]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
ktrace: log genio events on failed write
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/msan.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/bitstring.h>
42 #include <sys/epoch.h>
43 #include <sys/rangelock.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sdt.h>
46 #include <sys/smp.h>
47 #include <sys/sched.h>
48 #include <sys/sleepqueue.h>
49 #include <sys/selinfo.h>
50 #include <sys/syscallsubr.h>
51 #include <sys/dtrace_bsd.h>
52 #include <sys/sysent.h>
53 #include <sys/turnstile.h>
54 #include <sys/taskqueue.h>
55 #include <sys/ktr.h>
56 #include <sys/rwlock.h>
57 #include <sys/umtxvar.h>
58 #include <sys/vmmeter.h>
59 #include <sys/cpuset.h>
60 #ifdef  HWPMC_HOOKS
61 #include <sys/pmckern.h>
62 #endif
63 #include <sys/priv.h>
64
65 #include <security/audit/audit.h>
66
67 #include <vm/pmap.h>
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/uma.h>
71 #include <vm/vm_phys.h>
72 #include <sys/eventhandler.h>
73
74 /*
75  * Asserts below verify the stability of struct thread and struct proc
76  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
77  * to drift, change to the structures must be accompanied by the
78  * assert update.
79  *
80  * On the stable branches after KBI freeze, conditions must not be
81  * violated.  Typically new fields are moved to the end of the
82  * structures.
83  */
84 #ifdef __amd64__
85 _Static_assert(offsetof(struct thread, td_flags) == 0x108,
86     "struct thread KBI td_flags");
87 _Static_assert(offsetof(struct thread, td_pflags) == 0x114,
88     "struct thread KBI td_pflags");
89 _Static_assert(offsetof(struct thread, td_frame) == 0x4b8,
90     "struct thread KBI td_frame");
91 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6c0,
92     "struct thread KBI td_emuldata");
93 _Static_assert(offsetof(struct proc, p_flag) == 0xb8,
94     "struct proc KBI p_flag");
95 _Static_assert(offsetof(struct proc, p_pid) == 0xc4,
96     "struct proc KBI p_pid");
97 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
98     "struct proc KBI p_filemon");
99 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
100     "struct proc KBI p_comm");
101 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4d0,
102     "struct proc KBI p_emuldata");
103 #endif
104 #ifdef __i386__
105 _Static_assert(offsetof(struct thread, td_flags) == 0x9c,
106     "struct thread KBI td_flags");
107 _Static_assert(offsetof(struct thread, td_pflags) == 0xa8,
108     "struct thread KBI td_pflags");
109 _Static_assert(offsetof(struct thread, td_frame) == 0x318,
110     "struct thread KBI td_frame");
111 _Static_assert(offsetof(struct thread, td_emuldata) == 0x35c,
112     "struct thread KBI td_emuldata");
113 _Static_assert(offsetof(struct proc, p_flag) == 0x6c,
114     "struct proc KBI p_flag");
115 _Static_assert(offsetof(struct proc, p_pid) == 0x78,
116     "struct proc KBI p_pid");
117 _Static_assert(offsetof(struct proc, p_filemon) == 0x270,
118     "struct proc KBI p_filemon");
119 _Static_assert(offsetof(struct proc, p_comm) == 0x284,
120     "struct proc KBI p_comm");
121 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
122     "struct proc KBI p_emuldata");
123 #endif
124
125 SDT_PROVIDER_DECLARE(proc);
126 SDT_PROBE_DEFINE(proc, , , lwp__exit);
127
128 /*
129  * thread related storage.
130  */
131 static uma_zone_t thread_zone;
132
133 struct thread_domain_data {
134         struct thread   *tdd_zombies;
135         int             tdd_reapticks;
136 } __aligned(CACHE_LINE_SIZE);
137
138 static struct thread_domain_data thread_domain_data[MAXMEMDOM];
139
140 static struct task      thread_reap_task;
141 static struct callout   thread_reap_callout;
142
143 static void thread_zombie(struct thread *);
144 static void thread_reap(void);
145 static void thread_reap_all(void);
146 static void thread_reap_task_cb(void *, int);
147 static void thread_reap_callout_cb(void *);
148 static int thread_unsuspend_one(struct thread *td, struct proc *p,
149     bool boundary);
150 static void thread_free_batched(struct thread *td);
151
152 static __exclusive_cache_line struct mtx tid_lock;
153 static bitstr_t *tid_bitmap;
154
155 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
156
157 static int maxthread;
158 SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
159     &maxthread, 0, "Maximum number of threads");
160
161 static __exclusive_cache_line int nthreads;
162
163 static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
164 static u_long   tidhash;
165 static u_long   tidhashlock;
166 static struct   rwlock *tidhashtbl_lock;
167 #define TIDHASH(tid)            (&tidhashtbl[(tid) & tidhash])
168 #define TIDHASHLOCK(tid)        (&tidhashtbl_lock[(tid) & tidhashlock])
169
170 EVENTHANDLER_LIST_DEFINE(thread_ctor);
171 EVENTHANDLER_LIST_DEFINE(thread_dtor);
172 EVENTHANDLER_LIST_DEFINE(thread_init);
173 EVENTHANDLER_LIST_DEFINE(thread_fini);
174
175 static bool
176 thread_count_inc_try(void)
177 {
178         int nthreads_new;
179
180         nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
181         if (nthreads_new >= maxthread - 100) {
182                 if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
183                     nthreads_new >= maxthread) {
184                         atomic_subtract_int(&nthreads, 1);
185                         return (false);
186                 }
187         }
188         return (true);
189 }
190
191 static bool
192 thread_count_inc(void)
193 {
194         static struct timeval lastfail;
195         static int curfail;
196
197         thread_reap();
198         if (thread_count_inc_try()) {
199                 return (true);
200         }
201
202         thread_reap_all();
203         if (thread_count_inc_try()) {
204                 return (true);
205         }
206
207         if (ppsratecheck(&lastfail, &curfail, 1)) {
208                 printf("maxthread limit exceeded by uid %u "
209                     "(pid %d); consider increasing kern.maxthread\n",
210                     curthread->td_ucred->cr_ruid, curproc->p_pid);
211         }
212         return (false);
213 }
214
215 static void
216 thread_count_sub(int n)
217 {
218
219         atomic_subtract_int(&nthreads, n);
220 }
221
222 static void
223 thread_count_dec(void)
224 {
225
226         thread_count_sub(1);
227 }
228
229 static lwpid_t
230 tid_alloc(void)
231 {
232         static lwpid_t trytid;
233         lwpid_t tid;
234
235         mtx_lock(&tid_lock);
236         /*
237          * It is an invariant that the bitmap is big enough to hold maxthread
238          * IDs. If we got to this point there has to be at least one free.
