]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
This commit was generated by cvs2svn to compensate for changes in r171364,
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/resourcevar.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41 #include <sys/sched.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/turnstile.h>
44 #include <sys/ktr.h>
45 #include <sys/umtx.h>
46
47 #include <security/audit/audit.h>
48
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/uma.h>
52
53 /*
54  * thread related storage.
55  */
56 static uma_zone_t thread_zone;
57
58 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
59
60 int max_threads_per_proc = 1500;
61 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
62         &max_threads_per_proc, 0, "Limit on threads per proc");
63
64 int max_threads_hits;
65 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
66         &max_threads_hits, 0, "");
67
68 #ifdef KSE
69 int virtual_cpu;
70
71 #endif
72 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
73 struct mtx zombie_lock;
74 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
75
76 static void thread_zombie(struct thread *);
77
78 #ifdef KSE
79 static int
80 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
81 {
82         int error, new_val;
83         int def_val;
84
85         def_val = mp_ncpus;
86         if (virtual_cpu == 0)
87                 new_val = def_val;
88         else
89                 new_val = virtual_cpu;
90         error = sysctl_handle_int(oidp, &new_val, 0, req);
91         if (error != 0 || req->newptr == NULL)
92                 return (error);
93         if (new_val < 0)
94                 return (EINVAL);
95         virtual_cpu = new_val;
96         return (0);
97 }
98
99 /* DEBUG ONLY */
100 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
101         0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
102         "debug virtual cpus");
103 #endif
104
105 struct mtx tid_lock;
106 static struct unrhdr *tid_unrhdr;
107
108 /*
109  * Prepare a thread for use.
110  */
111 static int
112 thread_ctor(void *mem, int size, void *arg, int flags)
113 {
114         struct thread   *td;
115
116         td = (struct thread *)mem;
117         td->td_state = TDS_INACTIVE;
118         td->td_oncpu = NOCPU;
119
120         td->td_tid = alloc_unr(tid_unrhdr);
121         td->td_syscalls = 0;
122
123         /*
124          * Note that td_critnest begins life as 1 because the thread is not
125          * running and is thereby implicitly waiting to be on the receiving
126          * end of a context switch.
127          */
128         td->td_critnest = 1;
129
130 #ifdef AUDIT
131         audit_thread_alloc(td);
132 #endif
133         umtx_thread_alloc(td);
134         return (0);
135 }
136
137 /*
138  * Reclaim a thread after use.
139  */
140 static void
141 thread_dtor(void *mem, int size, void *arg)
142 {
143         struct thread *td;
144
145         td = (struct thread *)mem;
146
147 #ifdef INVARIANTS
148         /* Verify that this thread is in a safe state to free. */
149         switch (td->td_state) {
150         case TDS_INHIBITED:
151         case TDS_RUNNING:
152         case TDS_CAN_RUN:
153         case TDS_RUNQ:
154                 /*
155                  * We must never unlink a thread that is in one of
156                  * these states, because it is currently active.
157                  */
158                 panic("bad state for thread unlinking");
159                 /* NOTREACHED */
160         case TDS_INACTIVE:
161                 break;
162         default:
163                 panic("bad thread state");
164                 /* NOTREACHED */
165         }
166 #endif
167 #ifdef AUDIT
168         audit_thread_free(td);
169 #endif
170         free_unr(tid_unrhdr, td->td_tid);
171         sched_newthread(td);
172 }
173
174 /*
175  * Initialize type-stable parts of a thread (when newly created).
176  */
177 static int
178 thread_init(void *mem, int size, int flags)
179 {
180         struct thread *td;
181
182         td = (struct thread *)mem;
183
184         vm_thread_new(td, 0);
185         cpu_thread_setup(td);
186         td->td_sleepqueue = sleepq_alloc();
187         td->td_turnstile = turnstile_alloc();
188         td->td_sched = (struct td_sched *)&td[1];
189         sched_newthread(td);
190         umtx_thread_init(td);
191         return (0);
192 }
193
194 /*
195  * Tear down type-stable parts of a thread (just before being discarded).
