]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
bus_if: provide a default null rescan method
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/bitstring.h>
44 #include <sys/epoch.h>
45 #include <sys/rangelock.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sdt.h>
48 #include <sys/smp.h>
49 #include <sys/sched.h>
50 #include <sys/sleepqueue.h>
51 #include <sys/selinfo.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/dtrace_bsd.h>
54 #include <sys/sysent.h>
55 #include <sys/turnstile.h>
56 #include <sys/taskqueue.h>
57 #include <sys/ktr.h>
58 #include <sys/rwlock.h>
59 #include <sys/umtxvar.h>
60 #include <sys/vmmeter.h>
61 #include <sys/cpuset.h>
62 #ifdef  HWPMC_HOOKS
63 #include <sys/pmckern.h>
64 #endif
65 #include <sys/priv.h>
66
67 #include <security/audit/audit.h>
68
69 #include <vm/pmap.h>
70 #include <vm/vm.h>
71 #include <vm/vm_extern.h>
72 #include <vm/uma.h>
73 #include <vm/vm_phys.h>
74 #include <sys/eventhandler.h>
75
76 /*
77  * Asserts below verify the stability of struct thread and struct proc
78  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
79  * to drift, change to the structures must be accompanied by the
80  * assert update.
81  *
82  * On the stable branches after KBI freeze, conditions must not be
83  * violated.  Typically new fields are moved to the end of the
84  * structures.
85  */
86 #ifdef __amd64__
87 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
88     "struct thread KBI td_flags");
89 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
90     "struct thread KBI td_pflags");
91 _Static_assert(offsetof(struct thread, td_frame) == 0x4a0,
92     "struct thread KBI td_frame");
93 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6b0,
94     "struct thread KBI td_emuldata");
95 _Static_assert(offsetof(struct proc, p_flag) == 0xb8,
96     "struct proc KBI p_flag");
97 _Static_assert(offsetof(struct proc, p_pid) == 0xc4,
98     "struct proc KBI p_pid");
99 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c0,
100     "struct proc KBI p_filemon");
101 _Static_assert(offsetof(struct proc, p_comm) == 0x3d8,
102     "struct proc KBI p_comm");
103 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8,
104     "struct proc KBI p_emuldata");
105 #endif
106 #ifdef __i386__
107 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
108     "struct thread KBI td_flags");
109 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
110     "struct thread KBI td_pflags");
111 _Static_assert(offsetof(struct thread, td_frame) == 0x300,
112     "struct thread KBI td_frame");
113 _Static_assert(offsetof(struct thread, td_emuldata) == 0x344,
114     "struct thread KBI td_emuldata");
115 _Static_assert(offsetof(struct proc, p_flag) == 0x6c,
116     "struct proc KBI p_flag");
117 _Static_assert(offsetof(struct proc, p_pid) == 0x78,
118     "struct proc KBI p_pid");
119 _Static_assert(offsetof(struct proc, p_filemon) == 0x26c,
120     "struct proc KBI p_filemon");
121 _Static_assert(offsetof(struct proc, p_comm) == 0x280,
122     "struct proc KBI p_comm");
123 _Static_assert(offsetof(struct proc, p_emuldata) == 0x30c,
124     "struct proc KBI p_emuldata");
125 #endif
126
127 SDT_PROVIDER_DECLARE(proc);
128 SDT_PROBE_DEFINE(proc, , , lwp__exit);
129
130 /*
131  * thread related storage.
132  */
133 static uma_zone_t thread_zone;
134
135 struct thread_domain_data {
136         struct thread   *tdd_zombies;
137         int             tdd_reapticks;
138 } __aligned(CACHE_LINE_SIZE);
139
140 static struct thread_domain_data thread_domain_data[MAXMEMDOM];
141
142 static struct task      thread_reap_task;
143 static struct callout   thread_reap_callout;
144
145 static void thread_zombie(struct thread *);
146 static void thread_reap(void);
147 static void thread_reap_all(void);
148 static void thread_reap_task_cb(void *, int);
149 static void thread_reap_callout_cb(void *);
150 static int thread_unsuspend_one(struct thread *td, struct proc *p,
151     bool boundary);
152 static void thread_free_batched(struct thread *td);
153
154 static __exclusive_cache_line struct mtx tid_lock;
155 static bitstr_t *tid_bitmap;
156
157 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
158
159 static int maxthread;
160 SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
161     &maxthread, 0, "Maximum number of threads");
162
163 static __exclusive_cache_line int nthreads;
164
165 static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
166 static u_long   tidhash;
167 static u_long   tidhashlock;
168 static struct   rwlock *tidhashtbl_lock;
169 #define TIDHASH(tid)            (&tidhashtbl[(tid) & tidhash])
170 #define TIDHASHLOCK(tid)        (&tidhashtbl_lock[(tid) & tidhashlock])
171
172 EVENTHANDLER_LIST_DEFINE(thread_ctor);
173 EVENTHANDLER_LIST_DEFINE(thread_dtor);
174 EVENTHANDLER_LIST_DEFINE(thread_init);
175 EVENTHANDLER_LIST_DEFINE(thread_fini);
176
177 static bool
178 thread_count_inc_try(void)
179 {
180         int nthreads_new;
181
182         nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
183         if (nthreads_new >= maxthread - 100) {
184                 if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
185                     nthreads_new >= maxthread) {
186                         atomic_subtract_int(&nthreads, 1);
187                         return (false);
188                 }
189         }
190         return (true);
191 }
192
193 static bool
194 thread_count_inc(void)
195 {
196         static struct timeval lastfail;
197         static int curfail;
198
199         thread_reap();
200         if (thread_count_inc_try()) {
201                 return (true);
202         }
203
204         thread_reap_all();
205         if (thread_count_inc_try()) {
206                 return (true);
207         }
208
209         if (ppsratecheck(&lastfail, &curfail, 1)) {
210                 printf("maxthread limit exceeded by uid %u "
211                     "(pid %d); consider increasing kern.maxthread\n",
212                     curthread->td_ucred->cr_ruid, curproc->p_pid);
213         }
214         return (false);
215 }
216
217 static void
218 thread_count_sub(int n)
219 {
220
221         atomic_subtract_int(&nthreads, n);
222 }
223
224 static void
225 thread_count_dec(void)
226 {
227
228         thread_count_sub(1);
229 }
230
231 static lwpid_t
232 tid_alloc(void)
233 {
234         static lwpid_t trytid;
235         lwpid_t tid;
236
237         mtx_lock(&tid_lock);
238         /*
239          * It is an invariant that the bitmap is big enough to hold maxthread
240          * IDs. If we got to this point there has to be at least one free.
