]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
vfs_domount_update(): ensure that 'goto end' works
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/msan.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/bitstring.h>
43 #include <sys/epoch.h>
44 #include <sys/rangelock.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sdt.h>
47 #include <sys/smp.h>
48 #include <sys/sched.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/selinfo.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/dtrace_bsd.h>
53 #include <sys/sysent.h>
54 #include <sys/turnstile.h>
55 #include <sys/taskqueue.h>
56 #include <sys/ktr.h>
57 #include <sys/rwlock.h>
58 #include <sys/umtxvar.h>
59 #include <sys/vmmeter.h>
60 #include <sys/cpuset.h>
61 #ifdef  HWPMC_HOOKS
62 #include <sys/pmckern.h>
63 #endif
64 #include <sys/priv.h>
65
66 #include <security/audit/audit.h>
67
68 #include <vm/pmap.h>
69 #include <vm/vm.h>
70 #include <vm/vm_extern.h>
71 #include <vm/uma.h>
72 #include <vm/vm_phys.h>
73 #include <sys/eventhandler.h>
74
75 /*
76  * Asserts below verify the stability of struct thread and struct proc
77  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
78  * to drift, change to the structures must be accompanied by the
79  * assert update.
80  *
81  * On the stable branches after KBI freeze, conditions must not be
82  * violated.  Typically new fields are moved to the end of the
83  * structures.
84  */
85 #ifdef __amd64__
86 _Static_assert(offsetof(struct thread, td_flags) == 0x108,
87     "struct thread KBI td_flags");
88 _Static_assert(offsetof(struct thread, td_pflags) == 0x114,
89     "struct thread KBI td_pflags");
90 _Static_assert(offsetof(struct thread, td_frame) == 0x4b8,
91     "struct thread KBI td_frame");
92 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6c0,
93     "struct thread KBI td_emuldata");
94 _Static_assert(offsetof(struct proc, p_flag) == 0xb8,
95     "struct proc KBI p_flag");
96 _Static_assert(offsetof(struct proc, p_pid) == 0xc4,
97     "struct proc KBI p_pid");
98 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
99     "struct proc KBI p_filemon");
100 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
101     "struct proc KBI p_comm");
102 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4d0,
103     "struct proc KBI p_emuldata");
104 #endif
105 #ifdef __i386__
106 _Static_assert(offsetof(struct thread, td_flags) == 0x9c,
107     "struct thread KBI td_flags");
108 _Static_assert(offsetof(struct thread, td_pflags) == 0xa8,
109     "struct thread KBI td_pflags");
110 _Static_assert(offsetof(struct thread, td_frame) == 0x318,
111     "struct thread KBI td_frame");
112 _Static_assert(offsetof(struct thread, td_emuldata) == 0x35c,
113     "struct thread KBI td_emuldata");
114 _Static_assert(offsetof(struct proc, p_flag) == 0x6c,
115     "struct proc KBI p_flag");
116 _Static_assert(offsetof(struct proc, p_pid) == 0x78,
117     "struct proc KBI p_pid");
118 _Static_assert(offsetof(struct proc, p_filemon) == 0x270,
119     "struct proc KBI p_filemon");
120 _Static_assert(offsetof(struct proc, p_comm) == 0x284,
121     "struct proc KBI p_comm");
122 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
123     "struct proc KBI p_emuldata");
124 #endif
125
126 SDT_PROVIDER_DECLARE(proc);
127 SDT_PROBE_DEFINE(proc, , , lwp__exit);
128
129 /*
130  * thread related storage.
131  */
132 static uma_zone_t thread_zone;
133
134 struct thread_domain_data {
135         struct thread   *tdd_zombies;
136         int             tdd_reapticks;
137 } __aligned(CACHE_LINE_SIZE);
138
139 static struct thread_domain_data thread_domain_data[MAXMEMDOM];
140
141 static struct task      thread_reap_task;
142 static struct callout   thread_reap_callout;
143
144 static void thread_zombie(struct thread *);
145 static void thread_reap(void);
146 static void thread_reap_all(void);
147 static void thread_reap_task_cb(void *, int);
148 static void thread_reap_callout_cb(void *);
149 static int thread_unsuspend_one(struct thread *td, struct proc *p,
150     bool boundary);
151 static void thread_free_batched(struct thread *td);
152
153 static __exclusive_cache_line struct mtx tid_lock;
154 static bitstr_t *tid_bitmap;
155
156 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
157
158 static int maxthread;
159 SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
160     &maxthread, 0, "Maximum number of threads");
161
162 static __exclusive_cache_line int nthreads;
163
164 static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
165 static u_long   tidhash;
166 static u_long   tidhashlock;
167 static struct   rwlock *tidhashtbl_lock;
168 #define TIDHASH(tid)            (&tidhashtbl[(tid) & tidhash])
169 #define TIDHASHLOCK(tid)        (&tidhashtbl_lock[(tid) & tidhashlock])
170
171 EVENTHANDLER_LIST_DEFINE(thread_ctor);
172 EVENTHANDLER_LIST_DEFINE(thread_dtor);
173 EVENTHANDLER_LIST_DEFINE(thread_init);
174 EVENTHANDLER_LIST_DEFINE(thread_fini);
175
176 static bool
177 thread_count_inc_try(void)
178 {
179         int nthreads_new;
180
181         nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
182         if (nthreads_new >= maxthread - 100) {
183                 if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
184                     nthreads_new >= maxthread) {
185                         atomic_subtract_int(&nthreads, 1);
186                         return (false);
187                 }
188         }
189         return (true);
190 }
191
192 static bool
193 thread_count_inc(void)
194 {
195         static struct timeval lastfail;
196         static int curfail;
197
198         thread_reap();
199         if (thread_count_inc_try()) {
200                 return (true);
201         }
202
203         thread_reap_all();
204         if (thread_count_inc_try()) {
205                 return (true);
206         }
207
208         if (ppsratecheck(&lastfail, &curfail, 1)) {
209                 printf("maxthread limit exceeded by uid %u "
210                     "(pid %d); consider increasing kern.maxthread\n",
211                     curthread->td_ucred->cr_ruid, curproc->p_pid);
212         }
213         return (false);
214 }
215
216 static void
217 thread_count_sub(int n)
218 {
219
220         atomic_subtract_int(&nthreads, n);
221 }
222
223 static void
224 thread_count_dec(void)
225 {
226
227         thread_count_sub(1);
228 }
229
230 static lwpid_t
231 tid_alloc(void)
232 {
233         static lwpid_t trytid;
234         lwpid_t tid;
235
236         mtx_lock(&tid_lock);
237         /*
238          * It is an invariant that the bitmap is big enough to hold maxthread
239          * IDs. If we got to this point there has to be at least one free.
