]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
spdx: The BSD-2-Clause-FreeBSD identifier is obsolete, drop -FreeBSD
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/msan.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/bitstring.h>
45 #include <sys/epoch.h>
46 #include <sys/rangelock.h>
47 #include <sys/resourcevar.h>
48 #include <sys/sdt.h>
49 #include <sys/smp.h>
50 #include <sys/sched.h>
51 #include <sys/sleepqueue.h>
52 #include <sys/selinfo.h>
53 #include <sys/syscallsubr.h>
54 #include <sys/dtrace_bsd.h>
55 #include <sys/sysent.h>
56 #include <sys/turnstile.h>
57 #include <sys/taskqueue.h>
58 #include <sys/ktr.h>
59 #include <sys/rwlock.h>
60 #include <sys/umtxvar.h>
61 #include <sys/vmmeter.h>
62 #include <sys/cpuset.h>
63 #ifdef  HWPMC_HOOKS
64 #include <sys/pmckern.h>
65 #endif
66 #include <sys/priv.h>
67
68 #include <security/audit/audit.h>
69
70 #include <vm/pmap.h>
71 #include <vm/vm.h>
72 #include <vm/vm_extern.h>
73 #include <vm/uma.h>
74 #include <vm/vm_phys.h>
75 #include <sys/eventhandler.h>
76
77 /*
78  * Asserts below verify the stability of struct thread and struct proc
79  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
80  * to drift, change to the structures must be accompanied by the
81  * assert update.
82  *
83  * On the stable branches after KBI freeze, conditions must not be
84  * violated.  Typically new fields are moved to the end of the
85  * structures.
86  */
87 #ifdef __amd64__
88 _Static_assert(offsetof(struct thread, td_flags) == 0x108,
89     "struct thread KBI td_flags");
90 _Static_assert(offsetof(struct thread, td_pflags) == 0x114,
91     "struct thread KBI td_pflags");
92 _Static_assert(offsetof(struct thread, td_frame) == 0x4b0,
93     "struct thread KBI td_frame");
94 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6c0,
95     "struct thread KBI td_emuldata");
96 _Static_assert(offsetof(struct proc, p_flag) == 0xb8,
97     "struct proc KBI p_flag");
98 _Static_assert(offsetof(struct proc, p_pid) == 0xc4,
99     "struct proc KBI p_pid");
100 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
101     "struct proc KBI p_filemon");
102 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
103     "struct proc KBI p_comm");
104 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4d0,
105     "struct proc KBI p_emuldata");
106 #endif
107 #ifdef __i386__
108 _Static_assert(offsetof(struct thread, td_flags) == 0x9c,
109     "struct thread KBI td_flags");
110 _Static_assert(offsetof(struct thread, td_pflags) == 0xa8,
111     "struct thread KBI td_pflags");
112 _Static_assert(offsetof(struct thread, td_frame) == 0x30c,
113     "struct thread KBI td_frame");
114 _Static_assert(offsetof(struct thread, td_emuldata) == 0x350,
115     "struct thread KBI td_emuldata");
116 _Static_assert(offsetof(struct proc, p_flag) == 0x6c,
117     "struct proc KBI p_flag");
118 _Static_assert(offsetof(struct proc, p_pid) == 0x78,
119     "struct proc KBI p_pid");
120 _Static_assert(offsetof(struct proc, p_filemon) == 0x270,
121     "struct proc KBI p_filemon");
122 _Static_assert(offsetof(struct proc, p_comm) == 0x284,
123     "struct proc KBI p_comm");
124 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
125     "struct proc KBI p_emuldata");
126 #endif
127
128 SDT_PROVIDER_DECLARE(proc);
129 SDT_PROBE_DEFINE(proc, , , lwp__exit);
130
131 /*
132  * thread related storage.
133  */
134 static uma_zone_t thread_zone;
135
136 struct thread_domain_data {
137         struct thread   *tdd_zombies;
138         int             tdd_reapticks;
139 } __aligned(CACHE_LINE_SIZE);
140
141 static struct thread_domain_data thread_domain_data[MAXMEMDOM];
142
143 static struct task      thread_reap_task;
144 static struct callout   thread_reap_callout;
145
146 static void thread_zombie(struct thread *);
147 static void thread_reap(void);
148 static void thread_reap_all(void);
149 static void thread_reap_task_cb(void *, int);
150 static void thread_reap_callout_cb(void *);
151 static int thread_unsuspend_one(struct thread *td, struct proc *p,
152     bool boundary);
153 static void thread_free_batched(struct thread *td);
154
155 static __exclusive_cache_line struct mtx tid_lock;
156 static bitstr_t *tid_bitmap;
157
158 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
159
160 static int maxthread;
161 SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
162     &maxthread, 0, "Maximum number of threads");
163
164 static __exclusive_cache_line int nthreads;
165
166 static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
167 static u_long   tidhash;
168 static u_long   tidhashlock;
169 static struct   rwlock *tidhashtbl_lock;
170 #define TIDHASH(tid)            (&tidhashtbl[(tid) & tidhash])
171 #define TIDHASHLOCK(tid)        (&tidhashtbl_lock[(tid) & tidhashlock])
172
173 EVENTHANDLER_LIST_DEFINE(thread_ctor);
174 EVENTHANDLER_LIST_DEFINE(thread_dtor);
175 EVENTHANDLER_LIST_DEFINE(thread_init);
176 EVENTHANDLER_LIST_DEFINE(thread_fini);
177
178 static bool
179 thread_count_inc_try(void)
180 {
181         int nthreads_new;
182
183         nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
184         if (nthreads_new >= maxthread - 100) {
185                 if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
186                     nthreads_new >= maxthread) {
187                         atomic_subtract_int(&nthreads, 1);
188                         return (false);
189                 }
190         }
191         return (true);
192 }
193
194 static bool
195 thread_count_inc(void)
196 {
197         static struct timeval lastfail;
198         static int curfail;
199
200         thread_reap();
201         if (thread_count_inc_try()) {
202                 return (true);
203         }
204
205         thread_reap_all();
206         if (thread_count_inc_try()) {
207                 return (true);
208         }
209
210         if (ppsratecheck(&lastfail, &curfail, 1)) {
211                 printf("maxthread limit exceeded by uid %u "
212                     "(pid %d); consider increasing kern.maxthread\n",
213                     curthread->td_ucred->cr_ruid, curproc->p_pid);
214         }
215         return (false);
216 }
217
218 static void
219 thread_count_sub(int n)
220 {
221
222         atomic_subtract_int(&nthreads, n);
223 }
224
225 static void
226 thread_count_dec(void)
227 {
228
229         thread_count_sub(1);
230 }
231
232 static lwpid_t
233 tid_alloc(void)
234 {
235         static lwpid_t trytid;
236         lwpid_t tid;
237
238         mtx_lock(&tid_lock);
239         /*
240          * It is an invariant that the bitmap is big enough to hold maxthread
241          * IDs. If we got to this point there has to be at least one free.
