]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
This commit was generated by cvs2svn to compensate for changes in r171829,
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/resourcevar.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41 #include <sys/sched.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/turnstile.h>
44 #include <sys/ktr.h>
45 #include <sys/umtx.h>
46
47 #include <security/audit/audit.h>
48
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/uma.h>
52
53 /*
54  * thread related storage.
55  */
56 static uma_zone_t thread_zone;
57
58 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
59
60 int max_threads_per_proc = 1500;
61 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
62         &max_threads_per_proc, 0, "Limit on threads per proc");
63
64 int max_threads_hits;
65 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
66         &max_threads_hits, 0, "");
67
68 #ifdef KSE
69 int virtual_cpu;
70
71 #endif
72 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
73 struct mtx zombie_lock;
74 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
75
76 static void thread_zombie(struct thread *);
77
78 #ifdef KSE
79 static int
80 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
81 {
82         int error, new_val;
83         int def_val;
84
85         def_val = mp_ncpus;
86         if (virtual_cpu == 0)
87                 new_val = def_val;
88         else
89                 new_val = virtual_cpu;
90         error = sysctl_handle_int(oidp, &new_val, 0, req);
91         if (error != 0 || req->newptr == NULL)
92                 return (error);
93         if (new_val < 0)
94                 return (EINVAL);
95         virtual_cpu = new_val;
96         return (0);
97 }
98
99 /* DEBUG ONLY */
100 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
101         0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
102         "debug virtual cpus");
103 #endif
104
105 struct mtx tid_lock;
106 static struct unrhdr *tid_unrhdr;
107
108 /*
109  * Prepare a thread for use.
110  */
111 static int
112 thread_ctor(void *mem, int size, void *arg, int flags)
113 {
114         struct thread   *td;
115
116         td = (struct thread *)mem;
117         td->td_state = TDS_INACTIVE;
118         td->td_oncpu = NOCPU;
119
120         td->td_tid = alloc_unr(tid_unrhdr);
121         td->td_syscalls = 0;
122
123         /*
124          * Note that td_critnest begins life as 1 because the thread is not
125          * running and is thereby implicitly waiting to be on the receiving
126          * end of a context switch.
127          */
128         td->td_critnest = 1;
129
130 #ifdef AUDIT
131         audit_thread_alloc(td);
132 #endif
133         umtx_thread_alloc(td);
134         return (0);
135 }
136
137 /*
138  * Reclaim a thread after use.
139  */
140 static void
141 thread_dtor(void *mem, int size, void *arg)
142 {
143         struct thread *td;
144
145         td = (struct thread *)mem;
146
147 #ifdef INVARIANTS
148         /* Verify that this thread is in a safe state to free. */
149         switch (td->td_state) {
150         case TDS_INHIBITED:
151         case TDS_RUNNING:
152         case TDS_CAN_RUN:
153         case TDS_RUNQ:
154                 /*
155                  * We must never unlink a thread that is in one of
156                  * these states, because it is currently active.
157                  */
158                 panic("bad state for thread unlinking");
159                 /* NOTREACHED */
160         case TDS_INACTIVE:
161                 break;
162         default:
163                 panic("bad thread state");
164                 /* NOTREACHED */
165         }
166 #endif
167 #ifdef AUDIT
168         audit_thread_free(td);
169 #endif
170         free_unr(tid_unrhdr, td->td_tid);
171         sched_newthread(td);
172 }
173
174 /*
175  * Initialize type-stable parts of a thread (when newly created).
176  */
177 static int
178 thread_init(void *mem, int size, int flags)
179 {
180         struct thread *td;
181
182         td = (struct thread *)mem;
183
184         vm_thread_new(td, 0);
185         cpu_thread_setup(td);
186         td->td_sleepqueue = sleepq_alloc();
187         td->td_turnstile = turnstile_alloc();
188         td->td_sched = (struct td_sched *)&td[1];
189         sched_newthread(td);
190         umtx_thread_init(td);
191         return (0);
192 }
193
194 /*
195  * Tear down type-stable parts of a thread (just before being discarded).
196  */
197 static void
198 thread_fini(void *mem, int size)
199 {
200         struct thread *td;
201
202         td = (struct thread *)mem;
203         turnstile_free(td->td_turnstile);
204         sleepq_free(td->td_sleepqueue);
205         umtx_thread_fini(td);
206         vm_thread_dispose(td);
207 }
208
209 /*
210  * For a newly created process,
211  * link up all the structures and its initial threads etc.
