]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
A bunch more files that should probably print out a thread name
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/resourcevar.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41 #include <sys/sched.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/turnstile.h>
44 #include <sys/ktr.h>
45 #include <sys/umtx.h>
46
47 #include <security/audit/audit.h>
48
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/uma.h>
52
53 /*
54  * thread related storage.
55  */
56 static uma_zone_t thread_zone;
57
58 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
59
60 int max_threads_per_proc = 1500;
61 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
62         &max_threads_per_proc, 0, "Limit on threads per proc");
63
64 int max_threads_hits;
65 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
66         &max_threads_hits, 0, "");
67
68 #ifdef KSE
69 int virtual_cpu;
70
71 #endif
72 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
73 static struct mtx zombie_lock;
74 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
75
76 static void thread_zombie(struct thread *);
77
78 #ifdef KSE
79 static int
80 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
81 {
82         int error, new_val;
83         int def_val;
84
85         def_val = mp_ncpus;
86         if (virtual_cpu == 0)
87                 new_val = def_val;
88         else
89                 new_val = virtual_cpu;
90         error = sysctl_handle_int(oidp, &new_val, 0, req);
91         if (error != 0 || req->newptr == NULL)
92                 return (error);
93         if (new_val < 0)
94                 return (EINVAL);
95         virtual_cpu = new_val;
96         return (0);
97 }
98
99 /* DEBUG ONLY */
100 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
101         0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
102         "debug virtual cpus");
103 #endif
104
105 struct mtx tid_lock;
106 static struct unrhdr *tid_unrhdr;
107
108 /*
109  * Prepare a thread for use.
110  */
111 static int
112 thread_ctor(void *mem, int size, void *arg, int flags)
113 {
114         struct thread   *td;
115
116         td = (struct thread *)mem;
117         td->td_state = TDS_INACTIVE;
118         td->td_oncpu = NOCPU;
119
120         td->td_tid = alloc_unr(tid_unrhdr);
121         td->td_syscalls = 0;
122
123         /*
124          * Note that td_critnest begins life as 1 because the thread is not
125          * running and is thereby implicitly waiting to be on the receiving
126          * end of a context switch.
127          */
128         td->td_critnest = 1;
129
130 #ifdef AUDIT
131         audit_thread_alloc(td);
132 #endif
133         umtx_thread_alloc(td);
134         return (0);
135 }
136
137 /*
138  * Reclaim a thread after use.
139  */
140 static void
141 thread_dtor(void *mem, int size, void *arg)
142 {
143         struct thread *td;
144
145         td = (struct thread *)mem;
146
147 #ifdef INVARIANTS
148         /* Verify that this thread is in a safe state to free. */
149         switch (td->td_state) {
150         case TDS_INHIBITED:
151         case TDS_RUNNING:
152         case TDS_CAN_RUN:
153         case TDS_RUNQ:
154                 /*
155                  * We must never unlink a thread that is in one of
156                  * these states, because it is currently active.
157                  */
158                 panic("bad state for thread unlinking");
159                 /* NOTREACHED */
160         case TDS_INACTIVE:
161                 break;
162         default:
163                 panic("bad thread state");
164                 /* NOTREACHED */
165         }
166 #endif
167 #ifdef AUDIT
168         audit_thread_free(td);
169 #endif
170         free_unr(tid_unrhdr, td->td_tid);
171         sched_newthread(td);
172 }
173
174 /*
175  * Initialize type-stable parts of a thread (when newly created).
176  */
177 static int
178 thread_init(void *mem, int size, int flags)
179 {
180         struct thread *td;
181
182         td = (struct thread *)mem;
183
184         td->td_sleepqueue = sleepq_alloc();
185         td->td_turnstile = turnstile_alloc();
186         td->td_sched = (struct td_sched *)&td[1];
187         sched_newthread(td);
188         umtx_thread_init(td);
189         td->td_kstack = 0;
190         return (0);
191 }
192
193 /*
194  * Tear down type-stable parts of a thread (just before being discarded).