242          */
243         if (trytid >= maxthread)
244                 trytid = 0;
245         bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
246         if (tid == -1) {
247                 KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
248                 trytid = 0;
249                 bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
250                 KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
251         }
252         bit_set(tid_bitmap, tid);
253         trytid = tid + 1;
254         mtx_unlock(&tid_lock);
255         return (tid + NO_PID);
256 }
257
258 static void
259 tid_free_locked(lwpid_t rtid)
260 {
261         lwpid_t tid;
262
263         mtx_assert(&tid_lock, MA_OWNED);
264         KASSERT(rtid >= NO_PID,
265             ("%s: invalid tid %d\n", __func__, rtid));
266         tid = rtid - NO_PID;
267         KASSERT(bit_test(tid_bitmap, tid) != 0,
268             ("thread ID %d not allocated\n", rtid));
269         bit_clear(tid_bitmap, tid);
270 }
271
272 static void
273 tid_free(lwpid_t rtid)
274 {
275
276         mtx_lock(&tid_lock);
277         tid_free_locked(rtid);
278         mtx_unlock(&tid_lock);
279 }
280
281 static void
282 tid_free_batch(lwpid_t *batch, int n)
283 {
284         int i;
285
286         mtx_lock(&tid_lock);
287         for (i = 0; i < n; i++) {
288                 tid_free_locked(batch[i]);
289         }
290         mtx_unlock(&tid_lock);
291 }
292
293 /*
294  * Batching for thread reapping.
295  */
296 struct tidbatch {
297         lwpid_t tab[16];
298         int n;
299 };
300
301 static void
302 tidbatch_prep(struct tidbatch *tb)
303 {
304
305         tb->n = 0;
306 }
307
308 static void
309 tidbatch_add(struct tidbatch *tb, struct thread *td)
310 {
311
312         KASSERT(tb->n < nitems(tb->tab),
313             ("%s: count too high %d", __func__, tb->n));
314         tb->tab[tb->n] = td->td_tid;
315         tb->n++;
316 }
317
318 static void
319 tidbatch_process(struct tidbatch *tb)
320 {
321
322         KASSERT(tb->n <= nitems(tb->tab),
323             ("%s: count too high %d", __func__, tb->n));
324         if (tb->n == nitems(tb->tab)) {
325                 tid_free_batch(tb->tab, tb->n);
326                 tb->n = 0;
327         }
328 }
329
330 static void
331 tidbatch_final(struct tidbatch *tb)
332 {
333
334         KASSERT(tb->n <= nitems(tb->tab),
335             ("%s: count too high %d", __func__, tb->n));
336         if (tb->n != 0) {
337                 tid_free_batch(tb->tab, tb->n);
338         }
339 }
340
341 /*
342  * Prepare a thread for use.
343  */
344 static int
345 thread_ctor(void *mem, int size, void *arg, int flags)
346 {
347         struct thread   *td;
348
349         td = (struct thread *)mem;
350         TD_SET_STATE(td, TDS_INACTIVE);
351         td->td_lastcpu = td->td_oncpu = NOCPU;
352
353         /*
354          * Note that td_critnest begins life as 1 because the thread is not
355          * running and is thereby implicitly waiting to be on the receiving
356          * end of a context switch.
357          */
358         td->td_critnest = 1;
359         td->td_lend_user_pri = PRI_MAX;
360 #ifdef AUDIT
361         audit_thread_alloc(td);
362 #endif
363 #ifdef KDTRACE_HOOKS
364         kdtrace_thread_ctor(td);
365 #endif
366         umtx_thread_alloc(td);
367         MPASS(td->td_sel == NULL);
368         return (0);
369 }
370
371 /*
372  * Reclaim a thread after use.
373  */
374 static void
375 thread_dtor(void *mem, int size, void *arg)
376 {
377         struct thread *td;
378
379         td = (struct thread *)mem;
380
381 #ifdef INVARIANTS
382         /* Verify that this thread is in a safe state to free. */
383         switch (TD_GET_STATE(td)) {
384         case TDS_INHIBITED:
385         case TDS_RUNNING:
386         case TDS_CAN_RUN:
387         case TDS_RUNQ:
388                 /*
389                  * We must never unlink a thread that is in one of
390                  * these states, because it is currently active.
391                  */
392                 panic("bad state for thread unlinking");
393                 /* NOTREACHED */
394         case TDS_INACTIVE:
395                 break;
396         default:
397                 panic("bad thread state");
398                 /* NOTREACHED */
399         }
400 #endif
401 #ifdef AUDIT
402         audit_thread_free(td);
403 #endif
404 #ifdef KDTRACE_HOOKS
405         kdtrace_thread_dtor(td);
406 #endif
407         /* Free all OSD associated to this thread. */
408         osd_thread_exit(td);
409         ast_kclear(td);
410         seltdfini(td);
411 }
412
413 /*
414  * Initialize type-stable parts of a thread (when newly created).
415  */
416 static int
417 thread_init(void *mem, int size, int flags)
418 {
419         struct thread *td;
420
421         td = (struct thread *)mem;
422
423         td->td_allocdomain = vm_phys_domain(vtophys(td));
424         td->td_sleepqueue = sleepq_alloc();
425         td->td_turnstile = turnstile_alloc();
426         td->td_rlqe = NULL;
427         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
428         umtx_thread_init(td);
429         td->td_kstack = 0;
430         td->td_sel = NULL;
431         return (0);
432 }
433
434 /*
435  * Tear down type-stable parts of a thread (just before being discarded).
436  */
437 static void
438 thread_fini(void *mem, int size)
439 {
440         struct thread *td;
441
442         td = (struct thread *)mem;
443         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
444         rlqentry_free(td->td_rlqe);
445         turnstile_free(td->td_turnstile);
446         sleepq_free(td->td_sleepqueue);
447         umtx_thread_fini(td);
448         MPASS(td->td_sel == NULL);
449 }
450
451 /*
452  * For a newly created process,
453  * link up all the structures and its initial threads etc.
454  * called from:
455  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
456  * proc_dtor() (should go away)
457  * proc_init()
458  */
459 void
460 proc_linkup0(struct proc *p, struct thread *td)
461 {
462         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
463         proc_linkup(p, td);
464 }
465
466 void
467 proc_linkup(struct proc *p, struct thread *td)
468 {
469
470         sigqueue_init(&p->p_sigqueue, p);
471         p->p_ksi = ksiginfo_alloc(M_WAITOK);
472         if (p->p_ksi != NULL) {
473                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
474                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
475         }
476         LIST_INIT(&p->p_mqnotifier);
477         p->p_numthreads = 0;
478         thread_link(td, p);
479 }
480
481 static void
482 ast_suspend(struct thread *td, int tda __unused)
483 {
484         struct proc *p;
485
486         p = td->td_proc;
487         /*
488          * We need to check to see if we have to exit or wait due to a
489          * single threading requirement or some other STOP condition.
490          */
491         PROC_LOCK(p);
492         thread_suspend_check(0);
493         PROC_UNLOCK(p);
494 }
495
496 extern int max_threads_per_proc;
497
498 /*
499  * Initialize global thread allocation resources.
