]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Fix FreeBSD Linux ABI kernel panic.
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/sysent.h>
50 #include <sys/turnstile.h>
51 #include <sys/ktr.h>
52 #include <sys/rwlock.h>
53 #include <sys/umtx.h>
54 #include <sys/vmmeter.h>
55 #include <sys/cpuset.h>
56 #ifdef  HWPMC_HOOKS
57 #include <sys/pmckern.h>
58 #endif
59
60 #include <security/audit/audit.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/uma.h>
65 #include <vm/vm_domain.h>
66 #include <sys/eventhandler.h>
67
68 /*
69  * Asserts below verify the stability of struct thread and struct proc
70  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
71  * to drift, change to the structures must be accompanied by the
72  * assert update.
73  *
74  * On the stable branches after KBI freeze, conditions must not be
75  * violated.  Typically new fields are moved to the end of the
76  * structures.
77  */
78 #ifdef __amd64__
79 _Static_assert(offsetof(struct thread, td_flags) == 0xe4,
80     "struct thread KBI td_flags");
81 _Static_assert(offsetof(struct thread, td_pflags) == 0xec,
82     "struct thread KBI td_pflags");
83 _Static_assert(offsetof(struct thread, td_frame) == 0x418,
84     "struct thread KBI td_frame");
85 _Static_assert(offsetof(struct thread, td_emuldata) == 0x4c0,
86     "struct thread KBI td_emuldata");
87 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
88     "struct proc KBI p_flag");
89 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
90     "struct proc KBI p_pid");
91 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c0,
92     "struct proc KBI p_filemon");
93 _Static_assert(offsetof(struct proc, p_comm) == 0x3d0,
94     "struct proc KBI p_comm");
95 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4a0,
96     "struct proc KBI p_emuldata");
97 #endif
98 #ifdef __i386__
99 _Static_assert(offsetof(struct thread, td_flags) == 0x8c,
100     "struct thread KBI td_flags");
101 _Static_assert(offsetof(struct thread, td_pflags) == 0x94,
102     "struct thread KBI td_pflags");
103 _Static_assert(offsetof(struct thread, td_frame) == 0x2c0,
104     "struct thread KBI td_frame");
105 _Static_assert(offsetof(struct thread, td_emuldata) == 0x30c,
106     "struct thread KBI td_emuldata");
107 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
108     "struct proc KBI p_flag");
109 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
110     "struct proc KBI p_pid");
111 _Static_assert(offsetof(struct proc, p_filemon) == 0x268,
112     "struct proc KBI p_filemon");
113 _Static_assert(offsetof(struct proc, p_comm) == 0x274,
114     "struct proc KBI p_comm");
115 _Static_assert(offsetof(struct proc, p_emuldata) == 0x2f4,
116     "struct proc KBI p_emuldata");
117 #endif
118
119 SDT_PROVIDER_DECLARE(proc);
120 SDT_PROBE_DEFINE(proc, , , lwp__exit);
121
122 /*
123  * thread related storage.
124  */
125 static uma_zone_t thread_zone;
126
127 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
128 static struct mtx zombie_lock;
129 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
130
131 static void thread_zombie(struct thread *);
132 static int thread_unsuspend_one(struct thread *td, struct proc *p,
133     bool boundary);
134
135 #define TID_BUFFER_SIZE 1024
136
137 struct mtx tid_lock;
138 static struct unrhdr *tid_unrhdr;
139 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
140 static int tid_head, tid_tail;
141 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
142
143 struct  tidhashhead *tidhashtbl;
144 u_long  tidhash;
145 struct  rwlock tidhash_lock;
146
147 EVENTHANDLER_LIST_DEFINE(thread_ctor);
148 EVENTHANDLER_LIST_DEFINE(thread_dtor);
149 EVENTHANDLER_LIST_DEFINE(thread_init);
150 EVENTHANDLER_LIST_DEFINE(thread_fini);
151
152 static lwpid_t
153 tid_alloc(void)
154 {
155         lwpid_t tid;
156
157         tid = alloc_unr(tid_unrhdr);
158         if (tid != -1)
159                 return (tid);
160         mtx_lock(&tid_lock);
161         if (tid_head == tid_tail) {
162                 mtx_unlock(&tid_lock);
163                 return (-1);
164         }
165         tid = tid_buffer[tid_head];
166         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
167         mtx_unlock(&tid_lock);
168         return (tid);
169 }
170
171 static void
172 tid_free(lwpid_t tid)
173 {
174         lwpid_t tmp_tid = -1;
175
176         mtx_lock(&tid_lock);
177         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
178                 tmp_tid = tid_buffer[tid_head];
179                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
180         }
181         tid_buffer[tid_tail] = tid;
182         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
183         mtx_unlock(&tid_lock);
184         if (tmp_tid != -1)
185                 free_unr(tid_unrhdr, tmp_tid);
186 }
187
188 /*
189  * Prepare a thread for use.