239          */
240         if (trytid >= maxthread)
241                 trytid = 0;
242         bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
243         if (tid == -1) {
244                 KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
245                 trytid = 0;
246                 bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
247                 KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
248         }
249         bit_set(tid_bitmap, tid);
250         trytid = tid + 1;
251         mtx_unlock(&tid_lock);
252         return (tid + NO_PID);
253 }
254
255 static void
256 tid_free_locked(lwpid_t rtid)
257 {
258         lwpid_t tid;
259
260         mtx_assert(&tid_lock, MA_OWNED);
261         KASSERT(rtid >= NO_PID,
262             ("%s: invalid tid %d\n", __func__, rtid));
263         tid = rtid - NO_PID;
264         KASSERT(bit_test(tid_bitmap, tid) != 0,
265             ("thread ID %d not allocated\n", rtid));
266         bit_clear(tid_bitmap, tid);
267 }
268
269 static void
270 tid_free(lwpid_t rtid)
271 {
272
273         mtx_lock(&tid_lock);
274         tid_free_locked(rtid);
275         mtx_unlock(&tid_lock);
276 }
277
278 static void
279 tid_free_batch(lwpid_t *batch, int n)
280 {
281         int i;
282
283         mtx_lock(&tid_lock);
284         for (i = 0; i < n; i++) {
285                 tid_free_locked(batch[i]);
286         }
287         mtx_unlock(&tid_lock);
288 }
289
290 /*
291  * Batching for thread reapping.
292  */
293 struct tidbatch {
294         lwpid_t tab[16];
295         int n;
296 };
297
298 static void
299 tidbatch_prep(struct tidbatch *tb)
300 {
301
302         tb->n = 0;
303 }
304
305 static void
306 tidbatch_add(struct tidbatch *tb, struct thread *td)
307 {
308
309         KASSERT(tb->n < nitems(tb->tab),
310             ("%s: count too high %d", __func__, tb->n));
311         tb->tab[tb->n] = td->td_tid;
312         tb->n++;
313 }
314
315 static void
316 tidbatch_process(struct tidbatch *tb)
317 {
318
319         KASSERT(tb->n <= nitems(tb->tab),
320             ("%s: count too high %d", __func__, tb->n));
321         if (tb->n == nitems(tb->tab)) {
322                 tid_free_batch(tb->tab, tb->n);
323                 tb->n = 0;
324         }
325 }
326
327 static void
328 tidbatch_final(struct tidbatch *tb)
329 {
330
331         KASSERT(tb->n <= nitems(tb->tab),
332             ("%s: count too high %d", __func__, tb->n));
333         if (tb->n != 0) {
334                 tid_free_batch(tb->tab, tb->n);
335         }
336 }
337
338 /*
339  * Batching thread count free, for consistency
340  */
341 struct tdcountbatch {
342         int n;
343 };
344
345 static void
346 tdcountbatch_prep(struct tdcountbatch *tb)
347 {
348
349         tb->n = 0;
350 }
351
352 static void
353 tdcountbatch_add(struct tdcountbatch *tb, struct thread *td __unused)
354 {
355
356         tb->n++;
357 }
358
359 static void
360 tdcountbatch_process(struct tdcountbatch *tb)
361 {
362
363         if (tb->n == 32) {
364                 thread_count_sub(tb->n);
365                 tb->n = 0;
366         }
367 }
368
369 static void
370 tdcountbatch_final(struct tdcountbatch *tb)
371 {
372
373         if (tb->n != 0) {
374                 thread_count_sub(tb->n);
375         }
376 }
377
378 /*
379  * Prepare a thread for use.
380  */
381 static int
382 thread_ctor(void *mem, int size, void *arg, int flags)
383 {
384         struct thread   *td;
385
386         td = (struct thread *)mem;
387         TD_SET_STATE(td, TDS_INACTIVE);
388         td->td_lastcpu = td->td_oncpu = NOCPU;
389
390         /*
391          * Note that td_critnest begins life as 1 because the thread is not
392          * running and is thereby implicitly waiting to be on the receiving
393          * end of a context switch.
394          */
395         td->td_critnest = 1;
396         td->td_lend_user_pri = PRI_MAX;
397 #ifdef AUDIT
398         audit_thread_alloc(td);
399 #endif
400 #ifdef KDTRACE_HOOKS
401         kdtrace_thread_ctor(td);
402 #endif
403         umtx_thread_alloc(td);
404         MPASS(td->td_sel == NULL);
405         return (0);
406 }
407
408 /*
409  * Reclaim a thread after use.
410  */
411 static void
412 thread_dtor(void *mem, int size, void *arg)
413 {
414         struct thread *td;
415
416         td = (struct thread *)mem;
417
418 #ifdef INVARIANTS
419         /* Verify that this thread is in a safe state to free. */
420         switch (TD_GET_STATE(td)) {
421         case TDS_INHIBITED:
422         case TDS_RUNNING:
423         case TDS_CAN_RUN:
424         case TDS_RUNQ:
425                 /*
426                  * We must never unlink a thread that is in one of
427                  * these states, because it is currently active.
428                  */
429                 panic("bad state for thread unlinking");
430                 /* NOTREACHED */
431         case TDS_INACTIVE:
432                 break;
433         default:
434                 panic("bad thread state");
435                 /* NOTREACHED */
436         }
437 #endif
438 #ifdef AUDIT
439         audit_thread_free(td);
440 #endif
441 #ifdef KDTRACE_HOOKS
442         kdtrace_thread_dtor(td);
443 #endif
444         /* Free all OSD associated to this thread. */
445         osd_thread_exit(td);
446         ast_kclear(td);
447         seltdfini(td);
448 }
449
450 /*
451  * Initialize type-stable parts of a thread (when newly created).
452  */
453 static int
454 thread_init(void *mem, int size, int flags)
455 {
456         struct thread *td;
457
458         td = (struct thread *)mem;
459
460         td->td_allocdomain = vm_phys_domain(vtophys(td));
461         td->td_sleepqueue = sleepq_alloc();
462         td->td_turnstile = turnstile_alloc();
463         td->td_rlqe = NULL;
464         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
465         umtx_thread_init(td);
466         td->td_kstack = 0;
467         td->td_sel = NULL;
468         return (0);
469 }
470
471 /*
472  * Tear down type-stable parts of a thread (just before being discarded).
473  */
474 static void
475 thread_fini(void *mem, int size)
476 {
477         struct thread *td;
478
479         td = (struct thread *)mem;
480         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
481         rlqentry_free(td->td_rlqe);
482         turnstile_free(td->td_turnstile);
483         sleepq_free(td->td_sleepqueue);
484         umtx_thread_fini(td);
485         MPASS(td->td_sel == NULL);
486 }
487
488 /*
489  * For a newly created process,
490  * link up all the structures and its initial threads etc.
491  * called from:
492  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
493  * proc_dtor() (should go away)
494  * proc_init()
495  */
496 void
497 proc_linkup0(struct proc *p, struct thread *td)
498 {
499         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
500         proc_linkup(p, td);
501 }
502
503 void
504 proc_linkup(struct proc *p, struct thread *td)
505 {
506
507         sigqueue_init(&p->p_sigqueue, p);
508         p->p_ksi = ksiginfo_alloc(M_WAITOK);
509         if (p->p_ksi != NULL) {
510                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
511                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
512         }
513         LIST_INIT(&p->p_mqnotifier);
514         p->p_numthreads = 0;
515         thread_link(td, p);
516 }
517
518 static void
519 ast_suspend(struct thread *td, int tda __unused)
520 {
521         struct proc *p;
522
523         p = td->td_proc;
524         /*
525          * We need to check to see if we have to exit or wait due to a
526          * single threading requirement or some other STOP condition.