195  */
196 static void
197 thread_fini(void *mem, int size)
198 {
199         struct thread *td;
200
201         td = (struct thread *)mem;
202         turnstile_free(td->td_turnstile);
203         sleepq_free(td->td_sleepqueue);
204         umtx_thread_fini(td);
205 }
206
207 /*
208  * For a newly created process,
209  * link up all the structures and its initial threads etc.
210  * called from:
211  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
212  * proc_dtor() (should go away)
213  * proc_init()
214  */
215 void
216 proc_linkup0(struct proc *p, struct thread *td)
217 {
218         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
219         proc_linkup(p, td);
220 }
221
222 void
223 proc_linkup(struct proc *p, struct thread *td)
224 {
225
226 #ifdef KSE
227         TAILQ_INIT(&p->p_upcalls);           /* upcall list */
228 #endif
229         sigqueue_init(&p->p_sigqueue, p);
230         p->p_ksi = ksiginfo_alloc(1);
231         if (p->p_ksi != NULL) {
232                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
233                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
234         }
235         bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
236         LIST_INIT(&p->p_mqnotifier);
237         p->p_numthreads = 0;
238         thread_link(td, p);
239 }
240
241 /*
242  * Initialize global thread allocation resources.
243  */
244 void
245 threadinit(void)
246 {
247
248         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
249         tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
250
251         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
252             thread_ctor, thread_dtor, thread_init, thread_fini,
253             16 - 1, 0);
254 #ifdef KSE
255         kseinit();      /* set up kse specific stuff  e.g. upcall zone*/
256 #endif
257 }
258
259 /*
260  * Place an unused thread on the zombie list.
261  * Use the slpq as that must be unused by now.
262  */
263 void
264 thread_zombie(struct thread *td)
265 {
266         mtx_lock_spin(&zombie_lock);
267         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
268         mtx_unlock_spin(&zombie_lock);
269 }
270
271 /*
272  * Release a thread that has exited after cpu_throw().
273  */
274 void
275 thread_stash(struct thread *td)
276 {
277         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
278         thread_zombie(td);
279 }
280
281 /*
282  * Reap zombie kse resource.
283  */
284 void
285 thread_reap(void)
286 {
287         struct thread *td_first, *td_next;
288
289         /*
290          * Don't even bother to lock if none at this instant,
291          * we really don't care about the next instant..
292          */
293         if (!TAILQ_EMPTY(&zombie_threads)) {
294                 mtx_lock_spin(&zombie_lock);
295                 td_first = TAILQ_FIRST(&zombie_threads);
296                 if (td_first)
297                         TAILQ_INIT(&zombie_threads);
298                 mtx_unlock_spin(&zombie_lock);
299                 while (td_first) {
300                         td_next = TAILQ_NEXT(td_first, td_slpq);
301                         if (td_first->td_ucred)
302                                 crfree(td_first->td_ucred);
303                         thread_free(td_first);
304                         td_first = td_next;
305                 }
306         }
307 #ifdef KSE
308         upcall_reap();
309 #endif
310 }
311
312 /*
313  * Allocate a thread.
314  */
315 struct thread *
316 thread_alloc(void)
317 {
318         struct thread *td;
319
320         thread_reap(); /* check if any zombies to get */
321
322         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
323         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
324         if (!vm_thread_new(td, 0)) {
325                 uma_zfree(thread_zone, td);
326                 return (NULL);
327         }
328         cpu_thread_setup(td);
329         return (td);
330 }
331
332
333 /*
334  * Deallocate a thread.
335  */
336 void
337 thread_free(struct thread *td)
338 {
339
340         cpu_thread_clean(td);
341         if (td->td_altkstack != 0)
342                 vm_thread_dispose_altkstack(td);
343         if (td->td_kstack != 0)
344                 vm_thread_dispose(td);
345         uma_zfree(thread_zone, td);
346 }
347
348 /*
349  * Discard the current thread and exit from its context.
350  * Always called with scheduler locked.
351  *
352  * Because we can't free a thread while we're operating under its context,
353  * push the current thread into our CPU's deadthread holder. This means
354  * we needn't worry about someone else grabbing our context before we
355  * do a cpu_throw().  This may not be needed now as we are under schedlock.
356  * Maybe we can just do a thread_stash() as thr_exit1 does.
