]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
sqlite3: Vendor import of sqlite3 3.39.2
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/msan.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/bitstring.h>
45 #include <sys/epoch.h>
46 #include <sys/rangelock.h>
47 #include <sys/resourcevar.h>
48 #include <sys/sdt.h>
49 #include <sys/smp.h>
50 #include <sys/sched.h>
51 #include <sys/sleepqueue.h>
52 #include <sys/selinfo.h>
53 #include <sys/syscallsubr.h>
54 #include <sys/dtrace_bsd.h>
55 #include <sys/sysent.h>
56 #include <sys/turnstile.h>
57 #include <sys/taskqueue.h>
58 #include <sys/ktr.h>
59 #include <sys/rwlock.h>
60 #include <sys/umtxvar.h>
61 #include <sys/vmmeter.h>
62 #include <sys/cpuset.h>
63 #ifdef  HWPMC_HOOKS
64 #include <sys/pmckern.h>
65 #endif
66 #include <sys/priv.h>
67
68 #include <security/audit/audit.h>
69
70 #include <vm/pmap.h>
71 #include <vm/vm.h>
72 #include <vm/vm_extern.h>
73 #include <vm/uma.h>
74 #include <vm/vm_phys.h>
75 #include <sys/eventhandler.h>
76
77 /*
78  * Asserts below verify the stability of struct thread and struct proc
79  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
80  * to drift, change to the structures must be accompanied by the
81  * assert update.
82  *
83  * On the stable branches after KBI freeze, conditions must not be
84  * violated.  Typically new fields are moved to the end of the
85  * structures.
86  */
87 #ifdef __amd64__
88 _Static_assert(offsetof(struct thread, td_flags) == 0x108,
89     "struct thread KBI td_flags");
90 _Static_assert(offsetof(struct thread, td_pflags) == 0x114,
91     "struct thread KBI td_pflags");
92 _Static_assert(offsetof(struct thread, td_frame) == 0x4b0,
93     "struct thread KBI td_frame");
94 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6c0,
95     "struct thread KBI td_emuldata");
96 _Static_assert(offsetof(struct proc, p_flag) == 0xb8,
97     "struct proc KBI p_flag");
98 _Static_assert(offsetof(struct proc, p_pid) == 0xc4,
99     "struct proc KBI p_pid");
100 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
101     "struct proc KBI p_filemon");
102 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
103     "struct proc KBI p_comm");
104 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4c8,
105     "struct proc KBI p_emuldata");
106 #endif
107 #ifdef __i386__
108 _Static_assert(offsetof(struct thread, td_flags) == 0x9c,
109     "struct thread KBI td_flags");
110 _Static_assert(offsetof(struct thread, td_pflags) == 0xa8,
111     "struct thread KBI td_pflags");
112 _Static_assert(offsetof(struct thread, td_frame) == 0x30c,
113     "struct thread KBI td_frame");
114 _Static_assert(offsetof(struct thread, td_emuldata) == 0x350,
115     "struct thread KBI td_emuldata");
116 _Static_assert(offsetof(struct proc, p_flag) == 0x6c,
117     "struct proc KBI p_flag");
118 _Static_assert(offsetof(struct proc, p_pid) == 0x78,
119     "struct proc KBI p_pid");
120 _Static_assert(offsetof(struct proc, p_filemon) == 0x270,
121     "struct proc KBI p_filemon");
122 _Static_assert(offsetof(struct proc, p_comm) == 0x284,
123     "struct proc KBI p_comm");
124 _Static_assert(offsetof(struct proc, p_emuldata) == 0x310,
125     "struct proc KBI p_emuldata");
126 #endif
127
128 SDT_PROVIDER_DECLARE(proc);
129 SDT_PROBE_DEFINE(proc, , , lwp__exit);
130
131 /*
132  * thread related storage.
133  */
134 static uma_zone_t thread_zone;
135
136 struct thread_domain_data {
137         struct thread   *tdd_zombies;
138         int             tdd_reapticks;
139 } __aligned(CACHE_LINE_SIZE);
140
141 static struct thread_domain_data thread_domain_data[MAXMEMDOM];
142
143 static struct task      thread_reap_task;
144 static struct callout   thread_reap_callout;
145
146 static void thread_zombie(struct thread *);
147 static void thread_reap(void);
148 static void thread_reap_all(void);
149 static void thread_reap_task_cb(void *, int);
150 static void thread_reap_callout_cb(void *);
151 static int thread_unsuspend_one(struct thread *td, struct proc *p,
152     bool boundary);
153 static void thread_free_batched(struct thread *td);
154
155 static __exclusive_cache_line struct mtx tid_lock;
156 static bitstr_t *tid_bitmap;
157
158 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
159
160 static int maxthread;
161 SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
162     &maxthread, 0, "Maximum number of threads");
163
164 static __exclusive_cache_line int nthreads;
165
166 static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
167 static u_long   tidhash;
168 static u_long   tidhashlock;
169 static struct   rwlock *tidhashtbl_lock;
170 #define TIDHASH(tid)            (&tidhashtbl[(tid) & tidhash])
171 #define TIDHASHLOCK(tid)        (&tidhashtbl_lock[(tid) & tidhashlock])
172
173 EVENTHANDLER_LIST_DEFINE(thread_ctor);
174 EVENTHANDLER_LIST_DEFINE(thread_dtor);
175 EVENTHANDLER_LIST_DEFINE(thread_init);
176 EVENTHANDLER_LIST_DEFINE(thread_fini);
177
178 static bool
179 thread_count_inc_try(void)
180 {
181         int nthreads_new;
182
183         nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
184         if (nthreads_new >= maxthread - 100) {
185                 if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
186                     nthreads_new >= maxthread) {
187                         atomic_subtract_int(&nthreads, 1);
188                         return (false);
189                 }
190         }
191         return (true);
192 }
193
194 static bool
195 thread_count_inc(void)
196 {
197         static struct timeval lastfail;
198         static int curfail;
199
200         thread_reap();
201         if (thread_count_inc_try()) {
202                 return (true);
203         }
204
205         thread_reap_all();
206         if (thread_count_inc_try()) {
207                 return (true);
208         }
209
210         if (ppsratecheck(&lastfail, &curfail, 1)) {
211                 printf("maxthread limit exceeded by uid %u "
212                     "(pid %d); consider increasing kern.maxthread\n",
213                     curthread->td_ucred->cr_ruid, curproc->p_pid);
214         }
215         return (false);
216 }
217
218 static void
219 thread_count_sub(int n)
220 {
221
222         atomic_subtract_int(&nthreads, n);
223 }
224
225 static void
226 thread_count_dec(void)
227 {
228
229         thread_count_sub(1);
230 }
231
232 static lwpid_t
233 tid_alloc(void)
234 {
235         static lwpid_t trytid;
236         lwpid_t tid;
237
238         mtx_lock(&tid_lock);
239         /*
240          * It is an invariant that the bitmap is big enough to hold maxthread
241          * IDs. If we got to this point there has to be at least one free.
