]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r308421, and update
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/sysent.h>
50 #include <sys/turnstile.h>
51 #include <sys/ktr.h>
52 #include <sys/rwlock.h>
53 #include <sys/umtx.h>
54 #include <sys/vmmeter.h>
55 #include <sys/cpuset.h>
56 #ifdef  HWPMC_HOOKS
57 #include <sys/pmckern.h>
58 #endif
59
60 #include <security/audit/audit.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/uma.h>
65 #include <vm/vm_domain.h>
66 #include <sys/eventhandler.h>
67
68 /*
69  * Asserts below verify the stability of struct thread and struct proc
70  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
71  * to drift, change to the structures must be accompanied by the
72  * assert update.
73  *
74  * On the stable branches after KBI freeze, conditions must not be
75  * violated.  Typically new fields are moved to the end of the
76  * structures.
77  */
78 #ifdef __amd64__
79 _Static_assert(offsetof(struct thread, td_flags) == 0xf4,
80     "struct thread KBI td_flags");
81 _Static_assert(offsetof(struct thread, td_pflags) == 0xfc,
82     "struct thread KBI td_pflags");
83 _Static_assert(offsetof(struct thread, td_frame) == 0x460,
84     "struct thread KBI td_frame");
85 _Static_assert(offsetof(struct thread, td_emuldata) == 0x508,
86     "struct thread KBI td_emuldata");
87 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
88     "struct proc KBI p_flag");
89 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
90     "struct proc KBI p_pid");
91 _Static_assert(offsetof(struct proc, p_filemon) == 0x3d0,
92     "struct proc KBI p_filemon");
93 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
94     "struct proc KBI p_comm");
95 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8,
96     "struct proc KBI p_emuldata");
97 #endif
98 #ifdef __i386__
99 _Static_assert(offsetof(struct thread, td_flags) == 0x9c,
100     "struct thread KBI td_flags");
101 _Static_assert(offsetof(struct thread, td_pflags) == 0xa4,
102     "struct thread KBI td_pflags");
103 _Static_assert(offsetof(struct thread, td_frame) == 0x2ec,
104     "struct thread KBI td_frame");
105 _Static_assert(offsetof(struct thread, td_emuldata) == 0x338,
106     "struct thread KBI td_emuldata");
107 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
108     "struct proc KBI p_flag");
109 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
110     "struct proc KBI p_pid");
111 _Static_assert(offsetof(struct proc, p_filemon) == 0x27c,
112     "struct proc KBI p_filemon");
113 _Static_assert(offsetof(struct proc, p_comm) == 0x288,
114     "struct proc KBI p_comm");
115 _Static_assert(offsetof(struct proc, p_emuldata) == 0x314,
116     "struct proc KBI p_emuldata");
117 #endif
118
119 SDT_PROVIDER_DECLARE(proc);
120 SDT_PROBE_DEFINE(proc, , , lwp__exit);
121
122 /*
123  * thread related storage.
124  */
125 static uma_zone_t thread_zone;
126
127 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
128 static struct mtx zombie_lock;
129 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
130
131 static void thread_zombie(struct thread *);
132 static int thread_unsuspend_one(struct thread *td, struct proc *p,
133     bool boundary);
134
135 #define TID_BUFFER_SIZE 1024
136
137 struct mtx tid_lock;
138 static struct unrhdr *tid_unrhdr;
139 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
140 static int tid_head, tid_tail;
141 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
142
143 struct  tidhashhead *tidhashtbl;
144 u_long  tidhash;
145 struct  rwlock tidhash_lock;
146
147 static lwpid_t
148 tid_alloc(void)
149 {
150         lwpid_t tid;
151
152         tid = alloc_unr(tid_unrhdr);
153         if (tid != -1)
154                 return (tid);
155         mtx_lock(&tid_lock);
156         if (tid_head == tid_tail) {
157                 mtx_unlock(&tid_lock);
158                 return (-1);
159         }
160         tid = tid_buffer[tid_head];
161         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
162         mtx_unlock(&tid_lock);
163         return (tid);
164 }
165
166 static void
167 tid_free(lwpid_t tid)
168 {
169         lwpid_t tmp_tid = -1;
170
171         mtx_lock(&tid_lock);
172         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
173                 tmp_tid = tid_buffer[tid_head];
174                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
175         }
176         tid_buffer[tid_tail] = tid;
177         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
178         mtx_unlock(&tid_lock);
179         if (tmp_tid != -1)
180                 free_unr(tid_unrhdr, tmp_tid);
181 }
182
183 /*
184  * Prepare a thread for use.
185  */
186 static int
187 thread_ctor(void *mem, int size, void *arg, int flags)
188 {
189         struct thread   *td;
190
191         td = (struct thread *)mem;
192         td->td_state = TDS_INACTIVE;
193         td->td_oncpu = NOCPU;
194
195         td->td_tid = tid_alloc();
196
197         /*
198          * Note that td_critnest begins life as 1 because the thread is not
199          * running and is thereby implicitly waiting to be on the receiving
200          * end of a context switch.
