]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Add UPDATING entries and bump version.
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/rangelock.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sdt.h>
46 #include <sys/smp.h>
47 #include <sys/sched.h>
48 #include <sys/sleepqueue.h>
49 #include <sys/selinfo.h>
50 #include <sys/syscallsubr.h>
51 #include <sys/sysent.h>
52 #include <sys/turnstile.h>
53 #include <sys/ktr.h>
54 #include <sys/rwlock.h>
55 #include <sys/umtx.h>
56 #include <sys/vmmeter.h>
57 #include <sys/cpuset.h>
58 #ifdef  HWPMC_HOOKS
59 #include <sys/pmckern.h>
60 #endif
61
62 #include <security/audit/audit.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_extern.h>
66 #include <vm/uma.h>
67 #include <sys/eventhandler.h>
68
69 /*
70  * Asserts below verify the stability of struct thread and struct proc
71  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
72  * to drift, change to the structures must be accompanied by the
73  * assert update.
74  *
75  * On the stable branches after KBI freeze, conditions must not be
76  * violated.  Typically new fields are moved to the end of the
77  * structures.
78  */
79 #ifdef __amd64__
80 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
81     "struct thread KBI td_flags");
82 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
83     "struct thread KBI td_pflags");
84 _Static_assert(offsetof(struct thread, td_frame) == 0x470,
85     "struct thread KBI td_frame");
86 _Static_assert(offsetof(struct thread, td_emuldata) == 0x528,
87     "struct thread KBI td_emuldata");
88 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
89     "struct proc KBI p_flag");
90 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
91     "struct proc KBI p_pid");
92 _Static_assert(offsetof(struct proc, p_filemon) == 0x3d0,
93     "struct proc KBI p_filemon");
94 _Static_assert(offsetof(struct proc, p_comm) == 0x3e4,
95     "struct proc KBI p_comm");
96 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8,
97     "struct proc KBI p_emuldata");
98 #endif
99 #ifdef __i386__
100 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
101     "struct thread KBI td_flags");
102 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
103     "struct thread KBI td_pflags");
104 _Static_assert(offsetof(struct thread, td_frame) == 0x2e8,
105     "struct thread KBI td_frame");
106 _Static_assert(offsetof(struct thread, td_emuldata) == 0x334,
107     "struct thread KBI td_emuldata");
108 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
109     "struct proc KBI p_flag");
110 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
111     "struct proc KBI p_pid");
112 _Static_assert(offsetof(struct proc, p_filemon) == 0x27c,
113     "struct proc KBI p_filemon");
114 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
115     "struct proc KBI p_comm");
116 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
117     "struct proc KBI p_emuldata");
118 #endif
119
120 SDT_PROVIDER_DECLARE(proc);
121 SDT_PROBE_DEFINE(proc, , , lwp__exit);
122
123 /*
124  * thread related storage.
125  */
126 static uma_zone_t thread_zone;
127
128 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
129 static struct mtx zombie_lock;
130 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
131
132 static void thread_zombie(struct thread *);
133 static int thread_unsuspend_one(struct thread *td, struct proc *p,
134     bool boundary);
135
136 #define TID_BUFFER_SIZE 1024
137
138 struct mtx tid_lock;
139 static struct unrhdr *tid_unrhdr;
140 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
141 static int tid_head, tid_tail;
142 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
143
144 struct  tidhashhead *tidhashtbl;
145 u_long  tidhash;
146 struct  rwlock tidhash_lock;
147
148 EVENTHANDLER_LIST_DEFINE(thread_ctor);
149 EVENTHANDLER_LIST_DEFINE(thread_dtor);
150 EVENTHANDLER_LIST_DEFINE(thread_init);
151 EVENTHANDLER_LIST_DEFINE(thread_fini);
152
153 static lwpid_t
154 tid_alloc(void)
155 {
156         lwpid_t tid;
157
158         tid = alloc_unr(tid_unrhdr);
159         if (tid != -1)
160                 return (tid);
161         mtx_lock(&tid_lock);
162         if (tid_head == tid_tail) {
163                 mtx_unlock(&tid_lock);
164                 return (-1);
165         }
166         tid = tid_buffer[tid_head];
167         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
168         mtx_unlock(&tid_lock);
169         return (tid);
170 }
171
172 static void
173 tid_free(lwpid_t tid)
174 {
175         lwpid_t tmp_tid = -1;
176
177         mtx_lock(&tid_lock);
178         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
179                 tmp_tid = tid_buffer[tid_head];
180                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
181         }
182         tid_buffer[tid_tail] = tid;
183         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
184         mtx_unlock(&tid_lock);
185         if (tmp_tid != -1)
186                 free_unr(tid_unrhdr, tmp_tid);
187 }
188
189 /*
190  * Prepare a thread for use.
