]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Fix netstat -gs with ip_mroute module and/or vnet
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/rangelock.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sdt.h>
47 #include <sys/smp.h>
48 #include <sys/sched.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/selinfo.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysent.h>
53 #include <sys/turnstile.h>
54 #include <sys/ktr.h>
55 #include <sys/rwlock.h>
56 #include <sys/umtx.h>
57 #include <sys/vmmeter.h>
58 #include <sys/cpuset.h>
59 #ifdef  HWPMC_HOOKS
60 #include <sys/pmckern.h>
61 #endif
62
63 #include <security/audit/audit.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/uma.h>
68 #include <sys/eventhandler.h>
69
70 /*
71  * Asserts below verify the stability of struct thread and struct proc
72  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
73  * to drift, change to the structures must be accompanied by the
74  * assert update.
75  *
76  * On the stable branches after KBI freeze, conditions must not be
77  * violated.  Typically new fields are moved to the end of the
78  * structures.
79  */
80 #ifdef __amd64__
81 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
82     "struct thread KBI td_flags");
83 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
84     "struct thread KBI td_pflags");
85 _Static_assert(offsetof(struct thread, td_frame) == 0x478,
86     "struct thread KBI td_frame");
87 _Static_assert(offsetof(struct thread, td_emuldata) == 0x690,
88     "struct thread KBI td_emuldata");
89 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
90     "struct proc KBI p_flag");
91 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
92     "struct proc KBI p_pid");
93 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
94     "struct proc KBI p_filemon");
95 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
96     "struct proc KBI p_comm");
97 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4c0,
98     "struct proc KBI p_emuldata");
99 #endif
100 #ifdef __i386__
101 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
102     "struct thread KBI td_flags");
103 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
104     "struct thread KBI td_pflags");
105 _Static_assert(offsetof(struct thread, td_frame) == 0x2f0,
106     "struct thread KBI td_frame");
107 _Static_assert(offsetof(struct thread, td_emuldata) == 0x338,
108     "struct thread KBI td_emuldata");
109 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
110     "struct proc KBI p_flag");
111 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
112     "struct proc KBI p_pid");
113 _Static_assert(offsetof(struct proc, p_filemon) == 0x278,
114     "struct proc KBI p_filemon");
115 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
116     "struct proc KBI p_comm");
117 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
118     "struct proc KBI p_emuldata");
119 #endif
120
121 SDT_PROVIDER_DECLARE(proc);
122 SDT_PROBE_DEFINE(proc, , , lwp__exit);
123
124 /*
125  * thread related storage.
126  */
127 static uma_zone_t thread_zone;
128
129 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
130 static struct mtx zombie_lock;
131 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
132
133 static void thread_zombie(struct thread *);
134 static int thread_unsuspend_one(struct thread *td, struct proc *p,
135     bool boundary);
136
137 #define TID_BUFFER_SIZE 1024
138
139 struct mtx tid_lock;
140 static struct unrhdr *tid_unrhdr;
141 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
142 static int tid_head, tid_tail;
143 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
144
145 struct  tidhashhead *tidhashtbl;
146 u_long  tidhash;
147 struct  rwlock tidhash_lock;
148
149 EVENTHANDLER_LIST_DEFINE(thread_ctor);
150 EVENTHANDLER_LIST_DEFINE(thread_dtor);
151 EVENTHANDLER_LIST_DEFINE(thread_init);
152 EVENTHANDLER_LIST_DEFINE(thread_fini);
153
154 static lwpid_t
155 tid_alloc(void)
156 {
157         lwpid_t tid;
158
159         tid = alloc_unr(tid_unrhdr);
160         if (tid != -1)
161                 return (tid);
162         mtx_lock(&tid_lock);
163         if (tid_head == tid_tail) {
164                 mtx_unlock(&tid_lock);
165                 return (-1);
166         }
167         tid = tid_buffer[tid_head];
168         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
169         mtx_unlock(&tid_lock);
170         return (tid);
171 }
172
173 static void
174 tid_free(lwpid_t tid)
175 {
176         lwpid_t tmp_tid = -1;
177
178         mtx_lock(&tid_lock);
179         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
180                 tmp_tid = tid_buffer[tid_head];
181                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
182         }
183         tid_buffer[tid_tail] = tid;
184         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
185         mtx_unlock(&tid_lock);
186         if (tmp_tid != -1)
187                 free_unr(tid_unrhdr, tmp_tid);
188 }
189
190 /*
191  * Prepare a thread for use.
192  */
193 static int
194 thread_ctor(void *mem, int size, void *arg, int flags)
195 {
196         struct thread   *td;
197
198         td = (struct thread *)mem;
199         td->td_state = TDS_INACTIVE;
200         td->td_lastcpu = td->td_oncpu = NOCPU;
201
202         td->td_tid = tid_alloc();
203
204         /*
205          * Note that td_critnest begins life as 1 because the thread is not
206          * running and is thereby implicitly waiting to be on the receiving
207          * end of a context switch.