201          */
202         td->td_critnest = 1;
203         td->td_lend_user_pri = PRI_MAX;
204         EVENTHANDLER_INVOKE(thread_ctor, td);
205 #ifdef AUDIT
206         audit_thread_alloc(td);
207 #endif
208         umtx_thread_alloc(td);
209         return (0);
210 }
211
212 /*
213  * Reclaim a thread after use.
214  */
215 static void
216 thread_dtor(void *mem, int size, void *arg)
217 {
218         struct thread *td;
219
220         td = (struct thread *)mem;
221
222 #ifdef INVARIANTS
223         /* Verify that this thread is in a safe state to free. */
224         switch (td->td_state) {
225         case TDS_INHIBITED:
226         case TDS_RUNNING:
227         case TDS_CAN_RUN:
228         case TDS_RUNQ:
229                 /*
230                  * We must never unlink a thread that is in one of
231                  * these states, because it is currently active.
232                  */
233                 panic("bad state for thread unlinking");
234                 /* NOTREACHED */
235         case TDS_INACTIVE:
236                 break;
237         default:
238                 panic("bad thread state");
239                 /* NOTREACHED */
240         }
241 #endif
242 #ifdef AUDIT
243         audit_thread_free(td);
244 #endif
245         /* Free all OSD associated to this thread. */
246         osd_thread_exit(td);
247         td_softdep_cleanup(td);
248         MPASS(td->td_su == NULL);
249
250         EVENTHANDLER_INVOKE(thread_dtor, td);
251         tid_free(td->td_tid);
252 }
253
254 /*
255  * Initialize type-stable parts of a thread (when newly created).
256  */
257 static int
258 thread_init(void *mem, int size, int flags)
259 {
260         struct thread *td;
261
262         td = (struct thread *)mem;
263
264         td->td_sleepqueue = sleepq_alloc();
265         td->td_turnstile = turnstile_alloc();
266         td->td_rlqe = NULL;
267         EVENTHANDLER_INVOKE(thread_init, td);
268         umtx_thread_init(td);
269         td->td_kstack = 0;
270         td->td_sel = NULL;
271         return (0);
272 }
273
274 /*
275  * Tear down type-stable parts of a thread (just before being discarded).
276  */
277 static void
278 thread_fini(void *mem, int size)
279 {
280         struct thread *td;
281
282         td = (struct thread *)mem;
283         EVENTHANDLER_INVOKE(thread_fini, td);
284         rlqentry_free(td->td_rlqe);
285         turnstile_free(td->td_turnstile);
286         sleepq_free(td->td_sleepqueue);
287         umtx_thread_fini(td);
288         seltdfini(td);
289 }
290
291 /*
292  * For a newly created process,
293  * link up all the structures and its initial threads etc.
294  * called from:
295  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
296  * proc_dtor() (should go away)
297  * proc_init()
298  */
299 void
300 proc_linkup0(struct proc *p, struct thread *td)
301 {
302         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
303         proc_linkup(p, td);
304 }
305
306 void
307 proc_linkup(struct proc *p, struct thread *td)
308 {
309
310         sigqueue_init(&p->p_sigqueue, p);
311         p->p_ksi = ksiginfo_alloc(1);
312         if (p->p_ksi != NULL) {
313                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
314                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
315         }
316         LIST_INIT(&p->p_mqnotifier);
317         p->p_numthreads = 0;
318         thread_link(td, p);
319 }
320
321 /*
322  * Initialize global thread allocation resources.
323  */
324 void
325 threadinit(void)
326 {
327
328         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
329
330         /*
331          * pid_max cannot be greater than PID_MAX.
332          * leave one number for thread0.
333          */
334         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
335
336         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
337             thread_ctor, thread_dtor, thread_init, thread_fini,
338             32 - 1, UMA_ZONE_NOFREE);
339         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
340         rw_init(&tidhash_lock, "tidhash");
341 }
342
343 /*
344  * Place an unused thread on the zombie list.
345  * Use the slpq as that must be unused by now.
346  */
347 void
348 thread_zombie(struct thread *td)
349 {
350         mtx_lock_spin(&zombie_lock);
351         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
352         mtx_unlock_spin(&zombie_lock);
353 }
354
355 /*
356  * Release a thread that has exited after cpu_throw().
357  */
358 void
359 thread_stash(struct thread *td)
360 {
361         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
362         thread_zombie(td);
363 }
364
365 /*
366  * Reap zombie resources.
367  */
368 void
369 thread_reap(void)
370 {
371         struct thread *td_first, *td_next;
372
373         /*
374          * Don't even bother to lock if none at this instant,
375          * we really don't care about the next instant.