196  */
197 static void
198 thread_fini(void *mem, int size)
199 {
200         struct thread *td;
201
202         td = (struct thread *)mem;
203         turnstile_free(td->td_turnstile);
204         sleepq_free(td->td_sleepqueue);
205         umtx_thread_fini(td);
206         vm_thread_dispose(td);
207 }
208
209 /*
210  * For a newly created process,
211  * link up all the structures and its initial threads etc.
212  * called from:
213  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
214  * proc_dtor() (should go away)
215  * proc_init()
216  */
217 void
218 proc_linkup(struct proc *p, struct thread *td)
219 {
220
221         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
222 #ifdef KSE
223         TAILQ_INIT(&p->p_upcalls);           /* upcall list */
224 #endif
225         sigqueue_init(&p->p_sigqueue, p);
226         p->p_ksi = ksiginfo_alloc(1);
227         if (p->p_ksi != NULL) {
228                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
229                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
230         }
231         LIST_INIT(&p->p_mqnotifier);
232         p->p_numthreads = 0;
233         thread_link(td, p);
234 }
235
236 /*
237  * Initialize global thread allocation resources.
238  */
239 void
240 threadinit(void)
241 {
242
243         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
244         tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
245
246         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
247             thread_ctor, thread_dtor, thread_init, thread_fini,
248             16 - 1, 0);
249 #ifdef KSE
250         kseinit();      /* set up kse specific stuff  e.g. upcall zone*/
251 #endif
252 }
253
254 /*
255  * Place an unused thread on the zombie list.
256  * Use the slpq as that must be unused by now.
257  */
258 void
259 thread_zombie(struct thread *td)
260 {
261         mtx_lock_spin(&zombie_lock);
262         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
263         mtx_unlock_spin(&zombie_lock);
264 }
265
266 /*
267  * Release a thread that has exited after cpu_throw().
268  */
269 void
270 thread_stash(struct thread *td)
271 {
272         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
273         thread_zombie(td);
274 }
275
276 /*
277  * Reap zombie kse resource.
278  */
279 void
280 thread_reap(void)
281 {
282         struct thread *td_first, *td_next;
283
284         /*
285          * Don't even bother to lock if none at this instant,
286          * we really don't care about the next instant..
287          */
288         if (!TAILQ_EMPTY(&zombie_threads)) {
289                 mtx_lock_spin(&zombie_lock);
290                 td_first = TAILQ_FIRST(&zombie_threads);
291                 if (td_first)
292                         TAILQ_INIT(&zombie_threads);
293                 mtx_unlock_spin(&zombie_lock);
294                 while (td_first) {
295                         td_next = TAILQ_NEXT(td_first, td_slpq);
296                         if (td_first->td_ucred)
297                                 crfree(td_first->td_ucred);
298                         thread_free(td_first);
299                         td_first = td_next;
300                 }
301         }
302 }
303
304 /*
305  * Allocate a thread.
306  */
307 struct thread *
308 thread_alloc(void)
309 {
310
311         thread_reap(); /* check if any zombies to get */
312         return (uma_zalloc(thread_zone, M_WAITOK));
313 }
314
315
316 /*
317  * Deallocate a thread.
318  */
319 void
320 thread_free(struct thread *td)
321 {
322
323         cpu_thread_clean(td);
324         uma_zfree(thread_zone, td);
325 }
326
327 /*
328  * Discard the current thread and exit from its context.
329  * Always called with scheduler locked.
330  *
331  * Because we can't free a thread while we're operating under its context,
332  * push the current thread into our CPU's deadthread holder. This means
333  * we needn't worry about someone else grabbing our context before we
334  * do a cpu_throw().  This may not be needed now as we are under schedlock.
335  * Maybe we can just do a thread_stash() as thr_exit1 does.
336  */
337 /*  XXX
338  * libthr expects its thread exit to return for the last
339  * thread, meaning that the program is back to non-threaded
340  * mode I guess. Because we do this (cpu_throw) unconditionally
341  * here, they have their own version of it. (thr_exit1()) 
342  * that doesn't do it all if this was the last thread.
343  * It is also called from thread_suspend_check().