241          */
242         if (trytid >= maxthread)
243                 trytid = 0;
244         bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
245         if (tid == -1) {
246                 KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
247                 trytid = 0;
248                 bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
249                 KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
250         }
251         bit_set(tid_bitmap, tid);
252         trytid = tid + 1;
253         mtx_unlock(&tid_lock);
254         return (tid + NO_PID);
255 }
256
257 static void
258 tid_free_locked(lwpid_t rtid)
259 {
260         lwpid_t tid;
261
262         mtx_assert(&tid_lock, MA_OWNED);
263         KASSERT(rtid >= NO_PID,
264             ("%s: invalid tid %d\n", __func__, rtid));
265         tid = rtid - NO_PID;
266         KASSERT(bit_test(tid_bitmap, tid) != 0,
267             ("thread ID %d not allocated\n", rtid));
268         bit_clear(tid_bitmap, tid);
269 }
270
271 static void
272 tid_free(lwpid_t rtid)
273 {
274
275         mtx_lock(&tid_lock);
276         tid_free_locked(rtid);
277         mtx_unlock(&tid_lock);
278 }
279
280 static void
281 tid_free_batch(lwpid_t *batch, int n)
282 {
283         int i;
284
285         mtx_lock(&tid_lock);
286         for (i = 0; i < n; i++) {
287                 tid_free_locked(batch[i]);
288         }
289         mtx_unlock(&tid_lock);
290 }
291
292 /*
293  * Batching for thread reapping.
294  */
295 struct tidbatch {
296         lwpid_t tab[16];
297         int n;
298 };
299
300 static void
301 tidbatch_prep(struct tidbatch *tb)
302 {
303
304         tb->n = 0;
305 }
306
307 static void
308 tidbatch_add(struct tidbatch *tb, struct thread *td)
309 {
310
311         KASSERT(tb->n < nitems(tb->tab),
312             ("%s: count too high %d", __func__, tb->n));
313         tb->tab[tb->n] = td->td_tid;
314         tb->n++;
315 }
316
317 static void
318 tidbatch_process(struct tidbatch *tb)
319 {
320
321         KASSERT(tb->n <= nitems(tb->tab),
322             ("%s: count too high %d", __func__, tb->n));
323         if (tb->n == nitems(tb->tab)) {
324                 tid_free_batch(tb->tab, tb->n);
325                 tb->n = 0;
326         }
327 }
328
329 static void
330 tidbatch_final(struct tidbatch *tb)
331 {
332
333         KASSERT(tb->n <= nitems(tb->tab),
334             ("%s: count too high %d", __func__, tb->n));
335         if (tb->n != 0) {
336                 tid_free_batch(tb->tab, tb->n);
337         }
338 }
339
340 /*
341  * Prepare a thread for use.
342  */
343 static int
344 thread_ctor(void *mem, int size, void *arg, int flags)
345 {
346         struct thread   *td;
347
348         td = (struct thread *)mem;
349         td->td_state = TDS_INACTIVE;
350         td->td_lastcpu = td->td_oncpu = NOCPU;
351
352         /*
353          * Note that td_critnest begins life as 1 because the thread is not
354          * running and is thereby implicitly waiting to be on the receiving
355          * end of a context switch.
356          */
357         td->td_critnest = 1;
358         td->td_lend_user_pri = PRI_MAX;
359 #ifdef AUDIT
360         audit_thread_alloc(td);
361 #endif
362 #ifdef KDTRACE_HOOKS
363         kdtrace_thread_ctor(td);
364 #endif
365         umtx_thread_alloc(td);
366         MPASS(td->td_sel == NULL);
367         return (0);
368 }
369
370 /*
371  * Reclaim a thread after use.
372  */
373 static void
374 thread_dtor(void *mem, int size, void *arg)
375 {
376         struct thread *td;
377
378         td = (struct thread *)mem;
379
380 #ifdef INVARIANTS
381         /* Verify that this thread is in a safe state to free. */
382         switch (td->td_state) {
383         case TDS_INHIBITED:
384         case TDS_RUNNING:
385         case TDS_CAN_RUN:
386         case TDS_RUNQ:
387                 /*
388                  * We must never unlink a thread that is in one of
389                  * these states, because it is currently active.
390                  */
391                 panic("bad state for thread unlinking");
392                 /* NOTREACHED */
393         case TDS_INACTIVE:
394                 break;
395         default:
396                 panic("bad thread state");
397                 /* NOTREACHED */
398         }
399 #endif
400 #ifdef AUDIT
401         audit_thread_free(td);
402 #endif
403 #ifdef KDTRACE_HOOKS
404         kdtrace_thread_dtor(td);
405 #endif
406         /* Free all OSD associated to this thread. */
407         osd_thread_exit(td);
408         td_softdep_cleanup(td);
409         MPASS(td->td_su == NULL);
410         seltdfini(td);
411 }
412
413 /*
414  * Initialize type-stable parts of a thread (when newly created).
415  */
416 static int
417 thread_init(void *mem, int size, int flags)
418 {
419         struct thread *td;
420
421         td = (struct thread *)mem;
422
423         td->td_allocdomain = vm_phys_domain(vtophys(td));
424         td->td_sleepqueue = sleepq_alloc();
425         td->td_turnstile = turnstile_alloc();
426         td->td_rlqe = NULL;
427         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
428         umtx_thread_init(td);
429         td->td_kstack = 0;
430         td->td_sel = NULL;
431         return (0);
432 }
433
434 /*
435  * Tear down type-stable parts of a thread (just before being discarded).
436  */
437 static void
438 thread_fini(void *mem, int size)
439 {
440         struct thread *td;
441
442         td = (struct thread *)mem;
443         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
444         rlqentry_free(td->td_rlqe);
445         turnstile_free(td->td_turnstile);
446         sleepq_free(td->td_sleepqueue);
447         umtx_thread_fini(td);
448         MPASS(td->td_sel == NULL);
449 }
450
451 /*
452  * For a newly created process,
453  * link up all the structures and its initial threads etc.
454  * called from:
455  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
456  * proc_dtor() (should go away)
457  * proc_init()
458  */
459 void
460 proc_linkup0(struct proc *p, struct thread *td)
461 {
462         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
463         proc_linkup(p, td);
464 }
465
466 void
467 proc_linkup(struct proc *p, struct thread *td)
468 {
469
470         sigqueue_init(&p->p_sigqueue, p);
471         p->p_ksi = ksiginfo_alloc(1);
472         if (p->p_ksi != NULL) {
473                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
474                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
475         }
476         LIST_INIT(&p->p_mqnotifier);
477         p->p_numthreads = 0;
478         thread_link(td, p);
479 }
480
481 extern int max_threads_per_proc;
482
483 /*
484  * Initialize global thread allocation resources.
485  */
486 void
487 threadinit(void)
488 {
489         u_long i;
490         lwpid_t tid0;
491         uint32_t flags;
492
493         /*
494          * Place an upper limit on threads which can be allocated.
495          *
496          * Note that other factors may make the de facto limit much lower.
497          *
498          * Platform limits are somewhat arbitrary but deemed "more than good
499          * enough" for the foreseable future.
