]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
This commit was generated by cvs2svn to compensate for changes in r170331,
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/resourcevar.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41 #include <sys/sched.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/turnstile.h>
44 #include <sys/ktr.h>
45 #include <sys/umtx.h>
46
47 #include <security/audit/audit.h>
48
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/uma.h>
52
53 /*
54  * thread related storage.
55  */
56 static uma_zone_t thread_zone;
57
58 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
59
60 int max_threads_per_proc = 1500;
61 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
62         &max_threads_per_proc, 0, "Limit on threads per proc");
63
64 int max_threads_hits;
65 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
66         &max_threads_hits, 0, "");
67
68 #ifdef KSE
69 int virtual_cpu;
70
71 #endif
72 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
73 struct mtx zombie_lock;
74 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
75
76 #ifdef KSE
77 static int
78 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
79 {
80         int error, new_val;
81         int def_val;
82
83         def_val = mp_ncpus;
84         if (virtual_cpu == 0)
85                 new_val = def_val;
86         else
87                 new_val = virtual_cpu;
88         error = sysctl_handle_int(oidp, &new_val, 0, req);
89         if (error != 0 || req->newptr == NULL)
90                 return (error);
91         if (new_val < 0)
92                 return (EINVAL);
93         virtual_cpu = new_val;
94         return (0);
95 }
96
97 /* DEBUG ONLY */
98 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
99         0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
100         "debug virtual cpus");
101 #endif
102
103 struct mtx tid_lock;
104 static struct unrhdr *tid_unrhdr;
105
106 /*
107  * Prepare a thread for use.
108  */
109 static int
110 thread_ctor(void *mem, int size, void *arg, int flags)
111 {
112         struct thread   *td;
113
114         td = (struct thread *)mem;
115         td->td_state = TDS_INACTIVE;
116         td->td_oncpu = NOCPU;
117
118         td->td_tid = alloc_unr(tid_unrhdr);
119         td->td_syscalls = 0;
120
121         /*
122          * Note that td_critnest begins life as 1 because the thread is not
123          * running and is thereby implicitly waiting to be on the receiving
124          * end of a context switch.
125          */
126         td->td_critnest = 1;
127
128 #ifdef AUDIT
129         audit_thread_alloc(td);
130 #endif
131         umtx_thread_alloc(td);
132         return (0);
133 }
134
135 /*
136  * Reclaim a thread after use.
137  */
138 static void
139 thread_dtor(void *mem, int size, void *arg)
140 {
141         struct thread *td;
142
143         td = (struct thread *)mem;
144
145 #ifdef INVARIANTS
146         /* Verify that this thread is in a safe state to free. */
147         switch (td->td_state) {
148         case TDS_INHIBITED:
149         case TDS_RUNNING:
150         case TDS_CAN_RUN:
151         case TDS_RUNQ:
152                 /*
153                  * We must never unlink a thread that is in one of
154                  * these states, because it is currently active.
155                  */
156                 panic("bad state for thread unlinking");
157                 /* NOTREACHED */
158         case TDS_INACTIVE:
159                 break;
160         default:
161                 panic("bad thread state");
162                 /* NOTREACHED */
163         }
164 #endif
165 #ifdef AUDIT
166         audit_thread_free(td);
167 #endif
168         free_unr(tid_unrhdr, td->td_tid);
169         sched_newthread(td);
170 }
171
172 /*
173  * Initialize type-stable parts of a thread (when newly created).
174  */
175 static int
176 thread_init(void *mem, int size, int flags)
177 {
178         struct thread *td;
179
180         td = (struct thread *)mem;
181
182         vm_thread_new(td, 0);
183         cpu_thread_setup(td);
184         td->td_sleepqueue = sleepq_alloc();
185         td->td_turnstile = turnstile_alloc();
186         td->td_sched = (struct td_sched *)&td[1];
187         sched_newthread(td);
188         umtx_thread_init(td);
189         return (0);
190 }
191
192 /*
193  * Tear down type-stable parts of a thread (just before being discarded).