191  */
192 static int
193 thread_ctor(void *mem, int size, void *arg, int flags)
194 {
195         struct thread   *td;
196
197         td = (struct thread *)mem;
198         td->td_state = TDS_INACTIVE;
199         td->td_lastcpu = td->td_oncpu = NOCPU;
200
201         td->td_tid = tid_alloc();
202
203         /*
204          * Note that td_critnest begins life as 1 because the thread is not
205          * running and is thereby implicitly waiting to be on the receiving
206          * end of a context switch.
207          */
208         td->td_critnest = 1;
209         td->td_lend_user_pri = PRI_MAX;
210         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
211 #ifdef AUDIT
212         audit_thread_alloc(td);
213 #endif
214         umtx_thread_alloc(td);
215         return (0);
216 }
217
218 /*
219  * Reclaim a thread after use.
220  */
221 static void
222 thread_dtor(void *mem, int size, void *arg)
223 {
224         struct thread *td;
225
226         td = (struct thread *)mem;
227
228 #ifdef INVARIANTS
229         /* Verify that this thread is in a safe state to free. */
230         switch (td->td_state) {
231         case TDS_INHIBITED:
232         case TDS_RUNNING:
233         case TDS_CAN_RUN:
234         case TDS_RUNQ:
235                 /*
236                  * We must never unlink a thread that is in one of
237                  * these states, because it is currently active.
238                  */
239                 panic("bad state for thread unlinking");
240                 /* NOTREACHED */
241         case TDS_INACTIVE:
242                 break;
243         default:
244                 panic("bad thread state");
245                 /* NOTREACHED */
246         }
247 #endif
248 #ifdef AUDIT
249         audit_thread_free(td);
250 #endif
251         /* Free all OSD associated to this thread. */
252         osd_thread_exit(td);
253         td_softdep_cleanup(td);
254         MPASS(td->td_su == NULL);
255
256         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
257         tid_free(td->td_tid);
258 }
259
260 /*
261  * Initialize type-stable parts of a thread (when newly created).
262  */
263 static int
264 thread_init(void *mem, int size, int flags)
265 {
266         struct thread *td;
267
268         td = (struct thread *)mem;
269
270         td->td_sleepqueue = sleepq_alloc();
271         td->td_turnstile = turnstile_alloc();
272         td->td_rlqe = NULL;
273         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
274         umtx_thread_init(td);
275         td->td_kstack = 0;
276         td->td_sel = NULL;
277         return (0);
278 }
279
280 /*
281  * Tear down type-stable parts of a thread (just before being discarded).
282  */
283 static void
284 thread_fini(void *mem, int size)
285 {
286         struct thread *td;
287
288         td = (struct thread *)mem;
289         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
290         rlqentry_free(td->td_rlqe);
291         turnstile_free(td->td_turnstile);
292         sleepq_free(td->td_sleepqueue);
293         umtx_thread_fini(td);
294         seltdfini(td);
295 }
296
297 /*
298  * For a newly created process,
299  * link up all the structures and its initial threads etc.
300  * called from:
301  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
302  * proc_dtor() (should go away)
303  * proc_init()
304  */
305 void
306 proc_linkup0(struct proc *p, struct thread *td)
307 {
308         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
309         proc_linkup(p, td);
310 }
311
312 void
313 proc_linkup(struct proc *p, struct thread *td)
314 {
315
316         sigqueue_init(&p->p_sigqueue, p);
317         p->p_ksi = ksiginfo_alloc(1);
318         if (p->p_ksi != NULL) {
319                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
320                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
321         }
322         LIST_INIT(&p->p_mqnotifier);
323         p->p_numthreads = 0;
324         thread_link(td, p);
325 }
326
327 /*
328  * Initialize global thread allocation resources.
329  */
330 void
331 threadinit(void)
332 {
333
334         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
335
336         /*
337          * pid_max cannot be greater than PID_MAX.
338          * leave one number for thread0.
339          */
340         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
341
342         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
343             thread_ctor, thread_dtor, thread_init, thread_fini,
344             32 - 1, UMA_ZONE_NOFREE);
345         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
346         rw_init(&tidhash_lock, "tidhash");
347 }
348
349 /*
350  * Place an unused thread on the zombie list.
351  * Use the slpq as that must be unused by now.
352  */
353 void
354 thread_zombie(struct thread *td)
355 {
356         mtx_lock_spin(&zombie_lock);
357         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
358         mtx_unlock_spin(&zombie_lock);
359 }
360
361 /*
362  * Release a thread that has exited after cpu_throw().
363  */
364 void
365 thread_stash(struct thread *td)
366 {
367         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
368         thread_zombie(td);
369 }
370
371 /*
372  * Reap zombie resources.
373  */
374 void
375 thread_reap(void)
376 {
377         struct thread *td_first, *td_next;
378
379         /*
380          * Don't even bother to lock if none at this instant,
381          * we really don't care about the next instant.
382          */
383         if (!TAILQ_EMPTY(&zombie_threads)) {
384                 mtx_lock_spin(&zombie_lock);
385                 td_first = TAILQ_FIRST(&zombie_threads);
386                 if (td_first)
387                         TAILQ_INIT(&zombie_threads);
388                 mtx_unlock_spin(&zombie_lock);
389                 while (td_first) {
390                         td_next = TAILQ_NEXT(td_first, td_slpq);
391                         thread_cow_free(td_first);
392                         thread_free(td_first);
393                         td_first = td_next;
394                 }
395         }
396 }
397
398 /*
399  * Allocate a thread.