527          */
528         PROC_LOCK(p);
529         thread_suspend_check(0);
530         PROC_UNLOCK(p);
531 }
532
533 extern int max_threads_per_proc;
534
535 /*
536  * Initialize global thread allocation resources.
537  */
538 void
539 threadinit(void)
540 {
541         u_long i;
542         lwpid_t tid0;
543
544         /*
545          * Place an upper limit on threads which can be allocated.
546          *
547          * Note that other factors may make the de facto limit much lower.
548          *
549          * Platform limits are somewhat arbitrary but deemed "more than good
550          * enough" for the foreseable future.
551          */
552         if (maxthread == 0) {
553 #ifdef _LP64
554                 maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
555 #else
556                 maxthread = MIN(maxproc * max_threads_per_proc, 100000);
557 #endif
558         }
559
560         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
561         tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
562         /*
563          * Handle thread0.
564          */
565         thread_count_inc();
566         tid0 = tid_alloc();
567         if (tid0 != THREAD0_TID)
568                 panic("tid0 %d != %d\n", tid0, THREAD0_TID);
569
570         /*
571          * Thread structures are specially aligned so that (at least) the
572          * 5 lower bits of a pointer to 'struct thead' must be 0.  These bits
573          * are used by synchronization primitives to store flags in pointers to
574          * such structures.
575          */
576         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
577             thread_ctor, thread_dtor, thread_init, thread_fini,
578             UMA_ALIGN_CACHE_AND_MASK(32 - 1), UMA_ZONE_NOFREE);
579         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
580         tidhashlock = (tidhash + 1) / 64;
581         if (tidhashlock > 0)
582                 tidhashlock--;
583         tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
584             M_TIDHASH, M_WAITOK | M_ZERO);
585         for (i = 0; i < tidhashlock + 1; i++)
586                 rw_init(&tidhashtbl_lock[i], "tidhash");
587
588         TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
589         callout_init(&thread_reap_callout, 1);
590         callout_reset(&thread_reap_callout, 5 * hz,
591             thread_reap_callout_cb, NULL);
592         ast_register(TDA_SUSPEND, ASTR_ASTF_REQUIRED, 0, ast_suspend);
593 }
594
595 /*
596  * Place an unused thread on the zombie list.
597  */
598 void
599 thread_zombie(struct thread *td)
600 {
601         struct thread_domain_data *tdd;
602         struct thread *ztd;
603
604         tdd = &thread_domain_data[td->td_allocdomain];
605         ztd = atomic_load_ptr(&tdd->tdd_zombies);
606         for (;;) {
607                 td->td_zombie = ztd;
608                 if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
609                     (uintptr_t *)&ztd, (uintptr_t)td))
610                         break;
611                 continue;
612         }
613 }
614
615 /*
616  * Release a thread that has exited after cpu_throw().
617  */
618 void
619 thread_stash(struct thread *td)
620 {
621         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
622         thread_zombie(td);
623 }
624
625 /*
626  * Reap zombies from passed domain.
627  */
628 static void
629 thread_reap_domain(struct thread_domain_data *tdd)
630 {
631         struct thread *itd, *ntd;
632         struct tidbatch tidbatch;
633         struct credbatch credbatch;
634         struct limbatch limbatch;
635         struct tdcountbatch tdcountbatch;
636
637         /*
638          * Reading upfront is pessimal if followed by concurrent atomic_swap,
639          * but most of the time the list is empty.
640          */
641         if (tdd->tdd_zombies == NULL)
642                 return;
643
644         itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
645             (uintptr_t)NULL);
646         if (itd == NULL)
647                 return;
648
649         /*
650          * Multiple CPUs can get here, the race is fine as ticks is only
651          * advisory.
652          */
653         tdd->tdd_reapticks = ticks;
654
655         tidbatch_prep(&tidbatch);
656         credbatch_prep(&credbatch);
657         limbatch_prep(&limbatch);
658         tdcountbatch_prep(&tdcountbatch);
659
660         while (itd != NULL) {
661                 ntd = itd->td_zombie;
662                 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
663
664                 tidbatch_add(&tidbatch, itd);
665                 credbatch_add(&credbatch, itd);
666                 limbatch_add(&limbatch, itd);
667                 tdcountbatch_add(&tdcountbatch, itd);
668
669                 thread_free_batched(itd);
670
671                 tidbatch_process(&tidbatch);
672                 credbatch_process(&credbatch);
673                 limbatch_process(&limbatch);
674                 tdcountbatch_process(&tdcountbatch);
675
676                 itd = ntd;
677         }
678
679         tidbatch_final(&tidbatch);
680         credbatch_final(&credbatch);
681         limbatch_final(&limbatch);
682         tdcountbatch_final(&tdcountbatch);
683 }
684
685 /*
686  * Reap zombies from all domains.
687  */
688 static void
689 thread_reap_all(void)
690 {
691         struct thread_domain_data *tdd;
692         int i, domain;
693
694         domain = PCPU_GET(domain);
695         for (i = 0; i < vm_ndomains; i++) {
696                 tdd = &thread_domain_data[(i + domain) % vm_ndomains];
697                 thread_reap_domain(tdd);
698         }
699 }
700
701 /*
702  * Reap zombies from local domain.
703  */
704 static void
705 thread_reap(void)
706 {
707         struct thread_domain_data *tdd;
708         int domain;
709
710         domain = PCPU_GET(domain);
711         tdd = &thread_domain_data[domain];
712
713         thread_reap_domain(tdd);
714 }
715
716 static void
717 thread_reap_task_cb(void *arg __unused, int pending __unused)
718 {
719
720         thread_reap_all();
721 }
722
723 static void
724 thread_reap_callout_cb(void *arg __unused)
725 {
726         struct thread_domain_data *tdd;
727         int i, cticks, lticks;
728         bool wantreap;
729
730         wantreap = false;
731         cticks = atomic_load_int(&ticks);
732         for (i = 0; i < vm_ndomains; i++) {
733                 tdd = &thread_domain_data[i];
734                 lticks = tdd->tdd_reapticks;
735                 if (tdd->tdd_zombies != NULL &&
736                     (u_int)(cticks - lticks) > 5 * hz) {
737                         wantreap = true;
738                         break;
739                 }
740         }
741
742         if (wantreap)
743                 taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
744         callout_reset(&thread_reap_callout, 5 * hz,
745             thread_reap_callout_cb, NULL);
746 }
747
748 /*
749  * Calling this function guarantees that any thread that exited before
750  * the call is reaped when the function returns.  By 'exited' we mean
751  * a thread removed from the process linkage with thread_unlink().
752  * Practically this means that caller must lock/unlock corresponding
753  * process lock before the call, to synchronize with thread_exit().
754  */
755 void
756 thread_reap_barrier(void)
757 {
758         struct task *t;
759
760         /*
761          * First do context switches to each CPU to ensure that all
762          * PCPU pc_deadthreads are moved to zombie list.