208          */
209         td->td_critnest = 1;
210         td->td_lend_user_pri = PRI_MAX;
211         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
212 #ifdef AUDIT
213         audit_thread_alloc(td);
214 #endif
215         umtx_thread_alloc(td);
216         return (0);
217 }
218
219 /*
220  * Reclaim a thread after use.
221  */
222 static void
223 thread_dtor(void *mem, int size, void *arg)
224 {
225         struct thread *td;
226
227         td = (struct thread *)mem;
228
229 #ifdef INVARIANTS
230         /* Verify that this thread is in a safe state to free. */
231         switch (td->td_state) {
232         case TDS_INHIBITED:
233         case TDS_RUNNING:
234         case TDS_CAN_RUN:
235         case TDS_RUNQ:
236                 /*
237                  * We must never unlink a thread that is in one of
238                  * these states, because it is currently active.
239                  */
240                 panic("bad state for thread unlinking");
241                 /* NOTREACHED */
242         case TDS_INACTIVE:
243                 break;
244         default:
245                 panic("bad thread state");
246                 /* NOTREACHED */
247         }
248 #endif
249 #ifdef AUDIT
250         audit_thread_free(td);
251 #endif
252         /* Free all OSD associated to this thread. */
253         osd_thread_exit(td);
254         td_softdep_cleanup(td);
255         MPASS(td->td_su == NULL);
256
257         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
258         tid_free(td->td_tid);
259 }
260
261 /*
262  * Initialize type-stable parts of a thread (when newly created).
263  */
264 static int
265 thread_init(void *mem, int size, int flags)
266 {
267         struct thread *td;
268
269         td = (struct thread *)mem;
270
271         td->td_sleepqueue = sleepq_alloc();
272         td->td_turnstile = turnstile_alloc();
273         td->td_rlqe = NULL;
274         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
275         umtx_thread_init(td);
276         td->td_kstack = 0;
277         td->td_sel = NULL;
278         return (0);
279 }
280
281 /*
282  * Tear down type-stable parts of a thread (just before being discarded).
283  */
284 static void
285 thread_fini(void *mem, int size)
286 {
287         struct thread *td;
288
289         td = (struct thread *)mem;
290         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
291         rlqentry_free(td->td_rlqe);
292         turnstile_free(td->td_turnstile);
293         sleepq_free(td->td_sleepqueue);
294         umtx_thread_fini(td);
295         seltdfini(td);
296 }
297
298 /*
299  * For a newly created process,
300  * link up all the structures and its initial threads etc.
301  * called from:
302  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
303  * proc_dtor() (should go away)
304  * proc_init()
305  */
306 void
307 proc_linkup0(struct proc *p, struct thread *td)
308 {
309         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
310         proc_linkup(p, td);
311 }
312
313 void
314 proc_linkup(struct proc *p, struct thread *td)
315 {
316
317         sigqueue_init(&p->p_sigqueue, p);
318         p->p_ksi = ksiginfo_alloc(1);
319         if (p->p_ksi != NULL) {
320                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
321                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
322         }
323         LIST_INIT(&p->p_mqnotifier);
324         p->p_numthreads = 0;
325         thread_link(td, p);
326 }
327
328 /*
329  * Initialize global thread allocation resources.
330  */
331 void
332 threadinit(void)
333 {
334
335         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
336
337         /*
338          * pid_max cannot be greater than PID_MAX.
339          * leave one number for thread0.
340          */
341         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
342
343         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
344             thread_ctor, thread_dtor, thread_init, thread_fini,
345             32 - 1, UMA_ZONE_NOFREE);
346         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
347         rw_init(&tidhash_lock, "tidhash");
348 }
349
350 /*
351  * Place an unused thread on the zombie list.
352  * Use the slpq as that must be unused by now.
353  */
354 void
355 thread_zombie(struct thread *td)
356 {
357         mtx_lock_spin(&zombie_lock);
358         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
359         mtx_unlock_spin(&zombie_lock);
360 }
361
362 /*
363  * Release a thread that has exited after cpu_throw().
364  */
365 void
366 thread_stash(struct thread *td)
367 {
368         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
369         thread_zombie(td);
370 }
371
372 /*
373  * Reap zombie resources.
374  */
375 void
376 thread_reap(void)
377 {
378         struct thread *td_first, *td_next;
379
380         /*
381          * Don't even bother to lock if none at this instant,
382          * we really don't care about the next instant.