400  */
401 struct thread *
402 thread_alloc(int pages)
403 {
404         struct thread *td;
405
406         thread_reap(); /* check if any zombies to get */
407
408         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
409         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
410         if (!vm_thread_new(td, pages)) {
411                 uma_zfree(thread_zone, td);
412                 return (NULL);
413         }
414         cpu_thread_alloc(td);
415         return (td);
416 }
417
418 int
419 thread_alloc_stack(struct thread *td, int pages)
420 {
421
422         KASSERT(td->td_kstack == 0,
423             ("thread_alloc_stack called on a thread with kstack"));
424         if (!vm_thread_new(td, pages))
425                 return (0);
426         cpu_thread_alloc(td);
427         return (1);
428 }
429
430 /*
431  * Deallocate a thread.
432  */
433 void
434 thread_free(struct thread *td)
435 {
436
437         lock_profile_thread_exit(td);
438         if (td->td_cpuset)
439                 cpuset_rel(td->td_cpuset);
440         td->td_cpuset = NULL;
441         cpu_thread_free(td);
442         if (td->td_kstack != 0)
443                 vm_thread_dispose(td);
444         callout_drain(&td->td_slpcallout);
445         uma_zfree(thread_zone, td);
446 }
447
448 void
449 thread_cow_get_proc(struct thread *newtd, struct proc *p)
450 {
451
452         PROC_LOCK_ASSERT(p, MA_OWNED);
453         newtd->td_ucred = crhold(p->p_ucred);
454         newtd->td_limit = lim_hold(p->p_limit);
455         newtd->td_cowgen = p->p_cowgen;
456 }
457
458 void
459 thread_cow_get(struct thread *newtd, struct thread *td)
460 {
461
462         newtd->td_ucred = crhold(td->td_ucred);
463         newtd->td_limit = lim_hold(td->td_limit);
464         newtd->td_cowgen = td->td_cowgen;
465 }
466
467 void
468 thread_cow_free(struct thread *td)
469 {
470
471         if (td->td_ucred != NULL)
472                 crfree(td->td_ucred);
473         if (td->td_limit != NULL)
474                 lim_free(td->td_limit);
475 }
476
477 void
478 thread_cow_update(struct thread *td)
479 {
480         struct proc *p;
481         struct ucred *oldcred;
482         struct plimit *oldlimit;
483
484         p = td->td_proc;
485         oldcred = NULL;
486         oldlimit = NULL;
487         PROC_LOCK(p);
488         if (td->td_ucred != p->p_ucred) {
489                 oldcred = td->td_ucred;
490                 td->td_ucred = crhold(p->p_ucred);
491         }
492         if (td->td_limit != p->p_limit) {
493                 oldlimit = td->td_limit;
494                 td->td_limit = lim_hold(p->p_limit);
495         }
496         td->td_cowgen = p->p_cowgen;
497         PROC_UNLOCK(p);
498         if (oldcred != NULL)
499                 crfree(oldcred);
500         if (oldlimit != NULL)
501                 lim_free(oldlimit);
502 }
503
504 /*
505  * Discard the current thread and exit from its context.
506  * Always called with scheduler locked.
507  *
508  * Because we can't free a thread while we're operating under its context,
509  * push the current thread into our CPU's deadthread holder. This means
510  * we needn't worry about someone else grabbing our context before we
511  * do a cpu_throw().
512  */
513 void
514 thread_exit(void)
515 {
516         uint64_t runtime, new_switchtime;
517         struct thread *td;
518         struct thread *td2;
519         struct proc *p;
520         int wakeup_swapper;
521
522         td = curthread;
523         p = td->td_proc;
524
525         PROC_SLOCK_ASSERT(p, MA_OWNED);
526         mtx_assert(&Giant, MA_NOTOWNED);
527
528         PROC_LOCK_ASSERT(p, MA_OWNED);
529         KASSERT(p != NULL, ("thread exiting without a process"));
530         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
531             (long)p->p_pid, td->td_name);
532         SDT_PROBE0(proc, , , lwp__exit);
533         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
534
535         /*
536          * drop FPU & debug register state storage, or any other
537          * architecture specific resources that
538          * would not be on a new untouched process.
539          */
540         cpu_thread_exit(td);
541
542         /*
543          * The last thread is left attached to the process
544          * So that the whole bundle gets recycled. Skip
545          * all this stuff if we never had threads.
546          * EXIT clears all sign of other threads when
547          * it goes to single threading, so the last thread always
548          * takes the short path.
