLE_EXIT)
549                 remaining = p->p_numthreads;
550         else if (mode == SINGLE_BOUNDARY)
551                 remaining = p->p_numthreads - p->p_boundary_count;
552         else
553                 remaining = p->p_numthreads - p->p_suspcount;
554         while (remaining != 1) {
555                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
556                         goto stopme;
557                 wakeup_swapper = 0;
558                 FOREACH_THREAD_IN_PROC(p, td2) {
559                         if (td2 == td)
560                                 continue;
561                         thread_lock(td2);
562                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
563                         if (TD_IS_INHIBITED(td2)) {
564                                 switch (mode) {
565                                 case SINGLE_EXIT:
566                                         if (TD_IS_SUSPENDED(td2))
567                                                 wakeup_swapper |=
568                                                     thread_unsuspend_one(td2);
569                                         if (TD_ON_SLEEPQ(td2) &&
570                                             (td2->td_flags & TDF_SINTR))
571                                                 wakeup_swapper |=
572                                                     sleepq_abort(td2, EINTR);
573                                         break;
574                                 case SINGLE_BOUNDARY:
575                                         if (TD_IS_SUSPENDED(td2) &&
576                                             !(td2->td_flags & TDF_BOUNDARY))
577                                                 wakeup_swapper |=
578                                                     thread_unsuspend_one(td2);
579                                         if (TD_ON_SLEEPQ(td2) &&
580                                             (td2->td_flags & TDF_SINTR))
581                                                 wakeup_swapper |=
582                                                     sleepq_abort(td2, ERESTART);
583                                         break;
584                                 default:
585                                         if (TD_IS_SUSPENDED(td2)) {
586                                                 thread_unlock(td2);
587                                                 continue;
588                                         }
589                                         /*
590                                          * maybe other inhibited states too?
591                                          */
592                                         if ((td2->td_flags & TDF_SINTR) &&
593                                             (td2->td_inhibitors &
594                                             (TDI_SLEEPING | TDI_SWAPPED)))
595                                                 thread_suspend_one(td2);
596                                         break;
597                                 }
598                         }
599 #ifdef SMP
600                         else if (TD_IS_RUNNING(td2) && td != td2) {
601                                 forward_signal(td2);
602                         }
603 #endif
604                         thread_unlock(td2);
605                 }
606                 if (wakeup_swapper)
607                         kick_proc0();
608                 if (mode == SINGLE_EXIT)
609                         remaining = p->p_numthreads;
610                 else if (mode == SINGLE_BOUNDARY)
611                         remaining = p->p_numthreads - p->p_boundary_count;
612                 else
613                         remaining = p->p_numthreads - p->p_suspcount;
614
615                 /*
616                  * Maybe we suspended some threads.. was it enough?
617                  */
618                 if (remaining == 1)
619                         break;
620
621 stopme:
622                 /*
623                  * Wake us up when everyone else has suspended.
624                  * In the mean time we suspend as well.
625                  */
626                 thread_suspend_switch(td);
627                 if (mode == SINGLE_EXIT)
628                         remaining = p->p_numthreads;
629                 else if (mode == SINGLE_BOUNDARY)
630                         remaining = p->p_numthreads - p->p_boundary_count;
631                 else
632                         remaining = p->p_numthreads - p->p_suspcount;
633         }
634         if (mode == SINGLE_EXIT) {
635                 /*
636                  * We have gotten rid of all the other threads and we
637                  * are about to either exit or exec. In either case,
638                  * we try our utmost  to revert to being a non-threaded
639                  * process.
640                  */
641                 p->p_singlethread = NULL;
642                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
643                 thread_unthread(td);
644         }
645         PROC_SUNLOCK(p);
646         return (0);
647 }
648
649 /*
650  * Called in from locations that can safely check to see
651  * whether we have to suspend or at least throttle for a
652  * single-thread event (e.g. fork).
653  *
654  * Such locations include userret().
