]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Remove spurious newline
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/rangelock.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sdt.h>
47 #include <sys/smp.h>
48 #include <sys/sched.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/selinfo.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysent.h>
53 #include <sys/turnstile.h>
54 #include <sys/ktr.h>
55 #include <sys/rwlock.h>
56 #include <sys/umtx.h>
57 #include <sys/vmmeter.h>
58 #include <sys/cpuset.h>
59 #ifdef  HWPMC_HOOKS
60 #include <sys/pmckern.h>
61 #endif
62
63 #include <security/audit/audit.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/uma.h>
68 #include <sys/eventhandler.h>
69
70 /*
71  * Asserts below verify the stability of struct thread and struct proc
72  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
73  * to drift, change to the structures must be accompanied by the
74  * assert update.
75  *
76  * On the stable branches after KBI freeze, conditions must not be
77  * violated.  Typically new fields are moved to the end of the
78  * structures.
79  */
80 #ifdef __amd64__
81 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
82     "struct thread KBI td_flags");
83 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
84     "struct thread KBI td_pflags");
85 _Static_assert(offsetof(struct thread, td_frame) == 0x478,
86     "struct thread KBI td_frame");
87 _Static_assert(offsetof(struct thread, td_emuldata) == 0x548,
88     "struct thread KBI td_emuldata");
89 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
90     "struct proc KBI p_flag");
91 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
92     "struct proc KBI p_pid");
93 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
94     "struct proc KBI p_filemon");
95 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
96     "struct proc KBI p_comm");
97 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4c0,
98     "struct proc KBI p_emuldata");
99 #endif
100 #ifdef __i386__
101 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
102     "struct thread KBI td_flags");
103 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
104     "struct thread KBI td_pflags");
105 _Static_assert(offsetof(struct thread, td_frame) == 0x2ec,
106     "struct thread KBI td_frame");
107 _Static_assert(offsetof(struct thread, td_emuldata) == 0x338,
108     "struct thread KBI td_emuldata");
109 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
110     "struct proc KBI p_flag");
111 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
112     "struct proc KBI p_pid");
113 _Static_assert(offsetof(struct proc, p_filemon) == 0x278,
114     "struct proc KBI p_filemon");
115 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
116     "struct proc KBI p_comm");
117 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
118     "struct proc KBI p_emuldata");
119 #endif
120
121 SDT_PROVIDER_DECLARE(proc);
122 SDT_PROBE_DEFINE(proc, , , lwp__exit);
123
124 /*
125  * thread related storage.
126  */
127 static uma_zone_t thread_zone;
128
129 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
130 static struct mtx zombie_lock;
131 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
132
133 static void thread_zombie(struct thread *);
134 static int thread_unsuspend_one(struct thread *td, struct proc *p,
135     bool boundary);
136
137 #define TID_BUFFER_SIZE 1024
138
139 struct mtx tid_lock;
140 static struct unrhdr *tid_unrhdr;
141 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
142 static int tid_head, tid_tail;
143 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
144
145 struct  tidhashhead *tidhashtbl;
146 u_long  tidhash;
147 struct  rwlock tidhash_lock;
148
149 EVENTHANDLER_LIST_DEFINE(thread_ctor);
150 EVENTHANDLER_LIST_DEFINE(thread_dtor);
151 EVENTHANDLER_LIST_DEFINE(thread_init);
152 EVENTHANDLER_LIST_DEFINE(thread_fini);
153
154 static lwpid_t
155 tid_alloc(void)
156 {
157         lwpid_t tid;
158
159         tid = alloc_unr(tid_unrhdr);
160         if (tid != -1)
161                 return (tid);
162         mtx_lock(&tid_lock);
163         if (tid_head == tid_tail) {
164                 mtx_unlock(&tid_lock);
165                 return (-1);
166         }
167         tid = tid_buffer[tid_head];
168         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
169         mtx_unlock(&tid_lock);
170         return (tid);
171 }
172
173 static void
174 tid_free(lwpid_t tid)
175 {
176         lwpid_t tmp_tid = -1;
177
178         mtx_lock(&tid_lock);
179         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
180                 tmp_tid = tid_buffer[tid_head];
181                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
182         }
183         tid_buffer[tid_tail] = tid;
184         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
185         mtx_unlock(&tid_lock);
186         if (tmp_tid != -1)
187                 free_unr(tid_unrhdr, tmp_tid);
188 }
189
190 /*
191  * Prepare a thread for use.
192  */
193 static int
194 thread_ctor(void *mem, int size, void *arg, int flags)
195 {
196         struct thread   *td;
197
198         td = (struct thread *)mem;
199         td->td_state = TDS_INACTIVE;
200         td->td_lastcpu = td->td_oncpu = NOCPU;
201
202         td->td_tid = tid_alloc();
203
204         /*
205          * Note that td_critnest begins life as 1 because the thread is not
206          * running and is thereby implicitly waiting to be on the receiving
207          * end of a context switch.