549          */
550         if (p->p_flag & P_HADTHREADS) {
551                 if (p->p_numthreads > 1) {
552                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
553                         thread_unlink(td);
554                         td2 = FIRST_THREAD_IN_PROC(p);
555                         sched_exit_thread(td2, td);
556
557                         /*
558                          * The test below is NOT true if we are the
559                          * sole exiting thread. P_STOPPED_SINGLE is unset
560                          * in exit1() after it is the only survivor.
561                          */
562                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
563                                 if (p->p_numthreads == p->p_suspcount) {
564                                         thread_lock(p->p_singlethread);
565                                         wakeup_swapper = thread_unsuspend_one(
566                                                 p->p_singlethread, p, false);
567                                         thread_unlock(p->p_singlethread);
568                                         if (wakeup_swapper)
569                                                 kick_proc0();
570                                 }
571                         }
572
573                         PCPU_SET(deadthread, td);
574                 } else {
575                         /*
576                          * The last thread is exiting.. but not through exit()
577                          */
578                         panic ("thread_exit: Last thread exiting on its own");
579                 }
580         } 
581 #ifdef  HWPMC_HOOKS
582         /*
583          * If this thread is part of a process that is being tracked by hwpmc(4),
584          * inform the module of the thread's impending exit.
585          */
586         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
587                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
588                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
589         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
590                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
591 #endif
592         PROC_UNLOCK(p);
593         PROC_STATLOCK(p);
594         thread_lock(td);
595         PROC_SUNLOCK(p);
596
597         /* Do the same timestamp bookkeeping that mi_switch() would do. */
598         new_switchtime = cpu_ticks();
599         runtime = new_switchtime - PCPU_GET(switchtime);
600         td->td_runtime += runtime;
601         td->td_incruntime += runtime;
602         PCPU_SET(switchtime, new_switchtime);
603         PCPU_SET(switchticks, ticks);
604         VM_CNT_INC(v_swtch);
605
606         /* Save our resource usage in our process. */
607         td->td_ru.ru_nvcsw++;
608         ruxagg(p, td);
609         rucollect(&p->p_ru, &td->td_ru);
610         PROC_STATUNLOCK(p);
611
612         td->td_state = TDS_INACTIVE;
613 #ifdef WITNESS
614         witness_thread_exit(td);
615 #endif
616         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
617         sched_throw(td);
618         panic("I'm a teapot!");
619         /* NOTREACHED */
620 }
621
622 /*
623  * Do any thread specific cleanups that may be needed in wait()
624  * called with Giant, proc and schedlock not held.
625  */
626 void
627 thread_wait(struct proc *p)
628 {
629         struct thread *td;
630
631         mtx_assert(&Giant, MA_NOTOWNED);
632         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
633         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
634         td = FIRST_THREAD_IN_PROC(p);
635         /* Lock the last thread so we spin until it exits cpu_throw(). */
636         thread_lock(td);
637         thread_unlock(td);
638         lock_profile_thread_exit(td);
639         cpuset_rel(td->td_cpuset);
640         td->td_cpuset = NULL;
641         cpu_thread_clean(td);
642         thread_cow_free(td);
643         callout_drain(&td->td_slpcallout);
644         thread_reap();  /* check for zombie threads etc. */
645 }
646
647 /*
648  * Link a thread to a process.
649  * set up anything that needs to be initialized for it to
650  * be used by the process.
651  */
652 void
653 thread_link(struct thread *td, struct proc *p)
654 {
655
656         /*
657          * XXX This can't be enabled because it's called for proc0 before
658          * its lock has been created.
659          * PROC_LOCK_ASSERT(p, MA_OWNED);
660          */
661         td->td_state    = TDS_INACTIVE;
662         td->td_proc     = p;
663         td->td_flags    = TDF_INMEM;
664
665         LIST_INIT(&td->td_contested);
666         LIST_INIT(&td->td_lprof[0]);
667         LIST_INIT(&td->td_lprof[1]);
668         sigqueue_init(&td->td_sigqueue, p);
669         callout_init(&td->td_slpcallout, 1);
670         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
671         p->p_numthreads++;
672 }
673
674 /*
675  * Called from:
676  *  thread_exit()
677  */
678 void
679 thread_unlink(struct thread *td)
680 {
681         struct proc *p = td->td_proc;
682
683         PROC_LOCK_ASSERT(p, MA_OWNED);
684         TAILQ_REMOVE(&p->p_threads, td, td_plist);
685         p->p_numthreads--;
686         /* could clear a few other things here */
687         /* Must  NOT clear links to proc! */
688 }
689
690 static int
691 calc_remaining(struct proc *p, int mode)
692 {
693         int remaining;
694
695         PROC_LOCK_ASSERT(p, MA_OWNED);
696         PROC_SLOCK_ASSERT(p, MA_OWNED);
697         if (mode == SINGLE_EXIT)
698                 remaining = p->p_numthreads;
699         else if (mode == SINGLE_BOUNDARY)
700                 remaining = p->p_numthreads - p->p_boundary_count;
701         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
702                 remaining = p->p_numthreads - p->p_suspcount;
703         else
704                 panic("calc_remaining: wrong mode %d", mode);
705         return (remaining);
706 }
707
708 static int
709 remain_for_mode(int mode)
710 {
711
712         return (mode == SINGLE_ALLPROC ? 0 : 1);
713 }
714
715 static int
716 weed_inhib(int mode, struct thread *td2, struct proc *p)
717 {
718         int wakeup_swapper;
719
720         PROC_LOCK_ASSERT(p, MA_OWNED);
721         PROC_SLOCK_ASSERT(p, MA_OWNED);
722         THREAD_LOCK_ASSERT(td2, MA_OWNED);
723
724         wakeup_swapper = 0;
725         switch (mode) {
726         case SINGLE_EXIT:
727                 if (TD_IS_SUSPENDED(td2))
728                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
729                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
730                         wakeup_swapper |= sleepq_abort(td2, EINTR);
731                 break;
732         case SINGLE_BOUNDARY:
733         case SINGLE_NO_EXIT:
734                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
735                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
736                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
737                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
738                 break;
739         case SINGLE_ALLPROC:
740                 /*
741                  * ALLPROC suspend tries to avoid spurious EINTR for
742                  * threads sleeping interruptable, by suspending the
743                  * thread directly, similarly to sig_suspend_threads().