240          */
241         if (trytid >= maxthread)
242                 trytid = 0;
243         bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
244         if (tid == -1) {
245                 KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
246                 trytid = 0;
247                 bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
248                 KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
249         }
250         bit_set(tid_bitmap, tid);
251         trytid = tid + 1;
252         mtx_unlock(&tid_lock);
253         return (tid + NO_PID);
254 }
255
256 static void
257 tid_free_locked(lwpid_t rtid)
258 {
259         lwpid_t tid;
260
261         mtx_assert(&tid_lock, MA_OWNED);
262         KASSERT(rtid >= NO_PID,
263             ("%s: invalid tid %d\n", __func__, rtid));
264         tid = rtid - NO_PID;
265         KASSERT(bit_test(tid_bitmap, tid) != 0,
266             ("thread ID %d not allocated\n", rtid));
267         bit_clear(tid_bitmap, tid);
268 }
269
270 static void
271 tid_free(lwpid_t rtid)
272 {
273
274         mtx_lock(&tid_lock);
275         tid_free_locked(rtid);
276         mtx_unlock(&tid_lock);
277 }
278
279 static void
280 tid_free_batch(lwpid_t *batch, int n)
281 {
282         int i;
283
284         mtx_lock(&tid_lock);
285         for (i = 0; i < n; i++) {
286                 tid_free_locked(batch[i]);
287         }
288         mtx_unlock(&tid_lock);
289 }
290
291 /*
292  * Batching for thread reapping.
293  */
294 struct tidbatch {
295         lwpid_t tab[16];
296         int n;
297 };
298
299 static void
300 tidbatch_prep(struct tidbatch *tb)
301 {
302
303         tb->n = 0;
304 }
305
306 static void
307 tidbatch_add(struct tidbatch *tb, struct thread *td)
308 {
309
310         KASSERT(tb->n < nitems(tb->tab),
311             ("%s: count too high %d", __func__, tb->n));
312         tb->tab[tb->n] = td->td_tid;
313         tb->n++;
314 }
315
316 static void
317 tidbatch_process(struct tidbatch *tb)
318 {
319
320         KASSERT(tb->n <= nitems(tb->tab),
321             ("%s: count too high %d", __func__, tb->n));
322         if (tb->n == nitems(tb->tab)) {
323                 tid_free_batch(tb->tab, tb->n);
324                 tb->n = 0;
325         }
326 }
327
328 static void
329 tidbatch_final(struct tidbatch *tb)
330 {
331
332         KASSERT(tb->n <= nitems(tb->tab),
333             ("%s: count too high %d", __func__, tb->n));
334         if (tb->n != 0) {
335                 tid_free_batch(tb->tab, tb->n);
336         }
337 }
338
339 /*
340  * Batching thread count free, for consistency
341  */
342 struct tdcountbatch {
343         int n;
344 };
345
346 static void
347 tdcountbatch_prep(struct tdcountbatch *tb)
348 {
349
350         tb->n = 0;
351 }
352
353 static void
354 tdcountbatch_add(struct tdcountbatch *tb, struct thread *td __unused)
355 {
356
357         tb->n++;
358 }
359
360 static void
361 tdcountbatch_process(struct tdcountbatch *tb)
362 {
363
364         if (tb->n == 32) {
365                 thread_count_sub(tb->n);
366                 tb->n = 0;
367         }
368 }
369
370 static void
371 tdcountbatch_final(struct tdcountbatch *tb)
372 {
373
374         if (tb->n != 0) {
375                 thread_count_sub(tb->n);
376         }
377 }
378
379 /*
380  * Prepare a thread for use.
381  */
382 static int
383 thread_ctor(void *mem, int size, void *arg, int flags)
384 {
385         struct thread   *td;
386
387         td = (struct thread *)mem;
388         TD_SET_STATE(td, TDS_INACTIVE);
389         td->td_lastcpu = td->td_oncpu = NOCPU;
390
391         /*
392          * Note that td_critnest begins life as 1 because the thread is not
393          * running and is thereby implicitly waiting to be on the receiving
394          * end of a context switch.
395          */
396         td->td_critnest = 1;
397         td->td_lend_user_pri = PRI_MAX;
398 #ifdef AUDIT
399         audit_thread_alloc(td);
400 #endif
401 #ifdef KDTRACE_HOOKS
402         kdtrace_thread_ctor(td);
403 #endif
404         umtx_thread_alloc(td);
405         MPASS(td->td_sel == NULL);
406         return (0);
407 }
408
409 /*
410  * Reclaim a thread after use.
411  */
412 static void
413 thread_dtor(void *mem, int size, void *arg)
414 {
415         struct thread *td;
416
417         td = (struct thread *)mem;
418
419 #ifdef INVARIANTS
420         /* Verify that this thread is in a safe state to free. */
421         switch (TD_GET_STATE(td)) {
422         case TDS_INHIBITED:
423         case TDS_RUNNING:
424         case TDS_CAN_RUN:
425         case TDS_RUNQ:
426                 /*
427                  * We must never unlink a thread that is in one of
428                  * these states, because it is currently active.
429                  */
430                 panic("bad state for thread unlinking");
431                 /* NOTREACHED */
432         case TDS_INACTIVE:
433                 break;
434         default:
435                 panic("bad thread state");
436                 /* NOTREACHED */
437         }
438 #endif
439 #ifdef AUDIT
440         audit_thread_free(td);
441 #endif
442 #ifdef KDTRACE_HOOKS
443         kdtrace_thread_dtor(td);
444 #endif
445         /* Free all OSD associated to this thread. */
446         osd_thread_exit(td);
447         ast_kclear(td);
448         seltdfini(td);
449 }
450
451 /*
452  * Initialize type-stable parts of a thread (when newly created).
453  */
454 static int
455 thread_init(void *mem, int size, int flags)
456 {
457         struct thread *td;
458
459         td = (struct thread *)mem;
460
461         td->td_allocdomain = vm_phys_domain(vtophys(td));
462         td->td_sleepqueue = sleepq_alloc();
463         td->td_turnstile = turnstile_alloc();
464         td->td_rlqe = NULL;
465         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
466         umtx_thread_init(td);
467         td->td_kstack = 0;
468         td->td_sel = NULL;
469         return (0);
470 }
471
472 /*
473  * Tear down type-stable parts of a thread (just before being discarded).
474  */
475 static void
476 thread_fini(void *mem, int size)
477 {
478         struct thread *td;
479
480         td = (struct thread *)mem;
481         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
482         rlqentry_free(td->td_rlqe);
483         turnstile_free(td->td_turnstile);
484         sleepq_free(td->td_sleepqueue);
485         umtx_thread_fini(td);
486         MPASS(td->td_sel == NULL);
487 }
488
489 /*
490  * For a newly created process,
491  * link up all the structures and its initial threads etc.
492  * called from:
493  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
494  * proc_dtor() (should go away)
495  * proc_init()
496  */
497 void
498 proc_linkup0(struct proc *p, struct thread *td)
499 {
500         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
501         proc_linkup(p, td);
502 }
503
504 void
505 proc_linkup(struct proc *p, struct thread *td)
506 {
507
508         sigqueue_init(&p->p_sigqueue, p);
509         p->p_ksi = ksiginfo_alloc(M_WAITOK);
510         if (p->p_ksi != NULL) {
511                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
512                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
513         }
514         LIST_INIT(&p->p_mqnotifier);
515         p->p_numthreads = 0;
516         thread_link(td, p);
517 }
518
519 static void
520 ast_suspend(struct thread *td, int tda __unused)
521 {
522         struct proc *p;
523
524         p = td->td_proc;
525         /*
526          * We need to check to see if we have to exit or wait due to a
527          * single threading requirement or some other STOP condition.