376          */
377         if (!TAILQ_EMPTY(&zombie_threads)) {
378                 mtx_lock_spin(&zombie_lock);
379                 td_first = TAILQ_FIRST(&zombie_threads);
380                 if (td_first)
381                         TAILQ_INIT(&zombie_threads);
382                 mtx_unlock_spin(&zombie_lock);
383                 while (td_first) {
384                         td_next = TAILQ_NEXT(td_first, td_slpq);
385                         thread_cow_free(td_first);
386                         thread_free(td_first);
387                         td_first = td_next;
388                 }
389         }
390 }
391
392 /*
393  * Allocate a thread.
394  */
395 struct thread *
396 thread_alloc(int pages)
397 {
398         struct thread *td;
399
400         thread_reap(); /* check if any zombies to get */
401
402         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
403         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
404         if (!vm_thread_new(td, pages)) {
405                 uma_zfree(thread_zone, td);
406                 return (NULL);
407         }
408         cpu_thread_alloc(td);
409         vm_domain_policy_init(&td->td_vm_dom_policy);
410         return (td);
411 }
412
413 int
414 thread_alloc_stack(struct thread *td, int pages)
415 {
416
417         KASSERT(td->td_kstack == 0,
418             ("thread_alloc_stack called on a thread with kstack"));
419         if (!vm_thread_new(td, pages))
420                 return (0);
421         cpu_thread_alloc(td);
422         return (1);
423 }
424
425 /*
426  * Deallocate a thread.
427  */
428 void
429 thread_free(struct thread *td)
430 {
431
432         lock_profile_thread_exit(td);
433         if (td->td_cpuset)
434                 cpuset_rel(td->td_cpuset);
435         td->td_cpuset = NULL;
436         cpu_thread_free(td);
437         if (td->td_kstack != 0)
438                 vm_thread_dispose(td);
439         vm_domain_policy_cleanup(&td->td_vm_dom_policy);
440         callout_drain(&td->td_slpcallout);
441         uma_zfree(thread_zone, td);
442 }
443
444 void
445 thread_cow_get_proc(struct thread *newtd, struct proc *p)
446 {
447
448         PROC_LOCK_ASSERT(p, MA_OWNED);
449         newtd->td_ucred = crhold(p->p_ucred);
450         newtd->td_limit = lim_hold(p->p_limit);
451         newtd->td_cowgen = p->p_cowgen;
452 }
453
454 void
455 thread_cow_get(struct thread *newtd, struct thread *td)
456 {
457
458         newtd->td_ucred = crhold(td->td_ucred);
459         newtd->td_limit = lim_hold(td->td_limit);
460         newtd->td_cowgen = td->td_cowgen;
461 }
462
463 void
464 thread_cow_free(struct thread *td)
465 {
466
467         if (td->td_ucred != NULL)
468                 crfree(td->td_ucred);
469         if (td->td_limit != NULL)
470                 lim_free(td->td_limit);
471 }
472
473 void
474 thread_cow_update(struct thread *td)
475 {
476         struct proc *p;
477         struct ucred *oldcred;
478         struct plimit *oldlimit;
479
480         p = td->td_proc;
481         oldcred = NULL;
482         oldlimit = NULL;
483         PROC_LOCK(p);
484         if (td->td_ucred != p->p_ucred) {
485                 oldcred = td->td_ucred;
486                 td->td_ucred = crhold(p->p_ucred);
487         }
488         if (td->td_limit != p->p_limit) {
489                 oldlimit = td->td_limit;
490                 td->td_limit = lim_hold(p->p_limit);
491         }
492         td->td_cowgen = p->p_cowgen;
493         PROC_UNLOCK(p);
494         if (oldcred != NULL)
495                 crfree(oldcred);
496         if (oldlimit != NULL)
497                 lim_free(oldlimit);
498 }
499
500 /*
501  * Discard the current thread and exit from its context.
502  * Always called with scheduler locked.
503  *
504  * Because we can't free a thread while we're operating under its context,
505  * push the current thread into our CPU's deadthread holder. This means
506  * we needn't worry about someone else grabbing our context before we
507  * do a cpu_throw().
508  */
509 void
510 thread_exit(void)
511 {
512         uint64_t runtime, new_switchtime;
513         struct thread *td;
514         struct thread *td2;
515         struct proc *p;
516         int wakeup_swapper;
517
518         td = curthread;
519         p = td->td_proc;
520
521         PROC_SLOCK_ASSERT(p, MA_OWNED);
522         mtx_assert(&Giant, MA_NOTOWNED);
523
524         PROC_LOCK_ASSERT(p, MA_OWNED);
525         KASSERT(p != NULL, ("thread exiting without a process"));
526         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
527             (long)p->p_pid, td->td_name);
528         SDT_PROBE0(proc, , , lwp__exit);
529         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
530
531 #ifdef AUDIT
532         AUDIT_SYSCALL_EXIT(0, td);
533 #endif
534         /*
535          * drop FPU & debug register state storage, or any other
536          * architecture specific resources that
537          * would not be on a new untouched process.