383          */
384         if (!TAILQ_EMPTY(&zombie_threads)) {
385                 mtx_lock_spin(&zombie_lock);
386                 td_first = TAILQ_FIRST(&zombie_threads);
387                 if (td_first)
388                         TAILQ_INIT(&zombie_threads);
389                 mtx_unlock_spin(&zombie_lock);
390                 while (td_first) {
391                         td_next = TAILQ_NEXT(td_first, td_slpq);
392                         thread_cow_free(td_first);
393                         thread_free(td_first);
394                         td_first = td_next;
395                 }
396         }
397 }
398
399 /*
400  * Allocate a thread.
401  */
402 struct thread *
403 thread_alloc(int pages)
404 {
405         struct thread *td;
406
407         thread_reap(); /* check if any zombies to get */
408
409         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
410         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
411         if (!vm_thread_new(td, pages)) {
412                 uma_zfree(thread_zone, td);
413                 return (NULL);
414         }
415         cpu_thread_alloc(td);
416         return (td);
417 }
418
419 int
420 thread_alloc_stack(struct thread *td, int pages)
421 {
422
423         KASSERT(td->td_kstack == 0,
424             ("thread_alloc_stack called on a thread with kstack"));
425         if (!vm_thread_new(td, pages))
426                 return (0);
427         cpu_thread_alloc(td);
428         return (1);
429 }
430
431 /*
432  * Deallocate a thread.
433  */
434 void
435 thread_free(struct thread *td)
436 {
437
438         lock_profile_thread_exit(td);
439         if (td->td_cpuset)
440                 cpuset_rel(td->td_cpuset);
441         td->td_cpuset = NULL;
442         cpu_thread_free(td);
443         if (td->td_kstack != 0)
444                 vm_thread_dispose(td);
445         callout_drain(&td->td_slpcallout);
446         uma_zfree(thread_zone, td);
447 }
448
449 void
450 thread_cow_get_proc(struct thread *newtd, struct proc *p)
451 {
452
453         PROC_LOCK_ASSERT(p, MA_OWNED);
454         newtd->td_ucred = crhold(p->p_ucred);
455         newtd->td_limit = lim_hold(p->p_limit);
456         newtd->td_cowgen = p->p_cowgen;
457 }
458
459 void
460 thread_cow_get(struct thread *newtd, struct thread *td)
461 {
462
463         newtd->td_ucred = crhold(td->td_ucred);
464         newtd->td_limit = lim_hold(td->td_limit);
465         newtd->td_cowgen = td->td_cowgen;
466 }
467
468 void
469 thread_cow_free(struct thread *td)
470 {
471
472         if (td->td_ucred != NULL)
473                 crfree(td->td_ucred);
474         if (td->td_limit != NULL)
475                 lim_free(td->td_limit);
476 }
477
478 void
479 thread_cow_update(struct thread *td)
480 {
481         struct proc *p;
482         struct ucred *oldcred;
483         struct plimit *oldlimit;
484
485         p = td->td_proc;
486         oldcred = NULL;
487         oldlimit = NULL;
488         PROC_LOCK(p);
489         if (td->td_ucred != p->p_ucred) {
490                 oldcred = td->td_ucred;
491                 td->td_ucred = crhold(p->p_ucred);
492         }
493         if (td->td_limit != p->p_limit) {
494                 oldlimit = td->td_limit;
495                 td->td_limit = lim_hold(p->p_limit);
496         }
497         td->td_cowgen = p->p_cowgen;
498         PROC_UNLOCK(p);
499         if (oldcred != NULL)
500                 crfree(oldcred);
501         if (oldlimit != NULL)
502                 lim_free(oldlimit);
503 }
504
505 /*
506  * Discard the current thread and exit from its context.
507  * Always called with scheduler locked.
508  *
509  * Because we can't free a thread while we're operating under its context,
510  * push the current thread into our CPU's deadthread holder. This means
511  * we needn't worry about someone else grabbing our context before we
512  * do a cpu_throw().
513  */
514 void
515 thread_exit(void)
516 {
517         uint64_t runtime, new_switchtime;
518         struct thread *td;
519         struct thread *td2;
520         struct proc *p;
521         int wakeup_swapper;
522
523         td = curthread;
524         p = td->td_proc;
525
526         PROC_SLOCK_ASSERT(p, MA_OWNED);
527         mtx_assert(&Giant, MA_NOTOWNED);
528
529         PROC_LOCK_ASSERT(p, MA_OWNED);
530         KASSERT(p != NULL, ("thread exiting without a process"));
531         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
532             (long)p->p_pid, td->td_name);
533         SDT_PROBE0(proc, , , lwp__exit);
534         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
535
536         /*
537          * drop FPU & debug register state storage, or any other
538          * architecture specific resources that
539          * would not be on a new untouched process.
540          */
541         cpu_thread_exit(td);
542
543         /*
544          * The last thread is left attached to the process
545          * So that the whole bundle gets recycled. Skip
546          * all this stuff if we never had threads.