357  */
358 /*  XXX
359  * libthr expects its thread exit to return for the last
360  * thread, meaning that the program is back to non-threaded
361  * mode I guess. Because we do this (cpu_throw) unconditionally
362  * here, they have their own version of it. (thr_exit1()) 
363  * that doesn't do it all if this was the last thread.
364  * It is also called from thread_suspend_check().
365  * Of course in the end, they end up coming here through exit1
366  * anyhow..  After fixing 'thr' to play by the rules we should be able 
367  * to merge these two functions together.
368  *
369  * called from:
370  * exit1()
371  * kse_exit()
372  * thr_exit()
373  * ifdef KSE
374  * thread_user_enter()
375  * thread_userret()
376  * endif
377  * thread_suspend_check()
378  */
379 void
380 thread_exit(void)
381 {
382         uint64_t new_switchtime;
383         struct thread *td;
384         struct thread *td2;
385         struct proc *p;
386
387         td = curthread;
388         p = td->td_proc;
389
390         PROC_SLOCK_ASSERT(p, MA_OWNED);
391         mtx_assert(&Giant, MA_NOTOWNED);
392
393         PROC_LOCK_ASSERT(p, MA_OWNED);
394         KASSERT(p != NULL, ("thread exiting without a process"));
395         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
396             (long)p->p_pid, td->td_name);
397         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
398
399 #ifdef AUDIT
400         AUDIT_SYSCALL_EXIT(0, td);
401 #endif
402
403 #ifdef KSE
404         if (td->td_standin != NULL) {
405                 /*
406                  * Note that we don't need to free the cred here as it
407                  * is done in thread_reap().
408                  */
409                 thread_zombie(td->td_standin);
410                 td->td_standin = NULL;
411         }
412 #endif
413
414         umtx_thread_exit(td);
415
416         /*
417          * drop FPU & debug register state storage, or any other
418          * architecture specific resources that
419          * would not be on a new untouched process.
420          */
421         cpu_thread_exit(td);    /* XXXSMP */
422
423         /* Do the same timestamp bookkeeping that mi_switch() would do. */
424         new_switchtime = cpu_ticks();
425         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
426         PCPU_SET(switchtime, new_switchtime);
427         PCPU_SET(switchticks, ticks);
428         PCPU_INC(cnt.v_swtch);
429         /* Save our resource usage in our process. */
430         td->td_ru.ru_nvcsw++;
431         rucollect(&p->p_ru, &td->td_ru);
432         /*
433          * The last thread is left attached to the process
434          * So that the whole bundle gets recycled. Skip
435          * all this stuff if we never had threads.
436          * EXIT clears all sign of other threads when
437          * it goes to single threading, so the last thread always
438          * takes the short path.
439          */
440         if (p->p_flag & P_HADTHREADS) {
441                 if (p->p_numthreads > 1) {
442                         thread_lock(td);
443 #ifdef KSE
444                         kse_unlink(td);
445 #else
446                         thread_unlink(td);
447 #endif
448                         thread_unlock(td);
449                         td2 = FIRST_THREAD_IN_PROC(p);
450                         sched_exit_thread(td2, td);
451
452                         /*
453                          * The test below is NOT true if we are the
454                          * sole exiting thread. P_STOPPED_SNGL is unset
455                          * in exit1() after it is the only survivor.
456                          */
457                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
458                                 if (p->p_numthreads == p->p_suspcount) {
459                                         thread_lock(p->p_singlethread);
460                                         thread_unsuspend_one(p->p_singlethread);
461                                         thread_unlock(p->p_singlethread);
462                                 }
463                         }
464
465                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
466                         PCPU_SET(deadthread, td);
467                 } else {
468                         /*
469                          * The last thread is exiting.. but not through exit()
470                          * what should we do?