500          */
501         if (maxthread == 0) {
502 #ifdef _LP64
503                 maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
504 #else
505                 maxthread = MIN(maxproc * max_threads_per_proc, 100000);
506 #endif
507         }
508
509         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
510         tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
511         /*
512          * Handle thread0.
513          */
514         thread_count_inc();
515         tid0 = tid_alloc();
516         if (tid0 != THREAD0_TID)
517                 panic("tid0 %d != %d\n", tid0, THREAD0_TID);
518
519         flags = UMA_ZONE_NOFREE;
520 #ifdef __aarch64__
521         /*
522          * Force thread structures to be allocated from the direct map.
523          * Otherwise, superpage promotions and demotions may temporarily
524          * invalidate thread structure mappings.  For most dynamically allocated
525          * structures this is not a problem, but translation faults cannot be
526          * handled without accessing curthread.
527          */
528         flags |= UMA_ZONE_CONTIG;
529 #endif
530         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
531             thread_ctor, thread_dtor, thread_init, thread_fini,
532             32 - 1, flags);
533         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
534         tidhashlock = (tidhash + 1) / 64;
535         if (tidhashlock > 0)
536                 tidhashlock--;
537         tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
538             M_TIDHASH, M_WAITOK | M_ZERO);
539         for (i = 0; i < tidhashlock + 1; i++)
540                 rw_init(&tidhashtbl_lock[i], "tidhash");
541
542         TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
543         callout_init(&thread_reap_callout, 1);
544         callout_reset(&thread_reap_callout, 5 * hz,
545             thread_reap_callout_cb, NULL);
546 }
547
548 /*
549  * Place an unused thread on the zombie list.
550  */
551 void
552 thread_zombie(struct thread *td)
553 {
554         struct thread_domain_data *tdd;
555         struct thread *ztd;
556
557         tdd = &thread_domain_data[td->td_allocdomain];
558         ztd = atomic_load_ptr(&tdd->tdd_zombies);
559         for (;;) {
560                 td->td_zombie = ztd;
561                 if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
562                     (uintptr_t *)&ztd, (uintptr_t)td))
563                         break;
564                 continue;
565         }
566 }
567
568 /*
569  * Release a thread that has exited after cpu_throw().
570  */
571 void
572 thread_stash(struct thread *td)
573 {
574         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
575         thread_zombie(td);
576 }
577
578 /*
579  * Reap zombies from passed domain.
580  */
581 static void
582 thread_reap_domain(struct thread_domain_data *tdd)
583 {
584         struct thread *itd, *ntd;
585         struct tidbatch tidbatch;
586         struct credbatch credbatch;
587         int tdcount;
588         struct plimit *lim;
589         int limcount;
590
591         /*
592          * Reading upfront is pessimal if followed by concurrent atomic_swap,
593          * but most of the time the list is empty.
594          */
595         if (tdd->tdd_zombies == NULL)
596                 return;
597
598         itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
599             (uintptr_t)NULL);
600         if (itd == NULL)
601                 return;
602
603         /*
604          * Multiple CPUs can get here, the race is fine as ticks is only
605          * advisory.
606          */
607         tdd->tdd_reapticks = ticks;
608
609         tidbatch_prep(&tidbatch);
610         credbatch_prep(&credbatch);
611         tdcount = 0;
612         lim = NULL;
613         limcount = 0;
614
615         while (itd != NULL) {
616                 ntd = itd->td_zombie;
617                 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
618                 tidbatch_add(&tidbatch, itd);
619                 credbatch_add(&credbatch, itd);
620                 MPASS(itd->td_limit != NULL);
621                 if (lim != itd->td_limit) {
622                         if (limcount != 0) {
623                                 lim_freen(lim, limcount);
624                                 limcount = 0;
625                         }
626                 }
627                 lim = itd->td_limit;
628                 limcount++;
629                 thread_free_batched(itd);
630                 tidbatch_process(&tidbatch);
631                 credbatch_process(&credbatch);
632                 tdcount++;
633                 if (tdcount == 32) {
634                         thread_count_sub(tdcount);
635                         tdcount = 0;
636                 }
637                 itd = ntd;
638         }
639
640         tidbatch_final(&tidbatch);
641         credbatch_final(&credbatch);
642         if (tdcount != 0) {
643                 thread_count_sub(tdcount);
644         }
645         MPASS(limcount != 0);
646         lim_freen(lim, limcount);
647 }
648
649 /*
650  * Reap zombies from all domains.
651  */
652 static void
653 thread_reap_all(void)
654 {
655         struct thread_domain_data *tdd;
656         int i, domain;
657
658         domain = PCPU_GET(domain);
659         for (i = 0; i < vm_ndomains; i++) {
660                 tdd = &thread_domain_data[(i + domain) % vm_ndomains];
661                 thread_reap_domain(tdd);
662         }
663 }
664
665 /*
666  * Reap zombies from local domain.
667  */
668 static void
669 thread_reap(void)
670 {
671         struct thread_domain_data *tdd;
672         int domain;
673
674         domain = PCPU_GET(domain);
675         tdd = &thread_domain_data[domain];
676
677         thread_reap_domain(tdd);
678 }
679
680 static void
681 thread_reap_task_cb(void *arg __unused, int pending __unused)
682 {
683
684         thread_reap_all();
685 }
686
687 static void
688 thread_reap_callout_cb(void *arg __unused)
689 {
690         struct thread_domain_data *tdd;
691         int i, cticks, lticks;
692         bool wantreap;
693
694         wantreap = false;
695         cticks = atomic_load_int(&ticks);
696         for (i = 0; i < vm_ndomains; i++) {
697                 tdd = &thread_domain_data[i];
698                 lticks = tdd->tdd_reapticks;
699                 if (tdd->tdd_zombies != NULL &&
700                     (u_int)(cticks - lticks) > 5 * hz) {
701                         wantreap = true;
702                         break;
703                 }
704         }
705
706         if (wantreap)
707                 taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
708         callout_reset(&thread_reap_callout, 5 * hz,
709             thread_reap_callout_cb, NULL);
710 }
711
712 /*
713  * Calling this function guarantees that any thread that exited before
714  * the call is reaped when the function returns.  By 'exited' we mean
715  * a thread removed from the process linkage with thread_unlink().
716  * Practically this means that caller must lock/unlock corresponding
717  * process lock before the call, to synchronize with thread_exit().
718  */
719 void
720 thread_reap_barrier(void)
721 {
722         struct task *t;
723
724         /*
725          * First do context switches to each CPU to ensure that all
726          * PCPU pc_deadthreads are moved to zombie list.
727          */
728         quiesce_all_cpus("", PDROP);
729
730         /*
731          * Second, fire the task in the same thread as normal
732          * thread_reap() is done, to serialize reaping.
733          */
734         t = malloc(sizeof(*t), M_TEMP, M_WAITOK);
735         TASK_INIT(t, 0, thread_reap_task_cb, t);
736         taskqueue_enqueue(taskqueue_thread, t);
737         taskqueue_drain(taskqueue_thread, t);
738         free(t, M_TEMP);
739 }
740
741 /*
742  * Allocate a thread.