744                  * Since such sleep is not performed at the user
745                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
746                  * is used to avoid immediate un-suspend.
747                  */
748                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
749                     TDF_ALLPROCSUSP)) == 0)
750                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
751                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
752                         if ((td2->td_flags & TDF_SBDRY) == 0) {
753                                 thread_suspend_one(td2);
754                                 td2->td_flags |= TDF_ALLPROCSUSP;
755                         } else {
756                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
757                         }
758                 }
759                 break;
760         }
761         return (wakeup_swapper);
762 }
763
764 /*
765  * Enforce single-threading.
766  *
767  * Returns 1 if the caller must abort (another thread is waiting to
768  * exit the process or similar). Process is locked!
769  * Returns 0 when you are successfully the only thread running.
770  * A process has successfully single threaded in the suspend mode when
771  * There are no threads in user mode. Threads in the kernel must be
772  * allowed to continue until they get to the user boundary. They may even
773  * copy out their return values and data before suspending. They may however be
774  * accelerated in reaching the user boundary as we will wake up
775  * any sleeping threads that are interruptable. (PCATCH).
776  */
777 int
778 thread_single(struct proc *p, int mode)
779 {
780         struct thread *td;
781         struct thread *td2;
782         int remaining, wakeup_swapper;
783
784         td = curthread;
785         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
786             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
787             ("invalid mode %d", mode));
788         /*
789          * If allowing non-ALLPROC singlethreading for non-curproc
790          * callers, calc_remaining() and remain_for_mode() should be
791          * adjusted to also account for td->td_proc != p.  For now
792          * this is not implemented because it is not used.
793          */
794         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
795             (mode != SINGLE_ALLPROC && td->td_proc == p),
796             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
797         mtx_assert(&Giant, MA_NOTOWNED);
798         PROC_LOCK_ASSERT(p, MA_OWNED);
799
800         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
801                 return (0);
802
803         /* Is someone already single threading? */
804         if (p->p_singlethread != NULL && p->p_singlethread != td)
805                 return (1);
806
807         if (mode == SINGLE_EXIT) {
808                 p->p_flag |= P_SINGLE_EXIT;
809                 p->p_flag &= ~P_SINGLE_BOUNDARY;
810         } else {
811                 p->p_flag &= ~P_SINGLE_EXIT;
812                 if (mode == SINGLE_BOUNDARY)
813                         p->p_flag |= P_SINGLE_BOUNDARY;
814                 else
815                         p->p_flag &= ~P_SINGLE_BOUNDARY;
816         }
817         if (mode == SINGLE_ALLPROC)
818                 p->p_flag |= P_TOTAL_STOP;
819         p->p_flag |= P_STOPPED_SINGLE;
820         PROC_SLOCK(p);
821         p->p_singlethread = td;
822         remaining = calc_remaining(p, mode);
823         while (remaining != remain_for_mode(mode)) {
824                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
825                         goto stopme;
826                 wakeup_swapper = 0;
827                 FOREACH_THREAD_IN_PROC(p, td2) {
828                         if (td2 == td)
829                                 continue;
830                         thread_lock(td2);
831                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
832                         if (TD_IS_INHIBITED(td2)) {
833                                 wakeup_swapper |= weed_inhib(mode, td2, p);
834 #ifdef SMP
835                         } else if (TD_IS_RUNNING(td2) && td != td2) {
836                                 forward_signal(td2);
837 #endif
838                         }
839                         thread_unlock(td2);
840                 }
841                 if (wakeup_swapper)
842                         kick_proc0();
843                 remaining = calc_remaining(p, mode);
844
845                 /*
846                  * Maybe we suspended some threads.. was it enough?
847                  */
848                 if (remaining == remain_for_mode(mode))
849                         break;
850
851 stopme:
852                 /*
853                  * Wake us up when everyone else has suspended.
854                  * In the mean time we suspend as well.