528          */
529         PROC_LOCK(p);
530         thread_suspend_check(0);
531         PROC_UNLOCK(p);
532 }
533
534 extern int max_threads_per_proc;
535
536 /*
537  * Initialize global thread allocation resources.
538  */
539 void
540 threadinit(void)
541 {
542         u_long i;
543         lwpid_t tid0;
544
545         /*
546          * Place an upper limit on threads which can be allocated.
547          *
548          * Note that other factors may make the de facto limit much lower.
549          *
550          * Platform limits are somewhat arbitrary but deemed "more than good
551          * enough" for the foreseable future.
552          */
553         if (maxthread == 0) {
554 #ifdef _LP64
555                 maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
556 #else
557                 maxthread = MIN(maxproc * max_threads_per_proc, 100000);
558 #endif
559         }
560
561         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
562         tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
563         /*
564          * Handle thread0.
565          */
566         thread_count_inc();
567         tid0 = tid_alloc();
568         if (tid0 != THREAD0_TID)
569                 panic("tid0 %d != %d\n", tid0, THREAD0_TID);
570
571         /*
572          * Thread structures are specially aligned so that (at least) the
573          * 5 lower bits of a pointer to 'struct thead' must be 0.  These bits
574          * are used by synchronization primitives to store flags in pointers to
575          * such structures.
576          */
577         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
578             thread_ctor, thread_dtor, thread_init, thread_fini,
579             UMA_ALIGN_CACHE_AND_MASK(32 - 1), UMA_ZONE_NOFREE);
580         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
581         tidhashlock = (tidhash + 1) / 64;
582         if (tidhashlock > 0)
583                 tidhashlock--;
584         tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
585             M_TIDHASH, M_WAITOK | M_ZERO);
586         for (i = 0; i < tidhashlock + 1; i++)
587                 rw_init(&tidhashtbl_lock[i], "tidhash");
588
589         TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
590         callout_init(&thread_reap_callout, 1);
591         callout_reset(&thread_reap_callout, 5 * hz,
592             thread_reap_callout_cb, NULL);
593         ast_register(TDA_SUSPEND, ASTR_ASTF_REQUIRED, 0, ast_suspend);
594 }
595
596 /*
597  * Place an unused thread on the zombie list.
598  */
599 void
600 thread_zombie(struct thread *td)
601 {
602         struct thread_domain_data *tdd;
603         struct thread *ztd;
604
605         tdd = &thread_domain_data[td->td_allocdomain];
606         ztd = atomic_load_ptr(&tdd->tdd_zombies);
607         for (;;) {
608                 td->td_zombie = ztd;
609                 if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
610                     (uintptr_t *)&ztd, (uintptr_t)td))
611                         break;
612                 continue;
613         }
614 }
615
616 /*
617  * Release a thread that has exited after cpu_throw().
618  */
619 void
620 thread_stash(struct thread *td)
621 {
622         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
623         thread_zombie(td);
624 }
625
626 /*
627  * Reap zombies from passed domain.
628  */
629 static void
630 thread_reap_domain(struct thread_domain_data *tdd)
631 {
632         struct thread *itd, *ntd;
633         struct tidbatch tidbatch;
634         struct credbatch credbatch;
635         struct limbatch limbatch;
636         struct tdcountbatch tdcountbatch;
637
638         /*
639          * Reading upfront is pessimal if followed by concurrent atomic_swap,
640          * but most of the time the list is empty.
641          */
642         if (tdd->tdd_zombies == NULL)
643                 return;
644
645         itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
646             (uintptr_t)NULL);
647         if (itd == NULL)
648                 return;
649
650         /*
651          * Multiple CPUs can get here, the race is fine as ticks is only
652          * advisory.
653          */
654         tdd->tdd_reapticks = ticks;
655
656         tidbatch_prep(&tidbatch);
657         credbatch_prep(&credbatch);
658         limbatch_prep(&limbatch);
659         tdcountbatch_prep(&tdcountbatch);
660
661         while (itd != NULL) {
662                 ntd = itd->td_zombie;
663                 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
664
665                 tidbatch_add(&tidbatch, itd);
666                 credbatch_add(&credbatch, itd);
667                 limbatch_add(&limbatch, itd);
668                 tdcountbatch_add(&tdcountbatch, itd);
669
670                 thread_free_batched(itd);
671
672                 tidbatch_process(&tidbatch);
673                 credbatch_process(&credbatch);
674                 limbatch_process(&limbatch);
675                 tdcountbatch_process(&tdcountbatch);
676
677                 itd = ntd;
678         }
679
680         tidbatch_final(&tidbatch);
681         credbatch_final(&credbatch);
682         limbatch_final(&limbatch);
683         tdcountbatch_final(&tdcountbatch);
684 }
685
686 /*
687  * Reap zombies from all domains.
688  */
689 static void
690 thread_reap_all(void)
691 {
692         struct thread_domain_data *tdd;
693         int i, domain;
694
695         domain = PCPU_GET(domain);
696         for (i = 0; i < vm_ndomains; i++) {
697                 tdd = &thread_domain_data[(i + domain) % vm_ndomains];
698                 thread_reap_domain(tdd);
699         }
700 }
701
702 /*
703  * Reap zombies from local domain.
704  */
705 static void
706 thread_reap(void)
707 {
708         struct thread_domain_data *tdd;
709         int domain;
710
711         domain = PCPU_GET(domain);
712         tdd = &thread_domain_data[domain];
713
714         thread_reap_domain(tdd);
715 }
716
717 static void
718 thread_reap_task_cb(void *arg __unused, int pending __unused)
719 {
720
721         thread_reap_all();
722 }
723
724 static void
725 thread_reap_callout_cb(void *arg __unused)
726 {
727         struct thread_domain_data *tdd;
728         int i, cticks, lticks;
729         bool wantreap;
730
731         wantreap = false;
732         cticks = atomic_load_int(&ticks);
733         for (i = 0; i < vm_ndomains; i++) {
734                 tdd = &thread_domain_data[i];
735                 lticks = tdd->tdd_reapticks;
736                 if (tdd->tdd_zombies != NULL &&
737                     (u_int)(cticks - lticks) > 5 * hz) {
738                         wantreap = true;
739                         break;
740                 }
741         }
742
743         if (wantreap)
744                 taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
745         callout_reset(&thread_reap_callout, 5 * hz,
746             thread_reap_callout_cb, NULL);
747 }
748
749 /*
750  * Calling this function guarantees that any thread that exited before
751  * the call is reaped when the function returns.  By 'exited' we mean
752  * a thread removed from the process linkage with thread_unlink().
753  * Practically this means that caller must lock/unlock corresponding
754  * process lock before the call, to synchronize with thread_exit().
755  */
756 void
757 thread_reap_barrier(void)
758 {
759         struct task *t;
760
761         /*
762          * First do context switches to each CPU to ensure that all
763          * PCPU pc_deadthreads are moved to zombie list.