743  */
744 struct thread *
745 thread_alloc(int pages)
746 {
747         struct thread *td;
748         lwpid_t tid;
749
750         if (!thread_count_inc()) {
751                 return (NULL);
752         }
753
754         tid = tid_alloc();
755         td = uma_zalloc(thread_zone, M_WAITOK);
756         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
757         if (!vm_thread_new(td, pages)) {
758                 uma_zfree(thread_zone, td);
759                 tid_free(tid);
760                 thread_count_dec();
761                 return (NULL);
762         }
763         td->td_tid = tid;
764         bzero(&td->td_sa.args, sizeof(td->td_sa.args));
765         cpu_thread_alloc(td);
766         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
767         return (td);
768 }
769
770 int
771 thread_alloc_stack(struct thread *td, int pages)
772 {
773
774         KASSERT(td->td_kstack == 0,
775             ("thread_alloc_stack called on a thread with kstack"));
776         if (!vm_thread_new(td, pages))
777                 return (0);
778         cpu_thread_alloc(td);
779         return (1);
780 }
781
782 /*
783  * Deallocate a thread.
784  */
785 static void
786 thread_free_batched(struct thread *td)
787 {
788
789         lock_profile_thread_exit(td);
790         if (td->td_cpuset)
791                 cpuset_rel(td->td_cpuset);
792         td->td_cpuset = NULL;
793         cpu_thread_free(td);
794         if (td->td_kstack != 0)
795                 vm_thread_dispose(td);
796         callout_drain(&td->td_slpcallout);
797         /*
798          * Freeing handled by the caller.
799          */
800         td->td_tid = -1;
801         uma_zfree(thread_zone, td);
802 }
803
804 void
805 thread_free(struct thread *td)
806 {
807         lwpid_t tid;
808
809         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
810         tid = td->td_tid;
811         thread_free_batched(td);
812         tid_free(tid);
813         thread_count_dec();
814 }
815
816 void
817 thread_cow_get_proc(struct thread *newtd, struct proc *p)
818 {
819
820         PROC_LOCK_ASSERT(p, MA_OWNED);
821         newtd->td_realucred = crcowget(p->p_ucred);
822         newtd->td_ucred = newtd->td_realucred;
823         newtd->td_limit = lim_hold(p->p_limit);
824         newtd->td_cowgen = p->p_cowgen;
825 }
826
827 void
828 thread_cow_get(struct thread *newtd, struct thread *td)
829 {
830
831         MPASS(td->td_realucred == td->td_ucred);
832         newtd->td_realucred = crcowget(td->td_realucred);
833         newtd->td_ucred = newtd->td_realucred;
834         newtd->td_limit = lim_hold(td->td_limit);
835         newtd->td_cowgen = td->td_cowgen;
836 }
837
838 void
839 thread_cow_free(struct thread *td)
840 {
841
842         if (td->td_realucred != NULL)
843                 crcowfree(td);
844         if (td->td_limit != NULL)
845                 lim_free(td->td_limit);
846 }
847
848 void
849 thread_cow_update(struct thread *td)
850 {
851         struct proc *p;
852         struct ucred *oldcred;
853         struct plimit *oldlimit;
854
855         p = td->td_proc;
856         oldlimit = NULL;
857         PROC_LOCK(p);
858         oldcred = crcowsync();
859         if (td->td_limit != p->p_limit) {
860                 oldlimit = td->td_limit;
861                 td->td_limit = lim_hold(p->p_limit);
862         }
863         td->td_cowgen = p->p_cowgen;
864         PROC_UNLOCK(p);
865         if (oldcred != NULL)
866                 crfree(oldcred);
867         if (oldlimit != NULL)
868                 lim_free(oldlimit);
869 }
870
871 /*
872  * Discard the current thread and exit from its context.
873  * Always called with scheduler locked.
874  *
875  * Because we can't free a thread while we're operating under its context,
876  * push the current thread into our CPU's deadthread holder. This means
877  * we needn't worry about someone else grabbing our context before we
878  * do a cpu_throw().
879  */
880 void
881 thread_exit(void)
882 {
883         uint64_t runtime, new_switchtime;
884         struct thread *td;
885         struct thread *td2;
886         struct proc *p;
887         int wakeup_swapper;
888
889         td = curthread;
890         p = td->td_proc;
891
892         PROC_SLOCK_ASSERT(p, MA_OWNED);
893         mtx_assert(&Giant, MA_NOTOWNED);
894
895         PROC_LOCK_ASSERT(p, MA_OWNED);
896         KASSERT(p != NULL, ("thread exiting without a process"));
897         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
898             (long)p->p_pid, td->td_name);
899         SDT_PROBE0(proc, , , lwp__exit);
900         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
901         MPASS(td->td_realucred == td->td_ucred);
902
903         /*
904          * drop FPU & debug register state storage, or any other
905          * architecture specific resources that
906          * would not be on a new untouched process.
907          */
908         cpu_thread_exit(td);
909
910         /*
911          * The last thread is left attached to the process
912          * So that the whole bundle gets recycled. Skip
913          * all this stuff if we never had threads.
914          * EXIT clears all sign of other threads when
915          * it goes to single threading, so the last thread always
916          * takes the short path.
917          */
918         if (p->p_flag & P_HADTHREADS) {
919                 if (p->p_numthreads > 1) {
920                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
921                         thread_unlink(td);
922                         td2 = FIRST_THREAD_IN_PROC(p);
923                         sched_exit_thread(td2, td);
924
925                         /*
926                          * The test below is NOT true if we are the
927                          * sole exiting thread. P_STOPPED_SINGLE is unset
928                          * in exit1() after it is the only survivor.
929                          */
930                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
931                                 if (p->p_numthreads == p->p_suspcount) {
932                                         thread_lock(p->p_singlethread);
933                                         wakeup_swapper = thread_unsuspend_one(
934                                                 p->p_singlethread, p, false);
935                                         if (wakeup_swapper)
936                                                 kick_proc0();
937                                 }
938                         }
939
940                         PCPU_SET(deadthread, td);
941                 } else {
942                         /*
943                          * The last thread is exiting.. but not through exit()
944                          */
945                         panic ("thread_exit: Last thread exiting on its own");
946                 }
947         } 
948 #ifdef  HWPMC_HOOKS
949         /*
950          * If this thread is part of a process that is being tracked by hwpmc(4),
951          * inform the module of the thread's impending exit.