190  */
191 static int
192 thread_ctor(void *mem, int size, void *arg, int flags)
193 {
194         struct thread   *td;
195
196         td = (struct thread *)mem;
197         td->td_state = TDS_INACTIVE;
198         td->td_oncpu = NOCPU;
199
200         td->td_tid = tid_alloc();
201
202         /*
203          * Note that td_critnest begins life as 1 because the thread is not
204          * running and is thereby implicitly waiting to be on the receiving
205          * end of a context switch.
206          */
207         td->td_critnest = 1;
208         td->td_lend_user_pri = PRI_MAX;
209         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
210 #ifdef AUDIT
211         audit_thread_alloc(td);
212 #endif
213         umtx_thread_alloc(td);
214         return (0);
215 }
216
217 /*
218  * Reclaim a thread after use.
219  */
220 static void
221 thread_dtor(void *mem, int size, void *arg)
222 {
223         struct thread *td;
224
225         td = (struct thread *)mem;
226
227 #ifdef INVARIANTS
228         /* Verify that this thread is in a safe state to free. */
229         switch (td->td_state) {
230         case TDS_INHIBITED:
231         case TDS_RUNNING:
232         case TDS_CAN_RUN:
233         case TDS_RUNQ:
234                 /*
235                  * We must never unlink a thread that is in one of
236                  * these states, because it is currently active.
237                  */
238                 panic("bad state for thread unlinking");
239                 /* NOTREACHED */
240         case TDS_INACTIVE:
241                 break;
242         default:
243                 panic("bad thread state");
244                 /* NOTREACHED */
245         }
246 #endif
247 #ifdef AUDIT
248         audit_thread_free(td);
249 #endif
250         /* Free all OSD associated to this thread. */
251         osd_thread_exit(td);
252         td_softdep_cleanup(td);
253         MPASS(td->td_su == NULL);
254
255         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
256         tid_free(td->td_tid);
257 }
258
259 /*
260  * Initialize type-stable parts of a thread (when newly created).
261  */
262 static int
263 thread_init(void *mem, int size, int flags)
264 {
265         struct thread *td;
266
267         td = (struct thread *)mem;
268
269         td->td_sleepqueue = sleepq_alloc();
270         td->td_turnstile = turnstile_alloc();
271         td->td_rlqe = NULL;
272         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
273         umtx_thread_init(td);
274         td->td_kstack = 0;
275         td->td_sel = NULL;
276         return (0);
277 }
278
279 /*
280  * Tear down type-stable parts of a thread (just before being discarded).
281  */
282 static void
283 thread_fini(void *mem, int size)
284 {
285         struct thread *td;
286
287         td = (struct thread *)mem;
288         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
289         rlqentry_free(td->td_rlqe);
290         turnstile_free(td->td_turnstile);
291         sleepq_free(td->td_sleepqueue);
292         umtx_thread_fini(td);
293         seltdfini(td);
294 }
295
296 /*
297  * For a newly created process,
298  * link up all the structures and its initial threads etc.
299  * called from:
300  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
301  * proc_dtor() (should go away)
302  * proc_init()
303  */
304 void
305 proc_linkup0(struct proc *p, struct thread *td)
306 {
307         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
308         proc_linkup(p, td);
309 }
310
311 void
312 proc_linkup(struct proc *p, struct thread *td)
313 {
314
315         sigqueue_init(&p->p_sigqueue, p);
316         p->p_ksi = ksiginfo_alloc(1);
317         if (p->p_ksi != NULL) {
318                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
319                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
320         }
321         LIST_INIT(&p->p_mqnotifier);
322         p->p_numthreads = 0;
323         thread_link(td, p);
324 }
325
326 /*
327  * Initialize global thread allocation resources.
328  */
329 void
330 threadinit(void)
331 {
332
333         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
334
335         /*
336          * pid_max cannot be greater than PID_MAX.
337          * leave one number for thread0.
338          */
339         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
340
341         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
342             thread_ctor, thread_dtor, thread_init, thread_fini,
343             32 - 1, UMA_ZONE_NOFREE);
344         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
345         rw_init(&tidhash_lock, "tidhash");
346 }
347
348 /*
349  * Place an unused thread on the zombie list.
350  * Use the slpq as that must be unused by now.
351  */
352 void
353 thread_zombie(struct thread *td)
354 {
355         mtx_lock_spin(&zombie_lock);
356         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
357         mtx_unlock_spin(&zombie_lock);
358 }
359
360 /*
361  * Release a thread that has exited after cpu_throw().
362  */
363 void
364 thread_stash(struct thread *td)
365 {
366         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
367         thread_zombie(td);
368 }
369
370 /*
371  * Reap zombie resources.
