]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Add VHD support to mkimg(1). VHD is used by Xen and Microsoft's Hyper-V
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/turnstile.h>
49 #include <sys/ktr.h>
50 #include <sys/rwlock.h>
51 #include <sys/umtx.h>
52 #include <sys/cpuset.h>
53 #ifdef  HWPMC_HOOKS
54 #include <sys/pmckern.h>
55 #endif
56
57 #include <security/audit/audit.h>
58
59 #include <vm/vm.h>
60 #include <vm/vm_extern.h>
61 #include <vm/uma.h>
62 #include <sys/eventhandler.h>
63
64 SDT_PROVIDER_DECLARE(proc);
65 SDT_PROBE_DEFINE(proc, , , lwp__exit);
66
67
68 /*
69  * thread related storage.
70  */
71 static uma_zone_t thread_zone;
72
73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74 static struct mtx zombie_lock;
75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76
77 static void thread_zombie(struct thread *);
78
79 #define TID_BUFFER_SIZE 1024
80
81 struct mtx tid_lock;
82 static struct unrhdr *tid_unrhdr;
83 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
84 static int tid_head, tid_tail;
85 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
86
87 struct  tidhashhead *tidhashtbl;
88 u_long  tidhash;
89 struct  rwlock tidhash_lock;
90
91 static lwpid_t
92 tid_alloc(void)
93 {
94         lwpid_t tid;
95
96         tid = alloc_unr(tid_unrhdr);
97         if (tid != -1)
98                 return (tid);
99         mtx_lock(&tid_lock);
100         if (tid_head == tid_tail) {
101                 mtx_unlock(&tid_lock);
102                 return (-1);
103         }
104         tid = tid_buffer[tid_head];
105         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
106         mtx_unlock(&tid_lock);
107         return (tid);
108 }
109
110 static void
111 tid_free(lwpid_t tid)
112 {
113         lwpid_t tmp_tid = -1;
114
115         mtx_lock(&tid_lock);
116         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
117                 tmp_tid = tid_buffer[tid_head];
118                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
119         }
120         tid_buffer[tid_tail] = tid;
121         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
122         mtx_unlock(&tid_lock);
123         if (tmp_tid != -1)
124                 free_unr(tid_unrhdr, tmp_tid);
125 }
126
127 /*
128  * Prepare a thread for use.
129  */
130 static int
131 thread_ctor(void *mem, int size, void *arg, int flags)
132 {
133         struct thread   *td;
134
135         td = (struct thread *)mem;
136         td->td_state = TDS_INACTIVE;
137         td->td_oncpu = NOCPU;
138
139         td->td_tid = tid_alloc();
140
141         /*
142          * Note that td_critnest begins life as 1 because the thread is not
143          * running and is thereby implicitly waiting to be on the receiving
144          * end of a context switch.
145          */
146         td->td_critnest = 1;
147         td->td_lend_user_pri = PRI_MAX;
148         EVENTHANDLER_INVOKE(thread_ctor, td);
149 #ifdef AUDIT
150         audit_thread_alloc(td);
151 #endif
152         umtx_thread_alloc(td);
153         return (0);
154 }
155
156 /*
157  * Reclaim a thread after use.
158  */
159 static void
160 thread_dtor(void *mem, int size, void *arg)
161 {
162         struct thread *td;
163
164         td = (struct thread *)mem;
165
166 #ifdef INVARIANTS
167         /* Verify that this thread is in a safe state to free. */
168         switch (td->td_state) {
169         case TDS_INHIBITED:
170         case TDS_RUNNING:
171         case TDS_CAN_RUN:
172         case TDS_RUNQ:
173                 /*
174                  * We must never unlink a thread that is in one of
175                  * these states, because it is currently active.