952          */
953         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
954                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
955                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
956         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
957                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
958 #endif
959         PROC_UNLOCK(p);
960         PROC_STATLOCK(p);
961         thread_lock(td);
962         PROC_SUNLOCK(p);
963
964         /* Do the same timestamp bookkeeping that mi_switch() would do. */
965         new_switchtime = cpu_ticks();
966         runtime = new_switchtime - PCPU_GET(switchtime);
967         td->td_runtime += runtime;
968         td->td_incruntime += runtime;
969         PCPU_SET(switchtime, new_switchtime);
970         PCPU_SET(switchticks, ticks);
971         VM_CNT_INC(v_swtch);
972
973         /* Save our resource usage in our process. */
974         td->td_ru.ru_nvcsw++;
975         ruxagg_locked(p, td);
976         rucollect(&p->p_ru, &td->td_ru);
977         PROC_STATUNLOCK(p);
978
979         td->td_state = TDS_INACTIVE;
980 #ifdef WITNESS
981         witness_thread_exit(td);
982 #endif
983         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
984         sched_throw(td);
985         panic("I'm a teapot!");
986         /* NOTREACHED */
987 }
988
989 /*
990  * Do any thread specific cleanups that may be needed in wait()
991  * called with Giant, proc and schedlock not held.
992  */
993 void
994 thread_wait(struct proc *p)
995 {
996         struct thread *td;
997
998         mtx_assert(&Giant, MA_NOTOWNED);
999         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
1000         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
1001         td = FIRST_THREAD_IN_PROC(p);
1002         /* Lock the last thread so we spin until it exits cpu_throw(). */
1003         thread_lock(td);
1004         thread_unlock(td);
1005         lock_profile_thread_exit(td);
1006         cpuset_rel(td->td_cpuset);
1007         td->td_cpuset = NULL;
1008         cpu_thread_clean(td);
1009         thread_cow_free(td);
1010         callout_drain(&td->td_slpcallout);
1011         thread_reap();  /* check for zombie threads etc. */
1012 }
1013
1014 /*
1015  * Link a thread to a process.
1016  * set up anything that needs to be initialized for it to
1017  * be used by the process.
1018  */
1019 void
1020 thread_link(struct thread *td, struct proc *p)
1021 {
1022
1023         /*
1024          * XXX This can't be enabled because it's called for proc0 before
1025          * its lock has been created.
1026          * PROC_LOCK_ASSERT(p, MA_OWNED);
1027          */
1028         td->td_state    = TDS_INACTIVE;
1029         td->td_proc     = p;
1030         td->td_flags    = TDF_INMEM;
1031
1032         LIST_INIT(&td->td_contested);
1033         LIST_INIT(&td->td_lprof[0]);
1034         LIST_INIT(&td->td_lprof[1]);
1035 #ifdef EPOCH_TRACE
1036         SLIST_INIT(&td->td_epochs);
1037 #endif
1038         sigqueue_init(&td->td_sigqueue, p);
1039         callout_init(&td->td_slpcallout, 1);
1040         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
1041         p->p_numthreads++;
1042 }
1043
1044 /*
1045  * Called from:
1046  *  thread_exit()
1047  */
1048 void
1049 thread_unlink(struct thread *td)
1050 {
1051         struct proc *p = td->td_proc;
1052
1053         PROC_LOCK_ASSERT(p, MA_OWNED);
1054 #ifdef EPOCH_TRACE
1055         MPASS(SLIST_EMPTY(&td->td_epochs));
1056 #endif
1057
1058         TAILQ_REMOVE(&p->p_threads, td, td_plist);
1059         p->p_numthreads--;
1060         /* could clear a few other things here */
1061         /* Must  NOT clear links to proc! */
1062 }
1063
1064 static int
1065 calc_remaining(struct proc *p, int mode)
1066 {
1067         int remaining;
1068
1069         PROC_LOCK_ASSERT(p, MA_OWNED);
1070         PROC_SLOCK_ASSERT(p, MA_OWNED);
1071         if (mode == SINGLE_EXIT)
1072                 remaining = p->p_numthreads;
1073         else if (mode == SINGLE_BOUNDARY)
1074                 remaining = p->p_numthreads - p->p_boundary_count;
1075         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
1076                 remaining = p->p_numthreads - p->p_suspcount;
1077         else
1078                 panic("calc_remaining: wrong mode %d", mode);
1079         return (remaining);
1080 }
1081
1082 static int
1083 remain_for_mode(int mode)
1084 {
1085
1086         return (mode == SINGLE_ALLPROC ? 0 : 1);
1087 }
1088
1089 static int
1090 weed_inhib(int mode, struct thread *td2, struct proc *p)
1091 {
1092         int wakeup_swapper;
1093
1094         PROC_LOCK_ASSERT(p, MA_OWNED);
1095         PROC_SLOCK_ASSERT(p, MA_OWNED);
1096         THREAD_LOCK_ASSERT(td2, MA_OWNED);
1097
1098         wakeup_swapper = 0;
1099
1100         /*
1101          * Since the thread lock is dropped by the scheduler we have
1102          * to retry to check for races.
1103          */
1104 restart:
1105         switch (mode) {
1106         case SINGLE_EXIT:
1107                 if (TD_IS_SUSPENDED(td2)) {
1108                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
1109                         thread_lock(td2);
1110                         goto restart;
1111                 }
1112                 if (TD_CAN_ABORT(td2)) {
1113                         wakeup_swapper |= sleepq_abort(td2, EINTR);
1114                         return (wakeup_swapper);
1115                 }
1116                 break;
1117         case SINGLE_BOUNDARY:
1118         case SINGLE_NO_EXIT:
1119                 if (TD_IS_SUSPENDED(td2) &&
1120                     (td2->td_flags & TDF_BOUNDARY) == 0) {
1121                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1122                         thread_lock(td2);
1123                         goto restart;
1124                 }
1125                 if (TD_CAN_ABORT(td2)) {
1126                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1127                         return (wakeup_swapper);
1128                 }
1129                 break;
1130         case SINGLE_ALLPROC:
1131                 /*
1132                  * ALLPROC suspend tries to avoid spurious EINTR for
1133                  * threads sleeping interruptable, by suspending the
1134                  * thread directly, similarly to sig_suspend_threads().
1135                  * Since such sleep is not neccessary performed at the user
1136                  * boundary, TDF_ALLPROCSUSP is used to avoid immediate
1137                  * un-suspend.
1138                  */
1139                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags &
1140                     TDF_ALLPROCSUSP) == 0) {
1141                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1142                         thread_lock(td2);
1143                         goto restart;
1144                 }
1145                 if (TD_CAN_ABORT(td2)) {
1146                         td2->td_flags |= TDF_ALLPROCSUSP;
1147                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1148                         return (wakeup_swapper);
1149                 }
1150                 break;
1151         default:
1152                 break;
1153         }
1154         thread_unlock(td2);
1155         return (wakeup_swapper);
1156 }
1157
1158 /*
1159  * Enforce single-threading.
1160  *
1161  * Returns 1 if the caller must abort (another thread is waiting to
1162  * exit the process or similar). Process is locked!
1163  * Returns 0 when you are successfully the only thread running.
1164  * A process has successfully single threaded in the suspend mode when
1165  * There are no threads in user mode. Threads in the kernel must be
1166  * allowed to continue until they get to the user boundary. They may even
1167  * copy out their return values and data before suspending. They may however be
1168  * accelerated in reaching the user boundary as we will wake up
1169  * any sleeping threads that are interruptable. (PCATCH).