242          */
243         if (trytid >= maxthread)
244                 trytid = 0;
245         bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
246         if (tid == -1) {
247                 KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
248                 trytid = 0;
249                 bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
250                 KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
251         }
252         bit_set(tid_bitmap, tid);
253         trytid = tid + 1;
254         mtx_unlock(&tid_lock);
255         return (tid + NO_PID);
256 }
257
258 static void
259 tid_free_locked(lwpid_t rtid)
260 {
261         lwpid_t tid;
262
263         mtx_assert(&tid_lock, MA_OWNED);
264         KASSERT(rtid >= NO_PID,
265             ("%s: invalid tid %d\n", __func__, rtid));
266         tid = rtid - NO_PID;
267         KASSERT(bit_test(tid_bitmap, tid) != 0,
268             ("thread ID %d not allocated\n", rtid));
269         bit_clear(tid_bitmap, tid);
270 }
271
272 static void
273 tid_free(lwpid_t rtid)
274 {
275
276         mtx_lock(&tid_lock);
277         tid_free_locked(rtid);
278         mtx_unlock(&tid_lock);
279 }
280
281 static void
282 tid_free_batch(lwpid_t *batch, int n)
283 {
284         int i;
285
286         mtx_lock(&tid_lock);
287         for (i = 0; i < n; i++) {
288                 tid_free_locked(batch[i]);
289         }
290         mtx_unlock(&tid_lock);
291 }
292
293 /*
294  * Batching for thread reapping.
295  */
296 struct tidbatch {
297         lwpid_t tab[16];
298         int n;
299 };
300
301 static void
302 tidbatch_prep(struct tidbatch *tb)
303 {
304
305         tb->n = 0;
306 }
307
308 static void
309 tidbatch_add(struct tidbatch *tb, struct thread *td)
310 {
311
312         KASSERT(tb->n < nitems(tb->tab),
313             ("%s: count too high %d", __func__, tb->n));
314         tb->tab[tb->n] = td->td_tid;
315         tb->n++;
316 }
317
318 static void
319 tidbatch_process(struct tidbatch *tb)
320 {
321
322         KASSERT(tb->n <= nitems(tb->tab),
323             ("%s: count too high %d", __func__, tb->n));
324         if (tb->n == nitems(tb->tab)) {
325                 tid_free_batch(tb->tab, tb->n);
326                 tb->n = 0;
327         }
328 }
329
330 static void
331 tidbatch_final(struct tidbatch *tb)
332 {
333
334         KASSERT(tb->n <= nitems(tb->tab),
335             ("%s: count too high %d", __func__, tb->n));
336         if (tb->n != 0) {
337                 tid_free_batch(tb->tab, tb->n);
338         }
339 }
340
341 /*
342  * Prepare a thread for use.
343  */
344 static int
345 thread_ctor(void *mem, int size, void *arg, int flags)
346 {
347         struct thread   *td;
348
349         td = (struct thread *)mem;
350         TD_SET_STATE(td, TDS_INACTIVE);
351         td->td_lastcpu = td->td_oncpu = NOCPU;
352
353         /*
354          * Note that td_critnest begins life as 1 because the thread is not
355          * running and is thereby implicitly waiting to be on the receiving
356          * end of a context switch.
357          */
358         td->td_critnest = 1;
359         td->td_lend_user_pri = PRI_MAX;
360 #ifdef AUDIT
361         audit_thread_alloc(td);
362 #endif
363 #ifdef KDTRACE_HOOKS
364         kdtrace_thread_ctor(td);
365 #endif
366         umtx_thread_alloc(td);
367         MPASS(td->td_sel == NULL);
368         return (0);
369 }
370
371 /*
372  * Reclaim a thread after use.
373  */
374 static void
375 thread_dtor(void *mem, int size, void *arg)
376 {
377         struct thread *td;
378
379         td = (struct thread *)mem;
380
381 #ifdef INVARIANTS
382         /* Verify that this thread is in a safe state to free. */
383         switch (TD_GET_STATE(td)) {
384         case TDS_INHIBITED:
385         case TDS_RUNNING:
386         case TDS_CAN_RUN:
387         case TDS_RUNQ:
388                 /*
389                  * We must never unlink a thread that is in one of
390                  * these states, because it is currently active.
391                  */
392                 panic("bad state for thread unlinking");
393                 /* NOTREACHED */
394         case TDS_INACTIVE:
395                 break;
396         default:
397                 panic("bad thread state");
398                 /* NOTREACHED */
399         }
400 #endif
401 #ifdef AUDIT
402         audit_thread_free(td);
403 #endif
404 #ifdef KDTRACE_HOOKS
405         kdtrace_thread_dtor(td);
406 #endif
407         /* Free all OSD associated to this thread. */
408         osd_thread_exit(td);
409         ast_kclear(td);
410         seltdfini(td);
411 }
412
413 /*
414  * Initialize type-stable parts of a thread (when newly created).
415  */
416 static int
417 thread_init(void *mem, int size, int flags)
418 {
419         struct thread *td;
420
421         td = (struct thread *)mem;
422
423         td->td_allocdomain = vm_phys_domain(vtophys(td));
424         td->td_sleepqueue = sleepq_alloc();
425         td->td_turnstile = turnstile_alloc();
426         td->td_rlqe = NULL;
427         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
428         umtx_thread_init(td);
429         td->td_kstack = 0;
430         td->td_sel = NULL;
431         return (0);
432 }
433
434 /*
435  * Tear down type-stable parts of a thread (just before being discarded).
436  */
437 static void
438 thread_fini(void *mem, int size)
439 {
440         struct thread *td;
441
442         td = (struct thread *)mem;
443         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
444         rlqentry_free(td->td_rlqe);
445         turnstile_free(td->td_turnstile);
446         sleepq_free(td->td_sleepqueue);
447         umtx_thread_fini(td);
448         MPASS(td->td_sel == NULL);
449 }
450
451 /*
452  * For a newly created process,
453  * link up all the structures and its initial threads etc.
454  * called from:
455  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
456  * proc_dtor() (should go away)
457  * proc_init()
458  */
459 void
460 proc_linkup0(struct proc *p, struct thread *td)
461 {
462         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
463         proc_linkup(p, td);
464 }
465
466 void
467 proc_linkup(struct proc *p, struct thread *td)
468 {
469
470         sigqueue_init(&p->p_sigqueue, p);
471         p->p_ksi = ksiginfo_alloc(M_WAITOK);
472         if (p->p_ksi != NULL) {
473                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
474                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
475         }
476         LIST_INIT(&p->p_mqnotifier);
477         p->p_numthreads = 0;
478         thread_link(td, p);
479 }
480
481 static void
482 ast_suspend(struct thread *td, int tda __unused)
483 {
484         struct proc *p;
485
486         p = td->td_proc;
487         /*
488          * We need to check to see if we have to exit or wait due to a
489          * single threading requirement or some other STOP condition.
490          */
491         PROC_LOCK(p);
492         thread_suspend_check(0);
493         PROC_UNLOCK(p);
494 }
495
496 extern int max_threads_per_proc;
497
498 /*
499  * Initialize global thread allocation resources.