372  */
373 void
374 thread_reap(void)
375 {
376         struct thread *td_first, *td_next;
377
378         /*
379          * Don't even bother to lock if none at this instant,
380          * we really don't care about the next instant.
381          */
382         if (!TAILQ_EMPTY(&zombie_threads)) {
383                 mtx_lock_spin(&zombie_lock);
384                 td_first = TAILQ_FIRST(&zombie_threads);
385                 if (td_first)
386                         TAILQ_INIT(&zombie_threads);
387                 mtx_unlock_spin(&zombie_lock);
388                 while (td_first) {
389                         td_next = TAILQ_NEXT(td_first, td_slpq);
390                         thread_cow_free(td_first);
391                         thread_free(td_first);
392                         td_first = td_next;
393                 }
394         }
395 }
396
397 /*
398  * Allocate a thread.
399  */
400 struct thread *
401 thread_alloc(int pages)
402 {
403         struct thread *td;
404
405         thread_reap(); /* check if any zombies to get */
406
407         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
408         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
409         if (!vm_thread_new(td, pages)) {
410                 uma_zfree(thread_zone, td);
411                 return (NULL);
412         }
413         cpu_thread_alloc(td);
414         vm_domain_policy_init(&td->td_vm_dom_policy);
415         return (td);
416 }
417
418 int
419 thread_alloc_stack(struct thread *td, int pages)
420 {
421
422         KASSERT(td->td_kstack == 0,
423             ("thread_alloc_stack called on a thread with kstack"));
424         if (!vm_thread_new(td, pages))
425                 return (0);
426         cpu_thread_alloc(td);
427         return (1);
428 }
429
430 /*
431  * Deallocate a thread.
432  */
433 void
434 thread_free(struct thread *td)
435 {
436
437         lock_profile_thread_exit(td);
438         if (td->td_cpuset)
439                 cpuset_rel(td->td_cpuset);
440         td->td_cpuset = NULL;
441         cpu_thread_free(td);
442         if (td->td_kstack != 0)
443                 vm_thread_dispose(td);
444         vm_domain_policy_cleanup(&td->td_vm_dom_policy);
445         callout_drain(&td->td_slpcallout);
446         uma_zfree(thread_zone, td);
447 }
448
449 void
450 thread_cow_get_proc(struct thread *newtd, struct proc *p)
451 {
452
453         PROC_LOCK_ASSERT(p, MA_OWNED);
454         newtd->td_ucred = crhold(p->p_ucred);
455         newtd->td_limit = lim_hold(p->p_limit);
456         newtd->td_cowgen = p->p_cowgen;
457 }
458
459 void
460 thread_cow_get(struct thread *newtd, struct thread *td)
461 {
462
463         newtd->td_ucred = crhold(td->td_ucred);
464         newtd->td_limit = lim_hold(td->td_limit);
465         newtd->td_cowgen = td->td_cowgen;
466 }
467
468 void
469 thread_cow_free(struct thread *td)
470 {
471
472         if (td->td_ucred != NULL)
473                 crfree(td->td_ucred);
474         if (td->td_limit != NULL)
475                 lim_free(td->td_limit);
476 }
477
478 void
479 thread_cow_update(struct thread *td)
480 {
481         struct proc *p;
482         struct ucred *oldcred;
483         struct plimit *oldlimit;
484
485         p = td->td_proc;
486         oldcred = NULL;
487         oldlimit = NULL;
488         PROC_LOCK(p);
489         if (td->td_ucred != p->p_ucred) {
490                 oldcred = td->td_ucred;
491                 td->td_ucred = crhold(p->p_ucred);
492         }
493         if (td->td_limit != p->p_limit) {
494                 oldlimit = td->td_limit;
495                 td->td_limit = lim_hold(p->p_limit);
496         }
497         td->td_cowgen = p->p_cowgen;
498         PROC_UNLOCK(p);
499         if (oldcred != NULL)
500                 crfree(oldcred);
501         if (oldlimit != NULL)
502                 lim_free(oldlimit);
503 }
504
505 /*
506  * Discard the current thread and exit from its context.
507  * Always called with scheduler locked.
508  *
509  * Because we can't free a thread while we're operating under its context,
510  * push the current thread into our CPU's deadthread holder. This means
511  * we needn't worry about someone else grabbing our context before we
512  * do a cpu_throw().
513  */
514 void
515 thread_exit(void)
516 {
517         uint64_t runtime, new_switchtime;
518         struct thread *td;
519         struct thread *td2;
520         struct proc *p;
521         int wakeup_swapper;
522
523         td = curthread;
524         p = td->td_proc;
525
526         PROC_SLOCK_ASSERT(p, MA_OWNED);
527         mtx_assert(&Giant, MA_NOTOWNED);
528
529         PROC_LOCK_ASSERT(p, MA_OWNED);
530         KASSERT(p != NULL, ("thread exiting without a process"));
531         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
532             (long)p->p_pid, td->td_name);
533         SDT_PROBE0(proc, , , lwp__exit);
534         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
535
536         /*
537          * drop FPU & debug register state storage, or any other
538          * architecture specific resources that
539          * would not be on a new untouched process.