1170  */
1171 int
1172 thread_single(struct proc *p, int mode)
1173 {
1174         struct thread *td;
1175         struct thread *td2;
1176         int remaining, wakeup_swapper;
1177
1178         td = curthread;
1179         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1180             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1181             ("invalid mode %d", mode));
1182         /*
1183          * If allowing non-ALLPROC singlethreading for non-curproc
1184          * callers, calc_remaining() and remain_for_mode() should be
1185          * adjusted to also account for td->td_proc != p.  For now
1186          * this is not implemented because it is not used.
1187          */
1188         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
1189             (mode != SINGLE_ALLPROC && td->td_proc == p),
1190             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
1191         mtx_assert(&Giant, MA_NOTOWNED);
1192         PROC_LOCK_ASSERT(p, MA_OWNED);
1193
1194         /*
1195          * Is someone already single threading?
1196          * Or may be singlethreading is not needed at all.
1197          */
1198         if (mode == SINGLE_ALLPROC) {
1199                 while ((p->p_flag & P_STOPPED_SINGLE) != 0) {
1200                         if ((p->p_flag2 & P2_WEXIT) != 0)
1201                                 return (1);
1202                         msleep(&p->p_flag, &p->p_mtx, PCATCH, "thrsgl", 0);
1203                 }
1204         } else if ((p->p_flag & P_HADTHREADS) == 0)
1205                 return (0);
1206         if (p->p_singlethread != NULL && p->p_singlethread != td)
1207                 return (1);
1208
1209         if (mode == SINGLE_EXIT) {
1210                 p->p_flag |= P_SINGLE_EXIT;
1211                 p->p_flag &= ~P_SINGLE_BOUNDARY;
1212         } else {
1213                 p->p_flag &= ~P_SINGLE_EXIT;
1214                 if (mode == SINGLE_BOUNDARY)
1215                         p->p_flag |= P_SINGLE_BOUNDARY;
1216                 else
1217                         p->p_flag &= ~P_SINGLE_BOUNDARY;
1218         }
1219         if (mode == SINGLE_ALLPROC) {
1220                 p->p_flag |= P_TOTAL_STOP;
1221                 thread_lock(td);
1222                 td->td_flags |= TDF_DOING_SA;
1223                 thread_unlock(td);
1224         }
1225         p->p_flag |= P_STOPPED_SINGLE;
1226         PROC_SLOCK(p);
1227         p->p_singlethread = td;
1228         remaining = calc_remaining(p, mode);
1229         while (remaining != remain_for_mode(mode)) {
1230                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
1231                         goto stopme;
1232                 wakeup_swapper = 0;
1233                 FOREACH_THREAD_IN_PROC(p, td2) {
1234                         if (td2 == td)
1235                                 continue;
1236                         thread_lock(td2);
1237                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
1238                         if (TD_IS_INHIBITED(td2)) {
1239                                 wakeup_swapper |= weed_inhib(mode, td2, p);
1240 #ifdef SMP
1241                         } else if (TD_IS_RUNNING(td2)) {
1242                                 forward_signal(td2);
1243                                 thread_unlock(td2);
1244 #endif
1245                         } else
1246                                 thread_unlock(td2);
1247                 }
1248                 if (wakeup_swapper)
1249                         kick_proc0();
1250                 remaining = calc_remaining(p, mode);
1251
1252                 /*
1253                  * Maybe we suspended some threads.. was it enough?
1254                  */
1255                 if (remaining == remain_for_mode(mode))
1256                         break;
1257
1258 stopme:
1259                 /*
1260                  * Wake us up when everyone else has suspended.
1261                  * In the mean time we suspend as well.
1262                  */
1263                 thread_suspend_switch(td, p);
1264                 remaining = calc_remaining(p, mode);
1265         }
1266         if (mode == SINGLE_EXIT) {
1267                 /*
1268                  * Convert the process to an unthreaded process.  The
1269                  * SINGLE_EXIT is called by exit1() or execve(), in
1270                  * both cases other threads must be retired.
1271                  */
1272                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
1273                 p->p_singlethread = NULL;
1274                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
1275
1276                 /*
1277                  * Wait for any remaining threads to exit cpu_throw().
1278                  */
1279                 while (p->p_exitthreads != 0) {
1280                         PROC_SUNLOCK(p);
1281                         PROC_UNLOCK(p);
1282                         sched_relinquish(td);
1283                         PROC_LOCK(p);
1284                         PROC_SLOCK(p);
1285                 }
1286         } else if (mode == SINGLE_BOUNDARY) {
1287                 /*
1288                  * Wait until all suspended threads are removed from
1289                  * the processors.  The thread_suspend_check()
1290                  * increments p_boundary_count while it is still
1291                  * running, which makes it possible for the execve()
1292                  * to destroy vmspace while our other threads are
1293                  * still using the address space.
1294                  *
1295                  * We lock the thread, which is only allowed to
1296                  * succeed after context switch code finished using
1297                  * the address space.
1298                  */
1299                 FOREACH_THREAD_IN_PROC(p, td2) {
1300                         if (td2 == td)
1301                                 continue;
1302                         thread_lock(td2);
1303                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
1304                             ("td %p not on boundary", td2));
1305                         KASSERT(TD_IS_SUSPENDED(td2),
1306                             ("td %p is not suspended", td2));
1307                         thread_unlock(td2);
1308                 }
1309         }
1310         PROC_SUNLOCK(p);
1311         if (mode == SINGLE_ALLPROC) {
1312                 thread_lock(td);
1313                 td->td_flags &= ~TDF_DOING_SA;
1314                 thread_unlock(td);
1315         }
1316         return (0);
1317 }
1318
1319 bool
1320 thread_suspend_check_needed(void)
1321 {
1322         struct proc *p;
1323         struct thread *td;
1324
1325         td = curthread;
1326         p = td->td_proc;
1327         PROC_LOCK_ASSERT(p, MA_OWNED);
1328         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
1329             (td->td_dbgflags & TDB_SUSPEND) != 0));
1330 }
1331
1332 /*
1333  * Called in from locations that can safely check to see
1334  * whether we have to suspend or at least throttle for a
1335  * single-thread event (e.g. fork).
1336  *
1337  * Such locations include userret().
1338  * If the "return_instead" argument is non zero, the thread must be able to
1339  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1340  *
1341  * The 'return_instead' argument tells the function if it may do a
1342  * thread_exit() or suspend, or whether the caller must abort and back
1343  * out instead.
1344  *
1345  * If the thread that set the single_threading request has set the
1346  * P_SINGLE_EXIT bit in the process flags then this call will never return
1347  * if 'return_instead' is false, but will exit.
1348  *
1349  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1350  *---------------+--------------------+---------------------
1351  *       0       | returns 0          |   returns 0 or 1
1352  *               | when ST ends       |   immediately
1353  *---------------+--------------------+---------------------
1354  *       1       | thread exits       |   returns 1
1355  *               |                    |  immediately
1356  * 0 = thread_exit() or suspension ok,
1357  * other = return error instead of stopping the thread.