500  */
501 void
502 threadinit(void)
503 {
504         u_long i;
505         lwpid_t tid0;
506         uint32_t flags;
507
508         /*
509          * Place an upper limit on threads which can be allocated.
510          *
511          * Note that other factors may make the de facto limit much lower.
512          *
513          * Platform limits are somewhat arbitrary but deemed "more than good
514          * enough" for the foreseable future.
515          */
516         if (maxthread == 0) {
517 #ifdef _LP64
518                 maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
519 #else
520                 maxthread = MIN(maxproc * max_threads_per_proc, 100000);
521 #endif
522         }
523
524         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
525         tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
526         /*
527          * Handle thread0.
528          */
529         thread_count_inc();
530         tid0 = tid_alloc();
531         if (tid0 != THREAD0_TID)
532                 panic("tid0 %d != %d\n", tid0, THREAD0_TID);
533
534         flags = UMA_ZONE_NOFREE;
535 #ifdef __aarch64__
536         /*
537          * Force thread structures to be allocated from the direct map.
538          * Otherwise, superpage promotions and demotions may temporarily
539          * invalidate thread structure mappings.  For most dynamically allocated
540          * structures this is not a problem, but translation faults cannot be
541          * handled without accessing curthread.
542          */
543         flags |= UMA_ZONE_CONTIG;
544 #endif
545         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
546             thread_ctor, thread_dtor, thread_init, thread_fini,
547             32 - 1, flags);
548         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
549         tidhashlock = (tidhash + 1) / 64;
550         if (tidhashlock > 0)
551                 tidhashlock--;
552         tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
553             M_TIDHASH, M_WAITOK | M_ZERO);
554         for (i = 0; i < tidhashlock + 1; i++)
555                 rw_init(&tidhashtbl_lock[i], "tidhash");
556
557         TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
558         callout_init(&thread_reap_callout, 1);
559         callout_reset(&thread_reap_callout, 5 * hz,
560             thread_reap_callout_cb, NULL);
561         ast_register(TDA_SUSPEND, ASTR_ASTF_REQUIRED, 0, ast_suspend);
562 }
563
564 /*
565  * Place an unused thread on the zombie list.
566  */
567 void
568 thread_zombie(struct thread *td)
569 {
570         struct thread_domain_data *tdd;
571         struct thread *ztd;
572
573         tdd = &thread_domain_data[td->td_allocdomain];
574         ztd = atomic_load_ptr(&tdd->tdd_zombies);
575         for (;;) {
576                 td->td_zombie = ztd;
577                 if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
578                     (uintptr_t *)&ztd, (uintptr_t)td))
579                         break;
580                 continue;
581         }
582 }
583
584 /*
585  * Release a thread that has exited after cpu_throw().
586  */
587 void
588 thread_stash(struct thread *td)
589 {
590         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
591         thread_zombie(td);
592 }
593
594 /*
595  * Reap zombies from passed domain.
596  */
597 static void
598 thread_reap_domain(struct thread_domain_data *tdd)
599 {
600         struct thread *itd, *ntd;
601         struct tidbatch tidbatch;
602         struct credbatch credbatch;
603         int tdcount;
604         struct plimit *lim;
605         int limcount;
606
607         /*
608          * Reading upfront is pessimal if followed by concurrent atomic_swap,
609          * but most of the time the list is empty.
610          */
611         if (tdd->tdd_zombies == NULL)
612                 return;
613
614         itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
615             (uintptr_t)NULL);
616         if (itd == NULL)
617                 return;
618
619         /*
620          * Multiple CPUs can get here, the race is fine as ticks is only
621          * advisory.
622          */
623         tdd->tdd_reapticks = ticks;
624
625         tidbatch_prep(&tidbatch);
626         credbatch_prep(&credbatch);
627         tdcount = 0;
628         lim = NULL;
629         limcount = 0;
630
631         while (itd != NULL) {
632                 ntd = itd->td_zombie;
633                 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
634                 tidbatch_add(&tidbatch, itd);
635                 credbatch_add(&credbatch, itd);
636                 MPASS(itd->td_limit != NULL);
637                 if (lim != itd->td_limit) {
638                         if (limcount != 0) {
639                                 lim_freen(lim, limcount);
640                                 limcount = 0;
641                         }
642                 }
643                 lim = itd->td_limit;
644                 limcount++;
645                 thread_free_batched(itd);
646                 tidbatch_process(&tidbatch);
647                 credbatch_process(&credbatch);
648                 tdcount++;
649                 if (tdcount == 32) {
650                         thread_count_sub(tdcount);
651                         tdcount = 0;
652                 }
653                 itd = ntd;
654         }
655
656         tidbatch_final(&tidbatch);
657         credbatch_final(&credbatch);
658         if (tdcount != 0) {
659                 thread_count_sub(tdcount);
660         }
661         MPASS(limcount != 0);
662         lim_freen(lim, limcount);
663 }
664
665 /*
666  * Reap zombies from all domains.
667  */
668 static void
669 thread_reap_all(void)
670 {
671         struct thread_domain_data *tdd;
672         int i, domain;
673
674         domain = PCPU_GET(domain);
675         for (i = 0; i < vm_ndomains; i++) {
676                 tdd = &thread_domain_data[(i + domain) % vm_ndomains];
677                 thread_reap_domain(tdd);
678         }
679 }
680
681 /*
682  * Reap zombies from local domain.
683  */
684 static void
685 thread_reap(void)
686 {
687         struct thread_domain_data *tdd;
688         int domain;
689
690         domain = PCPU_GET(domain);
691         tdd = &thread_domain_data[domain];
692
693         thread_reap_domain(tdd);
694 }
695
696 static void
697 thread_reap_task_cb(void *arg __unused, int pending __unused)
698 {
699
700         thread_reap_all();
701 }
702
703 static void
704 thread_reap_callout_cb(void *arg __unused)
705 {
706         struct thread_domain_data *tdd;
707         int i, cticks, lticks;
708         bool wantreap;
709
710         wantreap = false;
711         cticks = atomic_load_int(&ticks);
712         for (i = 0; i < vm_ndomains; i++) {
713                 tdd = &thread_domain_data[i];
714                 lticks = tdd->tdd_reapticks;
715                 if (tdd->tdd_zombies != NULL &&
716                     (u_int)(cticks - lticks) > 5 * hz) {
717                         wantreap = true;
718                         break;
719                 }
720         }
721
722         if (wantreap)
723                 taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
724         callout_reset(&thread_reap_callout, 5 * hz,
725             thread_reap_callout_cb, NULL);
726 }
727
728 /*
729  * Calling this function guarantees that any thread that exited before
730  * the call is reaped when the function returns.  By 'exited' we mean
731  * a thread removed from the process linkage with thread_unlink().
732  * Practically this means that caller must lock/unlock corresponding
733  * process lock before the call, to synchronize with thread_exit().
734  */
735 void
736 thread_reap_barrier(void)
737 {
738         struct task *t;
739
740         /*
741          * First do context switches to each CPU to ensure that all
742          * PCPU pc_deadthreads are moved to zombie list.