500  */
501 void
502 threadinit(void)
503 {
504         u_long i;
505         lwpid_t tid0;
506
507         /*
508          * Place an upper limit on threads which can be allocated.
509          *
510          * Note that other factors may make the de facto limit much lower.
511          *
512          * Platform limits are somewhat arbitrary but deemed "more than good
513          * enough" for the foreseable future.
514          */
515         if (maxthread == 0) {
516 #ifdef _LP64
517                 maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
518 #else
519                 maxthread = MIN(maxproc * max_threads_per_proc, 100000);
520 #endif
521         }
522
523         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
524         tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
525         /*
526          * Handle thread0.
527          */
528         thread_count_inc();
529         tid0 = tid_alloc();
530         if (tid0 != THREAD0_TID)
531                 panic("tid0 %d != %d\n", tid0, THREAD0_TID);
532
533         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
534             thread_ctor, thread_dtor, thread_init, thread_fini,
535             32 - 1, UMA_ZONE_NOFREE);
536         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
537         tidhashlock = (tidhash + 1) / 64;
538         if (tidhashlock > 0)
539                 tidhashlock--;
540         tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
541             M_TIDHASH, M_WAITOK | M_ZERO);
542         for (i = 0; i < tidhashlock + 1; i++)
543                 rw_init(&tidhashtbl_lock[i], "tidhash");
544
545         TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
546         callout_init(&thread_reap_callout, 1);
547         callout_reset(&thread_reap_callout, 5 * hz,
548             thread_reap_callout_cb, NULL);
549         ast_register(TDA_SUSPEND, ASTR_ASTF_REQUIRED, 0, ast_suspend);
550 }
551
552 /*
553  * Place an unused thread on the zombie list.
554  */
555 void
556 thread_zombie(struct thread *td)
557 {
558         struct thread_domain_data *tdd;
559         struct thread *ztd;
560
561         tdd = &thread_domain_data[td->td_allocdomain];
562         ztd = atomic_load_ptr(&tdd->tdd_zombies);
563         for (;;) {
564                 td->td_zombie = ztd;
565                 if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
566                     (uintptr_t *)&ztd, (uintptr_t)td))
567                         break;
568                 continue;
569         }
570 }
571
572 /*
573  * Release a thread that has exited after cpu_throw().
574  */
575 void
576 thread_stash(struct thread *td)
577 {
578         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
579         thread_zombie(td);
580 }
581
582 /*
583  * Reap zombies from passed domain.
584  */
585 static void
586 thread_reap_domain(struct thread_domain_data *tdd)
587 {
588         struct thread *itd, *ntd;
589         struct tidbatch tidbatch;
590         struct credbatch credbatch;
591         int tdcount;
592         struct plimit *lim;
593         int limcount;
594
595         /*
596          * Reading upfront is pessimal if followed by concurrent atomic_swap,
597          * but most of the time the list is empty.
598          */
599         if (tdd->tdd_zombies == NULL)
600                 return;
601
602         itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
603             (uintptr_t)NULL);
604         if (itd == NULL)
605                 return;
606
607         /*
608          * Multiple CPUs can get here, the race is fine as ticks is only
609          * advisory.
610          */
611         tdd->tdd_reapticks = ticks;
612
613         tidbatch_prep(&tidbatch);
614         credbatch_prep(&credbatch);
615         tdcount = 0;
616         lim = NULL;
617         limcount = 0;
618
619         while (itd != NULL) {
620                 ntd = itd->td_zombie;
621                 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
622                 tidbatch_add(&tidbatch, itd);
623                 credbatch_add(&credbatch, itd);
624                 MPASS(itd->td_limit != NULL);
625                 if (lim != itd->td_limit) {
626                         if (limcount != 0) {
627                                 lim_freen(lim, limcount);
628                                 limcount = 0;
629                         }
630                 }
631                 lim = itd->td_limit;
632                 limcount++;
633                 thread_free_batched(itd);
634                 tidbatch_process(&tidbatch);
635                 credbatch_process(&credbatch);
636                 tdcount++;
637                 if (tdcount == 32) {
638                         thread_count_sub(tdcount);
639                         tdcount = 0;
640                 }
641                 itd = ntd;
642         }
643
644         tidbatch_final(&tidbatch);
645         credbatch_final(&credbatch);
646         if (tdcount != 0) {
647                 thread_count_sub(tdcount);
648         }
649         MPASS(limcount != 0);
650         lim_freen(lim, limcount);
651 }
652
653 /*
654  * Reap zombies from all domains.
655  */
656 static void
657 thread_reap_all(void)
658 {
659         struct thread_domain_data *tdd;
660         int i, domain;
661
662         domain = PCPU_GET(domain);
663         for (i = 0; i < vm_ndomains; i++) {
664                 tdd = &thread_domain_data[(i + domain) % vm_ndomains];
665                 thread_reap_domain(tdd);
666         }
667 }
668
669 /*
670  * Reap zombies from local domain.
671  */
672 static void
673 thread_reap(void)
674 {
675         struct thread_domain_data *tdd;
676         int domain;
677
678         domain = PCPU_GET(domain);
679         tdd = &thread_domain_data[domain];
680
681         thread_reap_domain(tdd);
682 }
683
684 static void
685 thread_reap_task_cb(void *arg __unused, int pending __unused)
686 {
687
688         thread_reap_all();
689 }
690
691 static void
692 thread_reap_callout_cb(void *arg __unused)
693 {
694         struct thread_domain_data *tdd;
695         int i, cticks, lticks;
696         bool wantreap;
697
698         wantreap = false;
699         cticks = atomic_load_int(&ticks);
700         for (i = 0; i < vm_ndomains; i++) {
701                 tdd = &thread_domain_data[i];
702                 lticks = tdd->tdd_reapticks;
703                 if (tdd->tdd_zombies != NULL &&
704                     (u_int)(cticks - lticks) > 5 * hz) {
705                         wantreap = true;
706                         break;
707                 }
708         }
709
710         if (wantreap)
711                 taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
712         callout_reset(&thread_reap_callout, 5 * hz,
713             thread_reap_callout_cb, NULL);
714 }
715
716 /*
717  * Calling this function guarantees that any thread that exited before
718  * the call is reaped when the function returns.  By 'exited' we mean
719  * a thread removed from the process linkage with thread_unlink().
720  * Practically this means that caller must lock/unlock corresponding
721  * process lock before the call, to synchronize with thread_exit().
722  */
723 void
724 thread_reap_barrier(void)
725 {
726         struct task *t;
727
728         /*
729          * First do context switches to each CPU to ensure that all
730          * PCPU pc_deadthreads are moved to zombie list.
731          */
732         quiesce_all_cpus("", PDROP);
733
734         /*
735          * Second, fire the task in the same thread as normal
736          * thread_reap() is done, to serialize reaping.