208          */
209         td->td_critnest = 1;
210         td->td_lend_user_pri = PRI_MAX;
211         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
212 #ifdef AUDIT
213         audit_thread_alloc(td);
214 #endif
215         umtx_thread_alloc(td);
216         return (0);
217 }
218
219 /*
220  * Reclaim a thread after use.
221  */
222 static void
223 thread_dtor(void *mem, int size, void *arg)
224 {
225         struct thread *td;
226
227         td = (struct thread *)mem;
228
229 #ifdef INVARIANTS
230         /* Verify that this thread is in a safe state to free. */
231         switch (td->td_state) {
232         case TDS_INHIBITED:
233         case TDS_RUNNING:
234         case TDS_CAN_RUN:
235         case TDS_RUNQ:
236                 /*
237                  * We must never unlink a thread that is in one of
238                  * these states, because it is currently active.
239                  */
240                 panic("bad state for thread unlinking");
241                 /* NOTREACHED */
242         case TDS_INACTIVE:
243                 break;
244         default:
245                 panic("bad thread state");
246                 /* NOTREACHED */
247         }
248 #endif
249 #ifdef AUDIT
250         audit_thread_free(td);
251 #endif
252         /* Free all OSD associated to this thread. */
253         osd_thread_exit(td);
254         td_softdep_cleanup(td);
255         MPASS(td->td_su == NULL);
256
257         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
258         tid_free(td->td_tid);
259 }
260
261 /*
262  * Initialize type-stable parts of a thread (when newly created).
263  */
264 static int
265 thread_init(void *mem, int size, int flags)
266 {
267         struct thread *td;
268
269         td = (struct thread *)mem;
270
271         td->td_sleepqueue = sleepq_alloc();
272         td->td_turnstile = turnstile_alloc();
273         td->td_rlqe = NULL;
274         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
275         umtx_thread_init(td);
276         epoch_thread_init(td);
277         td->td_kstack = 0;
278         td->td_sel = NULL;
279         return (0);
280 }
281
282 /*
283  * Tear down type-stable parts of a thread (just before being discarded).
284  */
285 static void
286 thread_fini(void *mem, int size)
287 {
288         struct thread *td;
289
290         td = (struct thread *)mem;
291         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
292         rlqentry_free(td->td_rlqe);
293         turnstile_free(td->td_turnstile);
294         sleepq_free(td->td_sleepqueue);
295         umtx_thread_fini(td);
296         epoch_thread_fini(td);
297         seltdfini(td);
298 }
299
300 /*
301  * For a newly created process,
302  * link up all the structures and its initial threads etc.
303  * called from:
304  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
305  * proc_dtor() (should go away)
306  * proc_init()
307  */
308 void
309 proc_linkup0(struct proc *p, struct thread *td)
310 {
311         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
312         proc_linkup(p, td);
313 }
314
315 void
316 proc_linkup(struct proc *p, struct thread *td)
317 {
318
319         sigqueue_init(&p->p_sigqueue, p);
320         p->p_ksi = ksiginfo_alloc(1);
321         if (p->p_ksi != NULL) {
322                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
323                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
324         }
325         LIST_INIT(&p->p_mqnotifier);
326         p->p_numthreads = 0;
327         thread_link(td, p);
328 }
329
330 /*
331  * Initialize global thread allocation resources.
332  */
333 void
334 threadinit(void)
335 {
336
337         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
338
339         /*
340          * pid_max cannot be greater than PID_MAX.
341          * leave one number for thread0.
342          */
343         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
344
345         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
346             thread_ctor, thread_dtor, thread_init, thread_fini,
347             32 - 1, UMA_ZONE_NOFREE);
348         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
349         rw_init(&tidhash_lock, "tidhash");
350 }
351
352 /*
353  * Place an unused thread on the zombie list.
354  * Use the slpq as that must be unused by now.
355  */
356 void
357 thread_zombie(struct thread *td)
358 {
359         mtx_lock_spin(&zombie_lock);
360         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
361         mtx_unlock_spin(&zombie_lock);
362 }
363
364 /*
365  * Release a thread that has exited after cpu_throw().
366  */
367 void
368 thread_stash(struct thread *td)
369 {
370         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
371         thread_zombie(td);
372 }
373
374 /*
375  * Reap zombie resources.
376  */
377 void
378 thread_reap(void)
379 {
380         struct thread *td_first, *td_next;
381
382         /*
383          * Don't even bother to lock if none at this instant,
384          * we really don't care about the next instant.