538          */
539         cpu_thread_exit(td);
540
541         /*
542          * The last thread is left attached to the process
543          * So that the whole bundle gets recycled. Skip
544          * all this stuff if we never had threads.
545          * EXIT clears all sign of other threads when
546          * it goes to single threading, so the last thread always
547          * takes the short path.
548          */
549         if (p->p_flag & P_HADTHREADS) {
550                 if (p->p_numthreads > 1) {
551                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
552                         thread_unlink(td);
553                         td2 = FIRST_THREAD_IN_PROC(p);
554                         sched_exit_thread(td2, td);
555
556                         /*
557                          * The test below is NOT true if we are the
558                          * sole exiting thread. P_STOPPED_SINGLE is unset
559                          * in exit1() after it is the only survivor.
560                          */
561                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
562                                 if (p->p_numthreads == p->p_suspcount) {
563                                         thread_lock(p->p_singlethread);
564                                         wakeup_swapper = thread_unsuspend_one(
565                                                 p->p_singlethread, p, false);
566                                         thread_unlock(p->p_singlethread);
567                                         if (wakeup_swapper)
568                                                 kick_proc0();
569                                 }
570                         }
571
572                         PCPU_SET(deadthread, td);
573                 } else {
574                         /*
575                          * The last thread is exiting.. but not through exit()
576                          */
577                         panic ("thread_exit: Last thread exiting on its own");
578                 }
579         } 
580 #ifdef  HWPMC_HOOKS
581         /*
582          * If this thread is part of a process that is being tracked by hwpmc(4),
583          * inform the module of the thread's impending exit.
584          */
585         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
586                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
587 #endif
588         PROC_UNLOCK(p);
589         PROC_STATLOCK(p);
590         thread_lock(td);
591         PROC_SUNLOCK(p);
592
593         /* Do the same timestamp bookkeeping that mi_switch() would do. */
594         new_switchtime = cpu_ticks();
595         runtime = new_switchtime - PCPU_GET(switchtime);
596         td->td_runtime += runtime;
597         td->td_incruntime += runtime;
598         PCPU_SET(switchtime, new_switchtime);
599         PCPU_SET(switchticks, ticks);
600         VM_CNT_INC(v_swtch);
601
602         /* Save our resource usage in our process. */
603         td->td_ru.ru_nvcsw++;
604         ruxagg(p, td);
605         rucollect(&p->p_ru, &td->td_ru);
606         PROC_STATUNLOCK(p);
607
608         td->td_state = TDS_INACTIVE;
609 #ifdef WITNESS
610         witness_thread_exit(td);
611 #endif
612         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
613         sched_throw(td);
614         panic("I'm a teapot!");
615         /* NOTREACHED */
616 }
617
618 /*
619  * Do any thread specific cleanups that may be needed in wait()
620  * called with Giant, proc and schedlock not held.
621  */
622 void
623 thread_wait(struct proc *p)
624 {
625         struct thread *td;
626
627         mtx_assert(&Giant, MA_NOTOWNED);
628         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
629         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
630         td = FIRST_THREAD_IN_PROC(p);
631         /* Lock the last thread so we spin until it exits cpu_throw(). */
632         thread_lock(td);
633         thread_unlock(td);
634         lock_profile_thread_exit(td);
635         cpuset_rel(td->td_cpuset);
636         td->td_cpuset = NULL;
637         cpu_thread_clean(td);
638         thread_cow_free(td);
639         callout_drain(&td->td_slpcallout);
640         thread_reap();  /* check for zombie threads etc. */
641 }
642
643 /*
644  * Link a thread to a process.
645  * set up anything that needs to be initialized for it to
646  * be used by the process.
647  */
648 void
649 thread_link(struct thread *td, struct proc *p)
650 {
651
652         /*
653          * XXX This can't be enabled because it's called for proc0 before
654          * its lock has been created.