547          * EXIT clears all sign of other threads when
548          * it goes to single threading, so the last thread always
549          * takes the short path.
550          */
551         if (p->p_flag & P_HADTHREADS) {
552                 if (p->p_numthreads > 1) {
553                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
554                         thread_unlink(td);
555                         td2 = FIRST_THREAD_IN_PROC(p);
556                         sched_exit_thread(td2, td);
557
558                         /*
559                          * The test below is NOT true if we are the
560                          * sole exiting thread. P_STOPPED_SINGLE is unset
561                          * in exit1() after it is the only survivor.
562                          */
563                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
564                                 if (p->p_numthreads == p->p_suspcount) {
565                                         thread_lock(p->p_singlethread);
566                                         wakeup_swapper = thread_unsuspend_one(
567                                                 p->p_singlethread, p, false);
568                                         thread_unlock(p->p_singlethread);
569                                         if (wakeup_swapper)
570                                                 kick_proc0();
571                                 }
572                         }
573
574                         PCPU_SET(deadthread, td);
575                 } else {
576                         /*
577                          * The last thread is exiting.. but not through exit()
578                          */
579                         panic ("thread_exit: Last thread exiting on its own");
580                 }
581         } 
582 #ifdef  HWPMC_HOOKS
583         /*
584          * If this thread is part of a process that is being tracked by hwpmc(4),
585          * inform the module of the thread's impending exit.
586          */
587         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
588                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
589                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
590         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
591                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
592 #endif
593         PROC_UNLOCK(p);
594         PROC_STATLOCK(p);
595         thread_lock(td);
596         PROC_SUNLOCK(p);
597
598         /* Do the same timestamp bookkeeping that mi_switch() would do. */
599         new_switchtime = cpu_ticks();
600         runtime = new_switchtime - PCPU_GET(switchtime);
601         td->td_runtime += runtime;
602         td->td_incruntime += runtime;
603         PCPU_SET(switchtime, new_switchtime);
604         PCPU_SET(switchticks, ticks);
605         VM_CNT_INC(v_swtch);
606
607         /* Save our resource usage in our process. */
608         td->td_ru.ru_nvcsw++;
609         ruxagg(p, td);
610         rucollect(&p->p_ru, &td->td_ru);
611         PROC_STATUNLOCK(p);
612
613         td->td_state = TDS_INACTIVE;
614 #ifdef WITNESS
615         witness_thread_exit(td);
616 #endif
617         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
618         sched_throw(td);
619         panic("I'm a teapot!");
620         /* NOTREACHED */
621 }
622
623 /*
624  * Do any thread specific cleanups that may be needed in wait()
625  * called with Giant, proc and schedlock not held.
626  */
627 void
628 thread_wait(struct proc *p)
629 {
630         struct thread *td;
631
632         mtx_assert(&Giant, MA_NOTOWNED);
633         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
634         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
635         td = FIRST_THREAD_IN_PROC(p);
636         /* Lock the last thread so we spin until it exits cpu_throw(). */
637         thread_lock(td);
638         thread_unlock(td);
639         lock_profile_thread_exit(td);
640         cpuset_rel(td->td_cpuset);
641         td->td_cpuset = NULL;
642         cpu_thread_clean(td);
643         thread_cow_free(td);
644         callout_drain(&td->td_slpcallout);
645         thread_reap();  /* check for zombie threads etc. */
646 }
647
648 /*
649  * Link a thread to a process.
650  * set up anything that needs to be initialized for it to
651  * be used by the process.
652  */
653 void
654 thread_link(struct thread *td, struct proc *p)
655 {
656
657         /*
658          * XXX This can't be enabled because it's called for proc0 before
659          * its lock has been created.