212  * called from:
213  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
214  * proc_dtor() (should go away)
215  * proc_init()
216  */
217 void
218 proc_linkup(struct proc *p, struct thread *td)
219 {
220
221         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
222 #ifdef KSE
223         TAILQ_INIT(&p->p_upcalls);           /* upcall list */
224 #endif
225         sigqueue_init(&p->p_sigqueue, p);
226         p->p_ksi = ksiginfo_alloc(1);
227         if (p->p_ksi != NULL) {
228                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
229                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
230         }
231         LIST_INIT(&p->p_mqnotifier);
232         p->p_numthreads = 0;
233         thread_link(td, p);
234 }
235
236 /*
237  * Initialize global thread allocation resources.
238  */
239 void
240 threadinit(void)
241 {
242
243         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
244         tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
245
246         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
247             thread_ctor, thread_dtor, thread_init, thread_fini,
248             16 - 1, 0);
249 #ifdef KSE
250         kseinit();      /* set up kse specific stuff  e.g. upcall zone*/
251 #endif
252 }
253
254 /*
255  * Place an unused thread on the zombie list.
256  * Use the slpq as that must be unused by now.
257  */
258 void
259 thread_zombie(struct thread *td)
260 {
261         mtx_lock_spin(&zombie_lock);
262         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
263         mtx_unlock_spin(&zombie_lock);
264 }
265
266 /*
267  * Release a thread that has exited after cpu_throw().
268  */
269 void
270 thread_stash(struct thread *td)
271 {
272         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
273         thread_zombie(td);
274 }
275
276 /*
277  * Reap zombie kse resource.
278  */
279 void
280 thread_reap(void)
281 {
282         struct thread *td_first, *td_next;
283
284         /*
285          * Don't even bother to lock if none at this instant,
286          * we really don't care about the next instant..
287          */
288         if (!TAILQ_EMPTY(&zombie_threads)) {
289                 mtx_lock_spin(&zombie_lock);
290                 td_first = TAILQ_FIRST(&zombie_threads);
291                 if (td_first)
292                         TAILQ_INIT(&zombie_threads);
293                 mtx_unlock_spin(&zombie_lock);
294                 while (td_first) {
295                         td_next = TAILQ_NEXT(td_first, td_slpq);
296                         if (td_first->td_ucred)
297                                 crfree(td_first->td_ucred);
298                         thread_free(td_first);
299                         td_first = td_next;
300                 }
301         }
302 #ifdef KSE
303         upcall_reap();
304 #endif
305 }
306
307 /*
308  * Allocate a thread.
309  */
310 struct thread *
311 thread_alloc(void)
312 {
313
314         thread_reap(); /* check if any zombies to get */
315         return (uma_zalloc(thread_zone, M_WAITOK));
316 }
317
318
319 /*
320  * Deallocate a thread.
321  */
322 void
323 thread_free(struct thread *td)
324 {
325
326         cpu_thread_clean(td);
327         uma_zfree(thread_zone, td);
328 }
329
330 /*
331  * Discard the current thread and exit from its context.
332  * Always called with scheduler locked.
333  *
334  * Because we can't free a thread while we're operating under its context,
335  * push the current thread into our CPU's deadthread holder. This means
336  * we needn't worry about someone else grabbing our context before we
337  * do a cpu_throw().  This may not be needed now as we are under schedlock.
338  * Maybe we can just do a thread_stash() as thr_exit1 does.
339  */
340 /*  XXX
341  * libthr expects its thread exit to return for the last
342  * thread, meaning that the program is back to non-threaded
343  * mode I guess. Because we do this (cpu_throw) unconditionally
344  * here, they have their own version of it. (thr_exit1()) 
345  * that doesn't do it all if this was the last thread.
346  * It is also called from thread_suspend_check().
347  * Of course in the end, they end up coming here through exit1
348  * anyhow..  After fixing 'thr' to play by the rules we should be able 
349  * to merge these two functions together.