763          */
764         quiesce_all_cpus("", PDROP);
765
766         /*
767          * Second, fire the task in the same thread as normal
768          * thread_reap() is done, to serialize reaping.
769          */
770         t = malloc(sizeof(*t), M_TEMP, M_WAITOK);
771         TASK_INIT(t, 0, thread_reap_task_cb, t);
772         taskqueue_enqueue(taskqueue_thread, t);
773         taskqueue_drain(taskqueue_thread, t);
774         free(t, M_TEMP);
775 }
776
777 /*
778  * Allocate a thread.
779  */
780 struct thread *
781 thread_alloc(int pages)
782 {
783         struct thread *td;
784         lwpid_t tid;
785
786         if (!thread_count_inc()) {
787                 return (NULL);
788         }
789
790         tid = tid_alloc();
791         td = uma_zalloc(thread_zone, M_WAITOK);
792         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
793         if (!vm_thread_new(td, pages)) {
794                 uma_zfree(thread_zone, td);
795                 tid_free(tid);
796                 thread_count_dec();
797                 return (NULL);
798         }
799         td->td_tid = tid;
800         bzero(&td->td_sa.args, sizeof(td->td_sa.args));
801         kmsan_thread_alloc(td);
802         cpu_thread_alloc(td);
803         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
804         return (td);
805 }
806
807 int
808 thread_alloc_stack(struct thread *td, int pages)
809 {
810
811         KASSERT(td->td_kstack == 0,
812             ("thread_alloc_stack called on a thread with kstack"));
813         if (!vm_thread_new(td, pages))
814                 return (0);
815         cpu_thread_alloc(td);
816         return (1);
817 }
818
819 /*
820  * Deallocate a thread.
821  */
822 static void
823 thread_free_batched(struct thread *td)
824 {
825
826         lock_profile_thread_exit(td);
827         if (td->td_cpuset)
828                 cpuset_rel(td->td_cpuset);
829         td->td_cpuset = NULL;
830         cpu_thread_free(td);
831         if (td->td_kstack != 0)
832                 vm_thread_dispose(td);
833         callout_drain(&td->td_slpcallout);
834         /*
835          * Freeing handled by the caller.
836          */
837         td->td_tid = -1;
838         kmsan_thread_free(td);
839         uma_zfree(thread_zone, td);
840 }
841
842 void
843 thread_free(struct thread *td)
844 {
845         lwpid_t tid;
846
847         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
848         tid = td->td_tid;
849         thread_free_batched(td);
850         tid_free(tid);
851         thread_count_dec();
852 }
853
854 void
855 thread_cow_get_proc(struct thread *newtd, struct proc *p)
856 {
857
858         PROC_LOCK_ASSERT(p, MA_OWNED);
859         newtd->td_realucred = crcowget(p->p_ucred);
860         newtd->td_ucred = newtd->td_realucred;
861         newtd->td_limit = lim_hold(p->p_limit);
862         newtd->td_cowgen = p->p_cowgen;
863 }
864
865 void
866 thread_cow_get(struct thread *newtd, struct thread *td)
867 {
868
869         MPASS(td->td_realucred == td->td_ucred);
870         newtd->td_realucred = crcowget(td->td_realucred);
871         newtd->td_ucred = newtd->td_realucred;
872         newtd->td_limit = lim_hold(td->td_limit);
873         newtd->td_cowgen = td->td_cowgen;
874 }
875
876 void
877 thread_cow_free(struct thread *td)
878 {
879
880         if (td->td_realucred != NULL)
881                 crcowfree(td);
882         if (td->td_limit != NULL)
883                 lim_free(td->td_limit);
884 }
885
886 void
887 thread_cow_update(struct thread *td)
888 {
889         struct proc *p;
890         struct ucred *oldcred;
891         struct plimit *oldlimit;
892
893         p = td->td_proc;
894         PROC_LOCK(p);
895         oldcred = crcowsync();
896         oldlimit = lim_cowsync();
897         td->td_cowgen = p->p_cowgen;
898         PROC_UNLOCK(p);
899         if (oldcred != NULL)
900                 crfree(oldcred);
901         if (oldlimit != NULL)
902                 lim_free(oldlimit);
903 }
904
905 void
906 thread_cow_synced(struct thread *td)
907 {
908         struct proc *p;
909
910         p = td->td_proc;
911         PROC_LOCK_ASSERT(p, MA_OWNED);
912         MPASS(td->td_cowgen != p->p_cowgen);
913         MPASS(td->td_ucred == p->p_ucred);
914         MPASS(td->td_limit == p->p_limit);
915         td->td_cowgen = p->p_cowgen;
916 }
917
918 /*
919  * Discard the current thread and exit from its context.
920  * Always called with scheduler locked.
921  *
922  * Because we can't free a thread while we're operating under its context,
923  * push the current thread into our CPU's deadthread holder. This means
924  * we needn't worry about someone else grabbing our context before we
925  * do a cpu_throw().
926  */
927 void
928 thread_exit(void)
929 {
930         uint64_t runtime, new_switchtime;
931         struct thread *td;
932         struct thread *td2;
933         struct proc *p;
934         int wakeup_swapper;
935
936         td = curthread;
937         p = td->td_proc;
938
939         PROC_SLOCK_ASSERT(p, MA_OWNED);
940         mtx_assert(&Giant, MA_NOTOWNED);
941
942         PROC_LOCK_ASSERT(p, MA_OWNED);
943         KASSERT(p != NULL, ("thread exiting without a process"));
944         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
945             (long)p->p_pid, td->td_name);
946         SDT_PROBE0(proc, , , lwp__exit);
947         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
948         MPASS(td->td_realucred == td->td_ucred);
949
950         /*
951          * drop FPU & debug register state storage, or any other
952          * architecture specific resources that
953          * would not be on a new untouched process.
954          */
955         cpu_thread_exit(td);
956
957         /*
958          * The last thread is left attached to the process
959          * So that the whole bundle gets recycled. Skip
960          * all this stuff if we never had threads.
961          * EXIT clears all sign of other threads when
962          * it goes to single threading, so the last thread always
963          * takes the short path.
964          */
965         if (p->p_flag & P_HADTHREADS) {
966                 if (p->p_numthreads > 1) {
967                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
968                         thread_unlink(td);
969                         td2 = FIRST_THREAD_IN_PROC(p);
970                         sched_exit_thread(td2, td);
971
972                         /*
973                          * The test below is NOT true if we are the
974                          * sole exiting thread. P_STOPPED_SINGLE is unset
975                          * in exit1() after it is the only survivor.
976                          */
977                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
978                                 if (p->p_numthreads == p->p_suspcount) {
979                                         thread_lock(p->p_singlethread);
980                                         wakeup_swapper = thread_unsuspend_one(
981                                                 p->p_singlethread, p, false);
982                                         if (wakeup_swapper)
983                                                 kick_proc0();
984                                 }
985                         }
986
987                         PCPU_SET(deadthread, td);
988                 } else {
989                         /*
990                          * The last thread is exiting.. but not through exit()
991                          */
992                         panic ("thread_exit: Last thread exiting on its own");
993                 }
994         } 
995 #ifdef  HWPMC_HOOKS
996         /*
997          * If this thread is part of a process that is being tracked by hwpmc(4),
998          * inform the module of the thread's impending exit.