743          */
744         quiesce_all_cpus("", PDROP);
745
746         /*
747          * Second, fire the task in the same thread as normal
748          * thread_reap() is done, to serialize reaping.
749          */
750         t = malloc(sizeof(*t), M_TEMP, M_WAITOK);
751         TASK_INIT(t, 0, thread_reap_task_cb, t);
752         taskqueue_enqueue(taskqueue_thread, t);
753         taskqueue_drain(taskqueue_thread, t);
754         free(t, M_TEMP);
755 }
756
757 /*
758  * Allocate a thread.
759  */
760 struct thread *
761 thread_alloc(int pages)
762 {
763         struct thread *td;
764         lwpid_t tid;
765
766         if (!thread_count_inc()) {
767                 return (NULL);
768         }
769
770         tid = tid_alloc();
771         td = uma_zalloc(thread_zone, M_WAITOK);
772         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
773         if (!vm_thread_new(td, pages)) {
774                 uma_zfree(thread_zone, td);
775                 tid_free(tid);
776                 thread_count_dec();
777                 return (NULL);
778         }
779         td->td_tid = tid;
780         bzero(&td->td_sa.args, sizeof(td->td_sa.args));
781         kmsan_thread_alloc(td);
782         cpu_thread_alloc(td);
783         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
784         return (td);
785 }
786
787 int
788 thread_alloc_stack(struct thread *td, int pages)
789 {
790
791         KASSERT(td->td_kstack == 0,
792             ("thread_alloc_stack called on a thread with kstack"));
793         if (!vm_thread_new(td, pages))
794                 return (0);
795         cpu_thread_alloc(td);
796         return (1);
797 }
798
799 /*
800  * Deallocate a thread.
801  */
802 static void
803 thread_free_batched(struct thread *td)
804 {
805
806         lock_profile_thread_exit(td);
807         if (td->td_cpuset)
808                 cpuset_rel(td->td_cpuset);
809         td->td_cpuset = NULL;
810         cpu_thread_free(td);
811         if (td->td_kstack != 0)
812                 vm_thread_dispose(td);
813         callout_drain(&td->td_slpcallout);
814         /*
815          * Freeing handled by the caller.
816          */
817         td->td_tid = -1;
818         kmsan_thread_free(td);
819         uma_zfree(thread_zone, td);
820 }
821
822 void
823 thread_free(struct thread *td)
824 {
825         lwpid_t tid;
826
827         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
828         tid = td->td_tid;
829         thread_free_batched(td);
830         tid_free(tid);
831         thread_count_dec();
832 }
833
834 void
835 thread_cow_get_proc(struct thread *newtd, struct proc *p)
836 {
837
838         PROC_LOCK_ASSERT(p, MA_OWNED);
839         newtd->td_realucred = crcowget(p->p_ucred);
840         newtd->td_ucred = newtd->td_realucred;
841         newtd->td_limit = lim_hold(p->p_limit);
842         newtd->td_cowgen = p->p_cowgen;
843 }
844
845 void
846 thread_cow_get(struct thread *newtd, struct thread *td)
847 {
848
849         MPASS(td->td_realucred == td->td_ucred);
850         newtd->td_realucred = crcowget(td->td_realucred);
851         newtd->td_ucred = newtd->td_realucred;
852         newtd->td_limit = lim_hold(td->td_limit);
853         newtd->td_cowgen = td->td_cowgen;
854 }
855
856 void
857 thread_cow_free(struct thread *td)
858 {
859
860         if (td->td_realucred != NULL)
861                 crcowfree(td);
862         if (td->td_limit != NULL)
863                 lim_free(td->td_limit);
864 }
865
866 void
867 thread_cow_update(struct thread *td)
868 {
869         struct proc *p;
870         struct ucred *oldcred;
871         struct plimit *oldlimit;
872
873         p = td->td_proc;
874         PROC_LOCK(p);
875         oldcred = crcowsync();
876         oldlimit = lim_cowsync();
877         td->td_cowgen = p->p_cowgen;
878         PROC_UNLOCK(p);
879         if (oldcred != NULL)
880                 crfree(oldcred);
881         if (oldlimit != NULL)
882                 lim_free(oldlimit);
883 }
884
885 void
886 thread_cow_synced(struct thread *td)
887 {
888         struct proc *p;
889
890         p = td->td_proc;
891         PROC_LOCK_ASSERT(p, MA_OWNED);
892         MPASS(td->td_cowgen != p->p_cowgen);
893         MPASS(td->td_ucred == p->p_ucred);
894         MPASS(td->td_limit == p->p_limit);
895         td->td_cowgen = p->p_cowgen;
896 }
897
898 /*
899  * Discard the current thread and exit from its context.
900  * Always called with scheduler locked.
901  *
902  * Because we can't free a thread while we're operating under its context,
903  * push the current thread into our CPU's deadthread holder. This means
904  * we needn't worry about someone else grabbing our context before we
905  * do a cpu_throw().
906  */
907 void
908 thread_exit(void)
909 {
910         uint64_t runtime, new_switchtime;
911         struct thread *td;
912         struct thread *td2;
913         struct proc *p;
914         int wakeup_swapper;
915
916         td = curthread;
917         p = td->td_proc;
918
919         PROC_SLOCK_ASSERT(p, MA_OWNED);
920         mtx_assert(&Giant, MA_NOTOWNED);
921
922         PROC_LOCK_ASSERT(p, MA_OWNED);
923         KASSERT(p != NULL, ("thread exiting without a process"));
924         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
925             (long)p->p_pid, td->td_name);
926         SDT_PROBE0(proc, , , lwp__exit);
927         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
928         MPASS(td->td_realucred == td->td_ucred);
929
930         /*
931          * drop FPU & debug register state storage, or any other
932          * architecture specific resources that
933          * would not be on a new untouched process.
934          */
935         cpu_thread_exit(td);
936
937         /*
938          * The last thread is left attached to the process
939          * So that the whole bundle gets recycled. Skip
940          * all this stuff if we never had threads.
941          * EXIT clears all sign of other threads when
942          * it goes to single threading, so the last thread always
943          * takes the short path.
944          */
945         if (p->p_flag & P_HADTHREADS) {
946                 if (p->p_numthreads > 1) {
947                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
948                         thread_unlink(td);
949                         td2 = FIRST_THREAD_IN_PROC(p);
950                         sched_exit_thread(td2, td);
951
952                         /*
953                          * The test below is NOT true if we are the
954                          * sole exiting thread. P_STOPPED_SINGLE is unset
955                          * in exit1() after it is the only survivor.
956                          */
957                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
958                                 if (p->p_numthreads == p->p_suspcount) {
959                                         thread_lock(p->p_singlethread);
960                                         wakeup_swapper = thread_unsuspend_one(
961                                                 p->p_singlethread, p, false);
962                                         if (wakeup_swapper)
963                                                 kick_proc0();
964                                 }
965                         }
966
967                         PCPU_SET(deadthread, td);
968                 } else {
969                         /*
970                          * The last thread is exiting.. but not through exit()
971                          */
972                         panic ("thread_exit: Last thread exiting on its own");
973                 }
974         } 
975 #ifdef  HWPMC_HOOKS
976         /*
977          * If this thread is part of a process that is being tracked by hwpmc(4),
978          * inform the module of the thread's impending exit.