540          */
541         cpu_thread_exit(td);
542
543         /*
544          * The last thread is left attached to the process
545          * So that the whole bundle gets recycled. Skip
546          * all this stuff if we never had threads.
547          * EXIT clears all sign of other threads when
548          * it goes to single threading, so the last thread always
549          * takes the short path.
550          */
551         if (p->p_flag & P_HADTHREADS) {
552                 if (p->p_numthreads > 1) {
553                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
554                         thread_unlink(td);
555                         td2 = FIRST_THREAD_IN_PROC(p);
556                         sched_exit_thread(td2, td);
557
558                         /*
559                          * The test below is NOT true if we are the
560                          * sole exiting thread. P_STOPPED_SINGLE is unset
561                          * in exit1() after it is the only survivor.
562                          */
563                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
564                                 if (p->p_numthreads == p->p_suspcount) {
565                                         thread_lock(p->p_singlethread);
566                                         wakeup_swapper = thread_unsuspend_one(
567                                                 p->p_singlethread, p, false);
568                                         thread_unlock(p->p_singlethread);
569                                         if (wakeup_swapper)
570                                                 kick_proc0();
571                                 }
572                         }
573
574                         PCPU_SET(deadthread, td);
575                 } else {
576                         /*
577                          * The last thread is exiting.. but not through exit()
578                          */
579                         panic ("thread_exit: Last thread exiting on its own");
580                 }
581         } 
582 #ifdef  HWPMC_HOOKS
583         /*
584          * If this thread is part of a process that is being tracked by hwpmc(4),
585          * inform the module of the thread's impending exit.
586          */
587         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
588                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
589 #endif
590         PROC_UNLOCK(p);
591         PROC_STATLOCK(p);
592         thread_lock(td);
593         PROC_SUNLOCK(p);
594
595         /* Do the same timestamp bookkeeping that mi_switch() would do. */
596         new_switchtime = cpu_ticks();
597         runtime = new_switchtime - PCPU_GET(switchtime);
598         td->td_runtime += runtime;
599         td->td_incruntime += runtime;
600         PCPU_SET(switchtime, new_switchtime);
601         PCPU_SET(switchticks, ticks);
602         PCPU_INC(cnt.v_swtch);
603
604         /* Save our resource usage in our process. */
605         td->td_ru.ru_nvcsw++;
606         ruxagg(p, td);
607         rucollect(&p->p_ru, &td->td_ru);
608         PROC_STATUNLOCK(p);
609
610         td->td_state = TDS_INACTIVE;
611 #ifdef WITNESS
612         witness_thread_exit(td);
613 #endif
614         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
615         sched_throw(td);
616         panic("I'm a teapot!");
617         /* NOTREACHED */
618 }
619
620 /*
621  * Do any thread specific cleanups that may be needed in wait()
622  * called with Giant, proc and schedlock not held.
623  */
624 void
625 thread_wait(struct proc *p)
626 {
627         struct thread *td;
628
629         mtx_assert(&Giant, MA_NOTOWNED);
630         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
631         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
632         td = FIRST_THREAD_IN_PROC(p);
633         /* Lock the last thread so we spin until it exits cpu_throw(). */
634         thread_lock(td);
635         thread_unlock(td);
636         lock_profile_thread_exit(td);
637         cpuset_rel(td->td_cpuset);
638         td->td_cpuset = NULL;
639         cpu_thread_clean(td);
640         thread_cow_free(td);
641         callout_drain(&td->td_slpcallout);
642         thread_reap();  /* check for zombie threads etc. */
643 }
644
645 /*
646  * Link a thread to a process.
647  * set up anything that needs to be initialized for it to
648  * be used by the process.
649  */
650 void
651 thread_link(struct thread *td, struct proc *p)
652 {
653
654         /*
655          * XXX This can't be enabled because it's called for proc0 before
656          * its lock has been created.