385          */
386         if (!TAILQ_EMPTY(&zombie_threads)) {
387                 mtx_lock_spin(&zombie_lock);
388                 td_first = TAILQ_FIRST(&zombie_threads);
389                 if (td_first)
390                         TAILQ_INIT(&zombie_threads);
391                 mtx_unlock_spin(&zombie_lock);
392                 while (td_first) {
393                         td_next = TAILQ_NEXT(td_first, td_slpq);
394                         thread_cow_free(td_first);
395                         thread_free(td_first);
396                         td_first = td_next;
397                 }
398         }
399 }
400
401 /*
402  * Allocate a thread.
403  */
404 struct thread *
405 thread_alloc(int pages)
406 {
407         struct thread *td;
408
409         thread_reap(); /* check if any zombies to get */
410
411         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
412         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
413         if (!vm_thread_new(td, pages)) {
414                 uma_zfree(thread_zone, td);
415                 return (NULL);
416         }
417         cpu_thread_alloc(td);
418         return (td);
419 }
420
421 int
422 thread_alloc_stack(struct thread *td, int pages)
423 {
424
425         KASSERT(td->td_kstack == 0,
426             ("thread_alloc_stack called on a thread with kstack"));
427         if (!vm_thread_new(td, pages))
428                 return (0);
429         cpu_thread_alloc(td);
430         return (1);
431 }
432
433 /*
434  * Deallocate a thread.
435  */
436 void
437 thread_free(struct thread *td)
438 {
439
440         lock_profile_thread_exit(td);
441         if (td->td_cpuset)
442                 cpuset_rel(td->td_cpuset);
443         td->td_cpuset = NULL;
444         cpu_thread_free(td);
445         if (td->td_kstack != 0)
446                 vm_thread_dispose(td);
447         callout_drain(&td->td_slpcallout);
448         uma_zfree(thread_zone, td);
449 }
450
451 void
452 thread_cow_get_proc(struct thread *newtd, struct proc *p)
453 {
454
455         PROC_LOCK_ASSERT(p, MA_OWNED);
456         newtd->td_ucred = crhold(p->p_ucred);
457         newtd->td_limit = lim_hold(p->p_limit);
458         newtd->td_cowgen = p->p_cowgen;
459 }
460
461 void
462 thread_cow_get(struct thread *newtd, struct thread *td)
463 {
464
465         newtd->td_ucred = crhold(td->td_ucred);
466         newtd->td_limit = lim_hold(td->td_limit);
467         newtd->td_cowgen = td->td_cowgen;
468 }
469
470 void
471 thread_cow_free(struct thread *td)
472 {
473
474         if (td->td_ucred != NULL)
475                 crfree(td->td_ucred);
476         if (td->td_limit != NULL)
477                 lim_free(td->td_limit);
478 }
479
480 void
481 thread_cow_update(struct thread *td)
482 {
483         struct proc *p;
484         struct ucred *oldcred;
485         struct plimit *oldlimit;
486
487         p = td->td_proc;
488         oldcred = NULL;
489         oldlimit = NULL;
490         PROC_LOCK(p);
491         if (td->td_ucred != p->p_ucred) {
492                 oldcred = td->td_ucred;
493                 td->td_ucred = crhold(p->p_ucred);
494         }
495         if (td->td_limit != p->p_limit) {
496                 oldlimit = td->td_limit;
497                 td->td_limit = lim_hold(p->p_limit);
498         }
499         td->td_cowgen = p->p_cowgen;
500         PROC_UNLOCK(p);
501         if (oldcred != NULL)
502                 crfree(oldcred);
503         if (oldlimit != NULL)
504                 lim_free(oldlimit);
505 }
506
507 /*
508  * Discard the current thread and exit from its context.
509  * Always called with scheduler locked.
510  *
511  * Because we can't free a thread while we're operating under its context,
512  * push the current thread into our CPU's deadthread holder. This means
513  * we needn't worry about someone else grabbing our context before we
514  * do a cpu_throw().
515  */
516 void
517 thread_exit(void)
518 {
519         uint64_t runtime, new_switchtime;
520         struct thread *td;
521         struct thread *td2;
522         struct proc *p;
523         int wakeup_swapper;
524
525         td = curthread;
526         p = td->td_proc;
527
528         PROC_SLOCK_ASSERT(p, MA_OWNED);
529         mtx_assert(&Giant, MA_NOTOWNED);
530
531         PROC_LOCK_ASSERT(p, MA_OWNED);
532         KASSERT(p != NULL, ("thread exiting without a process"));
533         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
534             (long)p->p_pid, td->td_name);
535         SDT_PROBE0(proc, , , lwp__exit);
536         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
537
538         /*
539          * drop FPU & debug register state storage, or any other
540          * architecture specific resources that
541          * would not be on a new untouched process.