737          */
738         t = malloc(sizeof(*t), M_TEMP, M_WAITOK);
739         TASK_INIT(t, 0, thread_reap_task_cb, t);
740         taskqueue_enqueue(taskqueue_thread, t);
741         taskqueue_drain(taskqueue_thread, t);
742         free(t, M_TEMP);
743 }
744
745 /*
746  * Allocate a thread.
747  */
748 struct thread *
749 thread_alloc(int pages)
750 {
751         struct thread *td;
752         lwpid_t tid;
753
754         if (!thread_count_inc()) {
755                 return (NULL);
756         }
757
758         tid = tid_alloc();
759         td = uma_zalloc(thread_zone, M_WAITOK);
760         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
761         if (!vm_thread_new(td, pages)) {
762                 uma_zfree(thread_zone, td);
763                 tid_free(tid);
764                 thread_count_dec();
765                 return (NULL);
766         }
767         td->td_tid = tid;
768         bzero(&td->td_sa.args, sizeof(td->td_sa.args));
769         kmsan_thread_alloc(td);
770         cpu_thread_alloc(td);
771         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
772         return (td);
773 }
774
775 int
776 thread_alloc_stack(struct thread *td, int pages)
777 {
778
779         KASSERT(td->td_kstack == 0,
780             ("thread_alloc_stack called on a thread with kstack"));
781         if (!vm_thread_new(td, pages))
782                 return (0);
783         cpu_thread_alloc(td);
784         return (1);
785 }
786
787 /*
788  * Deallocate a thread.
789  */
790 static void
791 thread_free_batched(struct thread *td)
792 {
793
794         lock_profile_thread_exit(td);
795         if (td->td_cpuset)
796                 cpuset_rel(td->td_cpuset);
797         td->td_cpuset = NULL;
798         cpu_thread_free(td);
799         if (td->td_kstack != 0)
800                 vm_thread_dispose(td);
801         callout_drain(&td->td_slpcallout);
802         /*
803          * Freeing handled by the caller.
804          */
805         td->td_tid = -1;
806         kmsan_thread_free(td);
807         uma_zfree(thread_zone, td);
808 }
809
810 void
811 thread_free(struct thread *td)
812 {
813         lwpid_t tid;
814
815         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
816         tid = td->td_tid;
817         thread_free_batched(td);
818         tid_free(tid);
819         thread_count_dec();
820 }
821
822 void
823 thread_cow_get_proc(struct thread *newtd, struct proc *p)
824 {
825
826         PROC_LOCK_ASSERT(p, MA_OWNED);
827         newtd->td_realucred = crcowget(p->p_ucred);
828         newtd->td_ucred = newtd->td_realucred;
829         newtd->td_limit = lim_hold(p->p_limit);
830         newtd->td_cowgen = p->p_cowgen;
831 }
832
833 void
834 thread_cow_get(struct thread *newtd, struct thread *td)
835 {
836
837         MPASS(td->td_realucred == td->td_ucred);
838         newtd->td_realucred = crcowget(td->td_realucred);
839         newtd->td_ucred = newtd->td_realucred;
840         newtd->td_limit = lim_hold(td->td_limit);
841         newtd->td_cowgen = td->td_cowgen;
842 }
843
844 void
845 thread_cow_free(struct thread *td)
846 {
847
848         if (td->td_realucred != NULL)
849                 crcowfree(td);
850         if (td->td_limit != NULL)
851                 lim_free(td->td_limit);
852 }
853
854 void
855 thread_cow_update(struct thread *td)
856 {
857         struct proc *p;
858         struct ucred *oldcred;
859         struct plimit *oldlimit;
860
861         p = td->td_proc;
862         PROC_LOCK(p);
863         oldcred = crcowsync();
864         oldlimit = lim_cowsync();
865         td->td_cowgen = p->p_cowgen;
866         PROC_UNLOCK(p);
867         if (oldcred != NULL)
868                 crfree(oldcred);
869         if (oldlimit != NULL)
870                 lim_free(oldlimit);
871 }
872
873 void
874 thread_cow_synced(struct thread *td)
875 {
876         struct proc *p;
877
878         p = td->td_proc;
879         PROC_LOCK_ASSERT(p, MA_OWNED);
880         MPASS(td->td_cowgen != p->p_cowgen);
881         MPASS(td->td_ucred == p->p_ucred);
882         MPASS(td->td_limit == p->p_limit);
883         td->td_cowgen = p->p_cowgen;
884 }
885
886 /*
887  * Discard the current thread and exit from its context.
888  * Always called with scheduler locked.
889  *
890  * Because we can't free a thread while we're operating under its context,
891  * push the current thread into our CPU's deadthread holder. This means
892  * we needn't worry about someone else grabbing our context before we
893  * do a cpu_throw().
894  */
895 void
896 thread_exit(void)
897 {
898         uint64_t runtime, new_switchtime;
899         struct thread *td;
900         struct thread *td2;
901         struct proc *p;
902         int wakeup_swapper;
903
904         td = curthread;
905         p = td->td_proc;
906
907         PROC_SLOCK_ASSERT(p, MA_OWNED);
908         mtx_assert(&Giant, MA_NOTOWNED);
909
910         PROC_LOCK_ASSERT(p, MA_OWNED);
911         KASSERT(p != NULL, ("thread exiting without a process"));
912         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
913             (long)p->p_pid, td->td_name);
914         SDT_PROBE0(proc, , , lwp__exit);
915         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
916         MPASS(td->td_realucred == td->td_ucred);
917
918         /*
919          * drop FPU & debug register state storage, or any other
920          * architecture specific resources that
921          * would not be on a new untouched process.
922          */
923         cpu_thread_exit(td);
924
925         /*
926          * The last thread is left attached to the process
927          * So that the whole bundle gets recycled. Skip
928          * all this stuff if we never had threads.
929          * EXIT clears all sign of other threads when
930          * it goes to single threading, so the last thread always
931          * takes the short path.
932          */
933         if (p->p_flag & P_HADTHREADS) {
934                 if (p->p_numthreads > 1) {
935                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
936                         thread_unlink(td);
937                         td2 = FIRST_THREAD_IN_PROC(p);
938                         sched_exit_thread(td2, td);
939
940                         /*
941                          * The test below is NOT true if we are the
942                          * sole exiting thread. P_STOPPED_SINGLE is unset
943                          * in exit1() after it is the only survivor.
944                          */
945                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
946                                 if (p->p_numthreads == p->p_suspcount) {
947                                         thread_lock(p->p_singlethread);
948                                         wakeup_swapper = thread_unsuspend_one(
949                                                 p->p_singlethread, p, false);
950                                         if (wakeup_swapper)
951                                                 kick_proc0();
952                                 }
953                         }
954
955                         PCPU_SET(deadthread, td);
956                 } else {
957                         /*
958                          * The last thread is exiting.. but not through exit()
959                          */
960                         panic ("thread_exit: Last thread exiting on its own");
961                 }
962         } 
963 #ifdef  HWPMC_HOOKS
964         /*
965          * If this thread is part of a process that is being tracked by hwpmc(4),
966          * inform the module of the thread's impending exit.