176                  */
177                 panic("bad state for thread unlinking");
178                 /* NOTREACHED */
179         case TDS_INACTIVE:
180                 break;
181         default:
182                 panic("bad thread state");
183                 /* NOTREACHED */
184         }
185 #endif
186 #ifdef AUDIT
187         audit_thread_free(td);
188 #endif
189         /* Free all OSD associated to this thread. */
190         osd_thread_exit(td);
191
192         EVENTHANDLER_INVOKE(thread_dtor, td);
193         tid_free(td->td_tid);
194 }
195
196 /*
197  * Initialize type-stable parts of a thread (when newly created).
198  */
199 static int
200 thread_init(void *mem, int size, int flags)
201 {
202         struct thread *td;
203
204         td = (struct thread *)mem;
205
206         td->td_sleepqueue = sleepq_alloc();
207         td->td_turnstile = turnstile_alloc();
208         td->td_rlqe = NULL;
209         EVENTHANDLER_INVOKE(thread_init, td);
210         td->td_sched = (struct td_sched *)&td[1];
211         umtx_thread_init(td);
212         td->td_kstack = 0;
213         return (0);
214 }
215
216 /*
217  * Tear down type-stable parts of a thread (just before being discarded).
218  */
219 static void
220 thread_fini(void *mem, int size)
221 {
222         struct thread *td;
223
224         td = (struct thread *)mem;
225         EVENTHANDLER_INVOKE(thread_fini, td);
226         rlqentry_free(td->td_rlqe);
227         turnstile_free(td->td_turnstile);
228         sleepq_free(td->td_sleepqueue);
229         umtx_thread_fini(td);
230         seltdfini(td);
231 }
232
233 /*
234  * For a newly created process,
235  * link up all the structures and its initial threads etc.
236  * called from:
237  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
238  * proc_dtor() (should go away)
239  * proc_init()
240  */
241 void
242 proc_linkup0(struct proc *p, struct thread *td)
243 {
244         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
245         proc_linkup(p, td);
246 }
247
248 void
249 proc_linkup(struct proc *p, struct thread *td)
250 {
251
252         sigqueue_init(&p->p_sigqueue, p);
253         p->p_ksi = ksiginfo_alloc(1);
254         if (p->p_ksi != NULL) {
255                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
256                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
257         }
258         LIST_INIT(&p->p_mqnotifier);
259         p->p_numthreads = 0;
260         thread_link(td, p);
261 }
262
263 /*
264  * Initialize global thread allocation resources.
265  */
266 void
267 threadinit(void)
268 {
269
270         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
271
272         /*
273          * pid_max cannot be greater than PID_MAX.
274          * leave one number for thread0.
275          */
276         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
277
278         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
279             thread_ctor, thread_dtor, thread_init, thread_fini,
280             16 - 1, 0);
281         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
282         rw_init(&tidhash_lock, "tidhash");
283 }
284
285 /*
286  * Place an unused thread on the zombie list.
287  * Use the slpq as that must be unused by now.
288  */
289 void
290 thread_zombie(struct thread *td)
291 {
292         mtx_lock_spin(&zombie_lock);
293         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
294         mtx_unlock_spin(&zombie_lock);
295 }
296
297 /*
298  * Release a thread that has exited after cpu_throw().
299  */
300 void
301 thread_stash(struct thread *td)
302 {
303         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
304         thread_zombie(td);
305 }
306
307 /*
308  * Reap zombie resources.
309  */
310 void
311 thread_reap(void)
312 {
313         struct thread *td_first, *td_next;
314
315         /*
316          * Don't even bother to lock if none at this instant,
317          * we really don't care about the next instant..
318          */
319         if (!TAILQ_EMPTY(&zombie_threads)) {
320                 mtx_lock_spin(&zombie_lock);
321                 td_first = TAILQ_FIRST(&zombie_threads);
322                 if (td_first)
323                         TAILQ_INIT(&zombie_threads);
324                 mtx_unlock_spin(&zombie_lock);
325                 while (td_first) {
326                         td_next = TAILQ_NEXT(td_first, td_slpq);
327                         if (td_first->td_ucred)
328                                 crfree(td_first->td_ucred);
329                         thread_free(td_first);
330                         td_first = td_next;
331                 }
332         }
333 }
334
335 /*
336  * Allocate a thread.