660          * PROC_LOCK_ASSERT(p, MA_OWNED);
661          */
662         td->td_state    = TDS_INACTIVE;
663         td->td_proc     = p;
664         td->td_flags    = TDF_INMEM;
665
666         LIST_INIT(&td->td_contested);
667         LIST_INIT(&td->td_lprof[0]);
668         LIST_INIT(&td->td_lprof[1]);
669 #ifdef EPOCH_TRACE
670         SLIST_INIT(&td->td_epochs);
671 #endif
672         sigqueue_init(&td->td_sigqueue, p);
673         callout_init(&td->td_slpcallout, 1);
674         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
675         p->p_numthreads++;
676 }
677
678 /*
679  * Called from:
680  *  thread_exit()
681  */
682 void
683 thread_unlink(struct thread *td)
684 {
685         struct proc *p = td->td_proc;
686
687         PROC_LOCK_ASSERT(p, MA_OWNED);
688 #ifdef EPOCH_TRACE
689         MPASS(SLIST_EMPTY(&td->td_epochs));
690 #endif
691
692         TAILQ_REMOVE(&p->p_threads, td, td_plist);
693         p->p_numthreads--;
694         /* could clear a few other things here */
695         /* Must  NOT clear links to proc! */
696 }
697
698 static int
699 calc_remaining(struct proc *p, int mode)
700 {
701         int remaining;
702
703         PROC_LOCK_ASSERT(p, MA_OWNED);
704         PROC_SLOCK_ASSERT(p, MA_OWNED);
705         if (mode == SINGLE_EXIT)
706                 remaining = p->p_numthreads;
707         else if (mode == SINGLE_BOUNDARY)
708                 remaining = p->p_numthreads - p->p_boundary_count;
709         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
710                 remaining = p->p_numthreads - p->p_suspcount;
711         else
712                 panic("calc_remaining: wrong mode %d", mode);
713         return (remaining);
714 }
715
716 static int
717 remain_for_mode(int mode)
718 {
719
720         return (mode == SINGLE_ALLPROC ? 0 : 1);
721 }
722
723 static int
724 weed_inhib(int mode, struct thread *td2, struct proc *p)
725 {
726         int wakeup_swapper;
727
728         PROC_LOCK_ASSERT(p, MA_OWNED);
729         PROC_SLOCK_ASSERT(p, MA_OWNED);
730         THREAD_LOCK_ASSERT(td2, MA_OWNED);
731
732         wakeup_swapper = 0;
733         switch (mode) {
734         case SINGLE_EXIT:
735                 if (TD_IS_SUSPENDED(td2))
736                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
737                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
738                         wakeup_swapper |= sleepq_abort(td2, EINTR);
739                 break;
740         case SINGLE_BOUNDARY:
741         case SINGLE_NO_EXIT:
742                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
743                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
744                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
745                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
746                 break;
747         case SINGLE_ALLPROC:
748                 /*
749                  * ALLPROC suspend tries to avoid spurious EINTR for
750                  * threads sleeping interruptable, by suspending the
751                  * thread directly, similarly to sig_suspend_threads().
752                  * Since such sleep is not performed at the user
753                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
754                  * is used to avoid immediate un-suspend.
755                  */
756                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
757                     TDF_ALLPROCSUSP)) == 0)
758                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
759                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
760                         if ((td2->td_flags & TDF_SBDRY) == 0) {
761                                 thread_suspend_one(td2);
762                                 td2->td_flags |= TDF_ALLPROCSUSP;
763                         } else {
764                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
765                         }
766                 }
767                 break;
768         }
769         return (wakeup_swapper);
770 }
771
772 /*
773  * Enforce single-threading.
774  *
775  * Returns 1 if the caller must abort (another thread is waiting to
776  * exit the process or similar). Process is locked!
777  * Returns 0 when you are successfully the only thread running.
778  * A process has successfully single threaded in the suspend mode when
779  * There are no threads in user mode. Threads in the kernel must be
780  * allowed to continue until they get to the user boundary. They may even
781  * copy out their return values and data before suspending. They may however be
782  * accelerated in reaching the user boundary as we will wake up
783  * any sleeping threads that are interruptable. (PCATCH).
784  */
785 int
786 thread_single(struct proc *p, int mode)
787 {
788         struct thread *td;
789         struct thread *td2;
790         int remaining, wakeup_swapper;
791
792         td = curthread;
793         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
794             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
795             ("invalid mode %d", mode));
796         /*
797          * If allowing non-ALLPROC singlethreading for non-curproc
798          * callers, calc_remaining() and remain_for_mode() should be
799          * adjusted to also account for td->td_proc != p.  For now
800          * this is not implemented because it is not used.
801          */
802         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
803             (mode != SINGLE_ALLPROC && td->td_proc == p),
804             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
805         mtx_assert(&Giant, MA_NOTOWNED);
806         PROC_LOCK_ASSERT(p, MA_OWNED);
807
808         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
809                 return (0);
810
811         /* Is someone already single threading? */
812         if (p->p_singlethread != NULL && p->p_singlethread != td)
813                 return (1);
814
815         if (mode == SINGLE_EXIT) {
816                 p->p_flag |= P_SINGLE_EXIT;
817                 p->p_flag &= ~P_SINGLE_BOUNDARY;
818         } else {
819                 p->p_flag &= ~P_SINGLE_EXIT;
820                 if (mode == SINGLE_BOUNDARY)
821                         p->p_flag |= P_SINGLE_BOUNDARY;
822                 else
823                         p->p_flag &= ~P_SINGLE_BOUNDARY;
824         }
825         if (mode == SINGLE_ALLPROC)
826                 p->p_flag |= P_TOTAL_STOP;
827         p->p_flag |= P_STOPPED_SINGLE;
828         PROC_SLOCK(p);
829         p->p_singlethread = td;
830         remaining = calc_remaining(p, mode);
831         while (remaining != remain_for_mode(mode)) {
832                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
833                         goto stopme;
834                 wakeup_swapper = 0;
835                 FOREACH_THREAD_IN_PROC(p, td2) {
836                         if (td2 == td)
837                                 continue;
838                         thread_lock(td2);
839                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
840                         if (TD_IS_INHIBITED(td2)) {
841                                 wakeup_swapper |= weed_inhib(mode, td2, p);
842 #ifdef SMP
843                         } else if (TD_IS_RUNNING(td2) && td != td2) {
844                                 forward_signal(td2);
845 #endif
846                         }
847                         thread_unlock(td2);
848                 }
849                 if (wakeup_swapper)
850                         kick_proc0();
851                 remaining = calc_remaining(p, mode);
852
853                 /*
854                  * Maybe we suspended some threads.. was it enough?