764          */
765         quiesce_all_cpus("", PDROP);
766
767         /*
768          * Second, fire the task in the same thread as normal
769          * thread_reap() is done, to serialize reaping.
770          */
771         t = malloc(sizeof(*t), M_TEMP, M_WAITOK);
772         TASK_INIT(t, 0, thread_reap_task_cb, t);
773         taskqueue_enqueue(taskqueue_thread, t);
774         taskqueue_drain(taskqueue_thread, t);
775         free(t, M_TEMP);
776 }
777
778 /*
779  * Allocate a thread.
780  */
781 struct thread *
782 thread_alloc(int pages)
783 {
784         struct thread *td;
785         lwpid_t tid;
786
787         if (!thread_count_inc()) {
788                 return (NULL);
789         }
790
791         tid = tid_alloc();
792         td = uma_zalloc(thread_zone, M_WAITOK);
793         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
794         if (!vm_thread_new(td, pages)) {
795                 uma_zfree(thread_zone, td);
796                 tid_free(tid);
797                 thread_count_dec();
798                 return (NULL);
799         }
800         td->td_tid = tid;
801         bzero(&td->td_sa.args, sizeof(td->td_sa.args));
802         kmsan_thread_alloc(td);
803         cpu_thread_alloc(td);
804         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
805         return (td);
806 }
807
808 int
809 thread_alloc_stack(struct thread *td, int pages)
810 {
811
812         KASSERT(td->td_kstack == 0,
813             ("thread_alloc_stack called on a thread with kstack"));
814         if (!vm_thread_new(td, pages))
815                 return (0);
816         cpu_thread_alloc(td);
817         return (1);
818 }
819
820 /*
821  * Deallocate a thread.
822  */
823 static void
824 thread_free_batched(struct thread *td)
825 {
826
827         lock_profile_thread_exit(td);
828         if (td->td_cpuset)
829                 cpuset_rel(td->td_cpuset);
830         td->td_cpuset = NULL;
831         cpu_thread_free(td);
832         if (td->td_kstack != 0)
833                 vm_thread_dispose(td);
834         callout_drain(&td->td_slpcallout);
835         /*
836          * Freeing handled by the caller.
837          */
838         td->td_tid = -1;
839         kmsan_thread_free(td);
840         uma_zfree(thread_zone, td);
841 }
842
843 void
844 thread_free(struct thread *td)
845 {
846         lwpid_t tid;
847
848         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
849         tid = td->td_tid;
850         thread_free_batched(td);
851         tid_free(tid);
852         thread_count_dec();
853 }
854
855 void
856 thread_cow_get_proc(struct thread *newtd, struct proc *p)
857 {
858
859         PROC_LOCK_ASSERT(p, MA_OWNED);
860         newtd->td_realucred = crcowget(p->p_ucred);
861         newtd->td_ucred = newtd->td_realucred;
862         newtd->td_limit = lim_hold(p->p_limit);
863         newtd->td_cowgen = p->p_cowgen;
864 }
865
866 void
867 thread_cow_get(struct thread *newtd, struct thread *td)
868 {
869
870         MPASS(td->td_realucred == td->td_ucred);
871         newtd->td_realucred = crcowget(td->td_realucred);
872         newtd->td_ucred = newtd->td_realucred;
873         newtd->td_limit = lim_hold(td->td_limit);
874         newtd->td_cowgen = td->td_cowgen;
875 }
876
877 void
878 thread_cow_free(struct thread *td)
879 {
880
881         if (td->td_realucred != NULL)
882                 crcowfree(td);
883         if (td->td_limit != NULL)
884                 lim_free(td->td_limit);
885 }
886
887 void
888 thread_cow_update(struct thread *td)
889 {
890         struct proc *p;
891         struct ucred *oldcred;
892         struct plimit *oldlimit;
893
894         p = td->td_proc;
895         PROC_LOCK(p);
896         oldcred = crcowsync();
897         oldlimit = lim_cowsync();
898         td->td_cowgen = p->p_cowgen;
899         PROC_UNLOCK(p);
900         if (oldcred != NULL)
901                 crfree(oldcred);
902         if (oldlimit != NULL)
903                 lim_free(oldlimit);
904 }
905
906 void
907 thread_cow_synced(struct thread *td)
908 {
909         struct proc *p;
910
911         p = td->td_proc;
912         PROC_LOCK_ASSERT(p, MA_OWNED);
913         MPASS(td->td_cowgen != p->p_cowgen);
914         MPASS(td->td_ucred == p->p_ucred);
915         MPASS(td->td_limit == p->p_limit);
916         td->td_cowgen = p->p_cowgen;
917 }
918
919 /*
920  * Discard the current thread and exit from its context.
921  * Always called with scheduler locked.
922  *
923  * Because we can't free a thread while we're operating under its context,
924  * push the current thread into our CPU's deadthread holder. This means
925  * we needn't worry about someone else grabbing our context before we
926  * do a cpu_throw().
927  */
928 void
929 thread_exit(void)
930 {
931         uint64_t runtime, new_switchtime;
932         struct thread *td;
933         struct thread *td2;
934         struct proc *p;
935         int wakeup_swapper;
936
937         td = curthread;
938         p = td->td_proc;
939
940         PROC_SLOCK_ASSERT(p, MA_OWNED);
941         mtx_assert(&Giant, MA_NOTOWNED);
942
943         PROC_LOCK_ASSERT(p, MA_OWNED);
944         KASSERT(p != NULL, ("thread exiting without a process"));
945         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
946             (long)p->p_pid, td->td_name);
947         SDT_PROBE0(proc, , , lwp__exit);
948         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
949         MPASS(td->td_realucred == td->td_ucred);
950
951         /*
952          * drop FPU & debug register state storage, or any other
953          * architecture specific resources that
954          * would not be on a new untouched process.
955          */
956         cpu_thread_exit(td);
957
958         /*
959          * The last thread is left attached to the process
960          * So that the whole bundle gets recycled. Skip
961          * all this stuff if we never had threads.
962          * EXIT clears all sign of other threads when
963          * it goes to single threading, so the last thread always
964          * takes the short path.
965          */
966         if (p->p_flag & P_HADTHREADS) {
967                 if (p->p_numthreads > 1) {
968                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
969                         thread_unlink(td);
970                         td2 = FIRST_THREAD_IN_PROC(p);
971                         sched_exit_thread(td2, td);
972
973                         /*
974                          * The test below is NOT true if we are the
975                          * sole exiting thread. P_STOPPED_SINGLE is unset
976                          * in exit1() after it is the only survivor.
977                          */
978                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
979                                 if (p->p_numthreads == p->p_suspcount) {
980                                         thread_lock(p->p_singlethread);
981                                         wakeup_swapper = thread_unsuspend_one(
982                                                 p->p_singlethread, p, false);
983                                         if (wakeup_swapper)
984                                                 kick_proc0();
985                                 }
986                         }
987
988                         PCPU_SET(deadthread, td);
989                 } else {
990                         /*
991                          * The last thread is exiting.. but not through exit()
992                          */
993                         panic ("thread_exit: Last thread exiting on its own");
994                 }
995         } 
996 #ifdef  HWPMC_HOOKS
997         /*
998          * If this thread is part of a process that is being tracked by hwpmc(4),
999          * inform the module of the thread's impending exit.