337  */
338 struct thread *
339 thread_alloc(int pages)
340 {
341         struct thread *td;
342
343         thread_reap(); /* check if any zombies to get */
344
345         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
346         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
347         if (!vm_thread_new(td, pages)) {
348                 uma_zfree(thread_zone, td);
349                 return (NULL);
350         }
351         cpu_thread_alloc(td);
352         return (td);
353 }
354
355 int
356 thread_alloc_stack(struct thread *td, int pages)
357 {
358
359         KASSERT(td->td_kstack == 0,
360             ("thread_alloc_stack called on a thread with kstack"));
361         if (!vm_thread_new(td, pages))
362                 return (0);
363         cpu_thread_alloc(td);
364         return (1);
365 }
366
367 /*
368  * Deallocate a thread.
369  */
370 void
371 thread_free(struct thread *td)
372 {
373
374         lock_profile_thread_exit(td);
375         if (td->td_cpuset)
376                 cpuset_rel(td->td_cpuset);
377         td->td_cpuset = NULL;
378         cpu_thread_free(td);
379         if (td->td_kstack != 0)
380                 vm_thread_dispose(td);
381         uma_zfree(thread_zone, td);
382 }
383
384 /*
385  * Discard the current thread and exit from its context.
386  * Always called with scheduler locked.
387  *
388  * Because we can't free a thread while we're operating under its context,
389  * push the current thread into our CPU's deadthread holder. This means
390  * we needn't worry about someone else grabbing our context before we
391  * do a cpu_throw().
392  */
393 void
394 thread_exit(void)
395 {
396         uint64_t runtime, new_switchtime;
397         struct thread *td;
398         struct thread *td2;
399         struct proc *p;
400         int wakeup_swapper;
401
402         td = curthread;
403         p = td->td_proc;
404
405         PROC_SLOCK_ASSERT(p, MA_OWNED);
406         mtx_assert(&Giant, MA_NOTOWNED);
407
408         PROC_LOCK_ASSERT(p, MA_OWNED);
409         KASSERT(p != NULL, ("thread exiting without a process"));
410         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
411             (long)p->p_pid, td->td_name);
412         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
413
414 #ifdef AUDIT
415         AUDIT_SYSCALL_EXIT(0, td);
416 #endif
417         umtx_thread_exit(td);
418         /*
419          * drop FPU & debug register state storage, or any other
420          * architecture specific resources that
421          * would not be on a new untouched process.
422          */
423         cpu_thread_exit(td);    /* XXXSMP */
424
425         /*
426          * The last thread is left attached to the process
427          * So that the whole bundle gets recycled. Skip
428          * all this stuff if we never had threads.
429          * EXIT clears all sign of other threads when
430          * it goes to single threading, so the last thread always
431          * takes the short path.
432          */
433         if (p->p_flag & P_HADTHREADS) {
434                 if (p->p_numthreads > 1) {
435                         thread_unlink(td);
436                         td2 = FIRST_THREAD_IN_PROC(p);
437                         sched_exit_thread(td2, td);
438
439                         /*
440                          * The test below is NOT true if we are the
441                          * sole exiting thread. P_STOPPED_SINGLE is unset
442                          * in exit1() after it is the only survivor.
443                          */
444                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
445                                 if (p->p_numthreads == p->p_suspcount) {
446                                         thread_lock(p->p_singlethread);
447                                         wakeup_swapper = thread_unsuspend_one(
448                                                 p->p_singlethread);
449                                         thread_unlock(p->p_singlethread);
450                                         if (wakeup_swapper)
451                                                 kick_proc0();
452                                 }
453                         }
454
455                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
456                         PCPU_SET(deadthread, td);
457                 } else {
458                         /*
459                          * The last thread is exiting.. but not through exit()
460                          */
461                         panic ("thread_exit: Last thread exiting on its own");
462                 }
463         } 
464 #ifdef  HWPMC_HOOKS
465         /*
466          * If this thread is part of a process that is being tracked by hwpmc(4),
467          * inform the module of the thread's impending exit.