344  * Of course in the end, they end up coming here through exit1
345  * anyhow..  After fixing 'thr' to play by the rules we should be able 
346  * to merge these two functions together.
347  *
348  * called from:
349  * exit1()
350  * kse_exit()
351  * thr_exit()
352  * ifdef KSE
353  * thread_user_enter()
354  * thread_userret()
355  * endif
356  * thread_suspend_check()
357  */
358 void
359 thread_exit(void)
360 {
361         uint64_t new_switchtime;
362         struct thread *td;
363         struct thread *td2;
364         struct proc *p;
365
366         td = curthread;
367         p = td->td_proc;
368
369         PROC_SLOCK_ASSERT(p, MA_OWNED);
370         mtx_assert(&Giant, MA_NOTOWNED);
371
372         PROC_LOCK_ASSERT(p, MA_OWNED);
373         KASSERT(p != NULL, ("thread exiting without a process"));
374         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
375             (long)p->p_pid, p->p_comm);
376         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
377
378 #ifdef AUDIT
379         AUDIT_SYSCALL_EXIT(0, td);
380 #endif
381
382 #ifdef KSE
383         if (td->td_standin != NULL) {
384                 /*
385                  * Note that we don't need to free the cred here as it
386                  * is done in thread_reap().
387                  */
388                 thread_zombie(td->td_standin);
389                 td->td_standin = NULL;
390         }
391 #endif
392
393         umtx_thread_exit(td);
394
395         /*
396          * drop FPU & debug register state storage, or any other
397          * architecture specific resources that
398          * would not be on a new untouched process.
399          */
400         cpu_thread_exit(td);    /* XXXSMP */
401
402         /* Do the same timestamp bookkeeping that mi_switch() would do. */
403         new_switchtime = cpu_ticks();
404         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
405         PCPU_SET(switchtime, new_switchtime);
406         PCPU_SET(switchticks, ticks);
407         PCPU_INC(cnt.v_swtch);
408         /* Save our resource usage in our process. */
409         td->td_ru.ru_nvcsw++;
410         rucollect(&p->p_ru, &td->td_ru);
411         /*
412          * The last thread is left attached to the process
413          * So that the whole bundle gets recycled. Skip
414          * all this stuff if we never had threads.
415          * EXIT clears all sign of other threads when
416          * it goes to single threading, so the last thread always
417          * takes the short path.
418          */
419         if (p->p_flag & P_HADTHREADS) {
420                 if (p->p_numthreads > 1) {
421                         thread_lock(td);
422 #ifdef KSE
423                         kse_unlink(td);
424 #else
425                         thread_unlink(td);
426 #endif
427                         thread_unlock(td);
428                         td2 = FIRST_THREAD_IN_PROC(p);
429                         sched_exit_thread(td2, td);
430
431                         /*
432                          * The test below is NOT true if we are the
433                          * sole exiting thread. P_STOPPED_SNGL is unset
434                          * in exit1() after it is the only survivor.
435                          */
436                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
437                                 if (p->p_numthreads == p->p_suspcount) {
438                                         thread_lock(p->p_singlethread);
439                                         thread_unsuspend_one(p->p_singlethread);
440                                         thread_unlock(p->p_singlethread);
441                                 }
442                         }
443
444                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
445                         PCPU_SET(deadthread, td);
446                 } else {
447                         /*
448                          * The last thread is exiting.. but not through exit()
449                          * what should we do?
450                          * Theoretically this can't happen
451                          * exit1() - clears threading flags before coming here
452                          * kse_exit() - treats last thread specially
453                          * thr_exit() - treats last thread specially
454                          * ifdef KSE
455                          * thread_user_enter() - only if more exist
456                          * thread_userret() - only if more exist
457                          * endif
458                          * thread_suspend_check() - only if more exist
459                          */
460                         panic ("thread_exit: Last thread exiting on its own");
461                 }
462         } 
463         PROC_UNLOCK(p);
464         thread_lock(td);
465         /* Save our tick information with both the thread and proc locked */
466         ruxagg(&p->p_rux, td);
467         PROC_SUNLOCK(p);
468         td->td_state = TDS_INACTIVE;
469         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
470         sched_throw(td);
471         panic("I'm a teapot!");
472         /* NOTREACHED */
473 }
474
475 /*
476  * Do any thread specific cleanups that may be needed in wait()
477  * called with Giant, proc and schedlock not held.