1000          */
1001         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
1002                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1003                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
1004         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
1005                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
1006 #endif
1007         PROC_UNLOCK(p);
1008         PROC_STATLOCK(p);
1009         thread_lock(td);
1010         PROC_SUNLOCK(p);
1011
1012         /* Do the same timestamp bookkeeping that mi_switch() would do. */
1013         new_switchtime = cpu_ticks();
1014         runtime = new_switchtime - PCPU_GET(switchtime);
1015         td->td_runtime += runtime;
1016         td->td_incruntime += runtime;
1017         PCPU_SET(switchtime, new_switchtime);
1018         PCPU_SET(switchticks, ticks);
1019         VM_CNT_INC(v_swtch);
1020
1021         /* Save our resource usage in our process. */
1022         td->td_ru.ru_nvcsw++;
1023         ruxagg_locked(p, td);
1024         rucollect(&p->p_ru, &td->td_ru);
1025         PROC_STATUNLOCK(p);
1026
1027         TD_SET_STATE(td, TDS_INACTIVE);
1028 #ifdef WITNESS
1029         witness_thread_exit(td);
1030 #endif
1031         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
1032         sched_throw(td);
1033         panic("I'm a teapot!");
1034         /* NOTREACHED */
1035 }
1036
1037 /*
1038  * Do any thread specific cleanups that may be needed in wait()
1039  * called with Giant, proc and schedlock not held.
1040  */
1041 void
1042 thread_wait(struct proc *p)
1043 {
1044         struct thread *td;
1045
1046         mtx_assert(&Giant, MA_NOTOWNED);
1047         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
1048         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
1049         td = FIRST_THREAD_IN_PROC(p);
1050         /* Lock the last thread so we spin until it exits cpu_throw(). */
1051         thread_lock(td);
1052         thread_unlock(td);
1053         lock_profile_thread_exit(td);
1054         cpuset_rel(td->td_cpuset);
1055         td->td_cpuset = NULL;
1056         cpu_thread_clean(td);
1057         thread_cow_free(td);
1058         callout_drain(&td->td_slpcallout);
1059         thread_reap();  /* check for zombie threads etc. */
1060 }
1061
1062 /*
1063  * Link a thread to a process.
1064  * set up anything that needs to be initialized for it to
1065  * be used by the process.
1066  */
1067 void
1068 thread_link(struct thread *td, struct proc *p)
1069 {
1070
1071         /*
1072          * XXX This can't be enabled because it's called for proc0 before
1073          * its lock has been created.
1074          * PROC_LOCK_ASSERT(p, MA_OWNED);
1075          */
1076         TD_SET_STATE(td, TDS_INACTIVE);
1077         td->td_proc     = p;
1078         td->td_flags    = TDF_INMEM;
1079
1080         LIST_INIT(&td->td_contested);
1081         LIST_INIT(&td->td_lprof[0]);
1082         LIST_INIT(&td->td_lprof[1]);
1083 #ifdef EPOCH_TRACE
1084         SLIST_INIT(&td->td_epochs);
1085 #endif
1086         sigqueue_init(&td->td_sigqueue, p);
1087         callout_init(&td->td_slpcallout, 1);
1088         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
1089         p->p_numthreads++;
1090 }
1091
1092 /*
1093  * Called from:
1094  *  thread_exit()
1095  */
1096 void
1097 thread_unlink(struct thread *td)
1098 {
1099         struct proc *p = td->td_proc;
1100
1101         PROC_LOCK_ASSERT(p, MA_OWNED);
1102 #ifdef EPOCH_TRACE
1103         MPASS(SLIST_EMPTY(&td->td_epochs));
1104 #endif
1105
1106         TAILQ_REMOVE(&p->p_threads, td, td_plist);
1107         p->p_numthreads--;
1108         /* could clear a few other things here */
1109         /* Must  NOT clear links to proc! */
1110 }
1111
1112 static int
1113 calc_remaining(struct proc *p, int mode)
1114 {
1115         int remaining;
1116
1117         PROC_LOCK_ASSERT(p, MA_OWNED);
1118         PROC_SLOCK_ASSERT(p, MA_OWNED);
1119         if (mode == SINGLE_EXIT)
1120                 remaining = p->p_numthreads;
1121         else if (mode == SINGLE_BOUNDARY)
1122                 remaining = p->p_numthreads - p->p_boundary_count;
1123         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
1124                 remaining = p->p_numthreads - p->p_suspcount;
1125         else
1126                 panic("calc_remaining: wrong mode %d", mode);
1127         return (remaining);
1128 }
1129
1130 static int
1131 remain_for_mode(int mode)
1132 {
1133
1134         return (mode == SINGLE_ALLPROC ? 0 : 1);
1135 }
1136
1137 static int
1138 weed_inhib(int mode, struct thread *td2, struct proc *p)
1139 {
1140         int wakeup_swapper;
1141
1142         PROC_LOCK_ASSERT(p, MA_OWNED);
1143         PROC_SLOCK_ASSERT(p, MA_OWNED);
1144         THREAD_LOCK_ASSERT(td2, MA_OWNED);
1145
1146         wakeup_swapper = 0;
1147
1148         /*
1149          * Since the thread lock is dropped by the scheduler we have
1150          * to retry to check for races.
1151          */
1152 restart:
1153         switch (mode) {
1154         case SINGLE_EXIT:
1155                 if (TD_IS_SUSPENDED(td2)) {
1156                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
1157                         thread_lock(td2);
1158                         goto restart;
1159                 }
1160                 if (TD_CAN_ABORT(td2)) {
1161                         wakeup_swapper |= sleepq_abort(td2, EINTR);
1162                         return (wakeup_swapper);
1163                 }
1164                 break;
1165         case SINGLE_BOUNDARY:
1166         case SINGLE_NO_EXIT:
1167                 if (TD_IS_SUSPENDED(td2) &&
1168                     (td2->td_flags & TDF_BOUNDARY) == 0) {
1169                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1170                         thread_lock(td2);
1171                         goto restart;
1172                 }
1173                 if (TD_CAN_ABORT(td2)) {
1174                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1175                         return (wakeup_swapper);
1176                 }
1177                 break;
1178         case SINGLE_ALLPROC:
1179                 /*
1180                  * ALLPROC suspend tries to avoid spurious EINTR for
1181                  * threads sleeping interruptable, by suspending the
1182                  * thread directly, similarly to sig_suspend_threads().
1183                  * Since such sleep is not neccessary performed at the user
1184                  * boundary, TDF_ALLPROCSUSP is used to avoid immediate
1185                  * un-suspend.