542          */
543         cpu_thread_exit(td);
544
545         /*
546          * The last thread is left attached to the process
547          * So that the whole bundle gets recycled. Skip
548          * all this stuff if we never had threads.
549          * EXIT clears all sign of other threads when
550          * it goes to single threading, so the last thread always
551          * takes the short path.
552          */
553         if (p->p_flag & P_HADTHREADS) {
554                 if (p->p_numthreads > 1) {
555                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
556                         thread_unlink(td);
557                         td2 = FIRST_THREAD_IN_PROC(p);
558                         sched_exit_thread(td2, td);
559
560                         /*
561                          * The test below is NOT true if we are the
562                          * sole exiting thread. P_STOPPED_SINGLE is unset
563                          * in exit1() after it is the only survivor.
564                          */
565                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
566                                 if (p->p_numthreads == p->p_suspcount) {
567                                         thread_lock(p->p_singlethread);
568                                         wakeup_swapper = thread_unsuspend_one(
569                                                 p->p_singlethread, p, false);
570                                         thread_unlock(p->p_singlethread);
571                                         if (wakeup_swapper)
572                                                 kick_proc0();
573                                 }
574                         }
575
576                         PCPU_SET(deadthread, td);
577                 } else {
578                         /*
579                          * The last thread is exiting.. but not through exit()
580                          */
581                         panic ("thread_exit: Last thread exiting on its own");
582                 }
583         } 
584 #ifdef  HWPMC_HOOKS
585         /*
586          * If this thread is part of a process that is being tracked by hwpmc(4),
587          * inform the module of the thread's impending exit.
588          */
589         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
590                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
591                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
592         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
593                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
594 #endif
595         PROC_UNLOCK(p);
596         PROC_STATLOCK(p);
597         thread_lock(td);
598         PROC_SUNLOCK(p);
599
600         /* Do the same timestamp bookkeeping that mi_switch() would do. */
601         new_switchtime = cpu_ticks();
602         runtime = new_switchtime - PCPU_GET(switchtime);
603         td->td_runtime += runtime;
604         td->td_incruntime += runtime;
605         PCPU_SET(switchtime, new_switchtime);
606         PCPU_SET(switchticks, ticks);
607         VM_CNT_INC(v_swtch);
608
609         /* Save our resource usage in our process. */
610         td->td_ru.ru_nvcsw++;
611         ruxagg(p, td);
612         rucollect(&p->p_ru, &td->td_ru);
613         PROC_STATUNLOCK(p);
614
615         td->td_state = TDS_INACTIVE;
616 #ifdef WITNESS
617         witness_thread_exit(td);
618 #endif
619         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
620         sched_throw(td);
621         panic("I'm a teapot!");
622         /* NOTREACHED */
623 }
624
625 /*
626  * Do any thread specific cleanups that may be needed in wait()
627  * called with Giant, proc and schedlock not held.
628  */
629 void
630 thread_wait(struct proc *p)
631 {
632         struct thread *td;
633
634         mtx_assert(&Giant, MA_NOTOWNED);
635         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
636         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
637         td = FIRST_THREAD_IN_PROC(p);
638         /* Lock the last thread so we spin until it exits cpu_throw(). */
639         thread_lock(td);
640         thread_unlock(td);
641         lock_profile_thread_exit(td);
642         cpuset_rel(td->td_cpuset);
643         td->td_cpuset = NULL;
644         cpu_thread_clean(td);
645         thread_cow_free(td);
646         callout_drain(&td->td_slpcallout);
647         thread_reap();  /* check for zombie threads etc. */
648 }
649
650 /*
651  * Link a thread to a process.
652  * set up anything that needs to be initialized for it to
653  * be used by the process.
654  */
655 void
656 thread_link(struct thread *td, struct proc *p)
657 {
658
659         /*
660          * XXX This can't be enabled because it's called for proc0 before
661          * its lock has been created.