478  */
479 void
480 thread_wait(struct proc *p)
481 {
482         struct thread *td;
483
484         mtx_assert(&Giant, MA_NOTOWNED);
485         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
486         td = FIRST_THREAD_IN_PROC(p);
487 #ifdef KSE
488         if (td->td_standin != NULL) {
489                 if (td->td_standin->td_ucred != NULL) {
490                         crfree(td->td_standin->td_ucred);
491                         td->td_standin->td_ucred = NULL;
492                 }
493                 thread_free(td->td_standin);
494                 td->td_standin = NULL;
495         }
496 #endif
497         /* Lock the last thread so we spin until it exits cpu_throw(). */
498         thread_lock(td);
499         thread_unlock(td);
500         /* Wait for any remaining threads to exit cpu_throw(). */
501         while (p->p_exitthreads)
502                 sched_relinquish(curthread);
503         cpu_thread_clean(td);
504         crfree(td->td_ucred);
505         thread_reap();  /* check for zombie threads etc. */
506 }
507
508 /*
509  * Link a thread to a process.
510  * set up anything that needs to be initialized for it to
511  * be used by the process.
512  *
513  * Note that we do not link to the proc's ucred here.
514  * The thread is linked as if running but no KSE assigned.
515  * Called from:
516  *  proc_linkup()
517  *  thread_schedule_upcall()
518  *  thr_create()
519  */
520 void
521 thread_link(struct thread *td, struct proc *p)
522 {
523
524         /*
525          * XXX This can't be enabled because it's called for proc0 before
526          * it's spinlock has been created.
527          * PROC_SLOCK_ASSERT(p, MA_OWNED);
528          */
529         td->td_state    = TDS_INACTIVE;
530         td->td_proc     = p;
531         td->td_flags    = 0;
532
533         LIST_INIT(&td->td_contested);
534         sigqueue_init(&td->td_sigqueue, p);
535         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
536         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
537         p->p_numthreads++;
538 }
539
540 /*
541  * Convert a process with one thread to an unthreaded process.
542  * Called from:
543  *  thread_single(exit)  (called from execve and exit)
544  *  kse_exit()          XXX may need cleaning up wrt KSE stuff
545  */
546 void
547 thread_unthread(struct thread *td)
548 {
549         struct proc *p = td->td_proc;
550
551         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
552 #ifdef KSE
553         upcall_remove(td);
554         p->p_flag &= ~(P_SA|P_HADTHREADS);
555         td->td_mailbox = NULL;
556         td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
557         if (td->td_standin != NULL) {
558                 thread_zombie(td->td_standin);
559                 td->td_standin = NULL;
560         }
561 #else
562         p->p_flag &= ~P_HADTHREADS;
563 #endif
564 }
565
566 /*
567  * Called from:
568  *  thread_exit()
569  */
570 void
571 thread_unlink(struct thread *td)
572 {
573         struct proc *p = td->td_proc;
574
575         PROC_SLOCK_ASSERT(p, MA_OWNED);
576         TAILQ_REMOVE(&p->p_threads, td, td_plist);
577         p->p_numthreads--;
578         /* could clear a few other things here */
579         /* Must  NOT clear links to proc! */
580 }
581
582 /*
583  * Enforce single-threading.
584  *
585  * Returns 1 if the caller must abort (another thread is waiting to
586  * exit the process or similar). Process is locked!
587  * Returns 0 when you are successfully the only thread running.
588  * A process has successfully single threaded in the suspend mode when
589  * There are no threads in user mode. Threads in the kernel must be
590  * allowed to continue until they get to the user boundary. They may even
591  * copy out their return values and data before suspending. They may however be
592  * accelerated in reaching the user boundary as we will wake up
593  * any sleeping threads that are interruptable. (PCATCH).