999          */
1000         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
1001                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1002                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
1003         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
1004                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
1005 #endif
1006         PROC_UNLOCK(p);
1007         PROC_STATLOCK(p);
1008         thread_lock(td);
1009         PROC_SUNLOCK(p);
1010
1011         /* Do the same timestamp bookkeeping that mi_switch() would do. */
1012         new_switchtime = cpu_ticks();
1013         runtime = new_switchtime - PCPU_GET(switchtime);
1014         td->td_runtime += runtime;
1015         td->td_incruntime += runtime;
1016         PCPU_SET(switchtime, new_switchtime);
1017         PCPU_SET(switchticks, ticks);
1018         VM_CNT_INC(v_swtch);
1019
1020         /* Save our resource usage in our process. */
1021         td->td_ru.ru_nvcsw++;
1022         ruxagg_locked(p, td);
1023         rucollect(&p->p_ru, &td->td_ru);
1024         PROC_STATUNLOCK(p);
1025
1026         TD_SET_STATE(td, TDS_INACTIVE);
1027 #ifdef WITNESS
1028         witness_thread_exit(td);
1029 #endif
1030         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
1031         sched_throw(td);
1032         panic("I'm a teapot!");
1033         /* NOTREACHED */
1034 }
1035
1036 /*
1037  * Do any thread specific cleanups that may be needed in wait()
1038  * called with Giant, proc and schedlock not held.
1039  */
1040 void
1041 thread_wait(struct proc *p)
1042 {
1043         struct thread *td;
1044
1045         mtx_assert(&Giant, MA_NOTOWNED);
1046         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
1047         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
1048         td = FIRST_THREAD_IN_PROC(p);
1049         /* Lock the last thread so we spin until it exits cpu_throw(). */
1050         thread_lock(td);
1051         thread_unlock(td);
1052         lock_profile_thread_exit(td);
1053         cpuset_rel(td->td_cpuset);
1054         td->td_cpuset = NULL;
1055         cpu_thread_clean(td);
1056         thread_cow_free(td);
1057         callout_drain(&td->td_slpcallout);
1058         thread_reap();  /* check for zombie threads etc. */
1059 }
1060
1061 /*
1062  * Link a thread to a process.
1063  * set up anything that needs to be initialized for it to
1064  * be used by the process.
1065  */
1066 void
1067 thread_link(struct thread *td, struct proc *p)
1068 {
1069
1070         /*
1071          * XXX This can't be enabled because it's called for proc0 before
1072          * its lock has been created.
1073          * PROC_LOCK_ASSERT(p, MA_OWNED);
1074          */
1075         TD_SET_STATE(td, TDS_INACTIVE);
1076         td->td_proc     = p;
1077         td->td_flags    = TDF_INMEM;
1078
1079         LIST_INIT(&td->td_contested);
1080         LIST_INIT(&td->td_lprof[0]);
1081         LIST_INIT(&td->td_lprof[1]);
1082 #ifdef EPOCH_TRACE
1083         SLIST_INIT(&td->td_epochs);
1084 #endif
1085         sigqueue_init(&td->td_sigqueue, p);
1086         callout_init(&td->td_slpcallout, 1);
1087         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
1088         p->p_numthreads++;
1089 }
1090
1091 /*
1092  * Called from:
1093  *  thread_exit()
1094  */
1095 void
1096 thread_unlink(struct thread *td)
1097 {
1098         struct proc *p = td->td_proc;
1099
1100         PROC_LOCK_ASSERT(p, MA_OWNED);
1101 #ifdef EPOCH_TRACE
1102         MPASS(SLIST_EMPTY(&td->td_epochs));
1103 #endif
1104
1105         TAILQ_REMOVE(&p->p_threads, td, td_plist);
1106         p->p_numthreads--;
1107         /* could clear a few other things here */
1108         /* Must  NOT clear links to proc! */
1109 }
1110
1111 static int
1112 calc_remaining(struct proc *p, int mode)
1113 {
1114         int remaining;
1115
1116         PROC_LOCK_ASSERT(p, MA_OWNED);
1117         PROC_SLOCK_ASSERT(p, MA_OWNED);
1118         if (mode == SINGLE_EXIT)
1119                 remaining = p->p_numthreads;
1120         else if (mode == SINGLE_BOUNDARY)
1121                 remaining = p->p_numthreads - p->p_boundary_count;
1122         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
1123                 remaining = p->p_numthreads - p->p_suspcount;
1124         else
1125                 panic("calc_remaining: wrong mode %d", mode);
1126         return (remaining);
1127 }
1128
1129 static int
1130 remain_for_mode(int mode)
1131 {
1132
1133         return (mode == SINGLE_ALLPROC ? 0 : 1);
1134 }
1135
1136 static int
1137 weed_inhib(int mode, struct thread *td2, struct proc *p)
1138 {
1139         int wakeup_swapper;
1140
1141         PROC_LOCK_ASSERT(p, MA_OWNED);
1142         PROC_SLOCK_ASSERT(p, MA_OWNED);
1143         THREAD_LOCK_ASSERT(td2, MA_OWNED);
1144
1145         wakeup_swapper = 0;
1146
1147         /*
1148          * Since the thread lock is dropped by the scheduler we have
1149          * to retry to check for races.
1150          */
1151 restart:
1152         switch (mode) {
1153         case SINGLE_EXIT:
1154                 if (TD_IS_SUSPENDED(td2)) {
1155                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
1156                         thread_lock(td2);
1157                         goto restart;
1158                 }
1159                 if (TD_CAN_ABORT(td2)) {
1160                         wakeup_swapper |= sleepq_abort(td2, EINTR);
1161                         return (wakeup_swapper);
1162                 }
1163                 break;
1164         case SINGLE_BOUNDARY:
1165         case SINGLE_NO_EXIT:
1166                 if (TD_IS_SUSPENDED(td2) &&
1167                     (td2->td_flags & TDF_BOUNDARY) == 0) {
1168                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1169                         thread_lock(td2);
1170                         goto restart;
1171                 }
1172                 if (TD_CAN_ABORT(td2)) {
1173                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1174                         return (wakeup_swapper);
1175                 }
1176                 break;
1177         case SINGLE_ALLPROC:
1178                 /*
1179                  * ALLPROC suspend tries to avoid spurious EINTR for
1180                  * threads sleeping interruptable, by suspending the
1181                  * thread directly, similarly to sig_suspend_threads().
1182                  * Since such sleep is not neccessary performed at the user
1183                  * boundary, TDF_ALLPROCSUSP is used to avoid immediate
1184                  * un-suspend.