662          * PROC_LOCK_ASSERT(p, MA_OWNED);
663          */
664         td->td_state    = TDS_INACTIVE;
665         td->td_proc     = p;
666         td->td_flags    = TDF_INMEM;
667
668         LIST_INIT(&td->td_contested);
669         LIST_INIT(&td->td_lprof[0]);
670         LIST_INIT(&td->td_lprof[1]);
671         sigqueue_init(&td->td_sigqueue, p);
672         callout_init(&td->td_slpcallout, 1);
673         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
674         p->p_numthreads++;
675 }
676
677 /*
678  * Called from:
679  *  thread_exit()
680  */
681 void
682 thread_unlink(struct thread *td)
683 {
684         struct proc *p = td->td_proc;
685
686         PROC_LOCK_ASSERT(p, MA_OWNED);
687         TAILQ_REMOVE(&p->p_threads, td, td_plist);
688         p->p_numthreads--;
689         /* could clear a few other things here */
690         /* Must  NOT clear links to proc! */
691 }
692
693 static int
694 calc_remaining(struct proc *p, int mode)
695 {
696         int remaining;
697
698         PROC_LOCK_ASSERT(p, MA_OWNED);
699         PROC_SLOCK_ASSERT(p, MA_OWNED);
700         if (mode == SINGLE_EXIT)
701                 remaining = p->p_numthreads;
702         else if (mode == SINGLE_BOUNDARY)
703                 remaining = p->p_numthreads - p->p_boundary_count;
704         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
705                 remaining = p->p_numthreads - p->p_suspcount;
706         else
707                 panic("calc_remaining: wrong mode %d", mode);
708         return (remaining);
709 }
710
711 static int
712 remain_for_mode(int mode)
713 {
714
715         return (mode == SINGLE_ALLPROC ? 0 : 1);
716 }
717
718 static int
719 weed_inhib(int mode, struct thread *td2, struct proc *p)
720 {
721         int wakeup_swapper;
722
723         PROC_LOCK_ASSERT(p, MA_OWNED);
724         PROC_SLOCK_ASSERT(p, MA_OWNED);
725         THREAD_LOCK_ASSERT(td2, MA_OWNED);
726
727         wakeup_swapper = 0;
728         switch (mode) {
729         case SINGLE_EXIT:
730                 if (TD_IS_SUSPENDED(td2))
731                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
732                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
733                         wakeup_swapper |= sleepq_abort(td2, EINTR);
734                 break;
735         case SINGLE_BOUNDARY:
736         case SINGLE_NO_EXIT:
737                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
738                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
739                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
740                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
741                 break;
742         case SINGLE_ALLPROC:
743                 /*
744                  * ALLPROC suspend tries to avoid spurious EINTR for
745                  * threads sleeping interruptable, by suspending the
746                  * thread directly, similarly to sig_suspend_threads().
747                  * Since such sleep is not performed at the user
748                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
749                  * is used to avoid immediate un-suspend.
750                  */
751                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
752                     TDF_ALLPROCSUSP)) == 0)
753                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
754                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
755                         if ((td2->td_flags & TDF_SBDRY) == 0) {
756                                 thread_suspend_one(td2);
757                                 td2->td_flags |= TDF_ALLPROCSUSP;
758                         } else {
759                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
760                         }
761                 }
762                 break;
763         }
764         return (wakeup_swapper);
765 }
766
767 /*
768  * Enforce single-threading.
769  *
770  * Returns 1 if the caller must abort (another thread is waiting to
771  * exit the process or similar). Process is locked!
772  * Returns 0 when you are successfully the only thread running.
773  * A process has successfully single threaded in the suspend mode when
774  * There are no threads in user mode. Threads in the kernel must be
775  * allowed to continue until they get to the user boundary. They may even
776  * copy out their return values and data before suspending. They may however be
777  * accelerated in reaching the user boundary as we will wake up
778  * any sleeping threads that are interruptable. (PCATCH).
779  */
780 int
781 thread_single(struct proc *p, int mode)
782 {
783         struct thread *td;
784         struct thread *td2;
785         int remaining, wakeup_swapper;
786
787         td = curthread;
788         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
789             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
790             ("invalid mode %d", mode));
791         /*
792          * If allowing non-ALLPROC singlethreading for non-curproc
793          * callers, calc_remaining() and remain_for_mode() should be
794          * adjusted to also account for td->td_proc != p.  For now
795          * this is not implemented because it is not used.
796          */
797         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
798             (mode != SINGLE_ALLPROC && td->td_proc == p),
799             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
800         mtx_assert(&Giant, MA_NOTOWNED);
801         PROC_LOCK_ASSERT(p, MA_OWNED);
802
803         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
804                 return (0);
805
806         /* Is someone already single threading? */
807         if (p->p_singlethread != NULL && p->p_singlethread != td)
808                 return (1);
809
810         if (mode == SINGLE_EXIT) {
811                 p->p_flag |= P_SINGLE_EXIT;
812                 p->p_flag &= ~P_SINGLE_BOUNDARY;
813         } else {
814                 p->p_flag &= ~P_SINGLE_EXIT;
815                 if (mode == SINGLE_BOUNDARY)
816                         p->p_flag |= P_SINGLE_BOUNDARY;
817                 else
818                         p->p_flag &= ~P_SINGLE_BOUNDARY;
819         }
820         if (mode == SINGLE_ALLPROC)
821                 p->p_flag |= P_TOTAL_STOP;
822         p->p_flag |= P_STOPPED_SINGLE;
823         PROC_SLOCK(p);
824         p->p_singlethread = td;
825         remaining = calc_remaining(p, mode);
826         while (remaining != remain_for_mode(mode)) {
827                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
828                         goto stopme;
829                 wakeup_swapper = 0;
830                 FOREACH_THREAD_IN_PROC(p, td2) {
831                         if (td2 == td)
832                                 continue;
833                         thread_lock(td2);
834                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
835                         if (TD_IS_INHIBITED(td2)) {
836                                 wakeup_swapper |= weed_inhib(mode, td2, p);
837 #ifdef SMP
838                         } else if (TD_IS_RUNNING(td2) && td != td2) {
839                                 forward_signal(td2);
840 #endif
841                         }
842                         thread_unlock(td2);
843                 }
844                 if (wakeup_swapper)
845                         kick_proc0();
846                 remaining = calc_remaining(p, mode);
847
848                 /*
849                  * Maybe we suspended some threads.. was it enough?