471                          * Theoretically this can't happen
472                          * exit1() - clears threading flags before coming here
473                          * kse_exit() - treats last thread specially
474                          * thr_exit() - treats last thread specially
475                          * ifdef KSE
476                          * thread_user_enter() - only if more exist
477                          * thread_userret() - only if more exist
478                          * endif
479                          * thread_suspend_check() - only if more exist
480                          */
481                         panic ("thread_exit: Last thread exiting on its own");
482                 }
483         } 
484         PROC_UNLOCK(p);
485         thread_lock(td);
486         /* Save our tick information with both the thread and proc locked */
487         ruxagg(&p->p_rux, td);
488         PROC_SUNLOCK(p);
489         td->td_state = TDS_INACTIVE;
490         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
491         sched_throw(td);
492         panic("I'm a teapot!");
493         /* NOTREACHED */
494 }
495
496 /*
497  * Do any thread specific cleanups that may be needed in wait()
498  * called with Giant, proc and schedlock not held.
499  */
500 void
501 thread_wait(struct proc *p)
502 {
503         struct thread *td;
504
505         mtx_assert(&Giant, MA_NOTOWNED);
506         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
507         td = FIRST_THREAD_IN_PROC(p);
508 #ifdef KSE
509         if (td->td_standin != NULL) {
510                 if (td->td_standin->td_ucred != NULL) {
511                         crfree(td->td_standin->td_ucred);
512                         td->td_standin->td_ucred = NULL;
513                 }
514                 thread_free(td->td_standin);
515                 td->td_standin = NULL;
516         }
517 #endif
518         /* Lock the last thread so we spin until it exits cpu_throw(). */
519         thread_lock(td);
520         thread_unlock(td);
521         /* Wait for any remaining threads to exit cpu_throw(). */
522         while (p->p_exitthreads)
523                 sched_relinquish(curthread);
524         cpu_thread_clean(td);
525         crfree(td->td_ucred);
526         thread_reap();  /* check for zombie threads etc. */
527 }
528
529 /*
530  * Link a thread to a process.
531  * set up anything that needs to be initialized for it to
532  * be used by the process.
533  *
534  * Note that we do not link to the proc's ucred here.
535  * The thread is linked as if running but no KSE assigned.
536  * Called from:
537  *  proc_linkup()
538  *  thread_schedule_upcall()
539  *  thr_create()
540  */
541 void
542 thread_link(struct thread *td, struct proc *p)
543 {
544
545         /*
546          * XXX This can't be enabled because it's called for proc0 before
547          * it's spinlock has been created.
548          * PROC_SLOCK_ASSERT(p, MA_OWNED);
549          */
550         td->td_state    = TDS_INACTIVE;
551         td->td_proc     = p;
552         td->td_flags    = TDF_INMEM;
553
554         LIST_INIT(&td->td_contested);
555         sigqueue_init(&td->td_sigqueue, p);
556         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
557         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
558         p->p_numthreads++;
559 }
560
561 /*
562  * Convert a process with one thread to an unthreaded process.
563  * Called from:
564  *  thread_single(exit)  (called from execve and exit)
565  *  kse_exit()          XXX may need cleaning up wrt KSE stuff
566  */
567 void
568 thread_unthread(struct thread *td)
569 {
570         struct proc *p = td->td_proc;
571
572         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
573 #ifdef KSE
574         thread_lock(td);
575         upcall_remove(td);
576         thread_unlock(td);
577         p->p_flag &= ~(P_SA|P_HADTHREADS);
578         td->td_mailbox = NULL;
579         td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
580         if (td->td_standin != NULL) {
581                 thread_zombie(td->td_standin);
582                 td->td_standin = NULL;
583         }
584 #else
585         p->p_flag &= ~P_HADTHREADS;
586 #endif
587 }
588
589 /*
590  * Called from:
591  *  thread_exit()
592  */
593 void
594 thread_unlink(struct thread *td)
595 {
596         struct proc *p = td->td_proc;
597
598         PROC_SLOCK_ASSERT(p, MA_OWNED);
599         TAILQ_REMOVE(&p->p_threads, td, td_plist);
600         p->p_numthreads--;
601         /* could clear a few other things here */
602         /* Must  NOT clear links to proc! */
603 }
604
605 /*
606  * Enforce single-threading.
607  *
608  * Returns 1 if the caller must abort (another thread is waiting to
609  * exit the process or similar). Process is locked!
610  * Returns 0 when you are successfully the only thread running.