1185                  */
1186                 if (TD_IS_SUSPENDED(td2) &&
1187                     (td2->td_flags & TDF_ALLPROCSUSP) == 0) {
1188                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1189                         thread_lock(td2);
1190                         goto restart;
1191                 }
1192                 if (TD_CAN_ABORT(td2)) {
1193                         td2->td_flags |= TDF_ALLPROCSUSP;
1194                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1195                         return (wakeup_swapper);
1196                 }
1197                 break;
1198         default:
1199                 break;
1200         }
1201         thread_unlock(td2);
1202         return (wakeup_swapper);
1203 }
1204
1205 /*
1206  * Enforce single-threading.
1207  *
1208  * Returns 1 if the caller must abort (another thread is waiting to
1209  * exit the process or similar). Process is locked!
1210  * Returns 0 when you are successfully the only thread running.
1211  * A process has successfully single threaded in the suspend mode when
1212  * There are no threads in user mode. Threads in the kernel must be
1213  * allowed to continue until they get to the user boundary. They may even
1214  * copy out their return values and data before suspending. They may however be
1215  * accelerated in reaching the user boundary as we will wake up
1216  * any sleeping threads that are interruptable. (PCATCH).
1217  */
1218 int
1219 thread_single(struct proc *p, int mode)
1220 {
1221         struct thread *td;
1222         struct thread *td2;
1223         int remaining, wakeup_swapper;
1224
1225         td = curthread;
1226         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1227             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1228             ("invalid mode %d", mode));
1229         /*
1230          * If allowing non-ALLPROC singlethreading for non-curproc
1231          * callers, calc_remaining() and remain_for_mode() should be
1232          * adjusted to also account for td->td_proc != p.  For now
1233          * this is not implemented because it is not used.
1234          */
1235         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
1236             (mode != SINGLE_ALLPROC && td->td_proc == p),
1237             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
1238         mtx_assert(&Giant, MA_NOTOWNED);
1239         PROC_LOCK_ASSERT(p, MA_OWNED);
1240
1241         /*
1242          * Is someone already single threading?
1243          * Or may be singlethreading is not needed at all.
1244          */
1245         if (mode == SINGLE_ALLPROC) {
1246                 while ((p->p_flag & P_STOPPED_SINGLE) != 0) {
1247                         if ((p->p_flag2 & P2_WEXIT) != 0)
1248                                 return (1);
1249                         msleep(&p->p_flag, &p->p_mtx, PCATCH, "thrsgl", 0);
1250                 }
1251         } else if ((p->p_flag & P_HADTHREADS) == 0)
1252                 return (0);
1253         if (p->p_singlethread != NULL && p->p_singlethread != td)
1254                 return (1);
1255
1256         if (mode == SINGLE_EXIT) {
1257                 p->p_flag |= P_SINGLE_EXIT;
1258                 p->p_flag &= ~P_SINGLE_BOUNDARY;
1259         } else {
1260                 p->p_flag &= ~P_SINGLE_EXIT;
1261                 if (mode == SINGLE_BOUNDARY)
1262                         p->p_flag |= P_SINGLE_BOUNDARY;
1263                 else
1264                         p->p_flag &= ~P_SINGLE_BOUNDARY;
1265         }
1266         if (mode == SINGLE_ALLPROC)
1267                 p->p_flag |= P_TOTAL_STOP;
1268         p->p_flag |= P_STOPPED_SINGLE;
1269         PROC_SLOCK(p);
1270         p->p_singlethread = td;
1271         remaining = calc_remaining(p, mode);
1272         while (remaining != remain_for_mode(mode)) {
1273                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
1274                         goto stopme;
1275                 wakeup_swapper = 0;
1276                 FOREACH_THREAD_IN_PROC(p, td2) {
1277                         if (td2 == td)
1278                                 continue;
1279                         thread_lock(td2);
1280                         ast_sched_locked(td2, TDA_SUSPEND);
1281                         if (TD_IS_INHIBITED(td2)) {
1282                                 wakeup_swapper |= weed_inhib(mode, td2, p);
1283 #ifdef SMP
1284                         } else if (TD_IS_RUNNING(td2)) {
1285                                 forward_signal(td2);
1286                                 thread_unlock(td2);
1287 #endif
1288                         } else
1289                                 thread_unlock(td2);
1290                 }
1291                 if (wakeup_swapper)
1292                         kick_proc0();
1293                 remaining = calc_remaining(p, mode);
1294
1295                 /*
1296                  * Maybe we suspended some threads.. was it enough?
1297                  */
1298                 if (remaining == remain_for_mode(mode))
1299                         break;
1300
1301 stopme:
1302                 /*
1303                  * Wake us up when everyone else has suspended.
1304                  * In the mean time we suspend as well.
1305                  */
1306                 thread_suspend_switch(td, p);
1307                 remaining = calc_remaining(p, mode);
1308         }
1309         if (mode == SINGLE_EXIT) {
1310                 /*
1311                  * Convert the process to an unthreaded process.  The
1312                  * SINGLE_EXIT is called by exit1() or execve(), in
1313                  * both cases other threads must be retired.
1314                  */
1315                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
1316                 p->p_singlethread = NULL;
1317                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
1318
1319                 /*
1320                  * Wait for any remaining threads to exit cpu_throw().
1321                  */
1322                 while (p->p_exitthreads != 0) {
1323                         PROC_SUNLOCK(p);
1324                         PROC_UNLOCK(p);
1325                         sched_relinquish(td);
1326                         PROC_LOCK(p);
1327                         PROC_SLOCK(p);
1328                 }
1329         } else if (mode == SINGLE_BOUNDARY) {
1330                 /*
1331                  * Wait until all suspended threads are removed from
1332                  * the processors.  The thread_suspend_check()
1333                  * increments p_boundary_count while it is still
1334                  * running, which makes it possible for the execve()
1335                  * to destroy vmspace while our other threads are
1336                  * still using the address space.
1337                  *
1338                  * We lock the thread, which is only allowed to
1339                  * succeed after context switch code finished using
1340                  * the address space.
1341                  */
1342                 FOREACH_THREAD_IN_PROC(p, td2) {
1343                         if (td2 == td)
1344                                 continue;
1345                         thread_lock(td2);
1346                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
1347                             ("td %p not on boundary", td2));
1348                         KASSERT(TD_IS_SUSPENDED(td2),
1349                             ("td %p is not suspended", td2));
1350                         thread_unlock(td2);
1351                 }
1352         }
1353         PROC_SUNLOCK(p);
1354         return (0);
1355 }
1356
1357 bool
1358 thread_suspend_check_needed(void)
1359 {
1360         struct proc *p;
1361         struct thread *td;
1362
1363         td = curthread;
1364         p = td->td_proc;
1365         PROC_LOCK_ASSERT(p, MA_OWNED);
1366         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
1367             (td->td_dbgflags & TDB_SUSPEND) != 0));
1368 }
1369
1370 /*
1371  * Called in from locations that can safely check to see
1372  * whether we have to suspend or at least throttle for a
1373  * single-thread event (e.g. fork).
1374  *
1375  * Such locations include userret().
1376  * If the "return_instead" argument is non zero, the thread must be able to
1377  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1378  *
1379  * The 'return_instead' argument tells the function if it may do a
1380  * thread_exit() or suspend, or whether the caller must abort and back
1381  * out instead.