594  */
595 int
596 thread_single(int mode)
597 {
598         struct thread *td;
599         struct thread *td2;
600         struct proc *p;
601         int remaining;
602
603         td = curthread;
604         p = td->td_proc;
605         mtx_assert(&Giant, MA_NOTOWNED);
606         PROC_LOCK_ASSERT(p, MA_OWNED);
607         KASSERT((td != NULL), ("curthread is NULL"));
608
609         if ((p->p_flag & P_HADTHREADS) == 0)
610                 return (0);
611
612         /* Is someone already single threading? */
613         if (p->p_singlethread != NULL && p->p_singlethread != td)
614                 return (1);
615
616         if (mode == SINGLE_EXIT) {
617                 p->p_flag |= P_SINGLE_EXIT;
618                 p->p_flag &= ~P_SINGLE_BOUNDARY;
619         } else {
620                 p->p_flag &= ~P_SINGLE_EXIT;
621                 if (mode == SINGLE_BOUNDARY)
622                         p->p_flag |= P_SINGLE_BOUNDARY;
623                 else
624                         p->p_flag &= ~P_SINGLE_BOUNDARY;
625         }
626         p->p_flag |= P_STOPPED_SINGLE;
627         PROC_SLOCK(p);
628         p->p_singlethread = td;
629         if (mode == SINGLE_EXIT)
630                 remaining = p->p_numthreads;
631         else if (mode == SINGLE_BOUNDARY)
632                 remaining = p->p_numthreads - p->p_boundary_count;
633         else
634                 remaining = p->p_numthreads - p->p_suspcount;
635         while (remaining != 1) {
636                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
637                         goto stopme;
638                 FOREACH_THREAD_IN_PROC(p, td2) {
639                         if (td2 == td)
640                                 continue;
641                         thread_lock(td2);
642                         td2->td_flags |= TDF_ASTPENDING;
643                         if (TD_IS_INHIBITED(td2)) {
644                                 switch (mode) {
645                                 case SINGLE_EXIT:
646                                         if (td->td_flags & TDF_DBSUSPEND)
647                                                 td->td_flags &= ~TDF_DBSUSPEND;
648                                         if (TD_IS_SUSPENDED(td2))
649                                                 thread_unsuspend_one(td2);
650                                         if (TD_ON_SLEEPQ(td2) &&
651                                             (td2->td_flags & TDF_SINTR))
652                                                 sleepq_abort(td2, EINTR);
653                                         break;
654                                 case SINGLE_BOUNDARY:
655                                         if (TD_IS_SUSPENDED(td2) &&
656                                             !(td2->td_flags & TDF_BOUNDARY))
657                                                 thread_unsuspend_one(td2);
658                                         if (TD_ON_SLEEPQ(td2) &&
659                                             (td2->td_flags & TDF_SINTR))
660                                                 sleepq_abort(td2, ERESTART);
661                                         break;
662                                 default:        
663                                         if (TD_IS_SUSPENDED(td2)) {
664                                                 thread_unlock(td2);
665                                                 continue;
666                                         }
667                                         /*
668                                          * maybe other inhibited states too?
669                                          */
670                                         if ((td2->td_flags & TDF_SINTR) &&
671                                             (td2->td_inhibitors &
672                                             (TDI_SLEEPING | TDI_SWAPPED)))
673                                                 thread_suspend_one(td2);
674                                         break;
675                                 }
676                         }
677 #ifdef SMP
678                         else if (TD_IS_RUNNING(td2) && td != td2) {
679                                 forward_signal(td2);
680                         }
681 #endif
682                         thread_unlock(td2);
683                 }
684                 if (mode == SINGLE_EXIT)
685                         remaining = p->p_numthreads;
686                 else if (mode == SINGLE_BOUNDARY)
687                         remaining = p->p_numthreads - p->p_boundary_count;
688                 else
689                         remaining = p->p_numthreads - p->p_suspcount;
690
691                 /*
692                  * Maybe we suspended some threads.. was it enough?
693                  */
694                 if (remaining == 1)
695                         break;
696
697 stopme:
698                 /*
699                  * Wake us up when everyone else has suspended.
700                  * In the mean time we suspend as well.