611  * A process has successfully single threaded in the suspend mode when
612  * There are no threads in user mode. Threads in the kernel must be
613  * allowed to continue until they get to the user boundary. They may even
614  * copy out their return values and data before suspending. They may however be
615  * accelerated in reaching the user boundary as we will wake up
616  * any sleeping threads that are interruptable. (PCATCH).
617  */
618 int
619 thread_single(int mode)
620 {
621         struct thread *td;
622         struct thread *td2;
623         struct proc *p;
624         int remaining;
625
626         td = curthread;
627         p = td->td_proc;
628         mtx_assert(&Giant, MA_NOTOWNED);
629         PROC_LOCK_ASSERT(p, MA_OWNED);
630         KASSERT((td != NULL), ("curthread is NULL"));
631
632         if ((p->p_flag & P_HADTHREADS) == 0)
633                 return (0);
634
635         /* Is someone already single threading? */
636         if (p->p_singlethread != NULL && p->p_singlethread != td)
637                 return (1);
638
639         if (mode == SINGLE_EXIT) {
640                 p->p_flag |= P_SINGLE_EXIT;
641                 p->p_flag &= ~P_SINGLE_BOUNDARY;
642         } else {
643                 p->p_flag &= ~P_SINGLE_EXIT;
644                 if (mode == SINGLE_BOUNDARY)
645                         p->p_flag |= P_SINGLE_BOUNDARY;
646                 else
647                         p->p_flag &= ~P_SINGLE_BOUNDARY;
648         }
649         p->p_flag |= P_STOPPED_SINGLE;
650         PROC_SLOCK(p);
651         p->p_singlethread = td;
652         if (mode == SINGLE_EXIT)
653                 remaining = p->p_numthreads;
654         else if (mode == SINGLE_BOUNDARY)
655                 remaining = p->p_numthreads - p->p_boundary_count;
656         else
657                 remaining = p->p_numthreads - p->p_suspcount;
658         while (remaining != 1) {
659                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
660                         goto stopme;
661                 FOREACH_THREAD_IN_PROC(p, td2) {
662                         if (td2 == td)
663                                 continue;
664                         thread_lock(td2);
665                         td2->td_flags |= TDF_ASTPENDING;
666                         if (TD_IS_INHIBITED(td2)) {
667                                 switch (mode) {
668                                 case SINGLE_EXIT:
669                                         if (td->td_flags & TDF_DBSUSPEND)
670                                                 td->td_flags &= ~TDF_DBSUSPEND;
671                                         if (TD_IS_SUSPENDED(td2))
672                                                 thread_unsuspend_one(td2);
673                                         if (TD_ON_SLEEPQ(td2) &&
674                                             (td2->td_flags & TDF_SINTR))
675                                                 sleepq_abort(td2, EINTR);
676                                         break;
677                                 case SINGLE_BOUNDARY:
678                                         break;
679                                 default:        
680                                         if (TD_IS_SUSPENDED(td2)) {
681                                                 thread_unlock(td2);
682                                                 continue;
683                                         }
684                                         /*
685                                          * maybe other inhibited states too?
686                                          */
687                                         if ((td2->td_flags & TDF_SINTR) &&
688                                             (td2->td_inhibitors &
689                                             (TDI_SLEEPING | TDI_SWAPPED)))
690                                                 thread_suspend_one(td2);
691                                         break;
692                                 }
693                         }
694 #ifdef SMP
695                         else if (TD_IS_RUNNING(td2) && td != td2) {
696                                 forward_signal(td2);
697                         }
698 #endif
699                         thread_unlock(td2);
700                 }
701                 if (mode == SINGLE_EXIT)
702                         remaining = p->p_numthreads;
703                 else if (mode == SINGLE_BOUNDARY)
704                         remaining = p->p_numthreads - p->p_boundary_count;
705                 else
706                         remaining = p->p_numthreads - p->p_suspcount;
707
708                 /*
709                  * Maybe we suspended some threads.. was it enough?
710                  */
711                 if (remaining == 1)
712                         break;
713
714 stopme:
715                 /*
716                  * Wake us up when everyone else has suspended.
717                  * In the mean time we suspend as well.