855                  */
856                 if (remaining == remain_for_mode(mode))
857                         break;
858
859 stopme:
860                 /*
861                  * Wake us up when everyone else has suspended.
862                  * In the mean time we suspend as well.
863                  */
864                 thread_suspend_switch(td, p);
865                 remaining = calc_remaining(p, mode);
866         }
867         if (mode == SINGLE_EXIT) {
868                 /*
869                  * Convert the process to an unthreaded process.  The
870                  * SINGLE_EXIT is called by exit1() or execve(), in
871                  * both cases other threads must be retired.
872                  */
873                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
874                 p->p_singlethread = NULL;
875                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
876
877                 /*
878                  * Wait for any remaining threads to exit cpu_throw().
879                  */
880                 while (p->p_exitthreads != 0) {
881                         PROC_SUNLOCK(p);
882                         PROC_UNLOCK(p);
883                         sched_relinquish(td);
884                         PROC_LOCK(p);
885                         PROC_SLOCK(p);
886                 }
887         } else if (mode == SINGLE_BOUNDARY) {
888                 /*
889                  * Wait until all suspended threads are removed from
890                  * the processors.  The thread_suspend_check()
891                  * increments p_boundary_count while it is still
892                  * running, which makes it possible for the execve()
893                  * to destroy vmspace while our other threads are
894                  * still using the address space.
895                  *
896                  * We lock the thread, which is only allowed to
897                  * succeed after context switch code finished using
898                  * the address space.
899                  */
900                 FOREACH_THREAD_IN_PROC(p, td2) {
901                         if (td2 == td)
902                                 continue;
903                         thread_lock(td2);
904                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
905                             ("td %p not on boundary", td2));
906                         KASSERT(TD_IS_SUSPENDED(td2),
907                             ("td %p is not suspended", td2));
908                         thread_unlock(td2);
909                 }
910         }
911         PROC_SUNLOCK(p);
912         return (0);
913 }
914
915 bool
916 thread_suspend_check_needed(void)
917 {
918         struct proc *p;
919         struct thread *td;
920
921         td = curthread;
922         p = td->td_proc;
923         PROC_LOCK_ASSERT(p, MA_OWNED);
924         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
925             (td->td_dbgflags & TDB_SUSPEND) != 0));
926 }
927
928 /*
929  * Called in from locations that can safely check to see
930  * whether we have to suspend or at least throttle for a
931  * single-thread event (e.g. fork).
932  *
933  * Such locations include userret().
934  * If the "return_instead" argument is non zero, the thread must be able to
935  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
936  *
937  * The 'return_instead' argument tells the function if it may do a
938  * thread_exit() or suspend, or whether the caller must abort and back
939  * out instead.
940  *
941  * If the thread that set the single_threading request has set the
942  * P_SINGLE_EXIT bit in the process flags then this call will never return
943  * if 'return_instead' is false, but will exit.
944  *
945  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
946  *---------------+--------------------+---------------------
947  *       0       | returns 0          |   returns 0 or 1
948  *               | when ST ends       |   immediately
949  *---------------+--------------------+---------------------
950  *       1       | thread exits       |   returns 1
951  *               |                    |  immediately
952  * 0 = thread_exit() or suspension ok,
953  * other = return error instead of stopping the thread.
954  *
955  * While a full suspension is under effect, even a single threading
956  * thread would be suspended if it made this call (but it shouldn't).
957  * This call should only be made from places where
958  * thread_exit() would be safe as that may be the outcome unless
959  * return_instead is set.
960  */
961 int
962 thread_suspend_check(int return_instead)
963 {
964         struct thread *td;
965         struct proc *p;
966         int wakeup_swapper;
967
968         td = curthread;
969         p = td->td_proc;
970         mtx_assert(&Giant, MA_NOTOWNED);
971         PROC_LOCK_ASSERT(p, MA_OWNED);
972         while (thread_suspend_check_needed()) {
973                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
974                         KASSERT(p->p_singlethread != NULL,
975                             ("singlethread not set"));
976                         /*
977                          * The only suspension in action is a
978                          * single-threading. Single threader need not stop.