855                  */
856                 thread_suspend_switch(td, p);
857                 remaining = calc_remaining(p, mode);
858         }
859         if (mode == SINGLE_EXIT) {
860                 /*
861                  * Convert the process to an unthreaded process.  The
862                  * SINGLE_EXIT is called by exit1() or execve(), in
863                  * both cases other threads must be retired.
864                  */
865                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
866                 p->p_singlethread = NULL;
867                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
868
869                 /*
870                  * Wait for any remaining threads to exit cpu_throw().
871                  */
872                 while (p->p_exitthreads != 0) {
873                         PROC_SUNLOCK(p);
874                         PROC_UNLOCK(p);
875                         sched_relinquish(td);
876                         PROC_LOCK(p);
877                         PROC_SLOCK(p);
878                 }
879         } else if (mode == SINGLE_BOUNDARY) {
880                 /*
881                  * Wait until all suspended threads are removed from
882                  * the processors.  The thread_suspend_check()
883                  * increments p_boundary_count while it is still
884                  * running, which makes it possible for the execve()
885                  * to destroy vmspace while our other threads are
886                  * still using the address space.
887                  *
888                  * We lock the thread, which is only allowed to
889                  * succeed after context switch code finished using
890                  * the address space.
891                  */
892                 FOREACH_THREAD_IN_PROC(p, td2) {
893                         if (td2 == td)
894                                 continue;
895                         thread_lock(td2);
896                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
897                             ("td %p not on boundary", td2));
898                         KASSERT(TD_IS_SUSPENDED(td2),
899                             ("td %p is not suspended", td2));
900                         thread_unlock(td2);
901                 }
902         }
903         PROC_SUNLOCK(p);
904         return (0);
905 }
906
907 bool
908 thread_suspend_check_needed(void)
909 {
910         struct proc *p;
911         struct thread *td;
912
913         td = curthread;
914         p = td->td_proc;
915         PROC_LOCK_ASSERT(p, MA_OWNED);
916         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
917             (td->td_dbgflags & TDB_SUSPEND) != 0));
918 }
919
920 /*
921  * Called in from locations that can safely check to see
922  * whether we have to suspend or at least throttle for a
923  * single-thread event (e.g. fork).
924  *
925  * Such locations include userret().
926  * If the "return_instead" argument is non zero, the thread must be able to
927  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
928  *
929  * The 'return_instead' argument tells the function if it may do a
930  * thread_exit() or suspend, or whether the caller must abort and back
931  * out instead.
932  *
933  * If the thread that set the single_threading request has set the
934  * P_SINGLE_EXIT bit in the process flags then this call will never return
935  * if 'return_instead' is false, but will exit.
936  *
937  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
938  *---------------+--------------------+---------------------
939  *       0       | returns 0          |   returns 0 or 1
940  *               | when ST ends       |   immediately
941  *---------------+--------------------+---------------------
942  *       1       | thread exits       |   returns 1
943  *               |                    |  immediately
944  * 0 = thread_exit() or suspension ok,
945  * other = return error instead of stopping the thread.
946  *
947  * While a full suspension is under effect, even a single threading
948  * thread would be suspended if it made this call (but it shouldn't).
949  * This call should only be made from places where
950  * thread_exit() would be safe as that may be the outcome unless
951  * return_instead is set.
952  */
953 int
954 thread_suspend_check(int return_instead)
955 {
956         struct thread *td;
957         struct proc *p;
958         int wakeup_swapper;
959
960         td = curthread;
961         p = td->td_proc;
962         mtx_assert(&Giant, MA_NOTOWNED);
963         PROC_LOCK_ASSERT(p, MA_OWNED);
964         while (thread_suspend_check_needed()) {
965                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
966                         KASSERT(p->p_singlethread != NULL,
967                             ("singlethread not set"));
968                         /*
969                          * The only suspension in action is a
970                          * single-threading. Single threader need not stop.
971                          * It is safe to access p->p_singlethread unlocked
972                          * because it can only be set to our address by us.
973                          */
974                         if (p->p_singlethread == td)
975                                 return (0);     /* Exempt from stopping. */
976                 }
977                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
978                         return (EINTR);
979
980                 /* Should we goto user boundary if we didn't come from there? */
981                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
982                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
983                         return (ERESTART);
984
985                 /*
986                  * Ignore suspend requests if they are deferred.
987                  */
988                 if ((td->td_flags & TDF_SBDRY) != 0) {
989                         KASSERT(return_instead,
990                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
991                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
992                             (TDF_SEINTR | TDF_SERESTART),
993                             ("both TDF_SEINTR and TDF_SERESTART"));
994                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
995                 }
996
997                 /*
998                  * If the process is waiting for us to exit,
999                  * this thread should just suicide.
1000                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1001                  */
1002                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1003                         PROC_UNLOCK(p);
1004
1005                         /*
1006                          * Allow Linux emulation layer to do some work
1007                          * before thread suicide.