1382  *
1383  * If the thread that set the single_threading request has set the
1384  * P_SINGLE_EXIT bit in the process flags then this call will never return
1385  * if 'return_instead' is false, but will exit.
1386  *
1387  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1388  *---------------+--------------------+---------------------
1389  *       0       | returns 0          |   returns 0 or 1
1390  *               | when ST ends       |   immediately
1391  *---------------+--------------------+---------------------
1392  *       1       | thread exits       |   returns 1
1393  *               |                    |  immediately
1394  * 0 = thread_exit() or suspension ok,
1395  * other = return error instead of stopping the thread.
1396  *
1397  * While a full suspension is under effect, even a single threading
1398  * thread would be suspended if it made this call (but it shouldn't).
1399  * This call should only be made from places where
1400  * thread_exit() would be safe as that may be the outcome unless
1401  * return_instead is set.
1402  */
1403 int
1404 thread_suspend_check(int return_instead)
1405 {
1406         struct thread *td;
1407         struct proc *p;
1408         int wakeup_swapper;
1409
1410         td = curthread;
1411         p = td->td_proc;
1412         mtx_assert(&Giant, MA_NOTOWNED);
1413         PROC_LOCK_ASSERT(p, MA_OWNED);
1414         while (thread_suspend_check_needed()) {
1415                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1416                         KASSERT(p->p_singlethread != NULL,
1417                             ("singlethread not set"));
1418                         /*
1419                          * The only suspension in action is a
1420                          * single-threading. Single threader need not stop.
1421                          * It is safe to access p->p_singlethread unlocked
1422                          * because it can only be set to our address by us.
1423                          */
1424                         if (p->p_singlethread == td)
1425                                 return (0);     /* Exempt from stopping. */
1426                 }
1427                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1428                         return (EINTR);
1429
1430                 /* Should we goto user boundary if we didn't come from there? */
1431                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1432                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1433                         return (ERESTART);
1434
1435                 /*
1436                  * Ignore suspend requests if they are deferred.
1437                  */
1438                 if ((td->td_flags & TDF_SBDRY) != 0) {
1439                         KASSERT(return_instead,
1440                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
1441                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1442                             (TDF_SEINTR | TDF_SERESTART),
1443                             ("both TDF_SEINTR and TDF_SERESTART"));
1444                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1445                 }
1446
1447                 /*
1448                  * If the process is waiting for us to exit,
1449                  * this thread should just suicide.
1450                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1451                  */
1452                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1453                         PROC_UNLOCK(p);
1454
1455                         /*
1456                          * Allow Linux emulation layer to do some work
1457                          * before thread suicide.
1458                          */
1459                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1460                                 (p->p_sysent->sv_thread_detach)(td);
1461                         umtx_thread_exit(td);
1462                         kern_thr_exit(td);
1463                         panic("stopped thread did not exit");
1464                 }
1465
1466                 PROC_SLOCK(p);
1467                 thread_stopped(p);
1468                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1469                         if (p->p_numthreads == p->p_suspcount + 1) {
1470                                 thread_lock(p->p_singlethread);
1471                                 wakeup_swapper = thread_unsuspend_one(
1472                                     p->p_singlethread, p, false);
1473                                 if (wakeup_swapper)
1474                                         kick_proc0();
1475                         }
1476                 }
1477                 PROC_UNLOCK(p);
1478                 thread_lock(td);
1479                 /*
1480                  * When a thread suspends, it just
1481                  * gets taken off all queues.
1482                  */
1483                 thread_suspend_one(td);
1484                 if (return_instead == 0) {
1485                         p->p_boundary_count++;
1486                         td->td_flags |= TDF_BOUNDARY;
1487                 }
1488                 PROC_SUNLOCK(p);
1489                 mi_switch(SW_INVOL | SWT_SUSPEND);
1490                 PROC_LOCK(p);
1491         }
1492         return (0);
1493 }
1494
1495 /*
1496  * Check for possible stops and suspensions while executing a
1497  * casueword or similar transiently failing operation.
1498  *
1499  * The sleep argument controls whether the function can handle a stop
1500  * request itself or it should return ERESTART and the request is
1501  * proceed at the kernel/user boundary in ast.
1502  *
1503  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1504  * should handle the stop requests there, with exception of cases when
1505  * the thread owns a kernel resource, for instance busied the umtx
1506  * key, or when functions return immediately if thread_check_susp()
1507  * returned non-zero.  On the other hand, retrying the whole lock
1508  * operation, we better not stop there but delegate the handling to
1509  * ast.
1510  *
1511  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1512  * handle it at all, and simply return EINTR.
1513  */
1514 int
1515 thread_check_susp(struct thread *td, bool sleep)
1516 {
1517         struct proc *p;
1518         int error;
1519
1520         /*
1521          * The check for TDA_SUSPEND is racy, but it is enough to
1522          * eventually break the lockstep loop.
1523          */
1524         if (!td_ast_pending(td, TDA_SUSPEND))
1525                 return (0);
1526         error = 0;
1527         p = td->td_proc;
1528         PROC_LOCK(p);
1529         if (p->p_flag & P_SINGLE_EXIT)
1530                 error = EINTR;
1531         else if (P_SHOULDSTOP(p) ||
1532             ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1533                 error = sleep ? thread_suspend_check(0) : ERESTART;
1534         PROC_UNLOCK(p);
1535         return (error);
1536 }
1537
1538 void
1539 thread_suspend_switch(struct thread *td, struct proc *p)
1540 {
1541
1542         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1543         PROC_LOCK_ASSERT(p, MA_OWNED);
1544         PROC_SLOCK_ASSERT(p, MA_OWNED);
1545         /*
1546          * We implement thread_suspend_one in stages here to avoid
1547          * dropping the proc lock while the thread lock is owned.
1548          */
1549         if (p == td->td_proc) {
1550                 thread_stopped(p);
1551                 p->p_suspcount++;
1552         }
1553         PROC_UNLOCK(p);
1554         thread_lock(td);
1555         ast_unsched_locked(td, TDA_SUSPEND);
1556         TD_SET_SUSPENDED(td);
1557         sched_sleep(td, 0);
1558         PROC_SUNLOCK(p);
1559         DROP_GIANT();
1560         mi_switch(SW_VOL | SWT_SUSPEND);
1561         PICKUP_GIANT();
1562         PROC_LOCK(p);
1563         PROC_SLOCK(p);
1564 }
1565
1566 void
1567 thread_suspend_one(struct thread *td)
1568 {
1569         struct proc *p;
1570
1571         p = td->td_proc;
1572         PROC_SLOCK_ASSERT(p, MA_OWNED);
1573         THREAD_LOCK_ASSERT(td, MA_OWNED);
1574         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1575         p->p_suspcount++;
1576         ast_unsched_locked(td, TDA_SUSPEND);
1577         TD_SET_SUSPENDED(td);
1578         sched_sleep(td, 0);
1579 }
1580
1581 static int
1582 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1583 {
1584
1585         THREAD_LOCK_ASSERT(td, MA_OWNED);
1586         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1587         TD_CLR_SUSPENDED(td);
1588         td->td_flags &= ~TDF_ALLPROCSUSP;
1589         if (td->td_proc == p) {
1590                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1591                 p->p_suspcount--;
1592                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1593                         td->td_flags &= ~TDF_BOUNDARY;
1594                         p->p_boundary_count--;
1595                 }
1596         }
1597         return (setrunnable(td, 0));
1598 }
1599
1600 void
1601 thread_run_flash(struct thread *td)
1602 {
1603         struct proc *p;
1604
1605         p = td->td_proc;
1606         PROC_LOCK_ASSERT(p, MA_OWNED);
1607
1608         if (TD_ON_SLEEPQ(td))
1609                 sleepq_remove_nested(td);
1610         else
1611                 thread_lock(td);
1612
1613         THREAD_LOCK_ASSERT(td, MA_OWNED);
1614         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1615
1616         TD_CLR_SUSPENDED(td);
1617         PROC_SLOCK(p);
1618         MPASS(p->p_suspcount > 0);
1619         p->p_suspcount--;
1620         PROC_SUNLOCK(p);
1621         if (setrunnable(td, 0))
1622                 kick_proc0();
1623 }
1624
1625 /*
1626  * Allow all threads blocked by single threading to continue running.