194  */
195 static void
196 thread_fini(void *mem, int size)
197 {
198         struct thread *td;
199
200         td = (struct thread *)mem;
201         turnstile_free(td->td_turnstile);
202         sleepq_free(td->td_sleepqueue);
203         umtx_thread_fini(td);
204         vm_thread_dispose(td);
205 }
206
207 /*
208  * For a newly created process,
209  * link up all the structures and its initial threads etc.
210  * called from:
211  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
212  * proc_dtor() (should go away)
213  * proc_init()
214  */
215 void
216 proc_linkup(struct proc *p, struct thread *td)
217 {
218
219         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
220         TAILQ_INIT(&p->p_upcalls);           /* upcall list */
221         sigqueue_init(&p->p_sigqueue, p);
222         p->p_ksi = ksiginfo_alloc(1);
223         if (p->p_ksi != NULL) {
224                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
225                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
226         }
227         LIST_INIT(&p->p_mqnotifier);
228         p->p_numthreads = 0;
229         thread_link(td, p);
230 }
231
232 /*
233  * Initialize global thread allocation resources.
234  */
235 void
236 threadinit(void)
237 {
238
239         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
240         tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
241
242         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
243             thread_ctor, thread_dtor, thread_init, thread_fini,
244             16 - 1, 0);
245 #ifdef KSE
246         kseinit();      /* set up kse specific stuff  e.g. upcall zone*/
247 #endif
248 }
249
250 /*
251  * Stash an embarasingly extra thread into the zombie thread queue.
252  * Use the slpq as that must be unused by now.
253  */
254 void
255 thread_stash(struct thread *td)
256 {
257         mtx_lock_spin(&zombie_lock);
258         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
259         mtx_unlock_spin(&zombie_lock);
260 }
261
262 /*
263  * Reap zombie kse resource.
264  */
265 void
266 thread_reap(void)
267 {
268         struct thread *td_first, *td_next;
269
270         /*
271          * Don't even bother to lock if none at this instant,
272          * we really don't care about the next instant..
273          */
274         if (!TAILQ_EMPTY(&zombie_threads)) {
275                 mtx_lock_spin(&zombie_lock);
276                 td_first = TAILQ_FIRST(&zombie_threads);
277                 if (td_first)
278                         TAILQ_INIT(&zombie_threads);
279                 mtx_unlock_spin(&zombie_lock);
280                 while (td_first) {
281                         td_next = TAILQ_NEXT(td_first, td_slpq);
282                         if (td_first->td_ucred)
283                                 crfree(td_first->td_ucred);
284                         thread_free(td_first);
285                         td_first = td_next;
286                 }
287         }
288 }
289
290 /*
291  * Allocate a thread.
292  */
293 struct thread *
294 thread_alloc(void)
295 {
296
297         thread_reap(); /* check if any zombies to get */
298         return (uma_zalloc(thread_zone, M_WAITOK));
299 }
300
301
302 /*
303  * Deallocate a thread.
304  */
305 void
306 thread_free(struct thread *td)
307 {
308
309         cpu_thread_clean(td);
310         uma_zfree(thread_zone, td);
311 }
312
313 /*
314  * Discard the current thread and exit from its context.
315  * Always called with scheduler locked.
316  *
317  * Because we can't free a thread while we're operating under its context,
318  * push the current thread into our CPU's deadthread holder. This means
319  * we needn't worry about someone else grabbing our context before we
320  * do a cpu_throw().  This may not be needed now as we are under schedlock.
321  * Maybe we can just do a thread_stash() as thr_exit1 does.
322  */
323 /*  XXX
324  * libthr expects its thread exit to return for the last
325  * thread, meaning that the program is back to non-threaded
326  * mode I guess. Because we do this (cpu_throw) unconditionally
327  * here, they have their own version of it. (thr_exit1()) 
328  * that doesn't do it all if this was the last thread.
329  * It is also called from thread_suspend_check().
330  * Of course in the end, they end up coming here through exit1
331  * anyhow..  After fixing 'thr' to play by the rules we should be able 
332  * to merge these two functions together.