1186                  */
1187                 if (TD_IS_SUSPENDED(td2) &&
1188                     (td2->td_flags & TDF_ALLPROCSUSP) == 0) {
1189                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1190                         thread_lock(td2);
1191                         goto restart;
1192                 }
1193                 if (TD_CAN_ABORT(td2)) {
1194                         td2->td_flags |= TDF_ALLPROCSUSP;
1195                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1196                         return (wakeup_swapper);
1197                 }
1198                 break;
1199         default:
1200                 break;
1201         }
1202         thread_unlock(td2);
1203         return (wakeup_swapper);
1204 }
1205
1206 /*
1207  * Enforce single-threading.
1208  *
1209  * Returns 1 if the caller must abort (another thread is waiting to
1210  * exit the process or similar). Process is locked!
1211  * Returns 0 when you are successfully the only thread running.
1212  * A process has successfully single threaded in the suspend mode when
1213  * There are no threads in user mode. Threads in the kernel must be
1214  * allowed to continue until they get to the user boundary. They may even
1215  * copy out their return values and data before suspending. They may however be
1216  * accelerated in reaching the user boundary as we will wake up
1217  * any sleeping threads that are interruptable. (PCATCH).
1218  */
1219 int
1220 thread_single(struct proc *p, int mode)
1221 {
1222         struct thread *td;
1223         struct thread *td2;
1224         int remaining, wakeup_swapper;
1225
1226         td = curthread;
1227         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1228             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1229             ("invalid mode %d", mode));
1230         /*
1231          * If allowing non-ALLPROC singlethreading for non-curproc
1232          * callers, calc_remaining() and remain_for_mode() should be
1233          * adjusted to also account for td->td_proc != p.  For now
1234          * this is not implemented because it is not used.
1235          */
1236         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
1237             (mode != SINGLE_ALLPROC && td->td_proc == p),
1238             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
1239         mtx_assert(&Giant, MA_NOTOWNED);
1240         PROC_LOCK_ASSERT(p, MA_OWNED);
1241
1242         /*
1243          * Is someone already single threading?
1244          * Or may be singlethreading is not needed at all.
1245          */
1246         if (mode == SINGLE_ALLPROC) {
1247                 while ((p->p_flag & P_STOPPED_SINGLE) != 0) {
1248                         if ((p->p_flag2 & P2_WEXIT) != 0)
1249                                 return (1);
1250                         msleep(&p->p_flag, &p->p_mtx, PCATCH, "thrsgl", 0);
1251                 }
1252         } else if ((p->p_flag & P_HADTHREADS) == 0)
1253                 return (0);
1254         if (p->p_singlethread != NULL && p->p_singlethread != td)
1255                 return (1);
1256
1257         if (mode == SINGLE_EXIT) {
1258                 p->p_flag |= P_SINGLE_EXIT;
1259                 p->p_flag &= ~P_SINGLE_BOUNDARY;
1260         } else {
1261                 p->p_flag &= ~P_SINGLE_EXIT;
1262                 if (mode == SINGLE_BOUNDARY)
1263                         p->p_flag |= P_SINGLE_BOUNDARY;
1264                 else
1265                         p->p_flag &= ~P_SINGLE_BOUNDARY;
1266         }
1267         if (mode == SINGLE_ALLPROC)
1268                 p->p_flag |= P_TOTAL_STOP;
1269         p->p_flag |= P_STOPPED_SINGLE;
1270         PROC_SLOCK(p);
1271         p->p_singlethread = td;
1272         remaining = calc_remaining(p, mode);
1273         while (remaining != remain_for_mode(mode)) {
1274                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
1275                         goto stopme;
1276                 wakeup_swapper = 0;
1277                 FOREACH_THREAD_IN_PROC(p, td2) {
1278                         if (td2 == td)
1279                                 continue;
1280                         thread_lock(td2);
1281                         ast_sched_locked(td2, TDA_SUSPEND);
1282                         if (TD_IS_INHIBITED(td2)) {
1283                                 wakeup_swapper |= weed_inhib(mode, td2, p);
1284 #ifdef SMP
1285                         } else if (TD_IS_RUNNING(td2)) {
1286                                 forward_signal(td2);
1287                                 thread_unlock(td2);
1288 #endif
1289                         } else
1290                                 thread_unlock(td2);
1291                 }
1292                 if (wakeup_swapper)
1293                         kick_proc0();
1294                 remaining = calc_remaining(p, mode);
1295
1296                 /*
1297                  * Maybe we suspended some threads.. was it enough?
1298                  */
1299                 if (remaining == remain_for_mode(mode))
1300                         break;
1301
1302 stopme:
1303                 /*
1304                  * Wake us up when everyone else has suspended.
1305                  * In the mean time we suspend as well.
1306                  */
1307                 thread_suspend_switch(td, p);
1308                 remaining = calc_remaining(p, mode);
1309         }
1310         if (mode == SINGLE_EXIT) {
1311                 /*
1312                  * Convert the process to an unthreaded process.  The
1313                  * SINGLE_EXIT is called by exit1() or execve(), in
1314                  * both cases other threads must be retired.
1315                  */
1316                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
1317                 p->p_singlethread = NULL;
1318                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
1319
1320                 /*
1321                  * Wait for any remaining threads to exit cpu_throw().
1322                  */
1323                 while (p->p_exitthreads != 0) {
1324                         PROC_SUNLOCK(p);
1325                         PROC_UNLOCK(p);
1326                         sched_relinquish(td);
1327                         PROC_LOCK(p);
1328                         PROC_SLOCK(p);
1329                 }
1330         } else if (mode == SINGLE_BOUNDARY) {
1331                 /*
1332                  * Wait until all suspended threads are removed from
1333                  * the processors.  The thread_suspend_check()
1334                  * increments p_boundary_count while it is still
1335                  * running, which makes it possible for the execve()
1336                  * to destroy vmspace while our other threads are
1337                  * still using the address space.
1338                  *
1339                  * We lock the thread, which is only allowed to
1340                  * succeed after context switch code finished using
1341                  * the address space.
1342                  */
1343                 FOREACH_THREAD_IN_PROC(p, td2) {
1344                         if (td2 == td)
1345                                 continue;
1346                         thread_lock(td2);
1347                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
1348                             ("td %p not on boundary", td2));
1349                         KASSERT(TD_IS_SUSPENDED(td2),
1350                             ("td %p is not suspended", td2));
1351                         thread_unlock(td2);
1352                 }
1353         }
1354         PROC_SUNLOCK(p);
1355         return (0);
1356 }
1357
1358 bool
1359 thread_suspend_check_needed(void)
1360 {
1361         struct proc *p;
1362         struct thread *td;
1363
1364         td = curthread;
1365         p = td->td_proc;
1366         PROC_LOCK_ASSERT(p, MA_OWNED);
1367         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
1368             (td->td_dbgflags & TDB_SUSPEND) != 0));
1369 }
1370
1371 /*
1372  * Called in from locations that can safely check to see
1373  * whether we have to suspend or at least throttle for a
1374  * single-thread event (e.g. fork).
1375  *
1376  * Such locations include userret().
1377  * If the "return_instead" argument is non zero, the thread must be able to
1378  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1379  *
1380  * The 'return_instead' argument tells the function if it may do a
1381  * thread_exit() or suspend, or whether the caller must abort and back
1382  * out instead.