350  *
351  * called from:
352  * exit1()
353  * kse_exit()
354  * thr_exit()
355  * ifdef KSE
356  * thread_user_enter()
357  * thread_userret()
358  * endif
359  * thread_suspend_check()
360  */
361 void
362 thread_exit(void)
363 {
364         uint64_t new_switchtime;
365         struct thread *td;
366         struct thread *td2;
367         struct proc *p;
368
369         td = curthread;
370         p = td->td_proc;
371
372         PROC_SLOCK_ASSERT(p, MA_OWNED);
373         mtx_assert(&Giant, MA_NOTOWNED);
374
375         PROC_LOCK_ASSERT(p, MA_OWNED);
376         KASSERT(p != NULL, ("thread exiting without a process"));
377         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
378             (long)p->p_pid, p->p_comm);
379         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
380
381 #ifdef AUDIT
382         AUDIT_SYSCALL_EXIT(0, td);
383 #endif
384
385 #ifdef KSE
386         if (td->td_standin != NULL) {
387                 /*
388                  * Note that we don't need to free the cred here as it
389                  * is done in thread_reap().
390                  */
391                 thread_zombie(td->td_standin);
392                 td->td_standin = NULL;
393         }
394 #endif
395
396         umtx_thread_exit(td);
397
398         /*
399          * drop FPU & debug register state storage, or any other
400          * architecture specific resources that
401          * would not be on a new untouched process.
402          */
403         cpu_thread_exit(td);    /* XXXSMP */
404
405         /* Do the same timestamp bookkeeping that mi_switch() would do. */
406         new_switchtime = cpu_ticks();
407         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
408         PCPU_SET(switchtime, new_switchtime);
409         PCPU_SET(switchticks, ticks);
410         PCPU_INC(cnt.v_swtch);
411         /* Save our resource usage in our process. */
412         td->td_ru.ru_nvcsw++;
413         rucollect(&p->p_ru, &td->td_ru);
414         /*
415          * The last thread is left attached to the process
416          * So that the whole bundle gets recycled. Skip
417          * all this stuff if we never had threads.
418          * EXIT clears all sign of other threads when
419          * it goes to single threading, so the last thread always
420          * takes the short path.
421          */
422         if (p->p_flag & P_HADTHREADS) {
423                 if (p->p_numthreads > 1) {
424                         thread_lock(td);
425 #ifdef KSE
426                         kse_unlink(td);
427 #else
428                         thread_unlink(td);
429 #endif
430                         thread_unlock(td);
431                         td2 = FIRST_THREAD_IN_PROC(p);
432                         sched_exit_thread(td2, td);
433
434                         /*
435                          * The test below is NOT true if we are the
436                          * sole exiting thread. P_STOPPED_SNGL is unset
437                          * in exit1() after it is the only survivor.
438                          */
439                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
440                                 if (p->p_numthreads == p->p_suspcount) {
441                                         thread_lock(p->p_singlethread);
442                                         thread_unsuspend_one(p->p_singlethread);
443                                         thread_unlock(p->p_singlethread);
444                                 }
445                         }
446
447                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
448                         PCPU_SET(deadthread, td);
449                 } else {
450                         /*
451                          * The last thread is exiting.. but not through exit()
452                          * what should we do?
453                          * Theoretically this can't happen
454                          * exit1() - clears threading flags before coming here
455                          * kse_exit() - treats last thread specially
456                          * thr_exit() - treats last thread specially
457                          * ifdef KSE
458                          * thread_user_enter() - only if more exist
459                          * thread_userret() - only if more exist
460                          * endif
461                          * thread_suspend_check() - only if more exist
462                          */
463                         panic ("thread_exit: Last thread exiting on its own");
464                 }
465         } 
466         PROC_UNLOCK(p);
467         thread_lock(td);
468         /* Save our tick information with both the thread and proc locked */
469         ruxagg(&p->p_rux, td);
470         PROC_SUNLOCK(p);
471         td->td_state = TDS_INACTIVE;
472         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
473         sched_throw(td);
474         panic("I'm a teapot!");
475         /* NOTREACHED */
476 }
477
478 /*
479  * Do any thread specific cleanups that may be needed in wait()
480  * called with Giant, proc and schedlock not held.