1627  */
1628 void
1629 thread_unsuspend(struct proc *p)
1630 {
1631         struct thread *td;
1632         int wakeup_swapper;
1633
1634         PROC_LOCK_ASSERT(p, MA_OWNED);
1635         PROC_SLOCK_ASSERT(p, MA_OWNED);
1636         wakeup_swapper = 0;
1637         if (!P_SHOULDSTOP(p)) {
1638                 FOREACH_THREAD_IN_PROC(p, td) {
1639                         thread_lock(td);
1640                         if (TD_IS_SUSPENDED(td))
1641                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1642                                     true);
1643                         else
1644                                 thread_unlock(td);
1645                 }
1646         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1647             p->p_numthreads == p->p_suspcount) {
1648                 /*
1649                  * Stopping everything also did the job for the single
1650                  * threading request. Now we've downgraded to single-threaded,
1651                  * let it continue.
1652                  */
1653                 if (p->p_singlethread->td_proc == p) {
1654                         thread_lock(p->p_singlethread);
1655                         wakeup_swapper = thread_unsuspend_one(
1656                             p->p_singlethread, p, false);
1657                 }
1658         }
1659         if (wakeup_swapper)
1660                 kick_proc0();
1661 }
1662
1663 /*
1664  * End the single threading mode..
1665  */
1666 void
1667 thread_single_end(struct proc *p, int mode)
1668 {
1669         struct thread *td;
1670         int wakeup_swapper;
1671
1672         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1673             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1674             ("invalid mode %d", mode));
1675         PROC_LOCK_ASSERT(p, MA_OWNED);
1676         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1677             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1678             ("mode %d does not match P_TOTAL_STOP", mode));
1679         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1680             ("thread_single_end from other thread %p %p",
1681             curthread, p->p_singlethread));
1682         KASSERT(mode != SINGLE_BOUNDARY ||
1683             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1684             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1685         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1686             P_TOTAL_STOP);
1687         PROC_SLOCK(p);
1688         p->p_singlethread = NULL;
1689         wakeup_swapper = 0;
1690         /*
1691          * If there are other threads they may now run,
1692          * unless of course there is a blanket 'stop order'
1693          * on the process. The single threader must be allowed
1694          * to continue however as this is a bad place to stop.
1695          */
1696         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1697                 FOREACH_THREAD_IN_PROC(p, td) {
1698                         thread_lock(td);
1699                         if (TD_IS_SUSPENDED(td)) {
1700                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1701                                     true);
1702                         } else
1703                                 thread_unlock(td);
1704                 }
1705         }
1706         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1707             ("inconsistent boundary count %d", p->p_boundary_count));
1708         PROC_SUNLOCK(p);
1709         if (wakeup_swapper)
1710                 kick_proc0();
1711         wakeup(&p->p_flag);
1712 }
1713
1714 /*
1715  * Locate a thread by number and return with proc lock held.
1716  *
1717  * thread exit establishes proc -> tidhash lock ordering, but lookup
1718  * takes tidhash first and needs to return locked proc.
1719  *
1720  * The problem is worked around by relying on type-safety of both
1721  * structures and doing the work in 2 steps:
1722  * - tidhash-locked lookup which saves both thread and proc pointers
1723  * - proc-locked verification that the found thread still matches
1724  */
1725 static bool
1726 tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
1727 {
1728 #define RUN_THRESH      16
1729         struct proc *p;
1730         struct thread *td;
1731         int run;
1732         bool locked;
1733
1734         run = 0;
1735         rw_rlock(TIDHASHLOCK(tid));
1736         locked = true;
1737         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1738                 if (td->td_tid != tid) {
1739                         run++;
1740                         continue;
1741                 }
1742                 p = td->td_proc;
1743                 if (pid != -1 && p->p_pid != pid) {
1744                         td = NULL;
1745                         break;
1746                 }
1747                 if (run > RUN_THRESH) {
1748                         if (rw_try_upgrade(TIDHASHLOCK(tid))) {
1749                                 LIST_REMOVE(td, td_hash);
1750                                 LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1751                                         td, td_hash);
1752                                 rw_wunlock(TIDHASHLOCK(tid));
1753                                 locked = false;
1754                                 break;
1755                         }
1756                 }
1757                 break;
1758         }
1759         if (locked)
1760                 rw_runlock(TIDHASHLOCK(tid));
1761         if (td == NULL)
1762                 return (false);
1763         *pp = p;
1764         *tdp = td;
1765         return (true);
1766 }
1767
1768 struct thread *
1769 tdfind(lwpid_t tid, pid_t pid)
1770 {
1771         struct proc *p;
1772         struct thread *td;
1773
1774         td = curthread;
1775         if (td->td_tid == tid) {
1776                 if (pid != -1 && td->td_proc->p_pid != pid)
1777                         return (NULL);
1778                 PROC_LOCK(td->td_proc);
1779                 return (td);
1780         }
1781
1782         for (;;) {
1783                 if (!tdfind_hash(tid, pid, &p, &td))
1784                         return (NULL);
1785                 PROC_LOCK(p);
1786                 if (td->td_tid != tid) {
1787                         PROC_UNLOCK(p);
1788                         continue;
1789                 }
1790                 if (td->td_proc != p) {
1791                         PROC_UNLOCK(p);
1792                         continue;
1793                 }
1794                 if (p->p_state == PRS_NEW) {
1795                         PROC_UNLOCK(p);
1796                         return (NULL);
1797                 }
1798                 return (td);
1799         }
1800 }
1801
1802 void
1803 tidhash_add(struct thread *td)
1804 {
1805         rw_wlock(TIDHASHLOCK(td->td_tid));
1806         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1807         rw_wunlock(TIDHASHLOCK(td->td_tid));
1808 }
1809
1810 void
1811 tidhash_remove(struct thread *td)
1812 {
1813
1814         rw_wlock(TIDHASHLOCK(td->td_tid));
1815         LIST_REMOVE(td, td_hash);
1816         rw_wunlock(TIDHASHLOCK(td->td_tid));
1817 }