1383  *
1384  * If the thread that set the single_threading request has set the
1385  * P_SINGLE_EXIT bit in the process flags then this call will never return
1386  * if 'return_instead' is false, but will exit.
1387  *
1388  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1389  *---------------+--------------------+---------------------
1390  *       0       | returns 0          |   returns 0 or 1
1391  *               | when ST ends       |   immediately
1392  *---------------+--------------------+---------------------
1393  *       1       | thread exits       |   returns 1
1394  *               |                    |  immediately
1395  * 0 = thread_exit() or suspension ok,
1396  * other = return error instead of stopping the thread.
1397  *
1398  * While a full suspension is under effect, even a single threading
1399  * thread would be suspended if it made this call (but it shouldn't).
1400  * This call should only be made from places where
1401  * thread_exit() would be safe as that may be the outcome unless
1402  * return_instead is set.
1403  */
1404 int
1405 thread_suspend_check(int return_instead)
1406 {
1407         struct thread *td;
1408         struct proc *p;
1409         int wakeup_swapper;
1410
1411         td = curthread;
1412         p = td->td_proc;
1413         mtx_assert(&Giant, MA_NOTOWNED);
1414         PROC_LOCK_ASSERT(p, MA_OWNED);
1415         while (thread_suspend_check_needed()) {
1416                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1417                         KASSERT(p->p_singlethread != NULL,
1418                             ("singlethread not set"));
1419                         /*
1420                          * The only suspension in action is a
1421                          * single-threading. Single threader need not stop.
1422                          * It is safe to access p->p_singlethread unlocked
1423                          * because it can only be set to our address by us.
1424                          */
1425                         if (p->p_singlethread == td)
1426                                 return (0);     /* Exempt from stopping. */
1427                 }
1428                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1429                         return (EINTR);
1430
1431                 /* Should we goto user boundary if we didn't come from there? */
1432                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1433                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1434                         return (ERESTART);
1435
1436                 /*
1437                  * Ignore suspend requests if they are deferred.
1438                  */
1439                 if ((td->td_flags & TDF_SBDRY) != 0) {
1440                         KASSERT(return_instead,
1441                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
1442                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1443                             (TDF_SEINTR | TDF_SERESTART),
1444                             ("both TDF_SEINTR and TDF_SERESTART"));
1445                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1446                 }
1447
1448                 /*
1449                  * If the process is waiting for us to exit,
1450                  * this thread should just suicide.
1451                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1452                  */
1453                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1454                         PROC_UNLOCK(p);
1455
1456                         /*
1457                          * Allow Linux emulation layer to do some work
1458                          * before thread suicide.
1459                          */
1460                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1461                                 (p->p_sysent->sv_thread_detach)(td);
1462                         umtx_thread_exit(td);
1463                         kern_thr_exit(td);
1464                         panic("stopped thread did not exit");
1465                 }
1466
1467                 PROC_SLOCK(p);
1468                 thread_stopped(p);
1469                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1470                         if (p->p_numthreads == p->p_suspcount + 1) {
1471                                 thread_lock(p->p_singlethread);
1472                                 wakeup_swapper = thread_unsuspend_one(
1473                                     p->p_singlethread, p, false);
1474                                 if (wakeup_swapper)
1475                                         kick_proc0();
1476                         }
1477                 }
1478                 PROC_UNLOCK(p);
1479                 thread_lock(td);
1480                 /*
1481                  * When a thread suspends, it just
1482                  * gets taken off all queues.
1483                  */
1484                 thread_suspend_one(td);
1485                 if (return_instead == 0) {
1486                         p->p_boundary_count++;
1487                         td->td_flags |= TDF_BOUNDARY;
1488                 }
1489                 PROC_SUNLOCK(p);
1490                 mi_switch(SW_INVOL | SWT_SUSPEND);
1491                 PROC_LOCK(p);
1492         }
1493         return (0);
1494 }
1495
1496 /*
1497  * Check for possible stops and suspensions while executing a
1498  * casueword or similar transiently failing operation.
1499  *
1500  * The sleep argument controls whether the function can handle a stop
1501  * request itself or it should return ERESTART and the request is
1502  * proceed at the kernel/user boundary in ast.
1503  *
1504  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1505  * should handle the stop requests there, with exception of cases when
1506  * the thread owns a kernel resource, for instance busied the umtx
1507  * key, or when functions return immediately if thread_check_susp()
1508  * returned non-zero.  On the other hand, retrying the whole lock
1509  * operation, we better not stop there but delegate the handling to
1510  * ast.
1511  *
1512  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1513  * handle it at all, and simply return EINTR.
1514  */
1515 int
1516 thread_check_susp(struct thread *td, bool sleep)
1517 {
1518         struct proc *p;
1519         int error;
1520
1521         /*
1522          * The check for TDA_SUSPEND is racy, but it is enough to
1523          * eventually break the lockstep loop.
1524          */
1525         if (!td_ast_pending(td, TDA_SUSPEND))
1526                 return (0);
1527         error = 0;
1528         p = td->td_proc;
1529         PROC_LOCK(p);
1530         if (p->p_flag & P_SINGLE_EXIT)
1531                 error = EINTR;
1532         else if (P_SHOULDSTOP(p) ||
1533             ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1534                 error = sleep ? thread_suspend_check(0) : ERESTART;
1535         PROC_UNLOCK(p);
1536         return (error);
1537 }
1538
1539 void
1540 thread_suspend_switch(struct thread *td, struct proc *p)
1541 {
1542
1543         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1544         PROC_LOCK_ASSERT(p, MA_OWNED);
1545         PROC_SLOCK_ASSERT(p, MA_OWNED);
1546         /*
1547          * We implement thread_suspend_one in stages here to avoid
1548          * dropping the proc lock while the thread lock is owned.
1549          */
1550         if (p == td->td_proc) {
1551                 thread_stopped(p);
1552                 p->p_suspcount++;
1553         }
1554         PROC_UNLOCK(p);
1555         thread_lock(td);
1556         ast_unsched_locked(td, TDA_SUSPEND);
1557         TD_SET_SUSPENDED(td);
1558         sched_sleep(td, 0);
1559         PROC_SUNLOCK(p);
1560         DROP_GIANT();
1561         mi_switch(SW_VOL | SWT_SUSPEND);
1562         PICKUP_GIANT();
1563         PROC_LOCK(p);
1564         PROC_SLOCK(p);
1565 }
1566
1567 void
1568 thread_suspend_one(struct thread *td)
1569 {
1570         struct proc *p;
1571
1572         p = td->td_proc;
1573         PROC_SLOCK_ASSERT(p, MA_OWNED);
1574         THREAD_LOCK_ASSERT(td, MA_OWNED);
1575         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1576         p->p_suspcount++;
1577         ast_unsched_locked(td, TDA_SUSPEND);
1578         TD_SET_SUSPENDED(td);
1579         sched_sleep(td, 0);
1580 }
1581
1582 static int
1583 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1584 {
1585
1586         THREAD_LOCK_ASSERT(td, MA_OWNED);
1587         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1588         TD_CLR_SUSPENDED(td);
1589         td->td_flags &= ~TDF_ALLPROCSUSP;
1590         if (td->td_proc == p) {
1591                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1592                 p->p_suspcount--;
1593                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1594                         td->td_flags &= ~TDF_BOUNDARY;
1595                         p->p_boundary_count--;
1596                 }
1597         }
1598         return (setrunnable(td, 0));
1599 }
1600
1601 void
1602 thread_run_flash(struct thread *td)
1603 {
1604         struct proc *p;
1605
1606         p = td->td_proc;
1607         PROC_LOCK_ASSERT(p, MA_OWNED);
1608
1609         if (TD_ON_SLEEPQ(td))
1610                 sleepq_remove_nested(td);
1611         else
1612                 thread_lock(td);
1613
1614         THREAD_LOCK_ASSERT(td, MA_OWNED);
1615         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1616
1617         TD_CLR_SUSPENDED(td);
1618         PROC_SLOCK(p);
1619         MPASS(p->p_suspcount > 0);
1620         p->p_suspcount--;
1621         PROC_SUNLOCK(p);
1622         if (setrunnable(td, 0))
1623                 kick_proc0();
1624 }
1625
1626 /*
1627  * Allow all threads blocked by single threading to continue running.