850                  */
851                 if (remaining == remain_for_mode(mode))
852                         break;
853
854 stopme:
855                 /*
856                  * Wake us up when everyone else has suspended.
857                  * In the mean time we suspend as well.
858                  */
859                 thread_suspend_switch(td, p);
860                 remaining = calc_remaining(p, mode);
861         }
862         if (mode == SINGLE_EXIT) {
863                 /*
864                  * Convert the process to an unthreaded process.  The
865                  * SINGLE_EXIT is called by exit1() or execve(), in
866                  * both cases other threads must be retired.
867                  */
868                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
869                 p->p_singlethread = NULL;
870                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
871
872                 /*
873                  * Wait for any remaining threads to exit cpu_throw().
874                  */
875                 while (p->p_exitthreads != 0) {
876                         PROC_SUNLOCK(p);
877                         PROC_UNLOCK(p);
878                         sched_relinquish(td);
879                         PROC_LOCK(p);
880                         PROC_SLOCK(p);
881                 }
882         } else if (mode == SINGLE_BOUNDARY) {
883                 /*
884                  * Wait until all suspended threads are removed from
885                  * the processors.  The thread_suspend_check()
886                  * increments p_boundary_count while it is still
887                  * running, which makes it possible for the execve()
888                  * to destroy vmspace while our other threads are
889                  * still using the address space.
890                  *
891                  * We lock the thread, which is only allowed to
892                  * succeed after context switch code finished using
893                  * the address space.
894                  */
895                 FOREACH_THREAD_IN_PROC(p, td2) {
896                         if (td2 == td)
897                                 continue;
898                         thread_lock(td2);
899                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
900                             ("td %p not on boundary", td2));
901                         KASSERT(TD_IS_SUSPENDED(td2),
902                             ("td %p is not suspended", td2));
903                         thread_unlock(td2);
904                 }
905         }
906         PROC_SUNLOCK(p);
907         return (0);
908 }
909
910 bool
911 thread_suspend_check_needed(void)
912 {
913         struct proc *p;
914         struct thread *td;
915
916         td = curthread;
917         p = td->td_proc;
918         PROC_LOCK_ASSERT(p, MA_OWNED);
919         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
920             (td->td_dbgflags & TDB_SUSPEND) != 0));
921 }
922
923 /*
924  * Called in from locations that can safely check to see
925  * whether we have to suspend or at least throttle for a
926  * single-thread event (e.g. fork).
927  *
928  * Such locations include userret().
929  * If the "return_instead" argument is non zero, the thread must be able to
930  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
931  *
932  * The 'return_instead' argument tells the function if it may do a
933  * thread_exit() or suspend, or whether the caller must abort and back
934  * out instead.
935  *
936  * If the thread that set the single_threading request has set the
937  * P_SINGLE_EXIT bit in the process flags then this call will never return
938  * if 'return_instead' is false, but will exit.
939  *
940  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
941  *---------------+--------------------+---------------------
942  *       0       | returns 0          |   returns 0 or 1
943  *               | when ST ends       |   immediately
944  *---------------+--------------------+---------------------
945  *       1       | thread exits       |   returns 1
946  *               |                    |  immediately
947  * 0 = thread_exit() or suspension ok,
948  * other = return error instead of stopping the thread.
949  *
950  * While a full suspension is under effect, even a single threading
951  * thread would be suspended if it made this call (but it shouldn't).
952  * This call should only be made from places where
953  * thread_exit() would be safe as that may be the outcome unless
954  * return_instead is set.
955  */
956 int
957 thread_suspend_check(int return_instead)
958 {
959         struct thread *td;
960         struct proc *p;
961         int wakeup_swapper;
962
963         td = curthread;
964         p = td->td_proc;
965         mtx_assert(&Giant, MA_NOTOWNED);
966         PROC_LOCK_ASSERT(p, MA_OWNED);
967         while (thread_suspend_check_needed()) {
968                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
969                         KASSERT(p->p_singlethread != NULL,
970                             ("singlethread not set"));
971                         /*
972                          * The only suspension in action is a
973                          * single-threading. Single threader need not stop.