979          */
980         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
981                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
982                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
983         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
984                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
985 #endif
986         PROC_UNLOCK(p);
987         PROC_STATLOCK(p);
988         thread_lock(td);
989         PROC_SUNLOCK(p);
990
991         /* Do the same timestamp bookkeeping that mi_switch() would do. */
992         new_switchtime = cpu_ticks();
993         runtime = new_switchtime - PCPU_GET(switchtime);
994         td->td_runtime += runtime;
995         td->td_incruntime += runtime;
996         PCPU_SET(switchtime, new_switchtime);
997         PCPU_SET(switchticks, ticks);
998         VM_CNT_INC(v_swtch);
999
1000         /* Save our resource usage in our process. */
1001         td->td_ru.ru_nvcsw++;
1002         ruxagg_locked(p, td);
1003         rucollect(&p->p_ru, &td->td_ru);
1004         PROC_STATUNLOCK(p);
1005
1006         TD_SET_STATE(td, TDS_INACTIVE);
1007 #ifdef WITNESS
1008         witness_thread_exit(td);
1009 #endif
1010         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
1011         sched_throw(td);
1012         panic("I'm a teapot!");
1013         /* NOTREACHED */
1014 }
1015
1016 /*
1017  * Do any thread specific cleanups that may be needed in wait()
1018  * called with Giant, proc and schedlock not held.
1019  */
1020 void
1021 thread_wait(struct proc *p)
1022 {
1023         struct thread *td;
1024
1025         mtx_assert(&Giant, MA_NOTOWNED);
1026         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
1027         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
1028         td = FIRST_THREAD_IN_PROC(p);
1029         /* Lock the last thread so we spin until it exits cpu_throw(). */
1030         thread_lock(td);
1031         thread_unlock(td);
1032         lock_profile_thread_exit(td);
1033         cpuset_rel(td->td_cpuset);
1034         td->td_cpuset = NULL;
1035         cpu_thread_clean(td);
1036         thread_cow_free(td);
1037         callout_drain(&td->td_slpcallout);
1038         thread_reap();  /* check for zombie threads etc. */
1039 }
1040
1041 /*
1042  * Link a thread to a process.
1043  * set up anything that needs to be initialized for it to
1044  * be used by the process.
1045  */
1046 void
1047 thread_link(struct thread *td, struct proc *p)
1048 {
1049
1050         /*
1051          * XXX This can't be enabled because it's called for proc0 before
1052          * its lock has been created.
1053          * PROC_LOCK_ASSERT(p, MA_OWNED);
1054          */
1055         TD_SET_STATE(td, TDS_INACTIVE);
1056         td->td_proc     = p;
1057         td->td_flags    = TDF_INMEM;
1058
1059         LIST_INIT(&td->td_contested);
1060         LIST_INIT(&td->td_lprof[0]);
1061         LIST_INIT(&td->td_lprof[1]);
1062 #ifdef EPOCH_TRACE
1063         SLIST_INIT(&td->td_epochs);
1064 #endif
1065         sigqueue_init(&td->td_sigqueue, p);
1066         callout_init(&td->td_slpcallout, 1);
1067         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
1068         p->p_numthreads++;
1069 }
1070
1071 /*
1072  * Called from:
1073  *  thread_exit()
1074  */
1075 void
1076 thread_unlink(struct thread *td)
1077 {
1078         struct proc *p = td->td_proc;
1079
1080         PROC_LOCK_ASSERT(p, MA_OWNED);
1081 #ifdef EPOCH_TRACE
1082         MPASS(SLIST_EMPTY(&td->td_epochs));
1083 #endif
1084
1085         TAILQ_REMOVE(&p->p_threads, td, td_plist);
1086         p->p_numthreads--;
1087         /* could clear a few other things here */
1088         /* Must  NOT clear links to proc! */
1089 }
1090
1091 static int
1092 calc_remaining(struct proc *p, int mode)
1093 {
1094         int remaining;
1095
1096         PROC_LOCK_ASSERT(p, MA_OWNED);
1097         PROC_SLOCK_ASSERT(p, MA_OWNED);
1098         if (mode == SINGLE_EXIT)
1099                 remaining = p->p_numthreads;
1100         else if (mode == SINGLE_BOUNDARY)
1101                 remaining = p->p_numthreads - p->p_boundary_count;
1102         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
1103                 remaining = p->p_numthreads - p->p_suspcount;
1104         else
1105                 panic("calc_remaining: wrong mode %d", mode);
1106         return (remaining);
1107 }
1108
1109 static int
1110 remain_for_mode(int mode)
1111 {
1112
1113         return (mode == SINGLE_ALLPROC ? 0 : 1);
1114 }
1115
1116 static int
1117 weed_inhib(int mode, struct thread *td2, struct proc *p)
1118 {
1119         int wakeup_swapper;
1120
1121         PROC_LOCK_ASSERT(p, MA_OWNED);
1122         PROC_SLOCK_ASSERT(p, MA_OWNED);
1123         THREAD_LOCK_ASSERT(td2, MA_OWNED);
1124
1125         wakeup_swapper = 0;
1126
1127         /*
1128          * Since the thread lock is dropped by the scheduler we have
1129          * to retry to check for races.
1130          */
1131 restart:
1132         switch (mode) {
1133         case SINGLE_EXIT:
1134                 if (TD_IS_SUSPENDED(td2)) {
1135                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
1136                         thread_lock(td2);
1137                         goto restart;
1138                 }
1139                 if (TD_CAN_ABORT(td2)) {
1140                         wakeup_swapper |= sleepq_abort(td2, EINTR);
1141                         return (wakeup_swapper);
1142                 }
1143                 break;
1144         case SINGLE_BOUNDARY:
1145         case SINGLE_NO_EXIT:
1146                 if (TD_IS_SUSPENDED(td2) &&
1147                     (td2->td_flags & TDF_BOUNDARY) == 0) {
1148                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1149                         thread_lock(td2);
1150                         goto restart;
1151                 }
1152                 if (TD_CAN_ABORT(td2)) {
1153                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1154                         return (wakeup_swapper);
1155                 }
1156                 break;
1157         case SINGLE_ALLPROC:
1158                 /*
1159                  * ALLPROC suspend tries to avoid spurious EINTR for
1160                  * threads sleeping interruptable, by suspending the
1161                  * thread directly, similarly to sig_suspend_threads().
1162                  * Since such sleep is not neccessary performed at the user
1163                  * boundary, TDF_ALLPROCSUSP is used to avoid immediate
1164                  * un-suspend.
1165                  */
1166                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags &
1167                     TDF_ALLPROCSUSP) == 0) {
1168                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1169                         thread_lock(td2);
1170                         goto restart;
1171                 }
1172                 if (TD_CAN_ABORT(td2)) {
1173                         td2->td_flags |= TDF_ALLPROCSUSP;
1174                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1175                         return (wakeup_swapper);
1176                 }
1177                 break;
1178         default:
1179                 break;
1180         }
1181         thread_unlock(td2);
1182         return (wakeup_swapper);
1183 }
1184
1185 /*
1186  * Enforce single-threading.