1628  */
1629 void
1630 thread_unsuspend(struct proc *p)
1631 {
1632         struct thread *td;
1633         int wakeup_swapper;
1634
1635         PROC_LOCK_ASSERT(p, MA_OWNED);
1636         PROC_SLOCK_ASSERT(p, MA_OWNED);
1637         wakeup_swapper = 0;
1638         if (!P_SHOULDSTOP(p)) {
1639                 FOREACH_THREAD_IN_PROC(p, td) {
1640                         thread_lock(td);
1641                         if (TD_IS_SUSPENDED(td))
1642                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1643                                     true);
1644                         else
1645                                 thread_unlock(td);
1646                 }
1647         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1648             p->p_numthreads == p->p_suspcount) {
1649                 /*
1650                  * Stopping everything also did the job for the single
1651                  * threading request. Now we've downgraded to single-threaded,
1652                  * let it continue.
1653                  */
1654                 if (p->p_singlethread->td_proc == p) {
1655                         thread_lock(p->p_singlethread);
1656                         wakeup_swapper = thread_unsuspend_one(
1657                             p->p_singlethread, p, false);
1658                 }
1659         }
1660         if (wakeup_swapper)
1661                 kick_proc0();
1662 }
1663
1664 /*
1665  * End the single threading mode..
1666  */
1667 void
1668 thread_single_end(struct proc *p, int mode)
1669 {
1670         struct thread *td;
1671         int wakeup_swapper;
1672
1673         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1674             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1675             ("invalid mode %d", mode));
1676         PROC_LOCK_ASSERT(p, MA_OWNED);
1677         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1678             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1679             ("mode %d does not match P_TOTAL_STOP", mode));
1680         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1681             ("thread_single_end from other thread %p %p",
1682             curthread, p->p_singlethread));
1683         KASSERT(mode != SINGLE_BOUNDARY ||
1684             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1685             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1686         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1687             P_TOTAL_STOP);
1688         PROC_SLOCK(p);
1689         p->p_singlethread = NULL;
1690         wakeup_swapper = 0;
1691         /*
1692          * If there are other threads they may now run,
1693          * unless of course there is a blanket 'stop order'
1694          * on the process. The single threader must be allowed
1695          * to continue however as this is a bad place to stop.
1696          */
1697         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1698                 FOREACH_THREAD_IN_PROC(p, td) {
1699                         thread_lock(td);
1700                         if (TD_IS_SUSPENDED(td)) {
1701                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1702                                     true);
1703                         } else
1704                                 thread_unlock(td);
1705                 }
1706         }
1707         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1708             ("inconsistent boundary count %d", p->p_boundary_count));
1709         PROC_SUNLOCK(p);
1710         if (wakeup_swapper)
1711                 kick_proc0();
1712         wakeup(&p->p_flag);
1713 }
1714
1715 /*
1716  * Locate a thread by number and return with proc lock held.
1717  *
1718  * thread exit establishes proc -> tidhash lock ordering, but lookup
1719  * takes tidhash first and needs to return locked proc.
1720  *
1721  * The problem is worked around by relying on type-safety of both
1722  * structures and doing the work in 2 steps:
1723  * - tidhash-locked lookup which saves both thread and proc pointers
1724  * - proc-locked verification that the found thread still matches
1725  */
1726 static bool
1727 tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
1728 {
1729 #define RUN_THRESH      16
1730         struct proc *p;
1731         struct thread *td;
1732         int run;
1733         bool locked;
1734
1735         run = 0;
1736         rw_rlock(TIDHASHLOCK(tid));
1737         locked = true;
1738         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1739                 if (td->td_tid != tid) {
1740                         run++;
1741                         continue;
1742                 }
1743                 p = td->td_proc;
1744                 if (pid != -1 && p->p_pid != pid) {
1745                         td = NULL;
1746                         break;
1747                 }
1748                 if (run > RUN_THRESH) {
1749                         if (rw_try_upgrade(TIDHASHLOCK(tid))) {
1750                                 LIST_REMOVE(td, td_hash);
1751                                 LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1752                                         td, td_hash);
1753                                 rw_wunlock(TIDHASHLOCK(tid));
1754                                 locked = false;
1755                                 break;
1756                         }
1757                 }
1758                 break;
1759         }
1760         if (locked)
1761                 rw_runlock(TIDHASHLOCK(tid));
1762         if (td == NULL)
1763                 return (false);
1764         *pp = p;
1765         *tdp = td;
1766         return (true);
1767 }
1768
1769 struct thread *
1770 tdfind(lwpid_t tid, pid_t pid)
1771 {
1772         struct proc *p;
1773         struct thread *td;
1774
1775         td = curthread;
1776         if (td->td_tid == tid) {
1777                 if (pid != -1 && td->td_proc->p_pid != pid)
1778                         return (NULL);
1779                 PROC_LOCK(td->td_proc);
1780                 return (td);
1781         }
1782
1783         for (;;) {
1784                 if (!tdfind_hash(tid, pid, &p, &td))
1785                         return (NULL);
1786                 PROC_LOCK(p);
1787                 if (td->td_tid != tid) {
1788                         PROC_UNLOCK(p);
1789                         continue;
1790                 }
1791                 if (td->td_proc != p) {
1792                         PROC_UNLOCK(p);
1793                         continue;
1794                 }
1795                 if (p->p_state == PRS_NEW) {
1796                         PROC_UNLOCK(p);
1797                         return (NULL);
1798                 }
1799                 return (td);
1800         }
1801 }
1802
1803 void
1804 tidhash_add(struct thread *td)
1805 {
1806         rw_wlock(TIDHASHLOCK(td->td_tid));
1807         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1808         rw_wunlock(TIDHASHLOCK(td->td_tid));
1809 }
1810
1811 void
1812 tidhash_remove(struct thread *td)
1813 {
1814
1815         rw_wlock(TIDHASHLOCK(td->td_tid));
1816         LIST_REMOVE(td, td_hash);
1817         rw_wunlock(TIDHASHLOCK(td->td_tid));
1818 }