655          * PROC_LOCK_ASSERT(p, MA_OWNED);
656          */
657         td->td_state    = TDS_INACTIVE;
658         td->td_proc     = p;
659         td->td_flags    = TDF_INMEM;
660
661         LIST_INIT(&td->td_contested);
662         LIST_INIT(&td->td_lprof[0]);
663         LIST_INIT(&td->td_lprof[1]);
664         sigqueue_init(&td->td_sigqueue, p);
665         callout_init(&td->td_slpcallout, 1);
666         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
667         p->p_numthreads++;
668 }
669
670 /*
671  * Called from:
672  *  thread_exit()
673  */
674 void
675 thread_unlink(struct thread *td)
676 {
677         struct proc *p = td->td_proc;
678
679         PROC_LOCK_ASSERT(p, MA_OWNED);
680         TAILQ_REMOVE(&p->p_threads, td, td_plist);
681         p->p_numthreads--;
682         /* could clear a few other things here */
683         /* Must  NOT clear links to proc! */
684 }
685
686 static int
687 calc_remaining(struct proc *p, int mode)
688 {
689         int remaining;
690
691         PROC_LOCK_ASSERT(p, MA_OWNED);
692         PROC_SLOCK_ASSERT(p, MA_OWNED);
693         if (mode == SINGLE_EXIT)
694                 remaining = p->p_numthreads;
695         else if (mode == SINGLE_BOUNDARY)
696                 remaining = p->p_numthreads - p->p_boundary_count;
697         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
698                 remaining = p->p_numthreads - p->p_suspcount;
699         else
700                 panic("calc_remaining: wrong mode %d", mode);
701         return (remaining);
702 }
703
704 static int
705 remain_for_mode(int mode)
706 {
707
708         return (mode == SINGLE_ALLPROC ? 0 : 1);
709 }
710
711 static int
712 weed_inhib(int mode, struct thread *td2, struct proc *p)
713 {
714         int wakeup_swapper;
715
716         PROC_LOCK_ASSERT(p, MA_OWNED);
717         PROC_SLOCK_ASSERT(p, MA_OWNED);
718         THREAD_LOCK_ASSERT(td2, MA_OWNED);
719
720         wakeup_swapper = 0;
721         switch (mode) {
722         case SINGLE_EXIT:
723                 if (TD_IS_SUSPENDED(td2))
724                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
725                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
726                         wakeup_swapper |= sleepq_abort(td2, EINTR);
727                 break;
728         case SINGLE_BOUNDARY:
729         case SINGLE_NO_EXIT:
730                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
731                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
732                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
733                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
734                 break;
735         case SINGLE_ALLPROC:
736                 /*
737                  * ALLPROC suspend tries to avoid spurious EINTR for
738                  * threads sleeping interruptable, by suspending the
739                  * thread directly, similarly to sig_suspend_threads().
740                  * Since such sleep is not performed at the user
741                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
742                  * is used to avoid immediate un-suspend.
743                  */
744                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
745                     TDF_ALLPROCSUSP)) == 0)
746                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
747                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
748                         if ((td2->td_flags & TDF_SBDRY) == 0) {
749                                 thread_suspend_one(td2);
750                                 td2->td_flags |= TDF_ALLPROCSUSP;
751                         } else {
752                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
753                         }
754                 }
755                 break;
756         }
757         return (wakeup_swapper);
758 }
759
760 /*
761  * Enforce single-threading.
762  *
763  * Returns 1 if the caller must abort (another thread is waiting to
764  * exit the process or similar). Process is locked!
765  * Returns 0 when you are successfully the only thread running.
766  * A process has successfully single threaded in the suspend mode when
767  * There are no threads in user mode. Threads in the kernel must be
768  * allowed to continue until they get to the user boundary. They may even
769  * copy out their return values and data before suspending. They may however be
770  * accelerated in reaching the user boundary as we will wake up
771  * any sleeping threads that are interruptable. (PCATCH).
772  */
773 int
774 thread_single(struct proc *p, int mode)
775 {
776         struct thread *td;
777         struct thread *td2;
778         int remaining, wakeup_swapper;
779
780         td = curthread;
781         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
782             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
783             ("invalid mode %d", mode));
784         /*
785          * If allowing non-ALLPROC singlethreading for non-curproc
786          * callers, calc_remaining() and remain_for_mode() should be
787          * adjusted to also account for td->td_proc != p.  For now
788          * this is not implemented because it is not used.
789          */
790         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
791             (mode != SINGLE_ALLPROC && td->td_proc == p),
792             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
793         mtx_assert(&Giant, MA_NOTOWNED);
794         PROC_LOCK_ASSERT(p, MA_OWNED);
795
796         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
797                 return (0);
798
799         /* Is someone already single threading? */
800         if (p->p_singlethread != NULL && p->p_singlethread != td)
801                 return (1);
802
803         if (mode == SINGLE_EXIT) {
804                 p->p_flag |= P_SINGLE_EXIT;
805                 p->p_flag &= ~P_SINGLE_BOUNDARY;
806         } else {
807                 p->p_flag &= ~P_SINGLE_EXIT;
808                 if (mode == SINGLE_BOUNDARY)
809                         p->p_flag |= P_SINGLE_BOUNDARY;
810                 else
811                         p->p_flag &= ~P_SINGLE_BOUNDARY;
812         }
813         if (mode == SINGLE_ALLPROC)
814                 p->p_flag |= P_TOTAL_STOP;
815         p->p_flag |= P_STOPPED_SINGLE;
816         PROC_SLOCK(p);
817         p->p_singlethread = td;
818         remaining = calc_remaining(p, mode);
819         while (remaining != remain_for_mode(mode)) {
820                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
821                         goto stopme;
822                 wakeup_swapper = 0;
823                 FOREACH_THREAD_IN_PROC(p, td2) {
824                         if (td2 == td)
825                                 continue;
826                         thread_lock(td2);
827                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
828                         if (TD_IS_INHIBITED(td2)) {
829                                 wakeup_swapper |= weed_inhib(mode, td2, p);
830 #ifdef SMP
831                         } else if (TD_IS_RUNNING(td2) && td != td2) {
832                                 forward_signal(td2);
833 #endif
834                         }
835                         thread_unlock(td2);
836                 }
837                 if (wakeup_swapper)
838                         kick_proc0();
839                 remaining = calc_remaining(p, mode);
840
841                 /*
842                  * Maybe we suspended some threads.. was it enough?