718                  */
719                 thread_suspend_switch(td);
720                 if (mode == SINGLE_EXIT)
721                         remaining = p->p_numthreads;
722                 else if (mode == SINGLE_BOUNDARY)
723                         remaining = p->p_numthreads - p->p_boundary_count;
724                 else
725                         remaining = p->p_numthreads - p->p_suspcount;
726         }
727         if (mode == SINGLE_EXIT) {
728                 /*
729                  * We have gotten rid of all the other threads and we
730                  * are about to either exit or exec. In either case,
731                  * we try our utmost  to revert to being a non-threaded
732                  * process.
733                  */
734                 p->p_singlethread = NULL;
735                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
736                 thread_unthread(td);
737         }
738         PROC_SUNLOCK(p);
739         return (0);
740 }
741
742 /*
743  * Called in from locations that can safely check to see
744  * whether we have to suspend or at least throttle for a
745  * single-thread event (e.g. fork).
746  *
747  * Such locations include userret().
748  * If the "return_instead" argument is non zero, the thread must be able to
749  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
750  *
751  * The 'return_instead' argument tells the function if it may do a
752  * thread_exit() or suspend, or whether the caller must abort and back
753  * out instead.
754  *
755  * If the thread that set the single_threading request has set the
756  * P_SINGLE_EXIT bit in the process flags then this call will never return
757  * if 'return_instead' is false, but will exit.
758  *
759  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
760  *---------------+--------------------+---------------------
761  *       0       | returns 0          |   returns 0 or 1
762  *               | when ST ends       |   immediatly
763  *---------------+--------------------+---------------------
764  *       1       | thread exits       |   returns 1
765  *               |                    |  immediatly
766  * 0 = thread_exit() or suspension ok,
767  * other = return error instead of stopping the thread.
768  *
769  * While a full suspension is under effect, even a single threading
770  * thread would be suspended if it made this call (but it shouldn't).
771  * This call should only be made from places where
772  * thread_exit() would be safe as that may be the outcome unless
773  * return_instead is set.
774  */
775 int
776 thread_suspend_check(int return_instead)
777 {
778         struct thread *td;
779         struct proc *p;
780
781         td = curthread;
782         p = td->td_proc;
783         mtx_assert(&Giant, MA_NOTOWNED);
784         PROC_LOCK_ASSERT(p, MA_OWNED);
785         while (P_SHOULDSTOP(p) ||
786               ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
787                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
788                         KASSERT(p->p_singlethread != NULL,
789                             ("singlethread not set"));
790                         /*
791                          * The only suspension in action is a
792                          * single-threading. Single threader need not stop.
793                          * XXX Should be safe to access unlocked
794                          * as it can only be set to be true by us.
795                          */
796                         if (p->p_singlethread == td)
797                                 return (0);     /* Exempt from stopping. */
798                 }
799                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
800                         return (EINTR);
801
802                 /* Should we goto user boundary if we didn't come from there? */
803                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
804                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
805                         return (ERESTART);
806
807                 /* If thread will exit, flush its pending signals */
808                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
809                         sigqueue_flush(&td->td_sigqueue);
810
811                 PROC_SLOCK(p);
812                 thread_stopped(p);
813                 /*
814                  * If the process is waiting for us to exit,
815                  * this thread should just suicide.
816                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
817                  */
818                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
819                         thread_exit();
820                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
821                         if (p->p_numthreads == p->p_suspcount + 1) {
822                                 thread_lock(p->p_singlethread);
823                                 thread_unsuspend_one(p->p_singlethread);
824                                 thread_unlock(p->p_singlethread);
825                         }
826                 }
827                 PROC_UNLOCK(p);
828                 thread_lock(td);
829                 /*
830                  * When a thread suspends, it just
831                  * gets taken off all queues.
832                  */
833                 thread_suspend_one(td);
834                 if (return_instead == 0) {
835                         p->p_boundary_count++;
836                         td->td_flags |= TDF_BOUNDARY;
837                 }
838                 PROC_SUNLOCK(p);
839                 mi_switch(SW_INVOL, NULL);
840                 if (return_instead == 0)
841                         td->td_flags &= ~TDF_BOUNDARY;
842                 thread_unlock(td);
843                 PROC_LOCK(p);
844                 if (return_instead == 0)
845                         p->p_boundary_count--;
846         }
847         return (0);
848 }
849
850 void
851 thread_suspend_switch(struct thread *td)
852 {
853         struct proc *p;
854
855         p = td->td_proc;
856         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
857         PROC_LOCK_ASSERT(p, MA_OWNED);
858         PROC_SLOCK_ASSERT(p, MA_OWNED);
859         /*
860          * We implement thread_suspend_one in stages here to avoid
861          * dropping the proc lock while the thread lock is owned.