655  * If the "return_instead" argument is non zero, the thread must be able to
656  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
657  *
658  * The 'return_instead' argument tells the function if it may do a
659  * thread_exit() or suspend, or whether the caller must abort and back
660  * out instead.
661  *
662  * If the thread that set the single_threading request has set the
663  * P_SINGLE_EXIT bit in the process flags then this call will never return
664  * if 'return_instead' is false, but will exit.
665  *
666  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
667  *---------------+--------------------+---------------------
668  *       0       | returns 0          |   returns 0 or 1
669  *               | when ST ends       |   immediatly
670  *---------------+--------------------+---------------------
671  *       1       | thread exits       |   returns 1
672  *               |                    |  immediatly
673  * 0 = thread_exit() or suspension ok,
674  * other = return error instead of stopping the thread.
675  *
676  * While a full suspension is under effect, even a single threading
677  * thread would be suspended if it made this call (but it shouldn't).
678  * This call should only be made from places where
679  * thread_exit() would be safe as that may be the outcome unless
680  * return_instead is set.
681  */
682 int
683 thread_suspend_check(int return_instead)
684 {
685         struct thread *td;
686         struct proc *p;
687         int wakeup_swapper;
688
689         td = curthread;
690         p = td->td_proc;
691         mtx_assert(&Giant, MA_NOTOWNED);
692         PROC_LOCK_ASSERT(p, MA_OWNED);
693         while (P_SHOULDSTOP(p) ||
694               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
695                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
696                         KASSERT(p->p_singlethread != NULL,
697                             ("singlethread not set"));
698                         /*
699                          * The only suspension in action is a
700                          * single-threading. Single threader need not stop.
701                          * XXX Should be safe to access unlocked
702                          * as it can only be set to be true by us.
703                          */
704                         if (p->p_singlethread == td)
705                                 return (0);     /* Exempt from stopping. */
706                 }
707                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
708                         return (EINTR);
709
710                 /* Should we goto user boundary if we didn't come from there? */
711                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
712                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
713                         return (ERESTART);
714
715                 /* If thread will exit, flush its pending signals */
716                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
717                         sigqueue_flush(&td->td_sigqueue);
718
719                 PROC_SLOCK(p);
720                 thread_stopped(p);
721                 /*
722                  * If the process is waiting for us to exit,
723                  * this thread should just suicide.
724                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
725                  */
726                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
727                         thread_exit();
728                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
729                         if (p->p_numthreads == p->p_suspcount + 1) {
730                                 thread_lock(p->p_singlethread);
731                                 wakeup_swapper =
732                                     thread_unsuspend_one(p->p_singlethread);
733                                 thread_unlock(p->p_singlethread);
734                                 if (wakeup_swapper)
735                                         kick_proc0();
736                         }
737                 }
738                 PROC_UNLOCK(p);
739                 thread_lock(td);
740                 /*
741                  * When a thread suspends, it just
742                  * gets taken off all queues.
743                  */
744                 thread_suspend_one(td);
745                 if (return_instead == 0) {
746                         p->p_boundary_count++;
747                         td->td_flags |= TDF_BOUNDARY;
748                 }
749                 PROC_SUNLOCK(p);
750                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
751                 if (return_instead == 0)
752                         td->td_flags &= ~TDF_BOUNDARY;
753                 thread_unlock(td);
754                 PROC_LOCK(p);
755                 if (return_instead == 0)
756                         p->p_boundary_count--;
757         }
758         return (0);
759 }
760
761 void
762 thread_suspend_switch(struct thread *td)
763 {
764         struct proc *p;
765
766         p = td->td_proc;
767         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
768         PROC_LOCK_ASSERT(p, MA_OWNED);
769         PROC_SLOCK_ASSERT(p, MA_OWNED);
770         /*
771          * We implement thread_suspend_one in stages here to avoid
772          * dropping the proc lock while the thread lock is owned.