333  *
334  * called from:
335  * exit1()
336  * kse_exit()
337  * thr_exit()
338  * ifdef KSE
339  * thread_user_enter()
340  * thread_userret()
341  * endif
342  * thread_suspend_check()
343  */
344 void
345 thread_exit(void)
346 {
347         uint64_t new_switchtime;
348         struct thread *td;
349         struct thread *td2;
350         struct proc *p;
351
352         td = curthread;
353         p = td->td_proc;
354
355         PROC_SLOCK_ASSERT(p, MA_OWNED);
356         mtx_assert(&Giant, MA_NOTOWNED);
357
358         PROC_LOCK_ASSERT(p, MA_OWNED);
359         KASSERT(p != NULL, ("thread exiting without a process"));
360         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
361             (long)p->p_pid, p->p_comm);
362         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
363
364 #ifdef AUDIT
365         AUDIT_SYSCALL_EXIT(0, td);
366 #endif
367
368 #ifdef KSE
369         if (td->td_standin != NULL) {
370                 /*
371                  * Note that we don't need to free the cred here as it
372                  * is done in thread_reap().
373                  */
374                 thread_stash(td->td_standin);
375                 td->td_standin = NULL;
376         }
377 #endif
378
379         umtx_thread_exit(td);
380
381         /*
382          * drop FPU & debug register state storage, or any other
383          * architecture specific resources that
384          * would not be on a new untouched process.
385          */
386         cpu_thread_exit(td);    /* XXXSMP */
387
388         /* Do the same timestamp bookkeeping that mi_switch() would do. */
389         new_switchtime = cpu_ticks();
390         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
391         PCPU_SET(switchtime, new_switchtime);
392         PCPU_SET(switchticks, ticks);
393         PCPU_INC(cnt.v_swtch);
394         /* Add the child usage to our own when the final thread exits. */
395         if (p->p_numthreads == 1)
396                 ruadd(p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
397         /*
398          * The last thread is left attached to the process
399          * So that the whole bundle gets recycled. Skip
400          * all this stuff if we never had threads.
401          * EXIT clears all sign of other threads when
402          * it goes to single threading, so the last thread always
403          * takes the short path.
404          */
405         if (p->p_flag & P_HADTHREADS) {
406                 if (p->p_numthreads > 1) {
407                         thread_lock(td);
408 #ifdef KSE
409                         kse_unlink(td);
410 #else
411                         thread_unlink(td);
412 #endif
413                         thread_unlock(td);
414                         /* Impart our resource usage on another thread */
415                         td2 = FIRST_THREAD_IN_PROC(p);
416                         rucollect(&td2->td_ru, &td->td_ru);
417                         sched_exit_thread(td2, td);
418
419                         /*
420                          * The test below is NOT true if we are the
421                          * sole exiting thread. P_STOPPED_SNGL is unset
422                          * in exit1() after it is the only survivor.
423                          */
424                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
425                                 if (p->p_numthreads == p->p_suspcount) {
426                                         thread_lock(p->p_singlethread);
427                                         thread_unsuspend_one(p->p_singlethread);
428                                         thread_unlock(p->p_singlethread);
429                                 }
430                         }
431
432 #ifdef KSE
433                         /*
434                          * Because each upcall structure has an owner thread,
435                          * owner thread exits only when process is in exiting
436                          * state, so upcall to userland is no longer needed,
437                          * deleting upcall structure is safe here.
438                          * So when all threads in a group is exited, all upcalls
439                          * in the group should be automatically freed.
440                          *  XXXKSE This is a KSE thing and should be exported
441                          * there somehow.
442                          */
443                         upcall_remove(td);
444 #endif
445                         PCPU_SET(deadthread, td);
446                 } else {
447                         /*
448                          * The last thread is exiting.. but not through exit()
449                          * what should we do?
450                          * Theoretically this can't happen
451                          * exit1() - clears threading flags before coming here
452                          * kse_exit() - treats last thread specially
453                          * thr_exit() - treats last thread specially
454                          * ifdef KSE
455                          * thread_user_enter() - only if more exist
456                          * thread_userret() - only if more exist
457                          * endif
458                          * thread_suspend_check() - only if more exist
459                          */
460                         panic ("thread_exit: Last thread exiting on its own");
461                 }
462         } 
463         PROC_UNLOCK(p);
464         thread_lock(td);
465         /* Aggregate our tick statistics into our parents rux. */
466         ruxagg(&p->p_rux, td);
467         PROC_SUNLOCK(p);
468         td->td_state = TDS_INACTIVE;
469         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
470         sched_throw(td);
471         panic("I'm a teapot!");
472         /* NOTREACHED */
473 }
474
475 /*
476  * Do any thread specific cleanups that may be needed in wait()
477  * called with Giant, proc and schedlock not held.