843                  */
844                 if (remaining == remain_for_mode(mode))
845                         break;
846
847 stopme:
848                 /*
849                  * Wake us up when everyone else has suspended.
850                  * In the mean time we suspend as well.
851                  */
852                 thread_suspend_switch(td, p);
853                 remaining = calc_remaining(p, mode);
854         }
855         if (mode == SINGLE_EXIT) {
856                 /*
857                  * Convert the process to an unthreaded process.  The
858                  * SINGLE_EXIT is called by exit1() or execve(), in
859                  * both cases other threads must be retired.
860                  */
861                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
862                 p->p_singlethread = NULL;
863                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
864
865                 /*
866                  * Wait for any remaining threads to exit cpu_throw().
867                  */
868                 while (p->p_exitthreads != 0) {
869                         PROC_SUNLOCK(p);
870                         PROC_UNLOCK(p);
871                         sched_relinquish(td);
872                         PROC_LOCK(p);
873                         PROC_SLOCK(p);
874                 }
875         } else if (mode == SINGLE_BOUNDARY) {
876                 /*
877                  * Wait until all suspended threads are removed from
878                  * the processors.  The thread_suspend_check()
879                  * increments p_boundary_count while it is still
880                  * running, which makes it possible for the execve()
881                  * to destroy vmspace while our other threads are
882                  * still using the address space.
883                  *
884                  * We lock the thread, which is only allowed to
885                  * succeed after context switch code finished using
886                  * the address space.
887                  */
888                 FOREACH_THREAD_IN_PROC(p, td2) {
889                         if (td2 == td)
890                                 continue;
891                         thread_lock(td2);
892                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
893                             ("td %p not on boundary", td2));
894                         KASSERT(TD_IS_SUSPENDED(td2),
895                             ("td %p is not suspended", td2));
896                         thread_unlock(td2);
897                 }
898         }
899         PROC_SUNLOCK(p);
900         return (0);
901 }
902
903 bool
904 thread_suspend_check_needed(void)
905 {
906         struct proc *p;
907         struct thread *td;
908
909         td = curthread;
910         p = td->td_proc;
911         PROC_LOCK_ASSERT(p, MA_OWNED);
912         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
913             (td->td_dbgflags & TDB_SUSPEND) != 0));
914 }
915
916 /*
917  * Called in from locations that can safely check to see
918  * whether we have to suspend or at least throttle for a
919  * single-thread event (e.g. fork).
920  *
921  * Such locations include userret().
922  * If the "return_instead" argument is non zero, the thread must be able to
923  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
924  *
925  * The 'return_instead' argument tells the function if it may do a
926  * thread_exit() or suspend, or whether the caller must abort and back
927  * out instead.
928  *
929  * If the thread that set the single_threading request has set the
930  * P_SINGLE_EXIT bit in the process flags then this call will never return
931  * if 'return_instead' is false, but will exit.
932  *
933  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
934  *---------------+--------------------+---------------------
935  *       0       | returns 0          |   returns 0 or 1
936  *               | when ST ends       |   immediately
937  *---------------+--------------------+---------------------
938  *       1       | thread exits       |   returns 1
939  *               |                    |  immediately
940  * 0 = thread_exit() or suspension ok,
941  * other = return error instead of stopping the thread.
942  *
943  * While a full suspension is under effect, even a single threading
944  * thread would be suspended if it made this call (but it shouldn't).
945  * This call should only be made from places where
946  * thread_exit() would be safe as that may be the outcome unless
947  * return_instead is set.
948  */
949 int
950 thread_suspend_check(int return_instead)
951 {
952         struct thread *td;
953         struct proc *p;
954         int wakeup_swapper;
955
956         td = curthread;
957         p = td->td_proc;
958         mtx_assert(&Giant, MA_NOTOWNED);
959         PROC_LOCK_ASSERT(p, MA_OWNED);
960         while (thread_suspend_check_needed()) {
961                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
962                         KASSERT(p->p_singlethread != NULL,
963                             ("singlethread not set"));
964                         /*
965                          * The only suspension in action is a
966                          * single-threading. Single threader need not stop.