967          */
968         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
969                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
970                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
971         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
972                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
973 #endif
974         PROC_UNLOCK(p);
975         PROC_STATLOCK(p);
976         thread_lock(td);
977         PROC_SUNLOCK(p);
978
979         /* Do the same timestamp bookkeeping that mi_switch() would do. */
980         new_switchtime = cpu_ticks();
981         runtime = new_switchtime - PCPU_GET(switchtime);
982         td->td_runtime += runtime;
983         td->td_incruntime += runtime;
984         PCPU_SET(switchtime, new_switchtime);
985         PCPU_SET(switchticks, ticks);
986         VM_CNT_INC(v_swtch);
987
988         /* Save our resource usage in our process. */
989         td->td_ru.ru_nvcsw++;
990         ruxagg_locked(p, td);
991         rucollect(&p->p_ru, &td->td_ru);
992         PROC_STATUNLOCK(p);
993
994         TD_SET_STATE(td, TDS_INACTIVE);
995 #ifdef WITNESS
996         witness_thread_exit(td);
997 #endif
998         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
999         sched_throw(td);
1000         panic("I'm a teapot!");
1001         /* NOTREACHED */
1002 }
1003
1004 /*
1005  * Do any thread specific cleanups that may be needed in wait()
1006  * called with Giant, proc and schedlock not held.
1007  */
1008 void
1009 thread_wait(struct proc *p)
1010 {
1011         struct thread *td;
1012
1013         mtx_assert(&Giant, MA_NOTOWNED);
1014         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
1015         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
1016         td = FIRST_THREAD_IN_PROC(p);
1017         /* Lock the last thread so we spin until it exits cpu_throw(). */
1018         thread_lock(td);
1019         thread_unlock(td);
1020         lock_profile_thread_exit(td);
1021         cpuset_rel(td->td_cpuset);
1022         td->td_cpuset = NULL;
1023         cpu_thread_clean(td);
1024         thread_cow_free(td);
1025         callout_drain(&td->td_slpcallout);
1026         thread_reap();  /* check for zombie threads etc. */
1027 }
1028
1029 /*
1030  * Link a thread to a process.
1031  * set up anything that needs to be initialized for it to
1032  * be used by the process.
1033  */
1034 void
1035 thread_link(struct thread *td, struct proc *p)
1036 {
1037
1038         /*
1039          * XXX This can't be enabled because it's called for proc0 before
1040          * its lock has been created.
1041          * PROC_LOCK_ASSERT(p, MA_OWNED);
1042          */
1043         TD_SET_STATE(td, TDS_INACTIVE);
1044         td->td_proc     = p;
1045         td->td_flags    = TDF_INMEM;
1046
1047         LIST_INIT(&td->td_contested);
1048         LIST_INIT(&td->td_lprof[0]);
1049         LIST_INIT(&td->td_lprof[1]);
1050 #ifdef EPOCH_TRACE
1051         SLIST_INIT(&td->td_epochs);
1052 #endif
1053         sigqueue_init(&td->td_sigqueue, p);
1054         callout_init(&td->td_slpcallout, 1);
1055         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
1056         p->p_numthreads++;
1057 }
1058
1059 /*
1060  * Called from:
1061  *  thread_exit()
1062  */
1063 void
1064 thread_unlink(struct thread *td)
1065 {
1066         struct proc *p = td->td_proc;
1067
1068         PROC_LOCK_ASSERT(p, MA_OWNED);
1069 #ifdef EPOCH_TRACE
1070         MPASS(SLIST_EMPTY(&td->td_epochs));
1071 #endif
1072
1073         TAILQ_REMOVE(&p->p_threads, td, td_plist);
1074         p->p_numthreads--;
1075         /* could clear a few other things here */
1076         /* Must  NOT clear links to proc! */
1077 }
1078
1079 static int
1080 calc_remaining(struct proc *p, int mode)
1081 {
1082         int remaining;
1083
1084         PROC_LOCK_ASSERT(p, MA_OWNED);
1085         PROC_SLOCK_ASSERT(p, MA_OWNED);
1086         if (mode == SINGLE_EXIT)
1087                 remaining = p->p_numthreads;
1088         else if (mode == SINGLE_BOUNDARY)
1089                 remaining = p->p_numthreads - p->p_boundary_count;
1090         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
1091                 remaining = p->p_numthreads - p->p_suspcount;
1092         else
1093                 panic("calc_remaining: wrong mode %d", mode);
1094         return (remaining);
1095 }
1096
1097 static int
1098 remain_for_mode(int mode)
1099 {
1100
1101         return (mode == SINGLE_ALLPROC ? 0 : 1);
1102 }
1103
1104 static int
1105 weed_inhib(int mode, struct thread *td2, struct proc *p)
1106 {
1107         int wakeup_swapper;
1108
1109         PROC_LOCK_ASSERT(p, MA_OWNED);
1110         PROC_SLOCK_ASSERT(p, MA_OWNED);
1111         THREAD_LOCK_ASSERT(td2, MA_OWNED);
1112
1113         wakeup_swapper = 0;
1114
1115         /*
1116          * Since the thread lock is dropped by the scheduler we have
1117          * to retry to check for races.
1118          */
1119 restart:
1120         switch (mode) {
1121         case SINGLE_EXIT:
1122                 if (TD_IS_SUSPENDED(td2)) {
1123                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
1124                         thread_lock(td2);
1125                         goto restart;
1126                 }
1127                 if (TD_CAN_ABORT(td2)) {
1128                         wakeup_swapper |= sleepq_abort(td2, EINTR);
1129                         return (wakeup_swapper);
1130                 }
1131                 break;
1132         case SINGLE_BOUNDARY:
1133         case SINGLE_NO_EXIT:
1134                 if (TD_IS_SUSPENDED(td2) &&
1135                     (td2->td_flags & TDF_BOUNDARY) == 0) {
1136                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1137                         thread_lock(td2);
1138                         goto restart;
1139                 }
1140                 if (TD_CAN_ABORT(td2)) {
1141                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1142                         return (wakeup_swapper);
1143                 }
1144                 break;
1145         case SINGLE_ALLPROC:
1146                 /*
1147                  * ALLPROC suspend tries to avoid spurious EINTR for
1148                  * threads sleeping interruptable, by suspending the
1149                  * thread directly, similarly to sig_suspend_threads().
1150                  * Since such sleep is not neccessary performed at the user
1151                  * boundary, TDF_ALLPROCSUSP is used to avoid immediate
1152                  * un-suspend.
1153                  */
1154                 if (TD_IS_SUSPENDED(td2) &&
1155                     (td2->td_flags & TDF_ALLPROCSUSP) == 0) {
1156                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1157                         thread_lock(td2);
1158                         goto restart;
1159                 }
1160                 if (TD_CAN_ABORT(td2)) {
1161                         td2->td_flags |= TDF_ALLPROCSUSP;
1162                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
1163                         return (wakeup_swapper);
1164                 }
1165                 break;
1166         default:
1167                 break;
1168         }
1169         thread_unlock(td2);
1170         return (wakeup_swapper);
1171 }
1172
1173 /*
1174  * Enforce single-threading.