657          * PROC_LOCK_ASSERT(p, MA_OWNED);
658          */
659         td->td_state    = TDS_INACTIVE;
660         td->td_proc     = p;
661         td->td_flags    = TDF_INMEM;
662
663         LIST_INIT(&td->td_contested);
664         LIST_INIT(&td->td_lprof[0]);
665         LIST_INIT(&td->td_lprof[1]);
666         sigqueue_init(&td->td_sigqueue, p);
667         callout_init(&td->td_slpcallout, 1);
668         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
669         p->p_numthreads++;
670 }
671
672 /*
673  * Called from:
674  *  thread_exit()
675  */
676 void
677 thread_unlink(struct thread *td)
678 {
679         struct proc *p = td->td_proc;
680
681         PROC_LOCK_ASSERT(p, MA_OWNED);
682         TAILQ_REMOVE(&p->p_threads, td, td_plist);
683         p->p_numthreads--;
684         /* could clear a few other things here */
685         /* Must  NOT clear links to proc! */
686 }
687
688 static int
689 calc_remaining(struct proc *p, int mode)
690 {
691         int remaining;
692
693         PROC_LOCK_ASSERT(p, MA_OWNED);
694         PROC_SLOCK_ASSERT(p, MA_OWNED);
695         if (mode == SINGLE_EXIT)
696                 remaining = p->p_numthreads;
697         else if (mode == SINGLE_BOUNDARY)
698                 remaining = p->p_numthreads - p->p_boundary_count;
699         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
700                 remaining = p->p_numthreads - p->p_suspcount;
701         else
702                 panic("calc_remaining: wrong mode %d", mode);
703         return (remaining);
704 }
705
706 static int
707 remain_for_mode(int mode)
708 {
709
710         return (mode == SINGLE_ALLPROC ? 0 : 1);
711 }
712
713 static int
714 weed_inhib(int mode, struct thread *td2, struct proc *p)
715 {
716         int wakeup_swapper;
717
718         PROC_LOCK_ASSERT(p, MA_OWNED);
719         PROC_SLOCK_ASSERT(p, MA_OWNED);
720         THREAD_LOCK_ASSERT(td2, MA_OWNED);
721
722         wakeup_swapper = 0;
723         switch (mode) {
724         case SINGLE_EXIT:
725                 if (TD_IS_SUSPENDED(td2))
726                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
727                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
728                         wakeup_swapper |= sleepq_abort(td2, EINTR);
729                 break;
730         case SINGLE_BOUNDARY:
731         case SINGLE_NO_EXIT:
732                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
733                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
734                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
735                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
736                 break;
737         case SINGLE_ALLPROC:
738                 /*
739                  * ALLPROC suspend tries to avoid spurious EINTR for
740                  * threads sleeping interruptable, by suspending the
741                  * thread directly, similarly to sig_suspend_threads().
742                  * Since such sleep is not performed at the user
743                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
744                  * is used to avoid immediate un-suspend.
745                  */
746                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
747                     TDF_ALLPROCSUSP)) == 0)
748                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
749                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
750                         if ((td2->td_flags & TDF_SBDRY) == 0) {
751                                 thread_suspend_one(td2);
752                                 td2->td_flags |= TDF_ALLPROCSUSP;
753                         } else {
754                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
755                         }
756                 }
757                 break;
758         }
759         return (wakeup_swapper);
760 }
761
762 /*
763  * Enforce single-threading.
764  *
765  * Returns 1 if the caller must abort (another thread is waiting to
766  * exit the process or similar). Process is locked!
767  * Returns 0 when you are successfully the only thread running.
768  * A process has successfully single threaded in the suspend mode when
769  * There are no threads in user mode. Threads in the kernel must be
770  * allowed to continue until they get to the user boundary. They may even
771  * copy out their return values and data before suspending. They may however be
772  * accelerated in reaching the user boundary as we will wake up
773  * any sleeping threads that are interruptable. (PCATCH).
774  */
775 int
776 thread_single(struct proc *p, int mode)
777 {
778         struct thread *td;
779         struct thread *td2;
780         int remaining, wakeup_swapper;
781
782         td = curthread;
783         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
784             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
785             ("invalid mode %d", mode));
786         /*
787          * If allowing non-ALLPROC singlethreading for non-curproc
788          * callers, calc_remaining() and remain_for_mode() should be
789          * adjusted to also account for td->td_proc != p.  For now
790          * this is not implemented because it is not used.
791          */
792         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
793             (mode != SINGLE_ALLPROC && td->td_proc == p),
794             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
795         mtx_assert(&Giant, MA_NOTOWNED);
796         PROC_LOCK_ASSERT(p, MA_OWNED);
797
798         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
799                 return (0);
800
801         /* Is someone already single threading? */
802         if (p->p_singlethread != NULL && p->p_singlethread != td)
803                 return (1);
804
805         if (mode == SINGLE_EXIT) {
806                 p->p_flag |= P_SINGLE_EXIT;
807                 p->p_flag &= ~P_SINGLE_BOUNDARY;
808         } else {
809                 p->p_flag &= ~P_SINGLE_EXIT;
810                 if (mode == SINGLE_BOUNDARY)
811                         p->p_flag |= P_SINGLE_BOUNDARY;
812                 else
813                         p->p_flag &= ~P_SINGLE_BOUNDARY;
814         }
815         if (mode == SINGLE_ALLPROC)
816                 p->p_flag |= P_TOTAL_STOP;
817         p->p_flag |= P_STOPPED_SINGLE;
818         PROC_SLOCK(p);
819         p->p_singlethread = td;
820         remaining = calc_remaining(p, mode);
821         while (remaining != remain_for_mode(mode)) {
822                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
823                         goto stopme;
824                 wakeup_swapper = 0;
825                 FOREACH_THREAD_IN_PROC(p, td2) {
826                         if (td2 == td)
827                                 continue;
828                         thread_lock(td2);
829                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
830                         if (TD_IS_INHIBITED(td2)) {
831                                 wakeup_swapper |= weed_inhib(mode, td2, p);
832 #ifdef SMP
833                         } else if (TD_IS_RUNNING(td2) && td != td2) {
834                                 forward_signal(td2);
835 #endif
836                         }
837                         thread_unlock(td2);
838                 }
839                 if (wakeup_swapper)
840                         kick_proc0();
841                 remaining = calc_remaining(p, mode);
842
843                 /*
844                  * Maybe we suspended some threads.. was it enough?