1187  *
1188  * Returns 1 if the caller must abort (another thread is waiting to
1189  * exit the process or similar). Process is locked!
1190  * Returns 0 when you are successfully the only thread running.
1191  * A process has successfully single threaded in the suspend mode when
1192  * There are no threads in user mode. Threads in the kernel must be
1193  * allowed to continue until they get to the user boundary. They may even
1194  * copy out their return values and data before suspending. They may however be
1195  * accelerated in reaching the user boundary as we will wake up
1196  * any sleeping threads that are interruptable. (PCATCH).
1197  */
1198 int
1199 thread_single(struct proc *p, int mode)
1200 {
1201         struct thread *td;
1202         struct thread *td2;
1203         int remaining, wakeup_swapper;
1204
1205         td = curthread;
1206         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1207             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1208             ("invalid mode %d", mode));
1209         /*
1210          * If allowing non-ALLPROC singlethreading for non-curproc
1211          * callers, calc_remaining() and remain_for_mode() should be
1212          * adjusted to also account for td->td_proc != p.  For now
1213          * this is not implemented because it is not used.
1214          */
1215         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
1216             (mode != SINGLE_ALLPROC && td->td_proc == p),
1217             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
1218         mtx_assert(&Giant, MA_NOTOWNED);
1219         PROC_LOCK_ASSERT(p, MA_OWNED);
1220
1221         /*
1222          * Is someone already single threading?
1223          * Or may be singlethreading is not needed at all.
1224          */
1225         if (mode == SINGLE_ALLPROC) {
1226                 while ((p->p_flag & P_STOPPED_SINGLE) != 0) {
1227                         if ((p->p_flag2 & P2_WEXIT) != 0)
1228                                 return (1);
1229                         msleep(&p->p_flag, &p->p_mtx, PCATCH, "thrsgl", 0);
1230                 }
1231         } else if ((p->p_flag & P_HADTHREADS) == 0)
1232                 return (0);
1233         if (p->p_singlethread != NULL && p->p_singlethread != td)
1234                 return (1);
1235
1236         if (mode == SINGLE_EXIT) {
1237                 p->p_flag |= P_SINGLE_EXIT;
1238                 p->p_flag &= ~P_SINGLE_BOUNDARY;
1239         } else {
1240                 p->p_flag &= ~P_SINGLE_EXIT;
1241                 if (mode == SINGLE_BOUNDARY)
1242                         p->p_flag |= P_SINGLE_BOUNDARY;
1243                 else
1244                         p->p_flag &= ~P_SINGLE_BOUNDARY;
1245         }
1246         if (mode == SINGLE_ALLPROC)
1247                 p->p_flag |= P_TOTAL_STOP;
1248         p->p_flag |= P_STOPPED_SINGLE;
1249         PROC_SLOCK(p);
1250         p->p_singlethread = td;
1251         remaining = calc_remaining(p, mode);
1252         while (remaining != remain_for_mode(mode)) {
1253                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
1254                         goto stopme;
1255                 wakeup_swapper = 0;
1256                 FOREACH_THREAD_IN_PROC(p, td2) {
1257                         if (td2 == td)
1258                                 continue;
1259                         thread_lock(td2);
1260                         ast_sched_locked(td2, TDA_SUSPEND);
1261                         if (TD_IS_INHIBITED(td2)) {
1262                                 wakeup_swapper |= weed_inhib(mode, td2, p);
1263 #ifdef SMP
1264                         } else if (TD_IS_RUNNING(td2)) {
1265                                 forward_signal(td2);
1266                                 thread_unlock(td2);
1267 #endif
1268                         } else
1269                                 thread_unlock(td2);
1270                 }
1271                 if (wakeup_swapper)
1272                         kick_proc0();
1273                 remaining = calc_remaining(p, mode);
1274
1275                 /*
1276                  * Maybe we suspended some threads.. was it enough?
1277                  */
1278                 if (remaining == remain_for_mode(mode))
1279                         break;
1280
1281 stopme:
1282                 /*
1283                  * Wake us up when everyone else has suspended.
1284                  * In the mean time we suspend as well.
1285                  */
1286                 thread_suspend_switch(td, p);
1287                 remaining = calc_remaining(p, mode);
1288         }
1289         if (mode == SINGLE_EXIT) {
1290                 /*
1291                  * Convert the process to an unthreaded process.  The
1292                  * SINGLE_EXIT is called by exit1() or execve(), in
1293                  * both cases other threads must be retired.
1294                  */
1295                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
1296                 p->p_singlethread = NULL;
1297                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
1298
1299                 /*
1300                  * Wait for any remaining threads to exit cpu_throw().
1301                  */
1302                 while (p->p_exitthreads != 0) {
1303                         PROC_SUNLOCK(p);
1304                         PROC_UNLOCK(p);
1305                         sched_relinquish(td);
1306                         PROC_LOCK(p);
1307                         PROC_SLOCK(p);
1308                 }
1309         } else if (mode == SINGLE_BOUNDARY) {
1310                 /*
1311                  * Wait until all suspended threads are removed from
1312                  * the processors.  The thread_suspend_check()
1313                  * increments p_boundary_count while it is still
1314                  * running, which makes it possible for the execve()
1315                  * to destroy vmspace while our other threads are
1316                  * still using the address space.
1317                  *
1318                  * We lock the thread, which is only allowed to
1319                  * succeed after context switch code finished using
1320                  * the address space.
1321                  */
1322                 FOREACH_THREAD_IN_PROC(p, td2) {
1323                         if (td2 == td)
1324                                 continue;
1325                         thread_lock(td2);
1326                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
1327                             ("td %p not on boundary", td2));
1328                         KASSERT(TD_IS_SUSPENDED(td2),
1329                             ("td %p is not suspended", td2));
1330                         thread_unlock(td2);
1331                 }
1332         }
1333         PROC_SUNLOCK(p);
1334         return (0);
1335 }
1336
1337 bool
1338 thread_suspend_check_needed(void)
1339 {
1340         struct proc *p;
1341         struct thread *td;
1342
1343         td = curthread;
1344         p = td->td_proc;
1345         PROC_LOCK_ASSERT(p, MA_OWNED);
1346         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
1347             (td->td_dbgflags & TDB_SUSPEND) != 0));
1348 }
1349
1350 /*
1351  * Called in from locations that can safely check to see
1352  * whether we have to suspend or at least throttle for a
1353  * single-thread event (e.g. fork).
1354  *
1355  * Such locations include userret().
1356  * If the "return_instead" argument is non zero, the thread must be able to
1357  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1358  *
1359  * The 'return_instead' argument tells the function if it may do a
1360  * thread_exit() or suspend, or whether the caller must abort and back
1361  * out instead.
1362  *
1363  * If the thread that set the single_threading request has set the
1364  * P_SINGLE_EXIT bit in the process flags then this call will never return
1365  * if 'return_instead' is false, but will exit.