1175  *
1176  * Returns 1 if the caller must abort (another thread is waiting to
1177  * exit the process or similar). Process is locked!
1178  * Returns 0 when you are successfully the only thread running.
1179  * A process has successfully single threaded in the suspend mode when
1180  * There are no threads in user mode. Threads in the kernel must be
1181  * allowed to continue until they get to the user boundary. They may even
1182  * copy out their return values and data before suspending. They may however be
1183  * accelerated in reaching the user boundary as we will wake up
1184  * any sleeping threads that are interruptable. (PCATCH).
1185  */
1186 int
1187 thread_single(struct proc *p, int mode)
1188 {
1189         struct thread *td;
1190         struct thread *td2;
1191         int remaining, wakeup_swapper;
1192
1193         td = curthread;
1194         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1195             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1196             ("invalid mode %d", mode));
1197         /*
1198          * If allowing non-ALLPROC singlethreading for non-curproc
1199          * callers, calc_remaining() and remain_for_mode() should be
1200          * adjusted to also account for td->td_proc != p.  For now
1201          * this is not implemented because it is not used.
1202          */
1203         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
1204             (mode != SINGLE_ALLPROC && td->td_proc == p),
1205             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
1206         mtx_assert(&Giant, MA_NOTOWNED);
1207         PROC_LOCK_ASSERT(p, MA_OWNED);
1208
1209         /*
1210          * Is someone already single threading?
1211          * Or may be singlethreading is not needed at all.
1212          */
1213         if (mode == SINGLE_ALLPROC) {
1214                 while ((p->p_flag & P_STOPPED_SINGLE) != 0) {
1215                         if ((p->p_flag2 & P2_WEXIT) != 0)
1216                                 return (1);
1217                         msleep(&p->p_flag, &p->p_mtx, PCATCH, "thrsgl", 0);
1218                 }
1219         } else if ((p->p_flag & P_HADTHREADS) == 0)
1220                 return (0);
1221         if (p->p_singlethread != NULL && p->p_singlethread != td)
1222                 return (1);
1223
1224         if (mode == SINGLE_EXIT) {
1225                 p->p_flag |= P_SINGLE_EXIT;
1226                 p->p_flag &= ~P_SINGLE_BOUNDARY;
1227         } else {
1228                 p->p_flag &= ~P_SINGLE_EXIT;
1229                 if (mode == SINGLE_BOUNDARY)
1230                         p->p_flag |= P_SINGLE_BOUNDARY;
1231                 else
1232                         p->p_flag &= ~P_SINGLE_BOUNDARY;
1233         }
1234         if (mode == SINGLE_ALLPROC)
1235                 p->p_flag |= P_TOTAL_STOP;
1236         p->p_flag |= P_STOPPED_SINGLE;
1237         PROC_SLOCK(p);
1238         p->p_singlethread = td;
1239         remaining = calc_remaining(p, mode);
1240         while (remaining != remain_for_mode(mode)) {
1241                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
1242                         goto stopme;
1243                 wakeup_swapper = 0;
1244                 FOREACH_THREAD_IN_PROC(p, td2) {
1245                         if (td2 == td)
1246                                 continue;
1247                         thread_lock(td2);
1248                         ast_sched_locked(td2, TDA_SUSPEND);
1249                         if (TD_IS_INHIBITED(td2)) {
1250                                 wakeup_swapper |= weed_inhib(mode, td2, p);
1251 #ifdef SMP
1252                         } else if (TD_IS_RUNNING(td2)) {
1253                                 forward_signal(td2);
1254                                 thread_unlock(td2);
1255 #endif
1256                         } else
1257                                 thread_unlock(td2);
1258                 }
1259                 if (wakeup_swapper)
1260                         kick_proc0();
1261                 remaining = calc_remaining(p, mode);
1262
1263                 /*
1264                  * Maybe we suspended some threads.. was it enough?
1265                  */
1266                 if (remaining == remain_for_mode(mode))
1267                         break;
1268
1269 stopme:
1270                 /*
1271                  * Wake us up when everyone else has suspended.
1272                  * In the mean time we suspend as well.
1273                  */
1274                 thread_suspend_switch(td, p);
1275                 remaining = calc_remaining(p, mode);
1276         }
1277         if (mode == SINGLE_EXIT) {
1278                 /*
1279                  * Convert the process to an unthreaded process.  The
1280                  * SINGLE_EXIT is called by exit1() or execve(), in
1281                  * both cases other threads must be retired.
1282                  */
1283                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
1284                 p->p_singlethread = NULL;
1285                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
1286
1287                 /*
1288                  * Wait for any remaining threads to exit cpu_throw().
1289                  */
1290                 while (p->p_exitthreads != 0) {
1291                         PROC_SUNLOCK(p);
1292                         PROC_UNLOCK(p);
1293                         sched_relinquish(td);
1294                         PROC_LOCK(p);
1295                         PROC_SLOCK(p);
1296                 }
1297         } else if (mode == SINGLE_BOUNDARY) {
1298                 /*
1299                  * Wait until all suspended threads are removed from
1300                  * the processors.  The thread_suspend_check()
1301                  * increments p_boundary_count while it is still
1302                  * running, which makes it possible for the execve()
1303                  * to destroy vmspace while our other threads are
1304                  * still using the address space.
1305                  *
1306                  * We lock the thread, which is only allowed to
1307                  * succeed after context switch code finished using
1308                  * the address space.
1309                  */
1310                 FOREACH_THREAD_IN_PROC(p, td2) {
1311                         if (td2 == td)
1312                                 continue;
1313                         thread_lock(td2);
1314                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
1315                             ("td %p not on boundary", td2));
1316                         KASSERT(TD_IS_SUSPENDED(td2),
1317                             ("td %p is not suspended", td2));
1318                         thread_unlock(td2);
1319                 }
1320         }
1321         PROC_SUNLOCK(p);
1322         return (0);
1323 }
1324
1325 bool
1326 thread_suspend_check_needed(void)
1327 {
1328         struct proc *p;
1329         struct thread *td;
1330
1331         td = curthread;
1332         p = td->td_proc;
1333         PROC_LOCK_ASSERT(p, MA_OWNED);
1334         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
1335             (td->td_dbgflags & TDB_SUSPEND) != 0));
1336 }
1337
1338 /*
1339  * Called in from locations that can safely check to see
1340  * whether we have to suspend or at least throttle for a
1341  * single-thread event (e.g. fork).
1342  *
1343  * Such locations include userret().
1344  * If the "return_instead" argument is non zero, the thread must be able to
1345  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1346  *
1347  * The 'return_instead' argument tells the function if it may do a
1348  * thread_exit() or suspend, or whether the caller must abort and back
1349  * out instead.
1350  *
1351  * If the thread that set the single_threading request has set the
1352  * P_SINGLE_EXIT bit in the process flags then this call will never return
1353  * if 'return_instead' is false, but will exit.