845                  */
846                 if (remaining == remain_for_mode(mode))
847                         break;
848
849 stopme:
850                 /*
851                  * Wake us up when everyone else has suspended.
852                  * In the mean time we suspend as well.
853                  */
854                 thread_suspend_switch(td, p);
855                 remaining = calc_remaining(p, mode);
856         }
857         if (mode == SINGLE_EXIT) {
858                 /*
859                  * Convert the process to an unthreaded process.  The
860                  * SINGLE_EXIT is called by exit1() or execve(), in
861                  * both cases other threads must be retired.
862                  */
863                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
864                 p->p_singlethread = NULL;
865                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
866
867                 /*
868                  * Wait for any remaining threads to exit cpu_throw().
869                  */
870                 while (p->p_exitthreads != 0) {
871                         PROC_SUNLOCK(p);
872                         PROC_UNLOCK(p);
873                         sched_relinquish(td);
874                         PROC_LOCK(p);
875                         PROC_SLOCK(p);
876                 }
877         } else if (mode == SINGLE_BOUNDARY) {
878                 /*
879                  * Wait until all suspended threads are removed from
880                  * the processors.  The thread_suspend_check()
881                  * increments p_boundary_count while it is still
882                  * running, which makes it possible for the execve()
883                  * to destroy vmspace while our other threads are
884                  * still using the address space.
885                  *
886                  * We lock the thread, which is only allowed to
887                  * succeed after context switch code finished using
888                  * the address space.
889                  */
890                 FOREACH_THREAD_IN_PROC(p, td2) {
891                         if (td2 == td)
892                                 continue;
893                         thread_lock(td2);
894                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
895                             ("td %p not on boundary", td2));
896                         KASSERT(TD_IS_SUSPENDED(td2),
897                             ("td %p is not suspended", td2));
898                         thread_unlock(td2);
899                 }
900         }
901         PROC_SUNLOCK(p);
902         return (0);
903 }
904
905 bool
906 thread_suspend_check_needed(void)
907 {
908         struct proc *p;
909         struct thread *td;
910
911         td = curthread;
912         p = td->td_proc;
913         PROC_LOCK_ASSERT(p, MA_OWNED);
914         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
915             (td->td_dbgflags & TDB_SUSPEND) != 0));
916 }
917
918 /*
919  * Called in from locations that can safely check to see
920  * whether we have to suspend or at least throttle for a
921  * single-thread event (e.g. fork).
922  *
923  * Such locations include userret().
924  * If the "return_instead" argument is non zero, the thread must be able to
925  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
926  *
927  * The 'return_instead' argument tells the function if it may do a
928  * thread_exit() or suspend, or whether the caller must abort and back
929  * out instead.
930  *
931  * If the thread that set the single_threading request has set the
932  * P_SINGLE_EXIT bit in the process flags then this call will never return
933  * if 'return_instead' is false, but will exit.
934  *
935  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
936  *---------------+--------------------+---------------------
937  *       0       | returns 0          |   returns 0 or 1
938  *               | when ST ends       |   immediately
939  *---------------+--------------------+---------------------
940  *       1       | thread exits       |   returns 1
941  *               |                    |  immediately
942  * 0 = thread_exit() or suspension ok,
943  * other = return error instead of stopping the thread.
944  *
945  * While a full suspension is under effect, even a single threading
946  * thread would be suspended if it made this call (but it shouldn't).
947  * This call should only be made from places where
948  * thread_exit() would be safe as that may be the outcome unless
949  * return_instead is set.
950  */
951 int
952 thread_suspend_check(int return_instead)
953 {
954         struct thread *td;
955         struct proc *p;
956         int wakeup_swapper;
957
958         td = curthread;
959         p = td->td_proc;
960         mtx_assert(&Giant, MA_NOTOWNED);
961         PROC_LOCK_ASSERT(p, MA_OWNED);
962         while (thread_suspend_check_needed()) {
963                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
964                         KASSERT(p->p_singlethread != NULL,
965                             ("singlethread not set"));
966                         /*
967                          * The only suspension in action is a
968                          * single-threading. Single threader need not stop.