1358  *
1359  * While a full suspension is under effect, even a single threading
1360  * thread would be suspended if it made this call (but it shouldn't).
1361  * This call should only be made from places where
1362  * thread_exit() would be safe as that may be the outcome unless
1363  * return_instead is set.
1364  */
1365 int
1366 thread_suspend_check(int return_instead)
1367 {
1368         struct thread *td;
1369         struct proc *p;
1370         int wakeup_swapper;
1371
1372         td = curthread;
1373         p = td->td_proc;
1374         mtx_assert(&Giant, MA_NOTOWNED);
1375         PROC_LOCK_ASSERT(p, MA_OWNED);
1376         while (thread_suspend_check_needed()) {
1377                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1378                         KASSERT(p->p_singlethread != NULL,
1379                             ("singlethread not set"));
1380                         /*
1381                          * The only suspension in action is a
1382                          * single-threading. Single threader need not stop.
1383                          * It is safe to access p->p_singlethread unlocked
1384                          * because it can only be set to our address by us.
1385                          */
1386                         if (p->p_singlethread == td)
1387                                 return (0);     /* Exempt from stopping. */
1388                 }
1389                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1390                         return (EINTR);
1391
1392                 /* Should we goto user boundary if we didn't come from there? */
1393                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1394                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1395                         return (ERESTART);
1396
1397                 /*
1398                  * Ignore suspend requests if they are deferred.
1399                  */
1400                 if ((td->td_flags & TDF_SBDRY) != 0) {
1401                         KASSERT(return_instead,
1402                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
1403                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1404                             (TDF_SEINTR | TDF_SERESTART),
1405                             ("both TDF_SEINTR and TDF_SERESTART"));
1406                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1407                 }
1408
1409                 /*
1410                  * If the process is waiting for us to exit,
1411                  * this thread should just suicide.
1412                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1413                  */
1414                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1415                         PROC_UNLOCK(p);
1416
1417                         /*
1418                          * Allow Linux emulation layer to do some work
1419                          * before thread suicide.
1420                          */
1421                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1422                                 (p->p_sysent->sv_thread_detach)(td);
1423                         umtx_thread_exit(td);
1424                         kern_thr_exit(td);
1425                         panic("stopped thread did not exit");
1426                 }
1427
1428                 PROC_SLOCK(p);
1429                 thread_stopped(p);
1430                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1431                         if (p->p_numthreads == p->p_suspcount + 1) {
1432                                 thread_lock(p->p_singlethread);
1433                                 wakeup_swapper = thread_unsuspend_one(
1434                                     p->p_singlethread, p, false);
1435                                 if (wakeup_swapper)
1436                                         kick_proc0();
1437                         }
1438                 }
1439                 PROC_UNLOCK(p);
1440                 thread_lock(td);
1441                 /*
1442                  * When a thread suspends, it just
1443                  * gets taken off all queues.
1444                  */
1445                 thread_suspend_one(td);
1446                 if (return_instead == 0) {
1447                         p->p_boundary_count++;
1448                         td->td_flags |= TDF_BOUNDARY;
1449                 }
1450                 PROC_SUNLOCK(p);
1451                 mi_switch(SW_INVOL | SWT_SUSPEND);
1452                 PROC_LOCK(p);
1453         }
1454         return (0);
1455 }
1456
1457 /*
1458  * Check for possible stops and suspensions while executing a
1459  * casueword or similar transiently failing operation.
1460  *
1461  * The sleep argument controls whether the function can handle a stop
1462  * request itself or it should return ERESTART and the request is
1463  * proceed at the kernel/user boundary in ast.
1464  *
1465  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1466  * should handle the stop requests there, with exception of cases when
1467  * the thread owns a kernel resource, for instance busied the umtx
1468  * key, or when functions return immediately if thread_check_susp()
1469  * returned non-zero.  On the other hand, retrying the whole lock
1470  * operation, we better not stop there but delegate the handling to
1471  * ast.
1472  *
1473  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1474  * handle it at all, and simply return EINTR.
1475  */
1476 int
1477 thread_check_susp(struct thread *td, bool sleep)
1478 {
1479         struct proc *p;
1480         int error;
1481
1482         /*
1483          * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
1484          * eventually break the lockstep loop.
1485          */
1486         if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
1487                 return (0);
1488         error = 0;
1489         p = td->td_proc;
1490         PROC_LOCK(p);
1491         if (p->p_flag & P_SINGLE_EXIT)
1492                 error = EINTR;
1493         else if (P_SHOULDSTOP(p) ||
1494             ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1495                 error = sleep ? thread_suspend_check(0) : ERESTART;
1496         PROC_UNLOCK(p);
1497         return (error);
1498 }
1499
1500 void
1501 thread_suspend_switch(struct thread *td, struct proc *p)
1502 {
1503
1504         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1505         PROC_LOCK_ASSERT(p, MA_OWNED);
1506         PROC_SLOCK_ASSERT(p, MA_OWNED);
1507         /*
1508          * We implement thread_suspend_one in stages here to avoid
1509          * dropping the proc lock while the thread lock is owned.
1510          */
1511         if (p == td->td_proc) {
1512                 thread_stopped(p);
1513                 p->p_suspcount++;
1514         }
1515         PROC_UNLOCK(p);
1516         thread_lock(td);
1517         td->td_flags &= ~TDF_NEEDSUSPCHK;
1518         TD_SET_SUSPENDED(td);
1519         sched_sleep(td, 0);
1520         PROC_SUNLOCK(p);
1521         DROP_GIANT();
1522         mi_switch(SW_VOL | SWT_SUSPEND);
1523         PICKUP_GIANT();
1524         PROC_LOCK(p);
1525         PROC_SLOCK(p);
1526 }
1527
1528 void
1529 thread_suspend_one(struct thread *td)
1530 {
1531         struct proc *p;
1532
1533         p = td->td_proc;
1534         PROC_SLOCK_ASSERT(p, MA_OWNED);
1535         THREAD_LOCK_ASSERT(td, MA_OWNED);
1536         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1537         p->p_suspcount++;
1538         td->td_flags &= ~TDF_NEEDSUSPCHK;
1539         TD_SET_SUSPENDED(td);
1540         sched_sleep(td, 0);
1541 }
1542
1543 static int
1544 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1545 {
1546
1547         THREAD_LOCK_ASSERT(td, MA_OWNED);
1548         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1549         TD_CLR_SUSPENDED(td);
1550         td->td_flags &= ~TDF_ALLPROCSUSP;
1551         if (td->td_proc == p) {
1552                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1553                 p->p_suspcount--;
1554                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1555                         td->td_flags &= ~TDF_BOUNDARY;
1556                         p->p_boundary_count--;
1557                 }
1558         }
1559         return (setrunnable(td, 0));
1560 }
1561
1562 void
1563 thread_run_flash(struct thread *td)
1564 {
1565         struct proc *p;
1566
1567         p = td->td_proc;
1568         PROC_LOCK_ASSERT(p, MA_OWNED);
1569
1570         if (TD_ON_SLEEPQ(td))
1571                 sleepq_remove_nested(td);
1572         else
1573                 thread_lock(td);
1574
1575         THREAD_LOCK_ASSERT(td, MA_OWNED);
1576         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1577
1578         TD_CLR_SUSPENDED(td);
1579         PROC_SLOCK(p);
1580         MPASS(p->p_suspcount > 0);
1581         p->p_suspcount--;
1582         PROC_SUNLOCK(p);
1583         if (setrunnable(td, 0))
1584                 kick_proc0();
1585 }
1586
1587 /*
1588  * Allow all threads blocked by single threading to continue running.