701                  */
702                 thread_suspend_switch(td);
703                 if (mode == SINGLE_EXIT)
704                         remaining = p->p_numthreads;
705                 else if (mode == SINGLE_BOUNDARY)
706                         remaining = p->p_numthreads - p->p_boundary_count;
707                 else
708                         remaining = p->p_numthreads - p->p_suspcount;
709         }
710         if (mode == SINGLE_EXIT) {
711                 /*
712                  * We have gotten rid of all the other threads and we
713                  * are about to either exit or exec. In either case,
714                  * we try our utmost  to revert to being a non-threaded
715                  * process.
716                  */
717                 p->p_singlethread = NULL;
718                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
719                 thread_unthread(td);
720         }
721         PROC_SUNLOCK(p);
722         return (0);
723 }
724
725 /*
726  * Called in from locations that can safely check to see
727  * whether we have to suspend or at least throttle for a
728  * single-thread event (e.g. fork).
729  *
730  * Such locations include userret().
731  * If the "return_instead" argument is non zero, the thread must be able to
732  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
733  *
734  * The 'return_instead' argument tells the function if it may do a
735  * thread_exit() or suspend, or whether the caller must abort and back
736  * out instead.
737  *
738  * If the thread that set the single_threading request has set the
739  * P_SINGLE_EXIT bit in the process flags then this call will never return
740  * if 'return_instead' is false, but will exit.
741  *
742  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
743  *---------------+--------------------+---------------------
744  *       0       | returns 0          |   returns 0 or 1
745  *               | when ST ends       |   immediatly
746  *---------------+--------------------+---------------------
747  *       1       | thread exits       |   returns 1
748  *               |                    |  immediatly
749  * 0 = thread_exit() or suspension ok,
750  * other = return error instead of stopping the thread.
751  *
752  * While a full suspension is under effect, even a single threading
753  * thread would be suspended if it made this call (but it shouldn't).
754  * This call should only be made from places where
755  * thread_exit() would be safe as that may be the outcome unless
756  * return_instead is set.
757  */
758 int
759 thread_suspend_check(int return_instead)
760 {
761         struct thread *td;
762         struct proc *p;
763
764         td = curthread;
765         p = td->td_proc;
766         mtx_assert(&Giant, MA_NOTOWNED);
767         PROC_LOCK_ASSERT(p, MA_OWNED);
768         while (P_SHOULDSTOP(p) ||
769               ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
770                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
771                         KASSERT(p->p_singlethread != NULL,
772                             ("singlethread not set"));
773                         /*
774                          * The only suspension in action is a
775                          * single-threading. Single threader need not stop.
776                          * XXX Should be safe to access unlocked
777                          * as it can only be set to be true by us.
778                          */
779                         if (p->p_singlethread == td)
780                                 return (0);     /* Exempt from stopping. */
781                 }
782                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
783                         return (EINTR);
784
785                 /* Should we goto user boundary if we didn't come from there? */
786                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
787                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
788                         return (ERESTART);
789
790                 /* If thread will exit, flush its pending signals */
791                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
792                         sigqueue_flush(&td->td_sigqueue);
793
794                 PROC_SLOCK(p);
795                 thread_stopped(p);
796                 /*
797                  * If the process is waiting for us to exit,
798                  * this thread should just suicide.
799                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
800                  */
801                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
802                         thread_exit();
803                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
804                         if (p->p_numthreads == p->p_suspcount + 1) {
805                                 thread_lock(p->p_singlethread);
806                                 thread_unsuspend_one(p->p_singlethread);
807                                 thread_unlock(p->p_singlethread);
808                         }
809                 }
810                 PROC_UNLOCK(p);
811                 thread_lock(td);
812                 /*
813                  * When a thread suspends, it just
814                  * gets taken off all queues.