773          */
774         thread_stopped(p);
775         p->p_suspcount++;
776         PROC_UNLOCK(p);
777         thread_lock(td);
778         td->td_flags &= ~TDF_NEEDSUSPCHK;
779         TD_SET_SUSPENDED(td);
780         sched_sleep(td, 0);
781         PROC_SUNLOCK(p);
782         DROP_GIANT();
783         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
784         thread_unlock(td);
785         PICKUP_GIANT();
786         PROC_LOCK(p);
787         PROC_SLOCK(p);
788 }
789
790 void
791 thread_suspend_one(struct thread *td)
792 {
793         struct proc *p = td->td_proc;
794
795         PROC_SLOCK_ASSERT(p, MA_OWNED);
796         THREAD_LOCK_ASSERT(td, MA_OWNED);
797         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
798         p->p_suspcount++;
799         td->td_flags &= ~TDF_NEEDSUSPCHK;
800         TD_SET_SUSPENDED(td);
801         sched_sleep(td, 0);
802 }
803
804 int
805 thread_unsuspend_one(struct thread *td)
806 {
807         struct proc *p = td->td_proc;
808
809         PROC_SLOCK_ASSERT(p, MA_OWNED);
810         THREAD_LOCK_ASSERT(td, MA_OWNED);
811         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
812         TD_CLR_SUSPENDED(td);
813         p->p_suspcount--;
814         return (setrunnable(td));
815 }
816
817 /*
818  * Allow all threads blocked by single threading to continue running.
819  */
820 void
821 thread_unsuspend(struct proc *p)
822 {
823         struct thread *td;
824         int wakeup_swapper;
825
826         PROC_LOCK_ASSERT(p, MA_OWNED);
827         PROC_SLOCK_ASSERT(p, MA_OWNED);
828         wakeup_swapper = 0;
829         if (!P_SHOULDSTOP(p)) {
830                 FOREACH_THREAD_IN_PROC(p, td) {
831                         thread_lock(td);
832                         if (TD_IS_SUSPENDED(td)) {
833                                 wakeup_swapper |= thread_unsuspend_one(td);
834                         }
835                         thread_unlock(td);
836                 }
837         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
838             (p->p_numthreads == p->p_suspcount)) {
839                 /*
840                  * Stopping everything also did the job for the single
841                  * threading request. Now we've downgraded to single-threaded,
842                  * let it continue.
843                  */
844                 thread_lock(p->p_singlethread);
845                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
846                 thread_unlock(p->p_singlethread);
847         }
848         if (wakeup_swapper)
849                 kick_proc0();
850 }
851
852 /*
853  * End the single threading mode..
854  */
855 void
856 thread_single_end(void)
857 {
858         struct thread *td;
859         struct proc *p;
860         int wakeup_swapper;
861
862         td = curthread;
863         p = td->td_proc;
864         PROC_LOCK_ASSERT(p, MA_OWNED);
865         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
866         PROC_SLOCK(p);
867         p->p_singlethread = NULL;
868         wakeup_swapper = 0;
869         /*
870          * If there are other threads they may now run,
871          * unless of course there is a blanket 'stop order'
872          * on the process. The single threader must be allowed
873          * to continue however as this is a bad place to stop.
874          */
875         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
876                 FOREACH_THREAD_IN_PROC(p, td) {
877                         thread_lock(td);
878                         if (TD_IS_SUSPENDED(td)) {
879                                 wakeup_swapper |= thread_unsuspend_one(td);
880                         }
881                         thread_unlock(td);
882                 }
883         }
884         PROC_SUNLOCK(p);
885         if (wakeup_swapper)
886                 kick_proc0();
887 }
888
889 struct thread *
890 thread_find(struct proc *p, lwpid_t tid)
891 {
892         struct thread *td;
893
894         PROC_LOCK_ASSERT(p, MA_OWNED);
895         FOREACH_THREAD_IN_PROC(p, td) {
896                 if (td->td_tid == tid)
897                         break;
898         }
899         return (td);
900 }