967                          * It is safe to access p->p_singlethread unlocked
968                          * because it can only be set to our address by us.
969                          */
970                         if (p->p_singlethread == td)
971                                 return (0);     /* Exempt from stopping. */
972                 }
973                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
974                         return (EINTR);
975
976                 /* Should we goto user boundary if we didn't come from there? */
977                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
978                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
979                         return (ERESTART);
980
981                 /*
982                  * Ignore suspend requests if they are deferred.
983                  */
984                 if ((td->td_flags & TDF_SBDRY) != 0) {
985                         KASSERT(return_instead,
986                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
987                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
988                             (TDF_SEINTR | TDF_SERESTART),
989                             ("both TDF_SEINTR and TDF_SERESTART"));
990                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
991                 }
992
993                 /*
994                  * If the process is waiting for us to exit,
995                  * this thread should just suicide.
996                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
997                  */
998                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
999                         PROC_UNLOCK(p);
1000
1001                         /*
1002                          * Allow Linux emulation layer to do some work
1003                          * before thread suicide.
1004                          */
1005                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1006                                 (p->p_sysent->sv_thread_detach)(td);
1007                         umtx_thread_exit(td);
1008                         kern_thr_exit(td);
1009                         panic("stopped thread did not exit");
1010                 }
1011
1012                 PROC_SLOCK(p);
1013                 thread_stopped(p);
1014                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1015                         if (p->p_numthreads == p->p_suspcount + 1) {
1016                                 thread_lock(p->p_singlethread);
1017                                 wakeup_swapper = thread_unsuspend_one(
1018                                     p->p_singlethread, p, false);
1019                                 thread_unlock(p->p_singlethread);
1020                                 if (wakeup_swapper)
1021                                         kick_proc0();
1022                         }
1023                 }
1024                 PROC_UNLOCK(p);
1025                 thread_lock(td);
1026                 /*
1027                  * When a thread suspends, it just
1028                  * gets taken off all queues.
1029                  */
1030                 thread_suspend_one(td);
1031                 if (return_instead == 0) {
1032                         p->p_boundary_count++;
1033                         td->td_flags |= TDF_BOUNDARY;
1034                 }
1035                 PROC_SUNLOCK(p);
1036                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1037                 thread_unlock(td);
1038                 PROC_LOCK(p);
1039         }
1040         return (0);
1041 }
1042
1043 void
1044 thread_suspend_switch(struct thread *td, struct proc *p)
1045 {
1046
1047         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1048         PROC_LOCK_ASSERT(p, MA_OWNED);
1049         PROC_SLOCK_ASSERT(p, MA_OWNED);
1050         /*
1051          * We implement thread_suspend_one in stages here to avoid
1052          * dropping the proc lock while the thread lock is owned.
1053          */
1054         if (p == td->td_proc) {
1055                 thread_stopped(p);
1056                 p->p_suspcount++;
1057         }
1058         PROC_UNLOCK(p);
1059         thread_lock(td);
1060         td->td_flags &= ~TDF_NEEDSUSPCHK;
1061         TD_SET_SUSPENDED(td);
1062         sched_sleep(td, 0);
1063         PROC_SUNLOCK(p);
1064         DROP_GIANT();
1065         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1066         thread_unlock(td);
1067         PICKUP_GIANT();
1068         PROC_LOCK(p);
1069         PROC_SLOCK(p);
1070 }
1071
1072 void
1073 thread_suspend_one(struct thread *td)
1074 {
1075         struct proc *p;
1076
1077         p = td->td_proc;
1078         PROC_SLOCK_ASSERT(p, MA_OWNED);
1079         THREAD_LOCK_ASSERT(td, MA_OWNED);
1080         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1081         p->p_suspcount++;
1082         td->td_flags &= ~TDF_NEEDSUSPCHK;
1083         TD_SET_SUSPENDED(td);
1084         sched_sleep(td, 0);
1085 }
1086
1087 static int
1088 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1089 {
1090
1091         THREAD_LOCK_ASSERT(td, MA_OWNED);
1092         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1093         TD_CLR_SUSPENDED(td);
1094         td->td_flags &= ~TDF_ALLPROCSUSP;
1095         if (td->td_proc == p) {
1096                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1097                 p->p_suspcount--;
1098                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1099                         td->td_flags &= ~TDF_BOUNDARY;
1100                         p->p_boundary_count--;
1101                 }
1102         }
1103         return (setrunnable(td));
1104 }
1105
1106 /*
1107  * Allow all threads blocked by single threading to continue running.