468          */
469         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
470                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
471 #endif
472         PROC_UNLOCK(p);
473
474         /* Do the same timestamp bookkeeping that mi_switch() would do. */
475         new_switchtime = cpu_ticks();
476         runtime = new_switchtime - PCPU_GET(switchtime);
477         td->td_runtime += runtime;
478         td->td_incruntime += runtime;
479         PCPU_SET(switchtime, new_switchtime);
480         PCPU_SET(switchticks, ticks);
481         PCPU_INC(cnt.v_swtch);
482
483         /* Save our resource usage in our process. */
484         td->td_ru.ru_nvcsw++;
485         ruxagg(p, td);
486         rucollect(&p->p_ru, &td->td_ru);
487
488         thread_lock(td);
489         PROC_SUNLOCK(p);
490         td->td_state = TDS_INACTIVE;
491 #ifdef WITNESS
492         witness_thread_exit(td);
493 #endif
494         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
495         sched_throw(td);
496         panic("I'm a teapot!");
497         /* NOTREACHED */
498 }
499
500 /*
501  * Do any thread specific cleanups that may be needed in wait()
502  * called with Giant, proc and schedlock not held.
503  */
504 void
505 thread_wait(struct proc *p)
506 {
507         struct thread *td;
508
509         mtx_assert(&Giant, MA_NOTOWNED);
510         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
511         td = FIRST_THREAD_IN_PROC(p);
512         /* Lock the last thread so we spin until it exits cpu_throw(). */
513         thread_lock(td);
514         thread_unlock(td);
515         /* Wait for any remaining threads to exit cpu_throw(). */
516         while (p->p_exitthreads)
517                 sched_relinquish(curthread);
518         lock_profile_thread_exit(td);
519         cpuset_rel(td->td_cpuset);
520         td->td_cpuset = NULL;
521         cpu_thread_clean(td);
522         crfree(td->td_ucred);
523         thread_reap();  /* check for zombie threads etc. */
524 }
525
526 /*
527  * Link a thread to a process.
528  * set up anything that needs to be initialized for it to
529  * be used by the process.
530  */
531 void
532 thread_link(struct thread *td, struct proc *p)
533 {
534
535         /*
536          * XXX This can't be enabled because it's called for proc0 before
537          * its lock has been created.
538          * PROC_LOCK_ASSERT(p, MA_OWNED);
539          */
540         td->td_state    = TDS_INACTIVE;
541         td->td_proc     = p;
542         td->td_flags    = TDF_INMEM;
543
544         LIST_INIT(&td->td_contested);
545         LIST_INIT(&td->td_lprof[0]);
546         LIST_INIT(&td->td_lprof[1]);
547         sigqueue_init(&td->td_sigqueue, p);
548         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
549         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
550         p->p_numthreads++;
551 }
552
553 /*
554  * Convert a process with one thread to an unthreaded process.
555  */
556 void
557 thread_unthread(struct thread *td)
558 {
559         struct proc *p = td->td_proc;
560
561         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
562         p->p_flag &= ~P_HADTHREADS;
563 }
564
565 /*
566  * Called from:
567  *  thread_exit()
568  */
569 void
570 thread_unlink(struct thread *td)
571 {
572         struct proc *p = td->td_proc;
573
574         PROC_LOCK_ASSERT(p, MA_OWNED);
575         TAILQ_REMOVE(&p->p_threads, td, td_plist);
576         p->p_numthreads--;
577         /* could clear a few other things here */
578         /* Must  NOT clear links to proc! */
579 }
580
581 static int
582 calc_remaining(struct proc *p, int mode)
583 {
584         int remaining;
585
586         PROC_LOCK_ASSERT(p, MA_OWNED);
587         PROC_SLOCK_ASSERT(p, MA_OWNED);
588         if (mode == SINGLE_EXIT)
589                 remaining = p->p_numthreads;
590         else if (mode == SINGLE_BOUNDARY)
591                 remaining = p->p_numthreads - p->p_boundary_count;
592         else if (mode == SINGLE_NO_EXIT)
593                 remaining = p->p_numthreads - p->p_suspcount;
594         else
595                 panic("calc_remaining: wrong mode %d", mode);
596         return (remaining);
597 }
598
599 /*
600  * Enforce single-threading.