1366  *
1367  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1368  *---------------+--------------------+---------------------
1369  *       0       | returns 0          |   returns 0 or 1
1370  *               | when ST ends       |   immediately
1371  *---------------+--------------------+---------------------
1372  *       1       | thread exits       |   returns 1
1373  *               |                    |  immediately
1374  * 0 = thread_exit() or suspension ok,
1375  * other = return error instead of stopping the thread.
1376  *
1377  * While a full suspension is under effect, even a single threading
1378  * thread would be suspended if it made this call (but it shouldn't).
1379  * This call should only be made from places where
1380  * thread_exit() would be safe as that may be the outcome unless
1381  * return_instead is set.
1382  */
1383 int
1384 thread_suspend_check(int return_instead)
1385 {
1386         struct thread *td;
1387         struct proc *p;
1388         int wakeup_swapper;
1389
1390         td = curthread;
1391         p = td->td_proc;
1392         mtx_assert(&Giant, MA_NOTOWNED);
1393         PROC_LOCK_ASSERT(p, MA_OWNED);
1394         while (thread_suspend_check_needed()) {
1395                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1396                         KASSERT(p->p_singlethread != NULL,
1397                             ("singlethread not set"));
1398                         /*
1399                          * The only suspension in action is a
1400                          * single-threading. Single threader need not stop.
1401                          * It is safe to access p->p_singlethread unlocked
1402                          * because it can only be set to our address by us.
1403                          */
1404                         if (p->p_singlethread == td)
1405                                 return (0);     /* Exempt from stopping. */
1406                 }
1407                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1408                         return (EINTR);
1409
1410                 /* Should we goto user boundary if we didn't come from there? */
1411                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1412                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1413                         return (ERESTART);
1414
1415                 /*
1416                  * Ignore suspend requests if they are deferred.
1417                  */
1418                 if ((td->td_flags & TDF_SBDRY) != 0) {
1419                         KASSERT(return_instead,
1420                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
1421                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1422                             (TDF_SEINTR | TDF_SERESTART),
1423                             ("both TDF_SEINTR and TDF_SERESTART"));
1424                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1425                 }
1426
1427                 /*
1428                  * If the process is waiting for us to exit,
1429                  * this thread should just suicide.
1430                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1431                  */
1432                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1433                         PROC_UNLOCK(p);
1434
1435                         /*
1436                          * Allow Linux emulation layer to do some work
1437                          * before thread suicide.
1438                          */
1439                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1440                                 (p->p_sysent->sv_thread_detach)(td);
1441                         umtx_thread_exit(td);
1442                         kern_thr_exit(td);
1443                         panic("stopped thread did not exit");
1444                 }
1445
1446                 PROC_SLOCK(p);
1447                 thread_stopped(p);
1448                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1449                         if (p->p_numthreads == p->p_suspcount + 1) {
1450                                 thread_lock(p->p_singlethread);
1451                                 wakeup_swapper = thread_unsuspend_one(
1452                                     p->p_singlethread, p, false);
1453                                 if (wakeup_swapper)
1454                                         kick_proc0();
1455                         }
1456                 }
1457                 PROC_UNLOCK(p);
1458                 thread_lock(td);
1459                 /*
1460                  * When a thread suspends, it just
1461                  * gets taken off all queues.
1462                  */
1463                 thread_suspend_one(td);
1464                 if (return_instead == 0) {
1465                         p->p_boundary_count++;
1466                         td->td_flags |= TDF_BOUNDARY;
1467                 }
1468                 PROC_SUNLOCK(p);
1469                 mi_switch(SW_INVOL | SWT_SUSPEND);
1470                 PROC_LOCK(p);
1471         }
1472         return (0);
1473 }
1474
1475 /*
1476  * Check for possible stops and suspensions while executing a
1477  * casueword or similar transiently failing operation.
1478  *
1479  * The sleep argument controls whether the function can handle a stop
1480  * request itself or it should return ERESTART and the request is
1481  * proceed at the kernel/user boundary in ast.
1482  *
1483  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1484  * should handle the stop requests there, with exception of cases when
1485  * the thread owns a kernel resource, for instance busied the umtx
1486  * key, or when functions return immediately if thread_check_susp()
1487  * returned non-zero.  On the other hand, retrying the whole lock
1488  * operation, we better not stop there but delegate the handling to
1489  * ast.
1490  *
1491  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1492  * handle it at all, and simply return EINTR.
1493  */
1494 int
1495 thread_check_susp(struct thread *td, bool sleep)
1496 {
1497         struct proc *p;
1498         int error;
1499
1500         /*
1501          * The check for TDA_SUSPEND is racy, but it is enough to
1502          * eventually break the lockstep loop.
1503          */
1504         if (!td_ast_pending(td, TDA_SUSPEND))
1505                 return (0);
1506         error = 0;
1507         p = td->td_proc;
1508         PROC_LOCK(p);
1509         if (p->p_flag & P_SINGLE_EXIT)
1510                 error = EINTR;
1511         else if (P_SHOULDSTOP(p) ||
1512             ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1513                 error = sleep ? thread_suspend_check(0) : ERESTART;
1514         PROC_UNLOCK(p);
1515         return (error);
1516 }
1517
1518 void
1519 thread_suspend_switch(struct thread *td, struct proc *p)
1520 {
1521
1522         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1523         PROC_LOCK_ASSERT(p, MA_OWNED);
1524         PROC_SLOCK_ASSERT(p, MA_OWNED);
1525         /*
1526          * We implement thread_suspend_one in stages here to avoid
1527          * dropping the proc lock while the thread lock is owned.
1528          */
1529         if (p == td->td_proc) {
1530                 thread_stopped(p);
1531                 p->p_suspcount++;
1532         }
1533         PROC_UNLOCK(p);
1534         thread_lock(td);
1535         ast_unsched_locked(td, TDA_SUSPEND);
1536         TD_SET_SUSPENDED(td);
1537         sched_sleep(td, 0);
1538         PROC_SUNLOCK(p);
1539         DROP_GIANT();
1540         mi_switch(SW_VOL | SWT_SUSPEND);
1541         PICKUP_GIANT();
1542         PROC_LOCK(p);
1543         PROC_SLOCK(p);
1544 }
1545
1546 void
1547 thread_suspend_one(struct thread *td)
1548 {
1549         struct proc *p;
1550
1551         p = td->td_proc;
1552         PROC_SLOCK_ASSERT(p, MA_OWNED);
1553         THREAD_LOCK_ASSERT(td, MA_OWNED);
1554         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1555         p->p_suspcount++;
1556         ast_unsched_locked(td, TDA_SUSPEND);
1557         TD_SET_SUSPENDED(td);
1558         sched_sleep(td, 0);
1559 }
1560
1561 static int
1562 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1563 {
1564
1565         THREAD_LOCK_ASSERT(td, MA_OWNED);
1566         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1567         TD_CLR_SUSPENDED(td);
1568         td->td_flags &= ~TDF_ALLPROCSUSP;
1569         if (td->td_proc == p) {
1570                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1571                 p->p_suspcount--;
1572                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1573                         td->td_flags &= ~TDF_BOUNDARY;
1574                         p->p_boundary_count--;
1575                 }
1576         }
1577         return (setrunnable(td, 0));
1578 }
1579
1580 void
1581 thread_run_flash(struct thread *td)
1582 {
1583         struct proc *p;
1584
1585         p = td->td_proc;
1586         PROC_LOCK_ASSERT(p, MA_OWNED);
1587
1588         if (TD_ON_SLEEPQ(td))
1589                 sleepq_remove_nested(td);
1590         else
1591                 thread_lock(td);
1592
1593         THREAD_LOCK_ASSERT(td, MA_OWNED);
1594         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1595
1596         TD_CLR_SUSPENDED(td);
1597         PROC_SLOCK(p);
1598         MPASS(p->p_suspcount > 0);
1599         p->p_suspcount--;
1600         PROC_SUNLOCK(p);
1601         if (setrunnable(td, 0))
1602                 kick_proc0();
1603 }
1604
1605 /*
1606  * Allow all threads blocked by single threading to continue running.