478  */
479 void
480 thread_wait(struct proc *p)
481 {
482         struct thread *td;
483
484         mtx_assert(&Giant, MA_NOTOWNED);
485         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
486         FOREACH_THREAD_IN_PROC(p, td) {
487 #ifdef KSE
488                 if (td->td_standin != NULL) {
489                         if (td->td_standin->td_ucred != NULL) {
490                                 crfree(td->td_standin->td_ucred);
491                                 td->td_standin->td_ucred = NULL;
492                         }
493                         thread_free(td->td_standin);
494                         td->td_standin = NULL;
495                 }
496 #endif
497                 cpu_thread_clean(td);
498                 crfree(td->td_ucred);
499         }
500         thread_reap();  /* check for zombie threads etc. */
501 }
502
503 /*
504  * Link a thread to a process.
505  * set up anything that needs to be initialized for it to
506  * be used by the process.
507  *
508  * Note that we do not link to the proc's ucred here.
509  * The thread is linked as if running but no KSE assigned.
510  * Called from:
511  *  proc_linkup()
512  *  thread_schedule_upcall()
513  *  thr_create()
514  */
515 void
516 thread_link(struct thread *td, struct proc *p)
517 {
518
519         /*
520          * XXX This can't be enabled because it's called for proc0 before
521          * it's spinlock has been created.
522          * PROC_SLOCK_ASSERT(p, MA_OWNED);
523          */
524         td->td_state    = TDS_INACTIVE;
525         td->td_proc     = p;
526         td->td_flags    = 0;
527
528         LIST_INIT(&td->td_contested);
529         sigqueue_init(&td->td_sigqueue, p);
530         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
531         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
532         p->p_numthreads++;
533 }
534
535 /*
536  * Convert a process with one thread to an unthreaded process.
537  * Called from:
538  *  thread_single(exit)  (called from execve and exit)
539  *  kse_exit()          XXX may need cleaning up wrt KSE stuff
540  */
541 void
542 thread_unthread(struct thread *td)
543 {
544         struct proc *p = td->td_proc;
545
546         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
547 #ifdef KSE
548         upcall_remove(td);
549         p->p_flag &= ~(P_SA|P_HADTHREADS);
550         td->td_mailbox = NULL;
551         td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
552         if (td->td_standin != NULL) {
553                 thread_stash(td->td_standin);
554                 td->td_standin = NULL;
555         }
556         sched_set_concurrency(p, 1);
557 #else
558         p->p_flag &= ~P_HADTHREADS;
559 #endif
560 }
561
562 /*
563  * Called from:
564  *  thread_exit()
565  */
566 void
567 thread_unlink(struct thread *td)
568 {
569         struct proc *p = td->td_proc;
570
571         PROC_SLOCK_ASSERT(p, MA_OWNED);
572         TAILQ_REMOVE(&p->p_threads, td, td_plist);
573         p->p_numthreads--;
574         /* could clear a few other things here */
575         /* Must  NOT clear links to proc! */
576 }
577
578 /*
579  * Enforce single-threading.
580  *
581  * Returns 1 if the caller must abort (another thread is waiting to
582  * exit the process or similar). Process is locked!
583  * Returns 0 when you are successfully the only thread running.
584  * A process has successfully single threaded in the suspend mode when
585  * There are no threads in user mode. Threads in the kernel must be
586  * allowed to continue until they get to the user boundary. They may even
587  * copy out their return values and data before suspending. They may however be
588  * accelerated in reaching the user boundary as we will wake up
589  * any sleeping threads that are interruptable. (PCATCH).