481  */
482 void
483 thread_wait(struct proc *p)
484 {
485         struct thread *td;
486
487         mtx_assert(&Giant, MA_NOTOWNED);
488         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
489         td = FIRST_THREAD_IN_PROC(p);
490 #ifdef KSE
491         if (td->td_standin != NULL) {
492                 if (td->td_standin->td_ucred != NULL) {
493                         crfree(td->td_standin->td_ucred);
494                         td->td_standin->td_ucred = NULL;
495                 }
496                 thread_free(td->td_standin);
497                 td->td_standin = NULL;
498         }
499 #endif
500         /* Lock the last thread so we spin until it exits cpu_throw(). */
501         thread_lock(td);
502         thread_unlock(td);
503         /* Wait for any remaining threads to exit cpu_throw(). */
504         while (p->p_exitthreads)
505                 sched_relinquish(curthread);
506         cpu_thread_clean(td);
507         crfree(td->td_ucred);
508         thread_reap();  /* check for zombie threads etc. */
509 }
510
511 /*
512  * Link a thread to a process.
513  * set up anything that needs to be initialized for it to
514  * be used by the process.
515  *
516  * Note that we do not link to the proc's ucred here.
517  * The thread is linked as if running but no KSE assigned.
518  * Called from:
519  *  proc_linkup()
520  *  thread_schedule_upcall()
521  *  thr_create()
522  */
523 void
524 thread_link(struct thread *td, struct proc *p)
525 {
526
527         /*
528          * XXX This can't be enabled because it's called for proc0 before
529          * it's spinlock has been created.
530          * PROC_SLOCK_ASSERT(p, MA_OWNED);
531          */
532         td->td_state    = TDS_INACTIVE;
533         td->td_proc     = p;
534         td->td_flags    = 0;
535
536         LIST_INIT(&td->td_contested);
537         sigqueue_init(&td->td_sigqueue, p);
538         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
539         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
540         p->p_numthreads++;
541 }
542
543 /*
544  * Convert a process with one thread to an unthreaded process.
545  * Called from:
546  *  thread_single(exit)  (called from execve and exit)
547  *  kse_exit()          XXX may need cleaning up wrt KSE stuff
548  */
549 void
550 thread_unthread(struct thread *td)
551 {
552         struct proc *p = td->td_proc;
553
554         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
555 #ifdef KSE
556         thread_lock(td);
557         upcall_remove(td);
558         thread_unlock(td);
559         p->p_flag &= ~(P_SA|P_HADTHREADS);
560         td->td_mailbox = NULL;
561         td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
562         if (td->td_standin != NULL) {
563                 thread_zombie(td->td_standin);
564                 td->td_standin = NULL;
565         }
566 #else
567         p->p_flag &= ~P_HADTHREADS;
568 #endif
569 }
570
571 /*
572  * Called from:
573  *  thread_exit()
574  */
575 void
576 thread_unlink(struct thread *td)
577 {
578         struct proc *p = td->td_proc;
579
580         PROC_SLOCK_ASSERT(p, MA_OWNED);
581         TAILQ_REMOVE(&p->p_threads, td, td_plist);
582         p->p_numthreads--;
583         /* could clear a few other things here */
584         /* Must  NOT clear links to proc! */
585 }
586
587 /*
588  * Enforce single-threading.
589  *
590  * Returns 1 if the caller must abort (another thread is waiting to
591  * exit the process or similar). Process is locked!
592  * Returns 0 when you are successfully the only thread running.
593  * A process has successfully single threaded in the suspend mode when
594  * There are no threads in user mode. Threads in the kernel must be
595  * allowed to continue until they get to the user boundary. They may even
596  * copy out their return values and data before suspending. They may however be
597  * accelerated in reaching the user boundary as we will wake up
598  * any sleeping threads that are interruptable. (PCATCH).