974                          * It is safe to access p->p_singlethread unlocked
975                          * because it can only be set to our address by us.
976                          */
977                         if (p->p_singlethread == td)
978                                 return (0);     /* Exempt from stopping. */
979                 }
980                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
981                         return (EINTR);
982
983                 /* Should we goto user boundary if we didn't come from there? */
984                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
985                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
986                         return (ERESTART);
987
988                 /*
989                  * Ignore suspend requests if they are deferred.
990                  */
991                 if ((td->td_flags & TDF_SBDRY) != 0) {
992                         KASSERT(return_instead,
993                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
994                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
995                             (TDF_SEINTR | TDF_SERESTART),
996                             ("both TDF_SEINTR and TDF_SERESTART"));
997                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
998                 }
999
1000                 /*
1001                  * If the process is waiting for us to exit,
1002                  * this thread should just suicide.
1003                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1004                  */
1005                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1006                         PROC_UNLOCK(p);
1007
1008                         /*
1009                          * Allow Linux emulation layer to do some work
1010                          * before thread suicide.
1011                          */
1012                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1013                                 (p->p_sysent->sv_thread_detach)(td);
1014                         umtx_thread_exit(td);
1015                         kern_thr_exit(td);
1016                         panic("stopped thread did not exit");
1017                 }
1018
1019                 PROC_SLOCK(p);
1020                 thread_stopped(p);
1021                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1022                         if (p->p_numthreads == p->p_suspcount + 1) {
1023                                 thread_lock(p->p_singlethread);
1024                                 wakeup_swapper = thread_unsuspend_one(
1025                                     p->p_singlethread, p, false);
1026                                 thread_unlock(p->p_singlethread);
1027                                 if (wakeup_swapper)
1028                                         kick_proc0();
1029                         }
1030                 }
1031                 PROC_UNLOCK(p);
1032                 thread_lock(td);
1033                 /*
1034                  * When a thread suspends, it just
1035                  * gets taken off all queues.
1036                  */
1037                 thread_suspend_one(td);
1038                 if (return_instead == 0) {
1039                         p->p_boundary_count++;
1040                         td->td_flags |= TDF_BOUNDARY;
1041                 }
1042                 PROC_SUNLOCK(p);
1043                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1044                 thread_unlock(td);
1045                 PROC_LOCK(p);
1046         }
1047         return (0);
1048 }
1049
1050 void
1051 thread_suspend_switch(struct thread *td, struct proc *p)
1052 {
1053
1054         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1055         PROC_LOCK_ASSERT(p, MA_OWNED);
1056         PROC_SLOCK_ASSERT(p, MA_OWNED);
1057         /*
1058          * We implement thread_suspend_one in stages here to avoid
1059          * dropping the proc lock while the thread lock is owned.
1060          */
1061         if (p == td->td_proc) {
1062                 thread_stopped(p);
1063                 p->p_suspcount++;
1064         }
1065         PROC_UNLOCK(p);
1066         thread_lock(td);
1067         td->td_flags &= ~TDF_NEEDSUSPCHK;
1068         TD_SET_SUSPENDED(td);
1069         sched_sleep(td, 0);
1070         PROC_SUNLOCK(p);
1071         DROP_GIANT();
1072         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1073         thread_unlock(td);
1074         PICKUP_GIANT();
1075         PROC_LOCK(p);
1076         PROC_SLOCK(p);
1077 }
1078
1079 void
1080 thread_suspend_one(struct thread *td)
1081 {
1082         struct proc *p;
1083
1084         p = td->td_proc;
1085         PROC_SLOCK_ASSERT(p, MA_OWNED);
1086         THREAD_LOCK_ASSERT(td, MA_OWNED);
1087         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1088         p->p_suspcount++;
1089         td->td_flags &= ~TDF_NEEDSUSPCHK;
1090         TD_SET_SUSPENDED(td);
1091         sched_sleep(td, 0);
1092 }
1093
1094 static int
1095 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1096 {
1097
1098         THREAD_LOCK_ASSERT(td, MA_OWNED);
1099         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1100         TD_CLR_SUSPENDED(td);
1101         td->td_flags &= ~TDF_ALLPROCSUSP;
1102         if (td->td_proc == p) {
1103                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1104                 p->p_suspcount--;
1105                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1106                         td->td_flags &= ~TDF_BOUNDARY;
1107                         p->p_boundary_count--;
1108                 }
1109         }
1110         return (setrunnable(td));
1111 }
1112
1113 /*
1114  * Allow all threads blocked by single threading to continue running.