969                          * It is safe to access p->p_singlethread unlocked
970                          * because it can only be set to our address by us.
971                          */
972                         if (p->p_singlethread == td)
973                                 return (0);     /* Exempt from stopping. */
974                 }
975                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
976                         return (EINTR);
977
978                 /* Should we goto user boundary if we didn't come from there? */
979                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
980                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
981                         return (ERESTART);
982
983                 /*
984                  * Ignore suspend requests if they are deferred.
985                  */
986                 if ((td->td_flags & TDF_SBDRY) != 0) {
987                         KASSERT(return_instead,
988                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
989                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
990                             (TDF_SEINTR | TDF_SERESTART),
991                             ("both TDF_SEINTR and TDF_SERESTART"));
992                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
993                 }
994
995                 /*
996                  * If the process is waiting for us to exit,
997                  * this thread should just suicide.
998                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
999                  */
1000                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1001                         PROC_UNLOCK(p);
1002
1003                         /*
1004                          * Allow Linux emulation layer to do some work
1005                          * before thread suicide.
1006                          */
1007                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1008                                 (p->p_sysent->sv_thread_detach)(td);
1009                         umtx_thread_exit(td);
1010                         kern_thr_exit(td);
1011                         panic("stopped thread did not exit");
1012                 }
1013
1014                 PROC_SLOCK(p);
1015                 thread_stopped(p);
1016                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1017                         if (p->p_numthreads == p->p_suspcount + 1) {
1018                                 thread_lock(p->p_singlethread);
1019                                 wakeup_swapper = thread_unsuspend_one(
1020                                     p->p_singlethread, p, false);
1021                                 thread_unlock(p->p_singlethread);
1022                                 if (wakeup_swapper)
1023                                         kick_proc0();
1024                         }
1025                 }
1026                 PROC_UNLOCK(p);
1027                 thread_lock(td);
1028                 /*
1029                  * When a thread suspends, it just
1030                  * gets taken off all queues.
1031                  */
1032                 thread_suspend_one(td);
1033                 if (return_instead == 0) {
1034                         p->p_boundary_count++;
1035                         td->td_flags |= TDF_BOUNDARY;
1036                 }
1037                 PROC_SUNLOCK(p);
1038                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1039                 thread_unlock(td);
1040                 PROC_LOCK(p);
1041         }
1042         return (0);
1043 }
1044
1045 void
1046 thread_suspend_switch(struct thread *td, struct proc *p)
1047 {
1048
1049         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1050         PROC_LOCK_ASSERT(p, MA_OWNED);
1051         PROC_SLOCK_ASSERT(p, MA_OWNED);
1052         /*
1053          * We implement thread_suspend_one in stages here to avoid
1054          * dropping the proc lock while the thread lock is owned.
1055          */
1056         if (p == td->td_proc) {
1057                 thread_stopped(p);
1058                 p->p_suspcount++;
1059         }
1060         PROC_UNLOCK(p);
1061         thread_lock(td);
1062         td->td_flags &= ~TDF_NEEDSUSPCHK;
1063         TD_SET_SUSPENDED(td);
1064         sched_sleep(td, 0);
1065         PROC_SUNLOCK(p);
1066         DROP_GIANT();
1067         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1068         thread_unlock(td);
1069         PICKUP_GIANT();
1070         PROC_LOCK(p);
1071         PROC_SLOCK(p);
1072 }
1073
1074 void
1075 thread_suspend_one(struct thread *td)
1076 {
1077         struct proc *p;
1078
1079         p = td->td_proc;
1080         PROC_SLOCK_ASSERT(p, MA_OWNED);
1081         THREAD_LOCK_ASSERT(td, MA_OWNED);
1082         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1083         p->p_suspcount++;
1084         td->td_flags &= ~TDF_NEEDSUSPCHK;
1085         TD_SET_SUSPENDED(td);
1086         sched_sleep(td, 0);
1087 }
1088
1089 static int
1090 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1091 {
1092
1093         THREAD_LOCK_ASSERT(td, MA_OWNED);
1094         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1095         TD_CLR_SUSPENDED(td);
1096         td->td_flags &= ~TDF_ALLPROCSUSP;
1097         if (td->td_proc == p) {
1098                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1099                 p->p_suspcount--;
1100                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1101                         td->td_flags &= ~TDF_BOUNDARY;
1102                         p->p_boundary_count--;
1103                 }
1104         }
1105         return (setrunnable(td));
1106 }
1107
1108 /*
1109  * Allow all threads blocked by single threading to continue running.