601  *
602  * Returns 1 if the caller must abort (another thread is waiting to
603  * exit the process or similar). Process is locked!
604  * Returns 0 when you are successfully the only thread running.
605  * A process has successfully single threaded in the suspend mode when
606  * There are no threads in user mode. Threads in the kernel must be
607  * allowed to continue until they get to the user boundary. They may even
608  * copy out their return values and data before suspending. They may however be
609  * accelerated in reaching the user boundary as we will wake up
610  * any sleeping threads that are interruptable. (PCATCH).
611  */
612 int
613 thread_single(int mode)
614 {
615         struct thread *td;
616         struct thread *td2;
617         struct proc *p;
618         int remaining, wakeup_swapper;
619
620         td = curthread;
621         p = td->td_proc;
622         mtx_assert(&Giant, MA_NOTOWNED);
623         PROC_LOCK_ASSERT(p, MA_OWNED);
624
625         if ((p->p_flag & P_HADTHREADS) == 0)
626                 return (0);
627
628         /* Is someone already single threading? */
629         if (p->p_singlethread != NULL && p->p_singlethread != td)
630                 return (1);
631
632         if (mode == SINGLE_EXIT) {
633                 p->p_flag |= P_SINGLE_EXIT;
634                 p->p_flag &= ~P_SINGLE_BOUNDARY;
635         } else {
636                 p->p_flag &= ~P_SINGLE_EXIT;
637                 if (mode == SINGLE_BOUNDARY)
638                         p->p_flag |= P_SINGLE_BOUNDARY;
639                 else
640                         p->p_flag &= ~P_SINGLE_BOUNDARY;
641         }
642         p->p_flag |= P_STOPPED_SINGLE;
643         PROC_SLOCK(p);
644         p->p_singlethread = td;
645         remaining = calc_remaining(p, mode);
646         while (remaining != 1) {
647                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
648                         goto stopme;
649                 wakeup_swapper = 0;
650                 FOREACH_THREAD_IN_PROC(p, td2) {
651                         if (td2 == td)
652                                 continue;
653                         thread_lock(td2);
654                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
655                         if (TD_IS_INHIBITED(td2)) {
656                                 switch (mode) {
657                                 case SINGLE_EXIT:
658                                         if (TD_IS_SUSPENDED(td2))
659                                                 wakeup_swapper |=
660                                                     thread_unsuspend_one(td2);
661                                         if (TD_ON_SLEEPQ(td2) &&
662                                             (td2->td_flags & TDF_SINTR))
663                                                 wakeup_swapper |=
664                                                     sleepq_abort(td2, EINTR);
665                                         break;
666                                 case SINGLE_BOUNDARY:
667                                         if (TD_IS_SUSPENDED(td2) &&
668                                             !(td2->td_flags & TDF_BOUNDARY))
669                                                 wakeup_swapper |=
670                                                     thread_unsuspend_one(td2);
671                                         if (TD_ON_SLEEPQ(td2) &&
672                                             (td2->td_flags & TDF_SINTR))
673                                                 wakeup_swapper |=
674                                                     sleepq_abort(td2, ERESTART);
675                                         break;
676                                 case SINGLE_NO_EXIT:
677                                         if (TD_IS_SUSPENDED(td2) &&
678                                             !(td2->td_flags & TDF_BOUNDARY))
679                                                 wakeup_swapper |=
680                                                     thread_unsuspend_one(td2);
681                                         if (TD_ON_SLEEPQ(td2) &&
682                                             (td2->td_flags & TDF_SINTR))
683                                                 wakeup_swapper |=
684                                                     sleepq_abort(td2, ERESTART);
685                                         break;
686                                 default:
687                                         break;
688                                 }
689                         }
690 #ifdef SMP
691                         else if (TD_IS_RUNNING(td2) && td != td2) {
692                                 forward_signal(td2);
693                         }
694 #endif
695                         thread_unlock(td2);
696                 }
697                 if (wakeup_swapper)
698                         kick_proc0();
699                 remaining = calc_remaining(p, mode);
700
701                 /*
702                  * Maybe we suspended some threads.. was it enough?