1607  */
1608 void
1609 thread_unsuspend(struct proc *p)
1610 {
1611         struct thread *td;
1612         int wakeup_swapper;
1613
1614         PROC_LOCK_ASSERT(p, MA_OWNED);
1615         PROC_SLOCK_ASSERT(p, MA_OWNED);
1616         wakeup_swapper = 0;
1617         if (!P_SHOULDSTOP(p)) {
1618                 FOREACH_THREAD_IN_PROC(p, td) {
1619                         thread_lock(td);
1620                         if (TD_IS_SUSPENDED(td))
1621                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1622                                     true);
1623                         else
1624                                 thread_unlock(td);
1625                 }
1626         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1627             p->p_numthreads == p->p_suspcount) {
1628                 /*
1629                  * Stopping everything also did the job for the single
1630                  * threading request. Now we've downgraded to single-threaded,
1631                  * let it continue.
1632                  */
1633                 if (p->p_singlethread->td_proc == p) {
1634                         thread_lock(p->p_singlethread);
1635                         wakeup_swapper = thread_unsuspend_one(
1636                             p->p_singlethread, p, false);
1637                 }
1638         }
1639         if (wakeup_swapper)
1640                 kick_proc0();
1641 }
1642
1643 /*
1644  * End the single threading mode..
1645  */
1646 void
1647 thread_single_end(struct proc *p, int mode)
1648 {
1649         struct thread *td;
1650         int wakeup_swapper;
1651
1652         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1653             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1654             ("invalid mode %d", mode));
1655         PROC_LOCK_ASSERT(p, MA_OWNED);
1656         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1657             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1658             ("mode %d does not match P_TOTAL_STOP", mode));
1659         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1660             ("thread_single_end from other thread %p %p",
1661             curthread, p->p_singlethread));
1662         KASSERT(mode != SINGLE_BOUNDARY ||
1663             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1664             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1665         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1666             P_TOTAL_STOP);
1667         PROC_SLOCK(p);
1668         p->p_singlethread = NULL;
1669         wakeup_swapper = 0;
1670         /*
1671          * If there are other threads they may now run,
1672          * unless of course there is a blanket 'stop order'
1673          * on the process. The single threader must be allowed
1674          * to continue however as this is a bad place to stop.
1675          */
1676         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1677                 FOREACH_THREAD_IN_PROC(p, td) {
1678                         thread_lock(td);
1679                         if (TD_IS_SUSPENDED(td)) {
1680                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1681                                     true);
1682                         } else
1683                                 thread_unlock(td);
1684                 }
1685         }
1686         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1687             ("inconsistent boundary count %d", p->p_boundary_count));
1688         PROC_SUNLOCK(p);
1689         if (wakeup_swapper)
1690                 kick_proc0();
1691         wakeup(&p->p_flag);
1692 }
1693
1694 /*
1695  * Locate a thread by number and return with proc lock held.
1696  *
1697  * thread exit establishes proc -> tidhash lock ordering, but lookup
1698  * takes tidhash first and needs to return locked proc.
1699  *
1700  * The problem is worked around by relying on type-safety of both
1701  * structures and doing the work in 2 steps:
1702  * - tidhash-locked lookup which saves both thread and proc pointers
1703  * - proc-locked verification that the found thread still matches
1704  */
1705 static bool
1706 tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
1707 {
1708 #define RUN_THRESH      16
1709         struct proc *p;
1710         struct thread *td;
1711         int run;
1712         bool locked;
1713
1714         run = 0;
1715         rw_rlock(TIDHASHLOCK(tid));
1716         locked = true;
1717         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1718                 if (td->td_tid != tid) {
1719                         run++;
1720                         continue;
1721                 }
1722                 p = td->td_proc;
1723                 if (pid != -1 && p->p_pid != pid) {
1724                         td = NULL;
1725                         break;
1726                 }
1727                 if (run > RUN_THRESH) {
1728                         if (rw_try_upgrade(TIDHASHLOCK(tid))) {
1729                                 LIST_REMOVE(td, td_hash);
1730                                 LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1731                                         td, td_hash);
1732                                 rw_wunlock(TIDHASHLOCK(tid));
1733                                 locked = false;
1734                                 break;
1735                         }
1736                 }
1737                 break;
1738         }
1739         if (locked)
1740                 rw_runlock(TIDHASHLOCK(tid));
1741         if (td == NULL)
1742                 return (false);
1743         *pp = p;
1744         *tdp = td;
1745         return (true);
1746 }
1747
1748 struct thread *
1749 tdfind(lwpid_t tid, pid_t pid)
1750 {
1751         struct proc *p;
1752         struct thread *td;
1753
1754         td = curthread;
1755         if (td->td_tid == tid) {
1756                 if (pid != -1 && td->td_proc->p_pid != pid)
1757                         return (NULL);
1758                 PROC_LOCK(td->td_proc);
1759                 return (td);
1760         }
1761
1762         for (;;) {
1763                 if (!tdfind_hash(tid, pid, &p, &td))
1764                         return (NULL);
1765                 PROC_LOCK(p);
1766                 if (td->td_tid != tid) {
1767                         PROC_UNLOCK(p);
1768                         continue;
1769                 }
1770                 if (td->td_proc != p) {
1771                         PROC_UNLOCK(p);
1772                         continue;
1773                 }
1774                 if (p->p_state == PRS_NEW) {
1775                         PROC_UNLOCK(p);
1776                         return (NULL);
1777                 }
1778                 return (td);
1779         }
1780 }
1781
1782 void
1783 tidhash_add(struct thread *td)
1784 {
1785         rw_wlock(TIDHASHLOCK(td->td_tid));
1786         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1787         rw_wunlock(TIDHASHLOCK(td->td_tid));
1788 }
1789
1790 void
1791 tidhash_remove(struct thread *td)
1792 {
1793
1794         rw_wlock(TIDHASHLOCK(td->td_tid));
1795         LIST_REMOVE(td, td_hash);
1796         rw_wunlock(TIDHASHLOCK(td->td_tid));
1797 }