590  */
591 int
592 thread_single(int mode)
593 {
594         struct thread *td;
595         struct thread *td2;
596         struct proc *p;
597         int remaining;
598
599         td = curthread;
600         p = td->td_proc;
601         mtx_assert(&Giant, MA_NOTOWNED);
602         PROC_LOCK_ASSERT(p, MA_OWNED);
603         KASSERT((td != NULL), ("curthread is NULL"));
604
605         if ((p->p_flag & P_HADTHREADS) == 0)
606                 return (0);
607
608         /* Is someone already single threading? */
609         if (p->p_singlethread != NULL && p->p_singlethread != td)
610                 return (1);
611
612         if (mode == SINGLE_EXIT) {
613                 p->p_flag |= P_SINGLE_EXIT;
614                 p->p_flag &= ~P_SINGLE_BOUNDARY;
615         } else {
616                 p->p_flag &= ~P_SINGLE_EXIT;
617                 if (mode == SINGLE_BOUNDARY)
618                         p->p_flag |= P_SINGLE_BOUNDARY;
619                 else
620                         p->p_flag &= ~P_SINGLE_BOUNDARY;
621         }
622         p->p_flag |= P_STOPPED_SINGLE;
623         PROC_SLOCK(p);
624         p->p_singlethread = td;
625         if (mode == SINGLE_EXIT)
626                 remaining = p->p_numthreads;
627         else if (mode == SINGLE_BOUNDARY)
628                 remaining = p->p_numthreads - p->p_boundary_count;
629         else
630                 remaining = p->p_numthreads - p->p_suspcount;
631         while (remaining != 1) {
632                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
633                         goto stopme;
634                 FOREACH_THREAD_IN_PROC(p, td2) {
635                         if (td2 == td)
636                                 continue;
637                         thread_lock(td2);
638                         td2->td_flags |= TDF_ASTPENDING;
639                         if (TD_IS_INHIBITED(td2)) {
640                                 switch (mode) {
641                                 case SINGLE_EXIT:
642                                         if (td->td_flags & TDF_DBSUSPEND)
643                                                 td->td_flags &= ~TDF_DBSUSPEND;
644                                         if (TD_IS_SUSPENDED(td2))
645                                                 thread_unsuspend_one(td2);
646                                         if (TD_ON_SLEEPQ(td2) &&
647                                             (td2->td_flags & TDF_SINTR))
648                                                 sleepq_abort(td2, EINTR);
649                                         break;
650                                 case SINGLE_BOUNDARY:
651                                         if (TD_IS_SUSPENDED(td2) &&
652                                             !(td2->td_flags & TDF_BOUNDARY))
653                                                 thread_unsuspend_one(td2);
654                                         if (TD_ON_SLEEPQ(td2) &&
655                                             (td2->td_flags & TDF_SINTR))
656                                                 sleepq_abort(td2, ERESTART);
657                                         break;
658                                 default:        
659                                         if (TD_IS_SUSPENDED(td2)) {
660                                                 thread_unlock(td2);
661                                                 continue;
662                                         }
663                                         /*
664                                          * maybe other inhibited states too?
665                                          */
666                                         if ((td2->td_flags & TDF_SINTR) &&
667                                             (td2->td_inhibitors &
668                                             (TDI_SLEEPING | TDI_SWAPPED)))
669                                                 thread_suspend_one(td2);
670                                         break;
671                                 }
672                         }
673 #ifdef SMP
674                         else if (TD_IS_RUNNING(td2) && td != td2) {
675                                 forward_signal(td2);
676                         }
677 #endif
678                         thread_unlock(td2);
679                 }
680                 if (mode == SINGLE_EXIT)
681                         remaining = p->p_numthreads;
682                 else if (mode == SINGLE_BOUNDARY)
683                         remaining = p->p_numthreads - p->p_boundary_count;
684                 else
685                         remaining = p->p_numthreads - p->p_suspcount;
686
687                 /*
688                  * Maybe we suspended some threads.. was it enough?
689                  */
690                 if (remaining == 1)
691                         break;
692
693 stopme:
694                 /*
695                  * Wake us up when everyone else has suspended.
696                  * In the mean time we suspend as well.