703                  */
704                 if (remaining == 1)
705                         break;
706
707 stopme:
708                 /*
709                  * Wake us up when everyone else has suspended.
710                  * In the mean time we suspend as well.
711                  */
712                 thread_suspend_switch(td);
713                 remaining = calc_remaining(p, mode);
714         }
715         if (mode == SINGLE_EXIT) {
716                 /*
717                  * We have gotten rid of all the other threads and we
718                  * are about to either exit or exec. In either case,
719                  * we try our utmost to revert to being a non-threaded
720                  * process.
721                  */
722                 p->p_singlethread = NULL;
723                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
724                 thread_unthread(td);
725         }
726         PROC_SUNLOCK(p);
727         return (0);
728 }
729
730 /*
731  * Called in from locations that can safely check to see
732  * whether we have to suspend or at least throttle for a
733  * single-thread event (e.g. fork).
734  *
735  * Such locations include userret().
736  * If the "return_instead" argument is non zero, the thread must be able to
737  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
738  *
739  * The 'return_instead' argument tells the function if it may do a
740  * thread_exit() or suspend, or whether the caller must abort and back
741  * out instead.
742  *
743  * If the thread that set the single_threading request has set the
744  * P_SINGLE_EXIT bit in the process flags then this call will never return
745  * if 'return_instead' is false, but will exit.
746  *
747  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
748  *---------------+--------------------+---------------------
749  *       0       | returns 0          |   returns 0 or 1
750  *               | when ST ends       |   immediately
751  *---------------+--------------------+---------------------
752  *       1       | thread exits       |   returns 1
753  *               |                    |  immediately
754  * 0 = thread_exit() or suspension ok,
755  * other = return error instead of stopping the thread.
756  *
757  * While a full suspension is under effect, even a single threading
758  * thread would be suspended if it made this call (but it shouldn't).
759  * This call should only be made from places where
760  * thread_exit() would be safe as that may be the outcome unless
761  * return_instead is set.
762  */
763 int
764 thread_suspend_check(int return_instead)
765 {
766         struct thread *td;
767         struct proc *p;
768         int wakeup_swapper;
769
770         td = curthread;
771         p = td->td_proc;
772         mtx_assert(&Giant, MA_NOTOWNED);
773         PROC_LOCK_ASSERT(p, MA_OWNED);
774         while (P_SHOULDSTOP(p) ||
775               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
776                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
777                         KASSERT(p->p_singlethread != NULL,
778                             ("singlethread not set"));
779                         /*
780                          * The only suspension in action is a
781                          * single-threading. Single threader need not stop.
782                          * XXX Should be safe to access unlocked
783                          * as it can only be set to be true by us.
784                          */
785                         if (p->p_singlethread == td)
786                                 return (0);     /* Exempt from stopping. */
787                 }
788                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
789                         return (EINTR);
790
791                 /* Should we goto user boundary if we didn't come from there? */
792                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
793                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
794                         return (ERESTART);
795
796                 /*
797                  * Ignore suspend requests for stop signals if they
798                  * are deferred.