1115  */
1116 void
1117 thread_unsuspend(struct proc *p)
1118 {
1119         struct thread *td;
1120         int wakeup_swapper;
1121
1122         PROC_LOCK_ASSERT(p, MA_OWNED);
1123         PROC_SLOCK_ASSERT(p, MA_OWNED);
1124         wakeup_swapper = 0;
1125         if (!P_SHOULDSTOP(p)) {
1126                 FOREACH_THREAD_IN_PROC(p, td) {
1127                         thread_lock(td);
1128                         if (TD_IS_SUSPENDED(td)) {
1129                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1130                                     true);
1131                         }
1132                         thread_unlock(td);
1133                 }
1134         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1135             p->p_numthreads == p->p_suspcount) {
1136                 /*
1137                  * Stopping everything also did the job for the single
1138                  * threading request. Now we've downgraded to single-threaded,
1139                  * let it continue.
1140                  */
1141                 if (p->p_singlethread->td_proc == p) {
1142                         thread_lock(p->p_singlethread);
1143                         wakeup_swapper = thread_unsuspend_one(
1144                             p->p_singlethread, p, false);
1145                         thread_unlock(p->p_singlethread);
1146                 }
1147         }
1148         if (wakeup_swapper)
1149                 kick_proc0();
1150 }
1151
1152 /*
1153  * End the single threading mode..
1154  */
1155 void
1156 thread_single_end(struct proc *p, int mode)
1157 {
1158         struct thread *td;
1159         int wakeup_swapper;
1160
1161         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1162             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1163             ("invalid mode %d", mode));
1164         PROC_LOCK_ASSERT(p, MA_OWNED);
1165         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1166             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1167             ("mode %d does not match P_TOTAL_STOP", mode));
1168         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1169             ("thread_single_end from other thread %p %p",
1170             curthread, p->p_singlethread));
1171         KASSERT(mode != SINGLE_BOUNDARY ||
1172             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1173             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1174         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1175             P_TOTAL_STOP);
1176         PROC_SLOCK(p);
1177         p->p_singlethread = NULL;
1178         wakeup_swapper = 0;
1179         /*
1180          * If there are other threads they may now run,
1181          * unless of course there is a blanket 'stop order'
1182          * on the process. The single threader must be allowed
1183          * to continue however as this is a bad place to stop.
1184          */
1185         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1186                 FOREACH_THREAD_IN_PROC(p, td) {
1187                         thread_lock(td);
1188                         if (TD_IS_SUSPENDED(td)) {
1189                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1190                                     mode == SINGLE_BOUNDARY);
1191                         }
1192                         thread_unlock(td);
1193                 }
1194         }
1195         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1196             ("inconsistent boundary count %d", p->p_boundary_count));
1197         PROC_SUNLOCK(p);
1198         if (wakeup_swapper)
1199                 kick_proc0();
1200 }
1201
1202 struct thread *
1203 thread_find(struct proc *p, lwpid_t tid)
1204 {
1205         struct thread *td;
1206
1207         PROC_LOCK_ASSERT(p, MA_OWNED);
1208         FOREACH_THREAD_IN_PROC(p, td) {
1209                 if (td->td_tid == tid)
1210                         break;
1211         }
1212         return (td);
1213 }
1214
1215 /* Locate a thread by number; return with proc lock held. */
1216 struct thread *
1217 tdfind(lwpid_t tid, pid_t pid)
1218 {
1219 #define RUN_THRESH      16
1220         struct thread *td;
1221         int run = 0;
1222
1223         rw_rlock(&tidhash_lock);
1224         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1225                 if (td->td_tid == tid) {
1226                         if (pid != -1 && td->td_proc->p_pid != pid) {
1227                                 td = NULL;
1228                                 break;
1229                         }
1230                         PROC_LOCK(td->td_proc);
1231                         if (td->td_proc->p_state == PRS_NEW) {
1232                                 PROC_UNLOCK(td->td_proc);
1233                                 td = NULL;
1234                                 break;
1235                         }
1236                         if (run > RUN_THRESH) {
1237                                 if (rw_try_upgrade(&tidhash_lock)) {
1238                                         LIST_REMOVE(td, td_hash);
1239                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1240                                                 td, td_hash);
1241                                         rw_wunlock(&tidhash_lock);
1242                                         return (td);
1243                                 }
1244                         }
1245                         break;
1246                 }
1247                 run++;
1248         }
1249         rw_runlock(&tidhash_lock);
1250         return (td);
1251 }
1252
1253 void
1254 tidhash_add(struct thread *td)
1255 {
1256         rw_wlock(&tidhash_lock);
1257         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1258         rw_wunlock(&tidhash_lock);
1259 }
1260
1261 void
1262 tidhash_remove(struct thread *td)
1263 {
1264         rw_wlock(&tidhash_lock);
1265         LIST_REMOVE(td, td_hash);
1266         rw_wunlock(&tidhash_lock);
1267 }