1108  */
1109 void
1110 thread_unsuspend(struct proc *p)
1111 {
1112         struct thread *td;
1113         int wakeup_swapper;
1114
1115         PROC_LOCK_ASSERT(p, MA_OWNED);
1116         PROC_SLOCK_ASSERT(p, MA_OWNED);
1117         wakeup_swapper = 0;
1118         if (!P_SHOULDSTOP(p)) {
1119                 FOREACH_THREAD_IN_PROC(p, td) {
1120                         thread_lock(td);
1121                         if (TD_IS_SUSPENDED(td)) {
1122                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1123                                     true);
1124                         }
1125                         thread_unlock(td);
1126                 }
1127         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1128             p->p_numthreads == p->p_suspcount) {
1129                 /*
1130                  * Stopping everything also did the job for the single
1131                  * threading request. Now we've downgraded to single-threaded,
1132                  * let it continue.
1133                  */
1134                 if (p->p_singlethread->td_proc == p) {
1135                         thread_lock(p->p_singlethread);
1136                         wakeup_swapper = thread_unsuspend_one(
1137                             p->p_singlethread, p, false);
1138                         thread_unlock(p->p_singlethread);
1139                 }
1140         }
1141         if (wakeup_swapper)
1142                 kick_proc0();
1143 }
1144
1145 /*
1146  * End the single threading mode..
1147  */
1148 void
1149 thread_single_end(struct proc *p, int mode)
1150 {
1151         struct thread *td;
1152         int wakeup_swapper;
1153
1154         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1155             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1156             ("invalid mode %d", mode));
1157         PROC_LOCK_ASSERT(p, MA_OWNED);
1158         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1159             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1160             ("mode %d does not match P_TOTAL_STOP", mode));
1161         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1162             ("thread_single_end from other thread %p %p",
1163             curthread, p->p_singlethread));
1164         KASSERT(mode != SINGLE_BOUNDARY ||
1165             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1166             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1167         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1168             P_TOTAL_STOP);
1169         PROC_SLOCK(p);
1170         p->p_singlethread = NULL;
1171         wakeup_swapper = 0;
1172         /*
1173          * If there are other threads they may now run,
1174          * unless of course there is a blanket 'stop order'
1175          * on the process. The single threader must be allowed
1176          * to continue however as this is a bad place to stop.
1177          */
1178         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1179                 FOREACH_THREAD_IN_PROC(p, td) {
1180                         thread_lock(td);
1181                         if (TD_IS_SUSPENDED(td)) {
1182                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1183                                     mode == SINGLE_BOUNDARY);
1184                         }
1185                         thread_unlock(td);
1186                 }
1187         }
1188         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1189             ("inconsistent boundary count %d", p->p_boundary_count));
1190         PROC_SUNLOCK(p);
1191         if (wakeup_swapper)
1192                 kick_proc0();
1193 }
1194
1195 struct thread *
1196 thread_find(struct proc *p, lwpid_t tid)
1197 {
1198         struct thread *td;
1199
1200         PROC_LOCK_ASSERT(p, MA_OWNED);
1201         FOREACH_THREAD_IN_PROC(p, td) {
1202                 if (td->td_tid == tid)
1203                         break;
1204         }
1205         return (td);
1206 }
1207
1208 /* Locate a thread by number; return with proc lock held. */
1209 struct thread *
1210 tdfind(lwpid_t tid, pid_t pid)
1211 {
1212 #define RUN_THRESH      16
1213         struct thread *td;
1214         int run = 0;
1215
1216         rw_rlock(&tidhash_lock);
1217         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1218                 if (td->td_tid == tid) {
1219                         if (pid != -1 && td->td_proc->p_pid != pid) {
1220                                 td = NULL;
1221                                 break;
1222                         }
1223                         PROC_LOCK(td->td_proc);
1224                         if (td->td_proc->p_state == PRS_NEW) {
1225                                 PROC_UNLOCK(td->td_proc);
1226                                 td = NULL;
1227                                 break;
1228                         }
1229                         if (run > RUN_THRESH) {
1230                                 if (rw_try_upgrade(&tidhash_lock)) {
1231                                         LIST_REMOVE(td, td_hash);
1232                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1233                                                 td, td_hash);
1234                                         rw_wunlock(&tidhash_lock);
1235                                         return (td);
1236                                 }
1237                         }
1238                         break;
1239                 }
1240                 run++;
1241         }
1242         rw_runlock(&tidhash_lock);
1243         return (td);
1244 }
1245
1246 void
1247 tidhash_add(struct thread *td)
1248 {
1249         rw_wlock(&tidhash_lock);
1250         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1251         rw_wunlock(&tidhash_lock);
1252 }
1253
1254 void
1255 tidhash_remove(struct thread *td)
1256 {
1257         rw_wlock(&tidhash_lock);
1258         LIST_REMOVE(td, td_hash);
1259         rw_wunlock(&tidhash_lock);
1260 }