1589  */
1590 void
1591 thread_unsuspend(struct proc *p)
1592 {
1593         struct thread *td;
1594         int wakeup_swapper;
1595
1596         PROC_LOCK_ASSERT(p, MA_OWNED);
1597         PROC_SLOCK_ASSERT(p, MA_OWNED);
1598         wakeup_swapper = 0;
1599         if (!P_SHOULDSTOP(p)) {
1600                 FOREACH_THREAD_IN_PROC(p, td) {
1601                         thread_lock(td);
1602                         if (TD_IS_SUSPENDED(td) && (td->td_flags &
1603                             TDF_DOING_SA) == 0) {
1604                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1605                                     true);
1606                         } else
1607                                 thread_unlock(td);
1608                 }
1609         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1610             p->p_numthreads == p->p_suspcount) {
1611                 /*
1612                  * Stopping everything also did the job for the single
1613                  * threading request. Now we've downgraded to single-threaded,
1614                  * let it continue.
1615                  */
1616                 if (p->p_singlethread->td_proc == p) {
1617                         thread_lock(p->p_singlethread);
1618                         wakeup_swapper = thread_unsuspend_one(
1619                             p->p_singlethread, p, false);
1620                 }
1621         }
1622         if (wakeup_swapper)
1623                 kick_proc0();
1624 }
1625
1626 /*
1627  * End the single threading mode..
1628  */
1629 void
1630 thread_single_end(struct proc *p, int mode)
1631 {
1632         struct thread *td;
1633         int wakeup_swapper;
1634
1635         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1636             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1637             ("invalid mode %d", mode));
1638         PROC_LOCK_ASSERT(p, MA_OWNED);
1639         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1640             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1641             ("mode %d does not match P_TOTAL_STOP", mode));
1642         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1643             ("thread_single_end from other thread %p %p",
1644             curthread, p->p_singlethread));
1645         KASSERT(mode != SINGLE_BOUNDARY ||
1646             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1647             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1648         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1649             P_TOTAL_STOP);
1650         PROC_SLOCK(p);
1651         p->p_singlethread = NULL;
1652         wakeup_swapper = 0;
1653         /*
1654          * If there are other threads they may now run,
1655          * unless of course there is a blanket 'stop order'
1656          * on the process. The single threader must be allowed
1657          * to continue however as this is a bad place to stop.
1658          */
1659         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1660                 FOREACH_THREAD_IN_PROC(p, td) {
1661                         thread_lock(td);
1662                         if (TD_IS_SUSPENDED(td)) {
1663                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1664                                     true);
1665                         } else
1666                                 thread_unlock(td);
1667                 }
1668         }
1669         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1670             ("inconsistent boundary count %d", p->p_boundary_count));
1671         PROC_SUNLOCK(p);
1672         if (wakeup_swapper)
1673                 kick_proc0();
1674         wakeup(&p->p_flag);
1675 }
1676
1677 /*
1678  * Locate a thread by number and return with proc lock held.
1679  *
1680  * thread exit establishes proc -> tidhash lock ordering, but lookup
1681  * takes tidhash first and needs to return locked proc.
1682  *
1683  * The problem is worked around by relying on type-safety of both
1684  * structures and doing the work in 2 steps:
1685  * - tidhash-locked lookup which saves both thread and proc pointers
1686  * - proc-locked verification that the found thread still matches
1687  */
1688 static bool
1689 tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
1690 {
1691 #define RUN_THRESH      16
1692         struct proc *p;
1693         struct thread *td;
1694         int run;
1695         bool locked;
1696
1697         run = 0;
1698         rw_rlock(TIDHASHLOCK(tid));
1699         locked = true;
1700         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1701                 if (td->td_tid != tid) {
1702                         run++;
1703                         continue;
1704                 }
1705                 p = td->td_proc;
1706                 if (pid != -1 && p->p_pid != pid) {
1707                         td = NULL;
1708                         break;
1709                 }
1710                 if (run > RUN_THRESH) {
1711                         if (rw_try_upgrade(TIDHASHLOCK(tid))) {
1712                                 LIST_REMOVE(td, td_hash);
1713                                 LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1714                                         td, td_hash);
1715                                 rw_wunlock(TIDHASHLOCK(tid));
1716                                 locked = false;
1717                                 break;
1718                         }
1719                 }
1720                 break;
1721         }
1722         if (locked)
1723                 rw_runlock(TIDHASHLOCK(tid));
1724         if (td == NULL)
1725                 return (false);
1726         *pp = p;
1727         *tdp = td;
1728         return (true);
1729 }
1730
1731 struct thread *
1732 tdfind(lwpid_t tid, pid_t pid)
1733 {
1734         struct proc *p;
1735         struct thread *td;
1736
1737         td = curthread;
1738         if (td->td_tid == tid) {
1739                 if (pid != -1 && td->td_proc->p_pid != pid)
1740                         return (NULL);
1741                 PROC_LOCK(td->td_proc);
1742                 return (td);
1743         }
1744
1745         for (;;) {
1746                 if (!tdfind_hash(tid, pid, &p, &td))
1747                         return (NULL);
1748                 PROC_LOCK(p);
1749                 if (td->td_tid != tid) {
1750                         PROC_UNLOCK(p);
1751                         continue;
1752                 }
1753                 if (td->td_proc != p) {
1754                         PROC_UNLOCK(p);
1755                         continue;
1756                 }
1757                 if (p->p_state == PRS_NEW) {
1758                         PROC_UNLOCK(p);
1759                         return (NULL);
1760                 }
1761                 return (td);
1762         }
1763 }
1764
1765 void
1766 tidhash_add(struct thread *td)
1767 {
1768         rw_wlock(TIDHASHLOCK(td->td_tid));
1769         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1770         rw_wunlock(TIDHASHLOCK(td->td_tid));
1771 }
1772
1773 void
1774 tidhash_remove(struct thread *td)
1775 {
1776
1777         rw_wlock(TIDHASHLOCK(td->td_tid));
1778         LIST_REMOVE(td, td_hash);
1779         rw_wunlock(TIDHASHLOCK(td->td_tid));
1780 }