862          */
863         thread_stopped(p);
864         p->p_suspcount++;
865         PROC_UNLOCK(p);
866         thread_lock(td);
867         sched_sleep(td);
868         TD_SET_SUSPENDED(td);
869         PROC_SUNLOCK(p);
870         DROP_GIANT();
871         mi_switch(SW_VOL, NULL);
872         thread_unlock(td);
873         PICKUP_GIANT();
874         PROC_LOCK(p);
875         PROC_SLOCK(p);
876 }
877
878 void
879 thread_suspend_one(struct thread *td)
880 {
881         struct proc *p = td->td_proc;
882
883         PROC_SLOCK_ASSERT(p, MA_OWNED);
884         THREAD_LOCK_ASSERT(td, MA_OWNED);
885         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
886         p->p_suspcount++;
887         sched_sleep(td);
888         TD_SET_SUSPENDED(td);
889 }
890
891 void
892 thread_unsuspend_one(struct thread *td)
893 {
894         struct proc *p = td->td_proc;
895
896         PROC_SLOCK_ASSERT(p, MA_OWNED);
897         THREAD_LOCK_ASSERT(td, MA_OWNED);
898         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
899         TD_CLR_SUSPENDED(td);
900         p->p_suspcount--;
901         setrunnable(td);
902 }
903
904 /*
905  * Allow all threads blocked by single threading to continue running.
906  */
907 void
908 thread_unsuspend(struct proc *p)
909 {
910         struct thread *td;
911
912         PROC_LOCK_ASSERT(p, MA_OWNED);
913         PROC_SLOCK_ASSERT(p, MA_OWNED);
914         if (!P_SHOULDSTOP(p)) {
915                 FOREACH_THREAD_IN_PROC(p, td) {
916                         thread_lock(td);
917                         if (TD_IS_SUSPENDED(td)) {
918                                 thread_unsuspend_one(td);
919                         }
920                         thread_unlock(td);
921                 }
922         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
923             (p->p_numthreads == p->p_suspcount)) {
924                 /*
925                  * Stopping everything also did the job for the single
926                  * threading request. Now we've downgraded to single-threaded,
927                  * let it continue.
928                  */
929                 thread_lock(p->p_singlethread);
930                 thread_unsuspend_one(p->p_singlethread);
931                 thread_unlock(p->p_singlethread);
932         }
933 }
934
935 /*
936  * End the single threading mode..
937  */
938 void
939 thread_single_end(void)
940 {
941         struct thread *td;
942         struct proc *p;
943
944         td = curthread;
945         p = td->td_proc;
946         PROC_LOCK_ASSERT(p, MA_OWNED);
947         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
948         PROC_SLOCK(p);
949         p->p_singlethread = NULL;
950         /*
951          * If there are other threads they mey now run,
952          * unless of course there is a blanket 'stop order'
953          * on the process. The single threader must be allowed
954          * to continue however as this is a bad place to stop.
955          */
956         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
957                 FOREACH_THREAD_IN_PROC(p, td) {
958                         thread_lock(td);
959                         if (TD_IS_SUSPENDED(td)) {
960                                 thread_unsuspend_one(td);
961                         }
962                         thread_unlock(td);
963                 }
964         }
965         PROC_SUNLOCK(p);
966 }
967
968 struct thread *
969 thread_find(struct proc *p, lwpid_t tid)
970 {
971         struct thread *td;
972
973         PROC_LOCK_ASSERT(p, MA_OWNED);
974         PROC_SLOCK(p);
975         FOREACH_THREAD_IN_PROC(p, td) {
976                 if (td->td_tid == tid)
977                         break;
978         }
979         PROC_SUNLOCK(p);
980         return (td);
981 }