1354  *
1355  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1356  *---------------+--------------------+---------------------
1357  *       0       | returns 0          |   returns 0 or 1
1358  *               | when ST ends       |   immediately
1359  *---------------+--------------------+---------------------
1360  *       1       | thread exits       |   returns 1
1361  *               |                    |  immediately
1362  * 0 = thread_exit() or suspension ok,
1363  * other = return error instead of stopping the thread.
1364  *
1365  * While a full suspension is under effect, even a single threading
1366  * thread would be suspended if it made this call (but it shouldn't).
1367  * This call should only be made from places where
1368  * thread_exit() would be safe as that may be the outcome unless
1369  * return_instead is set.
1370  */
1371 int
1372 thread_suspend_check(int return_instead)
1373 {
1374         struct thread *td;
1375         struct proc *p;
1376         int wakeup_swapper;
1377
1378         td = curthread;
1379         p = td->td_proc;
1380         mtx_assert(&Giant, MA_NOTOWNED);
1381         PROC_LOCK_ASSERT(p, MA_OWNED);
1382         while (thread_suspend_check_needed()) {
1383                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1384                         KASSERT(p->p_singlethread != NULL,
1385                             ("singlethread not set"));
1386                         /*
1387                          * The only suspension in action is a
1388                          * single-threading. Single threader need not stop.
1389                          * It is safe to access p->p_singlethread unlocked
1390                          * because it can only be set to our address by us.
1391                          */
1392                         if (p->p_singlethread == td)
1393                                 return (0);     /* Exempt from stopping. */
1394                 }
1395                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1396                         return (EINTR);
1397
1398                 /* Should we goto user boundary if we didn't come from there? */
1399                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1400                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1401                         return (ERESTART);
1402
1403                 /*
1404                  * Ignore suspend requests if they are deferred.
1405                  */
1406                 if ((td->td_flags & TDF_SBDRY) != 0) {
1407                         KASSERT(return_instead,
1408                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
1409                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1410                             (TDF_SEINTR | TDF_SERESTART),
1411                             ("both TDF_SEINTR and TDF_SERESTART"));
1412                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1413                 }
1414
1415                 /*
1416                  * If the process is waiting for us to exit,
1417                  * this thread should just suicide.
1418                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1419                  */
1420                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1421                         PROC_UNLOCK(p);
1422
1423                         /*
1424                          * Allow Linux emulation layer to do some work
1425                          * before thread suicide.
1426                          */
1427                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1428                                 (p->p_sysent->sv_thread_detach)(td);
1429                         umtx_thread_exit(td);
1430                         kern_thr_exit(td);
1431                         panic("stopped thread did not exit");
1432                 }
1433
1434                 PROC_SLOCK(p);
1435                 thread_stopped(p);
1436                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1437                         if (p->p_numthreads == p->p_suspcount + 1) {
1438                                 thread_lock(p->p_singlethread);
1439                                 wakeup_swapper = thread_unsuspend_one(
1440                                     p->p_singlethread, p, false);
1441                                 if (wakeup_swapper)
1442                                         kick_proc0();
1443                         }
1444                 }
1445                 PROC_UNLOCK(p);
1446                 thread_lock(td);
1447                 /*
1448                  * When a thread suspends, it just
1449                  * gets taken off all queues.
1450                  */
1451                 thread_suspend_one(td);
1452                 if (return_instead == 0) {
1453                         p->p_boundary_count++;
1454                         td->td_flags |= TDF_BOUNDARY;
1455                 }
1456                 PROC_SUNLOCK(p);
1457                 mi_switch(SW_INVOL | SWT_SUSPEND);
1458                 PROC_LOCK(p);
1459         }
1460         return (0);
1461 }
1462
1463 /*
1464  * Check for possible stops and suspensions while executing a
1465  * casueword or similar transiently failing operation.
1466  *
1467  * The sleep argument controls whether the function can handle a stop
1468  * request itself or it should return ERESTART and the request is
1469  * proceed at the kernel/user boundary in ast.
1470  *
1471  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1472  * should handle the stop requests there, with exception of cases when
1473  * the thread owns a kernel resource, for instance busied the umtx
1474  * key, or when functions return immediately if thread_check_susp()
1475  * returned non-zero.  On the other hand, retrying the whole lock
1476  * operation, we better not stop there but delegate the handling to
1477  * ast.
1478  *
1479  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1480  * handle it at all, and simply return EINTR.
1481  */
1482 int
1483 thread_check_susp(struct thread *td, bool sleep)
1484 {
1485         struct proc *p;
1486         int error;
1487
1488         /*
1489          * The check for TDA_SUSPEND is racy, but it is enough to
1490          * eventually break the lockstep loop.
1491          */
1492         if (!td_ast_pending(td, TDA_SUSPEND))
1493                 return (0);
1494         error = 0;
1495         p = td->td_proc;
1496         PROC_LOCK(p);
1497         if (p->p_flag & P_SINGLE_EXIT)
1498                 error = EINTR;
1499         else if (P_SHOULDSTOP(p) ||
1500             ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1501                 error = sleep ? thread_suspend_check(0) : ERESTART;
1502         PROC_UNLOCK(p);
1503         return (error);
1504 }
1505
1506 void
1507 thread_suspend_switch(struct thread *td, struct proc *p)
1508 {
1509
1510         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1511         PROC_LOCK_ASSERT(p, MA_OWNED);
1512         PROC_SLOCK_ASSERT(p, MA_OWNED);
1513         /*
1514          * We implement thread_suspend_one in stages here to avoid
1515          * dropping the proc lock while the thread lock is owned.
1516          */
1517         if (p == td->td_proc) {
1518                 thread_stopped(p);
1519                 p->p_suspcount++;
1520         }
1521         PROC_UNLOCK(p);
1522         thread_lock(td);
1523         ast_unsched_locked(td, TDA_SUSPEND);
1524         TD_SET_SUSPENDED(td);
1525         sched_sleep(td, 0);
1526         PROC_SUNLOCK(p);
1527         DROP_GIANT();
1528         mi_switch(SW_VOL | SWT_SUSPEND);
1529         PICKUP_GIANT();
1530         PROC_LOCK(p);
1531         PROC_SLOCK(p);
1532 }
1533
1534 void
1535 thread_suspend_one(struct thread *td)
1536 {
1537         struct proc *p;
1538
1539         p = td->td_proc;
1540         PROC_SLOCK_ASSERT(p, MA_OWNED);
1541         THREAD_LOCK_ASSERT(td, MA_OWNED);
1542         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1543         p->p_suspcount++;
1544         ast_unsched_locked(td, TDA_SUSPEND);
1545         TD_SET_SUSPENDED(td);
1546         sched_sleep(td, 0);
1547 }
1548
1549 static int
1550 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1551 {
1552
1553         THREAD_LOCK_ASSERT(td, MA_OWNED);
1554         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1555         TD_CLR_SUSPENDED(td);
1556         td->td_flags &= ~TDF_ALLPROCSUSP;
1557         if (td->td_proc == p) {
1558                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1559                 p->p_suspcount--;
1560                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1561                         td->td_flags &= ~TDF_BOUNDARY;
1562                         p->p_boundary_count--;
1563                 }
1564         }
1565         return (setrunnable(td, 0));
1566 }
1567
1568 void
1569 thread_run_flash(struct thread *td)
1570 {
1571         struct proc *p;
1572
1573         p = td->td_proc;
1574         PROC_LOCK_ASSERT(p, MA_OWNED);
1575
1576         if (TD_ON_SLEEPQ(td))
1577                 sleepq_remove_nested(td);
1578         else
1579                 thread_lock(td);
1580
1581         THREAD_LOCK_ASSERT(td, MA_OWNED);
1582         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1583
1584         TD_CLR_SUSPENDED(td);
1585         PROC_SLOCK(p);
1586         MPASS(p->p_suspcount > 0);
1587         p->p_suspcount--;
1588         PROC_SUNLOCK(p);
1589         if (setrunnable(td, 0))
1590                 kick_proc0();
1591 }
1592
1593 /*
1594  * Allow all threads blocked by single threading to continue running.