1110  */
1111 void
1112 thread_unsuspend(struct proc *p)
1113 {
1114         struct thread *td;
1115         int wakeup_swapper;
1116
1117         PROC_LOCK_ASSERT(p, MA_OWNED);
1118         PROC_SLOCK_ASSERT(p, MA_OWNED);
1119         wakeup_swapper = 0;
1120         if (!P_SHOULDSTOP(p)) {
1121                 FOREACH_THREAD_IN_PROC(p, td) {
1122                         thread_lock(td);
1123                         if (TD_IS_SUSPENDED(td)) {
1124                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1125                                     true);
1126                         }
1127                         thread_unlock(td);
1128                 }
1129         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1130             p->p_numthreads == p->p_suspcount) {
1131                 /*
1132                  * Stopping everything also did the job for the single
1133                  * threading request. Now we've downgraded to single-threaded,
1134                  * let it continue.
1135                  */
1136                 if (p->p_singlethread->td_proc == p) {
1137                         thread_lock(p->p_singlethread);
1138                         wakeup_swapper = thread_unsuspend_one(
1139                             p->p_singlethread, p, false);
1140                         thread_unlock(p->p_singlethread);
1141                 }
1142         }
1143         if (wakeup_swapper)
1144                 kick_proc0();
1145 }
1146
1147 /*
1148  * End the single threading mode..
1149  */
1150 void
1151 thread_single_end(struct proc *p, int mode)
1152 {
1153         struct thread *td;
1154         int wakeup_swapper;
1155
1156         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1157             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1158             ("invalid mode %d", mode));
1159         PROC_LOCK_ASSERT(p, MA_OWNED);
1160         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1161             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1162             ("mode %d does not match P_TOTAL_STOP", mode));
1163         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1164             ("thread_single_end from other thread %p %p",
1165             curthread, p->p_singlethread));
1166         KASSERT(mode != SINGLE_BOUNDARY ||
1167             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1168             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1169         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1170             P_TOTAL_STOP);
1171         PROC_SLOCK(p);
1172         p->p_singlethread = NULL;
1173         wakeup_swapper = 0;
1174         /*
1175          * If there are other threads they may now run,
1176          * unless of course there is a blanket 'stop order'
1177          * on the process. The single threader must be allowed
1178          * to continue however as this is a bad place to stop.
1179          */
1180         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1181                 FOREACH_THREAD_IN_PROC(p, td) {
1182                         thread_lock(td);
1183                         if (TD_IS_SUSPENDED(td)) {
1184                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1185                                     mode == SINGLE_BOUNDARY);
1186                         }
1187                         thread_unlock(td);
1188                 }
1189         }
1190         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1191             ("inconsistent boundary count %d", p->p_boundary_count));
1192         PROC_SUNLOCK(p);
1193         if (wakeup_swapper)
1194                 kick_proc0();
1195 }
1196
1197 struct thread *
1198 thread_find(struct proc *p, lwpid_t tid)
1199 {
1200         struct thread *td;
1201
1202         PROC_LOCK_ASSERT(p, MA_OWNED);
1203         FOREACH_THREAD_IN_PROC(p, td) {
1204                 if (td->td_tid == tid)
1205                         break;
1206         }
1207         return (td);
1208 }
1209
1210 /* Locate a thread by number; return with proc lock held. */
1211 struct thread *
1212 tdfind(lwpid_t tid, pid_t pid)
1213 {
1214 #define RUN_THRESH      16
1215         struct thread *td;
1216         int run = 0;
1217
1218         rw_rlock(&tidhash_lock);
1219         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1220                 if (td->td_tid == tid) {
1221                         if (pid != -1 && td->td_proc->p_pid != pid) {
1222                                 td = NULL;
1223                                 break;
1224                         }
1225                         PROC_LOCK(td->td_proc);
1226                         if (td->td_proc->p_state == PRS_NEW) {
1227                                 PROC_UNLOCK(td->td_proc);
1228                                 td = NULL;
1229                                 break;
1230                         }
1231                         if (run > RUN_THRESH) {
1232                                 if (rw_try_upgrade(&tidhash_lock)) {
1233                                         LIST_REMOVE(td, td_hash);
1234                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1235                                                 td, td_hash);
1236                                         rw_wunlock(&tidhash_lock);
1237                                         return (td);
1238                                 }
1239                         }
1240                         break;
1241                 }
1242                 run++;
1243         }
1244         rw_runlock(&tidhash_lock);
1245         return (td);
1246 }
1247
1248 void
1249 tidhash_add(struct thread *td)
1250 {
1251         rw_wlock(&tidhash_lock);
1252         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1253         rw_wunlock(&tidhash_lock);
1254 }
1255
1256 void
1257 tidhash_remove(struct thread *td)
1258 {
1259         rw_wlock(&tidhash_lock);
1260         LIST_REMOVE(td, td_hash);
1261         rw_wunlock(&tidhash_lock);
1262 }