799                  */
800                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG &&
801                     td->td_flags & TDF_SBDRY) {
802                         KASSERT(return_instead,
803                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
804                         return (0);
805                 }
806
807                 /*
808                  * If the process is waiting for us to exit,
809                  * this thread should just suicide.
810                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
811                  */
812                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
813                         PROC_UNLOCK(p);
814                         tidhash_remove(td);
815                         PROC_LOCK(p);
816                         tdsigcleanup(td);
817                         PROC_SLOCK(p);
818                         thread_stopped(p);
819                         thread_exit();
820                 }
821
822                 PROC_SLOCK(p);
823                 thread_stopped(p);
824                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
825                         if (p->p_numthreads == p->p_suspcount + 1) {
826                                 thread_lock(p->p_singlethread);
827                                 wakeup_swapper =
828                                     thread_unsuspend_one(p->p_singlethread);
829                                 thread_unlock(p->p_singlethread);
830                                 if (wakeup_swapper)
831                                         kick_proc0();
832                         }
833                 }
834                 PROC_UNLOCK(p);
835                 thread_lock(td);
836                 /*
837                  * When a thread suspends, it just
838                  * gets taken off all queues.
839                  */
840                 thread_suspend_one(td);
841                 if (return_instead == 0) {
842                         p->p_boundary_count++;
843                         td->td_flags |= TDF_BOUNDARY;
844                 }
845                 PROC_SUNLOCK(p);
846                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
847                 if (return_instead == 0)
848                         td->td_flags &= ~TDF_BOUNDARY;
849                 thread_unlock(td);
850                 PROC_LOCK(p);
851                 if (return_instead == 0) {
852                         PROC_SLOCK(p);
853                         p->p_boundary_count--;
854                         PROC_SUNLOCK(p);
855                 }
856         }
857         return (0);
858 }
859
860 void
861 thread_suspend_switch(struct thread *td)
862 {
863         struct proc *p;
864
865         p = td->td_proc;
866         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
867         PROC_LOCK_ASSERT(p, MA_OWNED);
868         PROC_SLOCK_ASSERT(p, MA_OWNED);
869         /*
870          * We implement thread_suspend_one in stages here to avoid
871          * dropping the proc lock while the thread lock is owned.
872          */
873         thread_stopped(p);
874         p->p_suspcount++;
875         PROC_UNLOCK(p);
876         thread_lock(td);
877         td->td_flags &= ~TDF_NEEDSUSPCHK;
878         TD_SET_SUSPENDED(td);
879         sched_sleep(td, 0);
880         PROC_SUNLOCK(p);
881         DROP_GIANT();
882         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
883         thread_unlock(td);
884         PICKUP_GIANT();
885         PROC_LOCK(p);
886         PROC_SLOCK(p);
887 }
888
889 void
890 thread_suspend_one(struct thread *td)
891 {
892         struct proc *p = td->td_proc;
893
894         PROC_SLOCK_ASSERT(p, MA_OWNED);
895         THREAD_LOCK_ASSERT(td, MA_OWNED);
896         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
897         p->p_suspcount++;
898         td->td_flags &= ~TDF_NEEDSUSPCHK;
899         TD_SET_SUSPENDED(td);
900         sched_sleep(td, 0);
901 }
902
903 int
904 thread_unsuspend_one(struct thread *td)
905 {
906         struct proc *p = td->td_proc;
907
908         PROC_SLOCK_ASSERT(p, MA_OWNED);
909         THREAD_LOCK_ASSERT(td, MA_OWNED);
910         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
911         TD_CLR_SUSPENDED(td);
912         p->p_suspcount--;
913         return (setrunnable(td));
914 }
915
916 /*
917  * Allow all threads blocked by single threading to continue running.