1008                          */
1009                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1010                                 (p->p_sysent->sv_thread_detach)(td);
1011                         umtx_thread_exit(td);
1012                         kern_thr_exit(td);
1013                         panic("stopped thread did not exit");
1014                 }
1015
1016                 PROC_SLOCK(p);
1017                 thread_stopped(p);
1018                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1019                         if (p->p_numthreads == p->p_suspcount + 1) {
1020                                 thread_lock(p->p_singlethread);
1021                                 wakeup_swapper = thread_unsuspend_one(
1022                                     p->p_singlethread, p, false);
1023                                 thread_unlock(p->p_singlethread);
1024                                 if (wakeup_swapper)
1025                                         kick_proc0();
1026                         }
1027                 }
1028                 PROC_UNLOCK(p);
1029                 thread_lock(td);
1030                 /*
1031                  * When a thread suspends, it just
1032                  * gets taken off all queues.
1033                  */
1034                 thread_suspend_one(td);
1035                 if (return_instead == 0) {
1036                         p->p_boundary_count++;
1037                         td->td_flags |= TDF_BOUNDARY;
1038                 }
1039                 PROC_SUNLOCK(p);
1040                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1041                 thread_unlock(td);
1042                 PROC_LOCK(p);
1043         }
1044         return (0);
1045 }
1046
1047 /*
1048  * Check for possible stops and suspensions while executing a
1049  * casueword or similar transiently failing operation.
1050  *
1051  * The sleep argument controls whether the function can handle a stop
1052  * request itself or it should return ERESTART and the request is
1053  * proceed at the kernel/user boundary in ast.
1054  *
1055  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1056  * should handle the stop requests there, with exception of cases when
1057  * the thread owns a kernel resource, for instance busied the umtx
1058  * key, or when functions return immediately if thread_check_susp()
1059  * returned non-zero.  On the other hand, retrying the whole lock
1060  * operation, we better not stop there but delegate the handling to
1061  * ast.
1062  *
1063  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1064  * handle it at all, and simply return EINTR.
1065  */
1066 int
1067 thread_check_susp(struct thread *td, bool sleep)
1068 {
1069         struct proc *p;
1070         int error;
1071
1072         /*
1073          * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
1074          * eventually break the lockstep loop.
1075          */
1076         if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
1077                 return (0);
1078         error = 0;
1079         p = td->td_proc;
1080         PROC_LOCK(p);
1081         if (p->p_flag & P_SINGLE_EXIT)
1082                 error = EINTR;
1083         else if (P_SHOULDSTOP(p) ||
1084             ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1085                 error = sleep ? thread_suspend_check(0) : ERESTART;
1086         PROC_UNLOCK(p);
1087         return (error);
1088 }
1089
1090 void
1091 thread_suspend_switch(struct thread *td, struct proc *p)
1092 {
1093
1094         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1095         PROC_LOCK_ASSERT(p, MA_OWNED);
1096         PROC_SLOCK_ASSERT(p, MA_OWNED);
1097         /*
1098          * We implement thread_suspend_one in stages here to avoid
1099          * dropping the proc lock while the thread lock is owned.
1100          */
1101         if (p == td->td_proc) {
1102                 thread_stopped(p);
1103                 p->p_suspcount++;
1104         }
1105         PROC_UNLOCK(p);
1106         thread_lock(td);
1107         td->td_flags &= ~TDF_NEEDSUSPCHK;
1108         TD_SET_SUSPENDED(td);
1109         sched_sleep(td, 0);
1110         PROC_SUNLOCK(p);
1111         DROP_GIANT();
1112         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1113         thread_unlock(td);
1114         PICKUP_GIANT();
1115         PROC_LOCK(p);
1116         PROC_SLOCK(p);
1117 }
1118
1119 void
1120 thread_suspend_one(struct thread *td)
1121 {
1122         struct proc *p;
1123
1124         p = td->td_proc;
1125         PROC_SLOCK_ASSERT(p, MA_OWNED);
1126         THREAD_LOCK_ASSERT(td, MA_OWNED);
1127         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1128         p->p_suspcount++;
1129         td->td_flags &= ~TDF_NEEDSUSPCHK;
1130         TD_SET_SUSPENDED(td);
1131         sched_sleep(td, 0);
1132 }
1133
1134 static int
1135 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1136 {
1137
1138         THREAD_LOCK_ASSERT(td, MA_OWNED);
1139         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1140         TD_CLR_SUSPENDED(td);
1141         td->td_flags &= ~TDF_ALLPROCSUSP;
1142         if (td->td_proc == p) {
1143                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1144                 p->p_suspcount--;
1145                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1146                         td->td_flags &= ~TDF_BOUNDARY;
1147                         p->p_boundary_count--;
1148                 }
1149         }
1150         return (setrunnable(td));
1151 }
1152
1153 /*
1154  * Allow all threads blocked by single threading to continue running.