815                  */
816                 thread_suspend_one(td);
817                 if (return_instead == 0) {
818                         p->p_boundary_count++;
819                         td->td_flags |= TDF_BOUNDARY;
820                 }
821                 PROC_SUNLOCK(p);
822                 mi_switch(SW_INVOL, NULL);
823                 if (return_instead == 0)
824                         td->td_flags &= ~TDF_BOUNDARY;
825                 thread_unlock(td);
826                 PROC_LOCK(p);
827                 if (return_instead == 0)
828                         p->p_boundary_count--;
829         }
830         return (0);
831 }
832
833 void
834 thread_suspend_switch(struct thread *td)
835 {
836         struct proc *p;
837
838         p = td->td_proc;
839         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
840         PROC_LOCK_ASSERT(p, MA_OWNED);
841         PROC_SLOCK_ASSERT(p, MA_OWNED);
842         /*
843          * We implement thread_suspend_one in stages here to avoid
844          * dropping the proc lock while the thread lock is owned.
845          */
846         thread_stopped(p);
847         p->p_suspcount++;
848         PROC_UNLOCK(p);
849         thread_lock(td);
850         TD_SET_SUSPENDED(td);
851         PROC_SUNLOCK(p);
852         DROP_GIANT();
853         mi_switch(SW_VOL, NULL);
854         thread_unlock(td);
855         PICKUP_GIANT();
856         PROC_LOCK(p);
857         PROC_SLOCK(p);
858 }
859
860 void
861 thread_suspend_one(struct thread *td)
862 {
863         struct proc *p = td->td_proc;
864
865         PROC_SLOCK_ASSERT(p, MA_OWNED);
866         THREAD_LOCK_ASSERT(td, MA_OWNED);
867         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
868         p->p_suspcount++;
869         TD_SET_SUSPENDED(td);
870 }
871
872 void
873 thread_unsuspend_one(struct thread *td)
874 {
875         struct proc *p = td->td_proc;
876
877         PROC_SLOCK_ASSERT(p, MA_OWNED);
878         THREAD_LOCK_ASSERT(td, MA_OWNED);
879         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
880         TD_CLR_SUSPENDED(td);
881         p->p_suspcount--;
882         setrunnable(td);
883 }
884
885 /*
886  * Allow all threads blocked by single threading to continue running.
887  */
888 void
889 thread_unsuspend(struct proc *p)
890 {
891         struct thread *td;
892
893         PROC_LOCK_ASSERT(p, MA_OWNED);
894         PROC_SLOCK_ASSERT(p, MA_OWNED);
895         if (!P_SHOULDSTOP(p)) {
896                 FOREACH_THREAD_IN_PROC(p, td) {
897                         thread_lock(td);
898                         if (TD_IS_SUSPENDED(td)) {
899                                 thread_unsuspend_one(td);
900                         }
901                         thread_unlock(td);
902                 }
903         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
904             (p->p_numthreads == p->p_suspcount)) {
905                 /*
906                  * Stopping everything also did the job for the single
907                  * threading request. Now we've downgraded to single-threaded,
908                  * let it continue.
909                  */
910                 thread_lock(p->p_singlethread);
911                 thread_unsuspend_one(p->p_singlethread);
912                 thread_unlock(p->p_singlethread);
913         }
914 }
915
916 /*
917  * End the single threading mode..
918  */
919 void
920 thread_single_end(void)
921 {
922         struct thread *td;
923         struct proc *p;
924
925         td = curthread;
926         p = td->td_proc;
927         PROC_LOCK_ASSERT(p, MA_OWNED);
928         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
929         PROC_SLOCK(p);
930         p->p_singlethread = NULL;
931         /*
932          * If there are other threads they mey now run,
933          * unless of course there is a blanket 'stop order'
934          * on the process. The single threader must be allowed
935          * to continue however as this is a bad place to stop.
936          */
937         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
938                 FOREACH_THREAD_IN_PROC(p, td) {
939                         thread_lock(td);
940                         if (TD_IS_SUSPENDED(td)) {
941                                 thread_unsuspend_one(td);
942                         }
943                         thread_unlock(td);
944                 }
945         }
946         PROC_SUNLOCK(p);
947 }
948
949 struct thread *
950 thread_find(struct proc *p, lwpid_t tid)
951 {
952         struct thread *td;
953
954         PROC_LOCK_ASSERT(p, MA_OWNED);
955         PROC_SLOCK(p);
956         FOREACH_THREAD_IN_PROC(p, td) {
957                 if (td->td_tid == tid)
958                         break;
959         }
960         PROC_SUNLOCK(p);
961         return (td);
962 }