979                          * It is safe to access p->p_singlethread unlocked
980                          * because it can only be set to our address by us.
981                          */
982                         if (p->p_singlethread == td)
983                                 return (0);     /* Exempt from stopping. */
984                 }
985                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
986                         return (EINTR);
987
988                 /* Should we goto user boundary if we didn't come from there? */
989                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
990                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
991                         return (ERESTART);
992
993                 /*
994                  * Ignore suspend requests if they are deferred.
995                  */
996                 if ((td->td_flags & TDF_SBDRY) != 0) {
997                         KASSERT(return_instead,
998                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
999                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1000                             (TDF_SEINTR | TDF_SERESTART),
1001                             ("both TDF_SEINTR and TDF_SERESTART"));
1002                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1003                 }
1004
1005                 /*
1006                  * If the process is waiting for us to exit,
1007                  * this thread should just suicide.
1008                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1009                  */
1010                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1011                         PROC_UNLOCK(p);
1012
1013                         /*
1014                          * Allow Linux emulation layer to do some work
1015                          * before thread suicide.
1016                          */
1017                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1018                                 (p->p_sysent->sv_thread_detach)(td);
1019                         umtx_thread_exit(td);
1020                         kern_thr_exit(td);
1021                         panic("stopped thread did not exit");
1022                 }
1023
1024                 PROC_SLOCK(p);
1025                 thread_stopped(p);
1026                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1027                         if (p->p_numthreads == p->p_suspcount + 1) {
1028                                 thread_lock(p->p_singlethread);
1029                                 wakeup_swapper = thread_unsuspend_one(
1030                                     p->p_singlethread, p, false);
1031                                 thread_unlock(p->p_singlethread);
1032                                 if (wakeup_swapper)
1033                                         kick_proc0();
1034                         }
1035                 }
1036                 PROC_UNLOCK(p);
1037                 thread_lock(td);
1038                 /*
1039                  * When a thread suspends, it just
1040                  * gets taken off all queues.
1041                  */
1042                 thread_suspend_one(td);
1043                 if (return_instead == 0) {
1044                         p->p_boundary_count++;
1045                         td->td_flags |= TDF_BOUNDARY;
1046                 }
1047                 PROC_SUNLOCK(p);
1048                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1049                 thread_unlock(td);
1050                 PROC_LOCK(p);
1051         }
1052         return (0);
1053 }
1054
1055 void
1056 thread_suspend_switch(struct thread *td, struct proc *p)
1057 {
1058
1059         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1060         PROC_LOCK_ASSERT(p, MA_OWNED);
1061         PROC_SLOCK_ASSERT(p, MA_OWNED);
1062         /*
1063          * We implement thread_suspend_one in stages here to avoid
1064          * dropping the proc lock while the thread lock is owned.
1065          */
1066         if (p == td->td_proc) {
1067                 thread_stopped(p);
1068                 p->p_suspcount++;
1069         }
1070         PROC_UNLOCK(p);
1071         thread_lock(td);
1072         td->td_flags &= ~TDF_NEEDSUSPCHK;
1073         TD_SET_SUSPENDED(td);
1074         sched_sleep(td, 0);
1075         PROC_SUNLOCK(p);
1076         DROP_GIANT();
1077         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1078         thread_unlock(td);
1079         PICKUP_GIANT();
1080         PROC_LOCK(p);
1081         PROC_SLOCK(p);
1082 }
1083
1084 void
1085 thread_suspend_one(struct thread *td)
1086 {
1087         struct proc *p;
1088
1089         p = td->td_proc;
1090         PROC_SLOCK_ASSERT(p, MA_OWNED);
1091         THREAD_LOCK_ASSERT(td, MA_OWNED);
1092         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1093         p->p_suspcount++;
1094         td->td_flags &= ~TDF_NEEDSUSPCHK;
1095         TD_SET_SUSPENDED(td);
1096         sched_sleep(td, 0);
1097 }
1098
1099 static int
1100 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1101 {
1102
1103         THREAD_LOCK_ASSERT(td, MA_OWNED);
1104         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1105         TD_CLR_SUSPENDED(td);
1106         td->td_flags &= ~TDF_ALLPROCSUSP;
1107         if (td->td_proc == p) {
1108                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1109                 p->p_suspcount--;
1110                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1111                         td->td_flags &= ~TDF_BOUNDARY;
1112                         p->p_boundary_count--;
1113                 }
1114         }
1115         return (setrunnable(td));
1116 }
1117
1118 /*
1119  * Allow all threads blocked by single threading to continue running.