918  */
919 void
920 thread_unsuspend(struct proc *p)
921 {
922         struct thread *td;
923         int wakeup_swapper;
924
925         PROC_LOCK_ASSERT(p, MA_OWNED);
926         PROC_SLOCK_ASSERT(p, MA_OWNED);
927         wakeup_swapper = 0;
928         if (!P_SHOULDSTOP(p)) {
929                 FOREACH_THREAD_IN_PROC(p, td) {
930                         thread_lock(td);
931                         if (TD_IS_SUSPENDED(td)) {
932                                 wakeup_swapper |= thread_unsuspend_one(td);
933                         }
934                         thread_unlock(td);
935                 }
936         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
937             (p->p_numthreads == p->p_suspcount)) {
938                 /*
939                  * Stopping everything also did the job for the single
940                  * threading request. Now we've downgraded to single-threaded,
941                  * let it continue.
942                  */
943                 thread_lock(p->p_singlethread);
944                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
945                 thread_unlock(p->p_singlethread);
946         }
947         if (wakeup_swapper)
948                 kick_proc0();
949 }
950
951 /*
952  * End the single threading mode..
953  */
954 void
955 thread_single_end(void)
956 {
957         struct thread *td;
958         struct proc *p;
959         int wakeup_swapper;
960
961         td = curthread;
962         p = td->td_proc;
963         PROC_LOCK_ASSERT(p, MA_OWNED);
964         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
965         PROC_SLOCK(p);
966         p->p_singlethread = NULL;
967         wakeup_swapper = 0;
968         /*
969          * If there are other threads they may now run,
970          * unless of course there is a blanket 'stop order'
971          * on the process. The single threader must be allowed
972          * to continue however as this is a bad place to stop.
973          */
974         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
975                 FOREACH_THREAD_IN_PROC(p, td) {
976                         thread_lock(td);
977                         if (TD_IS_SUSPENDED(td)) {
978                                 wakeup_swapper |= thread_unsuspend_one(td);
979                         }
980                         thread_unlock(td);
981                 }
982         }
983         PROC_SUNLOCK(p);
984         if (wakeup_swapper)
985                 kick_proc0();
986 }
987
988 struct thread *
989 thread_find(struct proc *p, lwpid_t tid)
990 {
991         struct thread *td;
992
993         PROC_LOCK_ASSERT(p, MA_OWNED);
994         FOREACH_THREAD_IN_PROC(p, td) {
995                 if (td->td_tid == tid)
996                         break;
997         }
998         return (td);
999 }
1000
1001 /* Locate a thread by number; return with proc lock held. */
1002 struct thread *
1003 tdfind(lwpid_t tid, pid_t pid)
1004 {
1005 #define RUN_THRESH      16
1006         struct thread *td;
1007         int run = 0;
1008
1009         rw_rlock(&tidhash_lock);
1010         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1011                 if (td->td_tid == tid) {
1012                         if (pid != -1 && td->td_proc->p_pid != pid) {
1013                                 td = NULL;
1014                                 break;
1015                         }
1016                         PROC_LOCK(td->td_proc);
1017                         if (td->td_proc->p_state == PRS_NEW) {
1018                                 PROC_UNLOCK(td->td_proc);
1019                                 td = NULL;
1020                                 break;
1021                         }
1022                         if (run > RUN_THRESH) {
1023                                 if (rw_try_upgrade(&tidhash_lock)) {
1024                                         LIST_REMOVE(td, td_hash);
1025                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1026                                                 td, td_hash);
1027                                         rw_wunlock(&tidhash_lock);
1028                                         return (td);
1029                                 }
1030                         }
1031                         break;
1032                 }
1033                 run++;
1034         }
1035         rw_runlock(&tidhash_lock);
1036         return (td);
1037 }
1038
1039 void
1040 tidhash_add(struct thread *td)
1041 {
1042         rw_wlock(&tidhash_lock);
1043         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1044         rw_wunlock(&tidhash_lock);
1045 }
1046
1047 void
1048 tidhash_remove(struct thread *td)
1049 {
1050         rw_wlock(&tidhash_lock);
1051         LIST_REMOVE(td, td_hash);
1052         rw_wunlock(&tidhash_lock);
1053 }