1595  */
1596 void
1597 thread_unsuspend(struct proc *p)
1598 {
1599         struct thread *td;
1600         int wakeup_swapper;
1601
1602         PROC_LOCK_ASSERT(p, MA_OWNED);
1603         PROC_SLOCK_ASSERT(p, MA_OWNED);
1604         wakeup_swapper = 0;
1605         if (!P_SHOULDSTOP(p)) {
1606                 FOREACH_THREAD_IN_PROC(p, td) {
1607                         thread_lock(td);
1608                         if (TD_IS_SUSPENDED(td))
1609                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1610                                     true);
1611                         else
1612                                 thread_unlock(td);
1613                 }
1614         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1615             p->p_numthreads == p->p_suspcount) {
1616                 /*
1617                  * Stopping everything also did the job for the single
1618                  * threading request. Now we've downgraded to single-threaded,
1619                  * let it continue.
1620                  */
1621                 if (p->p_singlethread->td_proc == p) {
1622                         thread_lock(p->p_singlethread);
1623                         wakeup_swapper = thread_unsuspend_one(
1624                             p->p_singlethread, p, false);
1625                 }
1626         }
1627         if (wakeup_swapper)
1628                 kick_proc0();
1629 }
1630
1631 /*
1632  * End the single threading mode..
1633  */
1634 void
1635 thread_single_end(struct proc *p, int mode)
1636 {
1637         struct thread *td;
1638         int wakeup_swapper;
1639
1640         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1641             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1642             ("invalid mode %d", mode));
1643         PROC_LOCK_ASSERT(p, MA_OWNED);
1644         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1645             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1646             ("mode %d does not match P_TOTAL_STOP", mode));
1647         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1648             ("thread_single_end from other thread %p %p",
1649             curthread, p->p_singlethread));
1650         KASSERT(mode != SINGLE_BOUNDARY ||
1651             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1652             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1653         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1654             P_TOTAL_STOP);
1655         PROC_SLOCK(p);
1656         p->p_singlethread = NULL;
1657         wakeup_swapper = 0;
1658         /*
1659          * If there are other threads they may now run,
1660          * unless of course there is a blanket 'stop order'
1661          * on the process. The single threader must be allowed
1662          * to continue however as this is a bad place to stop.
1663          */
1664         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1665                 FOREACH_THREAD_IN_PROC(p, td) {
1666                         thread_lock(td);
1667                         if (TD_IS_SUSPENDED(td)) {
1668                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1669                                     true);
1670                         } else
1671                                 thread_unlock(td);
1672                 }
1673         }
1674         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1675             ("inconsistent boundary count %d", p->p_boundary_count));
1676         PROC_SUNLOCK(p);
1677         if (wakeup_swapper)
1678                 kick_proc0();
1679         wakeup(&p->p_flag);
1680 }
1681
1682 /*
1683  * Locate a thread by number and return with proc lock held.
1684  *
1685  * thread exit establishes proc -> tidhash lock ordering, but lookup
1686  * takes tidhash first and needs to return locked proc.
1687  *
1688  * The problem is worked around by relying on type-safety of both
1689  * structures and doing the work in 2 steps:
1690  * - tidhash-locked lookup which saves both thread and proc pointers
1691  * - proc-locked verification that the found thread still matches
1692  */
1693 static bool
1694 tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
1695 {
1696 #define RUN_THRESH      16
1697         struct proc *p;
1698         struct thread *td;
1699         int run;
1700         bool locked;
1701
1702         run = 0;
1703         rw_rlock(TIDHASHLOCK(tid));
1704         locked = true;
1705         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1706                 if (td->td_tid != tid) {
1707                         run++;
1708                         continue;
1709                 }
1710                 p = td->td_proc;
1711                 if (pid != -1 && p->p_pid != pid) {
1712                         td = NULL;
1713                         break;
1714                 }
1715                 if (run > RUN_THRESH) {
1716                         if (rw_try_upgrade(TIDHASHLOCK(tid))) {
1717                                 LIST_REMOVE(td, td_hash);
1718                                 LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1719                                         td, td_hash);
1720                                 rw_wunlock(TIDHASHLOCK(tid));
1721                                 locked = false;
1722                                 break;
1723                         }
1724                 }
1725                 break;
1726         }
1727         if (locked)
1728                 rw_runlock(TIDHASHLOCK(tid));
1729         if (td == NULL)
1730                 return (false);
1731         *pp = p;
1732         *tdp = td;
1733         return (true);
1734 }
1735
1736 struct thread *
1737 tdfind(lwpid_t tid, pid_t pid)
1738 {
1739         struct proc *p;
1740         struct thread *td;
1741
1742         td = curthread;
1743         if (td->td_tid == tid) {
1744                 if (pid != -1 && td->td_proc->p_pid != pid)
1745                         return (NULL);
1746                 PROC_LOCK(td->td_proc);
1747                 return (td);
1748         }
1749
1750         for (;;) {
1751                 if (!tdfind_hash(tid, pid, &p, &td))
1752                         return (NULL);
1753                 PROC_LOCK(p);
1754                 if (td->td_tid != tid) {
1755                         PROC_UNLOCK(p);
1756                         continue;
1757                 }
1758                 if (td->td_proc != p) {
1759                         PROC_UNLOCK(p);
1760                         continue;
1761                 }
1762                 if (p->p_state == PRS_NEW) {
1763                         PROC_UNLOCK(p);
1764                         return (NULL);
1765                 }
1766                 return (td);
1767         }
1768 }
1769
1770 void
1771 tidhash_add(struct thread *td)
1772 {
1773         rw_wlock(TIDHASHLOCK(td->td_tid));
1774         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1775         rw_wunlock(TIDHASHLOCK(td->td_tid));
1776 }
1777
1778 void
1779 tidhash_remove(struct thread *td)
1780 {
1781
1782         rw_wlock(TIDHASHLOCK(td->td_tid));
1783         LIST_REMOVE(td, td_hash);
1784         rw_wunlock(TIDHASHLOCK(td->td_tid));
1785 }