1120  */
1121 void
1122 thread_unsuspend(struct proc *p)
1123 {
1124         struct thread *td;
1125         int wakeup_swapper;
1126
1127         PROC_LOCK_ASSERT(p, MA_OWNED);
1128         PROC_SLOCK_ASSERT(p, MA_OWNED);
1129         wakeup_swapper = 0;
1130         if (!P_SHOULDSTOP(p)) {
1131                 FOREACH_THREAD_IN_PROC(p, td) {
1132                         thread_lock(td);
1133                         if (TD_IS_SUSPENDED(td)) {
1134                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1135                                     true);
1136                         }
1137                         thread_unlock(td);
1138                 }
1139         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1140             p->p_numthreads == p->p_suspcount) {
1141                 /*
1142                  * Stopping everything also did the job for the single
1143                  * threading request. Now we've downgraded to single-threaded,
1144                  * let it continue.
1145                  */
1146                 if (p->p_singlethread->td_proc == p) {
1147                         thread_lock(p->p_singlethread);
1148                         wakeup_swapper = thread_unsuspend_one(
1149                             p->p_singlethread, p, false);
1150                         thread_unlock(p->p_singlethread);
1151                 }
1152         }
1153         if (wakeup_swapper)
1154                 kick_proc0();
1155 }
1156
1157 /*
1158  * End the single threading mode..
1159  */
1160 void
1161 thread_single_end(struct proc *p, int mode)
1162 {
1163         struct thread *td;
1164         int wakeup_swapper;
1165
1166         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1167             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1168             ("invalid mode %d", mode));
1169         PROC_LOCK_ASSERT(p, MA_OWNED);
1170         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1171             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1172             ("mode %d does not match P_TOTAL_STOP", mode));
1173         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1174             ("thread_single_end from other thread %p %p",
1175             curthread, p->p_singlethread));
1176         KASSERT(mode != SINGLE_BOUNDARY ||
1177             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1178             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1179         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1180             P_TOTAL_STOP);
1181         PROC_SLOCK(p);
1182         p->p_singlethread = NULL;
1183         wakeup_swapper = 0;
1184         /*
1185          * If there are other threads they may now run,
1186          * unless of course there is a blanket 'stop order'
1187          * on the process. The single threader must be allowed
1188          * to continue however as this is a bad place to stop.
1189          */
1190         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1191                 FOREACH_THREAD_IN_PROC(p, td) {
1192                         thread_lock(td);
1193                         if (TD_IS_SUSPENDED(td)) {
1194                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1195                                     mode == SINGLE_BOUNDARY);
1196                         }
1197                         thread_unlock(td);
1198                 }
1199         }
1200         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1201             ("inconsistent boundary count %d", p->p_boundary_count));
1202         PROC_SUNLOCK(p);
1203         if (wakeup_swapper)
1204                 kick_proc0();
1205 }
1206
1207 struct thread *
1208 thread_find(struct proc *p, lwpid_t tid)
1209 {
1210         struct thread *td;
1211
1212         PROC_LOCK_ASSERT(p, MA_OWNED);
1213         FOREACH_THREAD_IN_PROC(p, td) {
1214                 if (td->td_tid == tid)
1215                         break;
1216         }
1217         return (td);
1218 }
1219
1220 /* Locate a thread by number; return with proc lock held. */
1221 struct thread *
1222 tdfind(lwpid_t tid, pid_t pid)
1223 {
1224 #define RUN_THRESH      16
1225         struct thread *td;
1226         int run = 0;
1227
1228         rw_rlock(&tidhash_lock);
1229         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1230                 if (td->td_tid == tid) {
1231                         if (pid != -1 && td->td_proc->p_pid != pid) {
1232                                 td = NULL;
1233                                 break;
1234                         }
1235                         PROC_LOCK(td->td_proc);
1236                         if (td->td_proc->p_state == PRS_NEW) {
1237                                 PROC_UNLOCK(td->td_proc);
1238                                 td = NULL;
1239                                 break;
1240                         }
1241                         if (run > RUN_THRESH) {
1242                                 if (rw_try_upgrade(&tidhash_lock)) {
1243                                         LIST_REMOVE(td, td_hash);
1244                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1245                                                 td, td_hash);
1246                                         rw_wunlock(&tidhash_lock);
1247                                         return (td);
1248                                 }
1249                         }
1250                         break;
1251                 }
1252                 run++;
1253         }
1254         rw_runlock(&tidhash_lock);
1255         return (td);
1256 }
1257
1258 void
1259 tidhash_add(struct thread *td)
1260 {
1261         rw_wlock(&tidhash_lock);
1262         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1263         rw_wunlock(&tidhash_lock);
1264 }
1265
1266 void
1267 tidhash_remove(struct thread *td)
1268 {
1269         rw_wlock(&tidhash_lock);
1270         LIST_REMOVE(td, td_hash);
1271         rw_wunlock(&tidhash_lock);
1272 }