697                  */
698                 thread_suspend_switch(td);
699                 if (mode == SINGLE_EXIT)
700                         remaining = p->p_numthreads;
701                 else if (mode == SINGLE_BOUNDARY)
702                         remaining = p->p_numthreads - p->p_boundary_count;
703                 else
704                         remaining = p->p_numthreads - p->p_suspcount;
705         }
706         if (mode == SINGLE_EXIT) {
707                 /*
708                  * We have gotten rid of all the other threads and we
709                  * are about to either exit or exec. In either case,
710                  * we try our utmost  to revert to being a non-threaded
711                  * process.
712                  */
713                 p->p_singlethread = NULL;
714                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
715                 thread_unthread(td);
716         }
717         PROC_SUNLOCK(p);
718         return (0);
719 }
720
721 /*
722  * Called in from locations that can safely check to see
723  * whether we have to suspend or at least throttle for a
724  * single-thread event (e.g. fork).
725  *
726  * Such locations include userret().
727  * If the "return_instead" argument is non zero, the thread must be able to
728  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
729  *
730  * The 'return_instead' argument tells the function if it may do a
731  * thread_exit() or suspend, or whether the caller must abort and back
732  * out instead.
733  *
734  * If the thread that set the single_threading request has set the
735  * P_SINGLE_EXIT bit in the process flags then this call will never return
736  * if 'return_instead' is false, but will exit.
737  *
738  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
739  *---------------+--------------------+---------------------
740  *       0       | returns 0          |   returns 0 or 1
741  *               | when ST ends       |   immediatly
742  *---------------+--------------------+---------------------
743  *       1       | thread exits       |   returns 1
744  *               |                    |  immediatly
745  * 0 = thread_exit() or suspension ok,
746  * other = return error instead of stopping the thread.
747  *
748  * While a full suspension is under effect, even a single threading
749  * thread would be suspended if it made this call (but it shouldn't).
750  * This call should only be made from places where
751  * thread_exit() would be safe as that may be the outcome unless
752  * return_instead is set.
753  */
754 int
755 thread_suspend_check(int return_instead)
756 {
757         struct thread *td;
758         struct proc *p;
759
760         td = curthread;
761         p = td->td_proc;
762         mtx_assert(&Giant, MA_NOTOWNED);
763         PROC_LOCK_ASSERT(p, MA_OWNED);
764         while (P_SHOULDSTOP(p) ||
765               ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
766                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
767                         KASSERT(p->p_singlethread != NULL,
768                             ("singlethread not set"));
769                         /*
770                          * The only suspension in action is a
771                          * single-threading. Single threader need not stop.
772                          * XXX Should be safe to access unlocked
773                          * as it can only be set to be true by us.
774                          */
775                         if (p->p_singlethread == td)
776                                 return (0);     /* Exempt from stopping. */
777                 }
778                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
779                         return (EINTR);
780
781                 /* Should we goto user boundary if we didn't come from there? */
782                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
783                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
784                         return (ERESTART);
785
786                 /* If thread will exit, flush its pending signals */
787                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
788                         sigqueue_flush(&td->td_sigqueue);
789
790                 PROC_SLOCK(p);
791                 thread_stopped(p);
792                 /*
793                  * If the process is waiting for us to exit,
794                  * this thread should just suicide.
795                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
796                  */
797                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
798                         thread_exit();
799                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
800                         if (p->p_numthreads == p->p_suspcount + 1) {
801                                 thread_lock(p->p_singlethread);
802                                 thread_unsuspend_one(p->p_singlethread);
803                                 thread_unlock(p->p_singlethread);
804                         }
805                 }
806                 PROC_UNLOCK(p);
807                 thread_lock(td);
808                 /*
809                  * When a thread suspends, it just
810                  * gets taken off all queues.