1155  */
1156 void
1157 thread_unsuspend(struct proc *p)
1158 {
1159         struct thread *td;
1160         int wakeup_swapper;
1161
1162         PROC_LOCK_ASSERT(p, MA_OWNED);
1163         PROC_SLOCK_ASSERT(p, MA_OWNED);
1164         wakeup_swapper = 0;
1165         if (!P_SHOULDSTOP(p)) {
1166                 FOREACH_THREAD_IN_PROC(p, td) {
1167                         thread_lock(td);
1168                         if (TD_IS_SUSPENDED(td)) {
1169                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1170                                     true);
1171                         }
1172                         thread_unlock(td);
1173                 }
1174         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1175             p->p_numthreads == p->p_suspcount) {
1176                 /*
1177                  * Stopping everything also did the job for the single
1178                  * threading request. Now we've downgraded to single-threaded,
1179                  * let it continue.
1180                  */
1181                 if (p->p_singlethread->td_proc == p) {
1182                         thread_lock(p->p_singlethread);
1183                         wakeup_swapper = thread_unsuspend_one(
1184                             p->p_singlethread, p, false);
1185                         thread_unlock(p->p_singlethread);
1186                 }
1187         }
1188         if (wakeup_swapper)
1189                 kick_proc0();
1190 }
1191
1192 /*
1193  * End the single threading mode..
1194  */
1195 void
1196 thread_single_end(struct proc *p, int mode)
1197 {
1198         struct thread *td;
1199         int wakeup_swapper;
1200
1201         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1202             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1203             ("invalid mode %d", mode));
1204         PROC_LOCK_ASSERT(p, MA_OWNED);
1205         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1206             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1207             ("mode %d does not match P_TOTAL_STOP", mode));
1208         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1209             ("thread_single_end from other thread %p %p",
1210             curthread, p->p_singlethread));
1211         KASSERT(mode != SINGLE_BOUNDARY ||
1212             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1213             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1214         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1215             P_TOTAL_STOP);
1216         PROC_SLOCK(p);
1217         p->p_singlethread = NULL;
1218         wakeup_swapper = 0;
1219         /*
1220          * If there are other threads they may now run,
1221          * unless of course there is a blanket 'stop order'
1222          * on the process. The single threader must be allowed
1223          * to continue however as this is a bad place to stop.
1224          */
1225         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1226                 FOREACH_THREAD_IN_PROC(p, td) {
1227                         thread_lock(td);
1228                         if (TD_IS_SUSPENDED(td)) {
1229                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1230                                     mode == SINGLE_BOUNDARY);
1231                         }
1232                         thread_unlock(td);
1233                 }
1234         }
1235         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1236             ("inconsistent boundary count %d", p->p_boundary_count));
1237         PROC_SUNLOCK(p);
1238         if (wakeup_swapper)
1239                 kick_proc0();
1240 }
1241
1242 struct thread *
1243 thread_find(struct proc *p, lwpid_t tid)
1244 {
1245         struct thread *td;
1246
1247         PROC_LOCK_ASSERT(p, MA_OWNED);
1248         FOREACH_THREAD_IN_PROC(p, td) {
1249                 if (td->td_tid == tid)
1250                         break;
1251         }
1252         return (td);
1253 }
1254
1255 /* Locate a thread by number; return with proc lock held. */
1256 struct thread *
1257 tdfind(lwpid_t tid, pid_t pid)
1258 {
1259 #define RUN_THRESH      16
1260         struct thread *td;
1261         int run = 0;
1262
1263         td = curthread;
1264         if (td->td_tid == tid) {
1265                 if (pid != -1 && td->td_proc->p_pid != pid)
1266                         return (NULL);
1267                 PROC_LOCK(td->td_proc);
1268                 return (td);
1269         }
1270
1271         rw_rlock(&tidhash_lock);
1272         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1273                 if (td->td_tid == tid) {
1274                         if (pid != -1 && td->td_proc->p_pid != pid) {
1275                                 td = NULL;
1276                                 break;
1277                         }
1278                         PROC_LOCK(td->td_proc);
1279                         if (td->td_proc->p_state == PRS_NEW) {
1280                                 PROC_UNLOCK(td->td_proc);
1281                                 td = NULL;
1282                                 break;
1283                         }
1284                         if (run > RUN_THRESH) {
1285                                 if (rw_try_upgrade(&tidhash_lock)) {
1286                                         LIST_REMOVE(td, td_hash);
1287                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1288                                                 td, td_hash);
1289                                         rw_wunlock(&tidhash_lock);
1290                                         return (td);
1291                                 }
1292                         }
1293                         break;
1294                 }
1295                 run++;
1296         }
1297         rw_runlock(&tidhash_lock);
1298         return (td);
1299 }
1300
1301 void
1302 tidhash_add(struct thread *td)
1303 {
1304         rw_wlock(&tidhash_lock);
1305         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1306         rw_wunlock(&tidhash_lock);
1307 }
1308
1309 void
1310 tidhash_remove(struct thread *td)
1311 {
1312         rw_wlock(&tidhash_lock);
1313         LIST_REMOVE(td, td_hash);
1314         rw_wunlock(&tidhash_lock);
1315 }