811                  */
812                 thread_suspend_one(td);
813                 if (return_instead == 0) {
814                         p->p_boundary_count++;
815                         td->td_flags |= TDF_BOUNDARY;
816                 }
817                 PROC_SUNLOCK(p);
818                 mi_switch(SW_INVOL, NULL);
819                 if (return_instead == 0)
820                         td->td_flags &= ~TDF_BOUNDARY;
821                 thread_unlock(td);
822                 PROC_LOCK(p);
823                 if (return_instead == 0)
824                         p->p_boundary_count--;
825         }
826         return (0);
827 }
828
829 void
830 thread_suspend_switch(struct thread *td)
831 {
832         struct proc *p;
833
834         p = td->td_proc;
835         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
836         PROC_LOCK_ASSERT(p, MA_OWNED);
837         PROC_SLOCK_ASSERT(p, MA_OWNED);
838         /*
839          * We implement thread_suspend_one in stages here to avoid
840          * dropping the proc lock while the thread lock is owned.
841          */
842         thread_stopped(p);
843         p->p_suspcount++;
844         PROC_UNLOCK(p);
845         thread_lock(td);
846         TD_SET_SUSPENDED(td);
847         PROC_SUNLOCK(p);
848         DROP_GIANT();
849         mi_switch(SW_VOL, NULL);
850         thread_unlock(td);
851         PICKUP_GIANT();
852         PROC_LOCK(p);
853         PROC_SLOCK(p);
854 }
855
856 void
857 thread_suspend_one(struct thread *td)
858 {
859         struct proc *p = td->td_proc;
860
861         PROC_SLOCK_ASSERT(p, MA_OWNED);
862         THREAD_LOCK_ASSERT(td, MA_OWNED);
863         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
864         p->p_suspcount++;
865         TD_SET_SUSPENDED(td);
866 }
867
868 void
869 thread_unsuspend_one(struct thread *td)
870 {
871         struct proc *p = td->td_proc;
872
873         PROC_SLOCK_ASSERT(p, MA_OWNED);
874         THREAD_LOCK_ASSERT(td, MA_OWNED);
875         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
876         TD_CLR_SUSPENDED(td);
877         p->p_suspcount--;
878         setrunnable(td);
879 }
880
881 /*
882  * Allow all threads blocked by single threading to continue running.
883  */
884 void
885 thread_unsuspend(struct proc *p)
886 {
887         struct thread *td;
888
889         PROC_LOCK_ASSERT(p, MA_OWNED);
890         PROC_SLOCK_ASSERT(p, MA_OWNED);
891         if (!P_SHOULDSTOP(p)) {
892                 FOREACH_THREAD_IN_PROC(p, td) {
893                         thread_lock(td);
894                         if (TD_IS_SUSPENDED(td)) {
895                                 thread_unsuspend_one(td);
896                         }
897                         thread_unlock(td);
898                 }
899         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
900             (p->p_numthreads == p->p_suspcount)) {
901                 /*
902                  * Stopping everything also did the job for the single
903                  * threading request. Now we've downgraded to single-threaded,
904                  * let it continue.
905                  */
906                 thread_lock(p->p_singlethread);
907                 thread_unsuspend_one(p->p_singlethread);
908                 thread_unlock(p->p_singlethread);
909         }
910 }
911
912 /*
913  * End the single threading mode..
914  */
915 void
916 thread_single_end(void)
917 {
918         struct thread *td;
919         struct proc *p;
920
921         td = curthread;
922         p = td->td_proc;
923         PROC_LOCK_ASSERT(p, MA_OWNED);
924         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
925         PROC_SLOCK(p);
926         p->p_singlethread = NULL;
927         /*
928          * If there are other threads they mey now run,
929          * unless of course there is a blanket 'stop order'
930          * on the process. The single threader must be allowed
931          * to continue however as this is a bad place to stop.
932          */
933         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
934                 FOREACH_THREAD_IN_PROC(p, td) {
935                         thread_lock(td);
936                         if (TD_IS_SUSPENDED(td)) {
937                                 thread_unsuspend_one(td);
938                         }
939                         thread_unlock(td);
940                 }
941         }
942         PROC_SUNLOCK(p);
943 }
944
945 struct thread *
946 thread_find(struct proc *p, lwpid_t tid)
947 {
948         struct thread *td;
949
950         PROC_LOCK_ASSERT(p, MA_OWNED);
951         PROC_SLOCK(p);
952         FOREACH_THREAD_IN_PROC(p, td) {
953                 if (td->td_tid == tid)
954                         break;
955         }
956         PROC_SUNLOCK(p);
957         return (td);
958 }