599  */
600 int
601 thread_single(int mode)
602 {
603         struct thread *td;
604         struct thread *td2;
605         struct proc *p;
606         int remaining;
607
608         td = curthread;
609         p = td->td_proc;
610         mtx_assert(&Giant, MA_NOTOWNED);
611         PROC_LOCK_ASSERT(p, MA_OWNED);
612         KASSERT((td != NULL), ("curthread is NULL"));
613
614         if ((p->p_flag & P_HADTHREADS) == 0)
615                 return (0);
616
617         /* Is someone already single threading? */
618         if (p->p_singlethread != NULL && p->p_singlethread != td)
619                 return (1);
620
621         if (mode == SINGLE_EXIT) {
622                 p->p_flag |= P_SINGLE_EXIT;
623                 p->p_flag &= ~P_SINGLE_BOUNDARY;
624         } else {
625                 p->p_flag &= ~P_SINGLE_EXIT;
626                 if (mode == SINGLE_BOUNDARY)
627                         p->p_flag |= P_SINGLE_BOUNDARY;
628                 else
629                         p->p_flag &= ~P_SINGLE_BOUNDARY;
630         }
631         p->p_flag |= P_STOPPED_SINGLE;
632         PROC_SLOCK(p);
633         p->p_singlethread = td;
634         if (mode == SINGLE_EXIT)
635                 remaining = p->p_numthreads;
636         else if (mode == SINGLE_BOUNDARY)
637                 remaining = p->p_numthreads - p->p_boundary_count;
638         else
639                 remaining = p->p_numthreads - p->p_suspcount;
640         while (remaining != 1) {
641                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
642                         goto stopme;
643                 FOREACH_THREAD_IN_PROC(p, td2) {
644                         if (td2 == td)
645                                 continue;
646                         thread_lock(td2);
647                         td2->td_flags |= TDF_ASTPENDING;
648                         if (TD_IS_INHIBITED(td2)) {
649                                 switch (mode) {
650                                 case SINGLE_EXIT:
651                                         if (td->td_flags & TDF_DBSUSPEND)
652                                                 td->td_flags &= ~TDF_DBSUSPEND;
653                                         if (TD_IS_SUSPENDED(td2))
654                                                 thread_unsuspend_one(td2);
655                                         if (TD_ON_SLEEPQ(td2) &&
656                                             (td2->td_flags & TDF_SINTR))
657                                                 sleepq_abort(td2, EINTR);
658                                         break;
659                                 case SINGLE_BOUNDARY:
660                                         if (TD_IS_SUSPENDED(td2) &&
661                                             !(td2->td_flags & TDF_BOUNDARY))
662                                                 thread_unsuspend_one(td2);
663                                         if (TD_ON_SLEEPQ(td2) &&
664                                             (td2->td_flags & TDF_SINTR))
665                                                 sleepq_abort(td2, ERESTART);
666                                         break;
667                                 default:        
668                                         if (TD_IS_SUSPENDED(td2)) {
669                                                 thread_unlock(td2);
670                                                 continue;
671                                         }
672                                         /*
673                                          * maybe other inhibited states too?
674                                          */
675                                         if ((td2->td_flags & TDF_SINTR) &&
676                                             (td2->td_inhibitors &
677                                             (TDI_SLEEPING | TDI_SWAPPED)))
678                                                 thread_suspend_one(td2);
679                                         break;
680                                 }
681                         }
682 #ifdef SMP
683                         else if (TD_IS_RUNNING(td2) && td != td2) {
684                                 forward_signal(td2);
685                         }
686 #endif
687                         thread_unlock(td2);
688                 }
689                 if (mode == SINGLE_EXIT)
690                         remaining = p->p_numthreads;
691                 else if (mode == SINGLE_BOUNDARY)
692                         remaining = p->p_numthreads - p->p_boundary_count;
693                 else
694                         remaining = p->p_numthreads - p->p_suspcount;
695
696                 /*
697                  * Maybe we suspended some threads.. was it enough?
698                  */
699                 if (remaining == 1)
700                         break;
701
702 stopme:
703                 /*
704                  * Wake us up when everyone else has suspended.
705                  * In the mean time we suspend as well.
706                  */
707                 thread_suspend_switch(td);
708                 if (mode == SINGLE_EXIT)
709                         remaining = p->p_numthreads;
710                 else if (mode == SINGLE_BOUNDARY)
711                         remaining = p->p_numthreads - p->p_boundary_count;
712                 else
713                         remaining = p->p_numthreads - p->p_suspcount;
714         }
715         if (mode == SINGLE_EXIT) {
716                 /*
717                  * We have gotten rid of all the other threads and we
718                  * are about to either exit or exec. In either case,
719                  * we try our utmost  to revert to being a non-threaded
720                  * process.
721                  */
722                 p->p_singlethread = NULL;
723                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
724                 thread_unthread(td);
725         }
726         PROC_SUNLOCK(p);
727         return (0);
728 }
729
730 /*
731  * Called in from locations that can safely check to see
732  * whether we have to suspend or at least throttle for a
733  * single-thread event (e.g. fork).
734  *
735  * Such locations include userret().
736  * If the "return_instead" argument is non zero, the thread must be able to
737  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
738  *
739  * The 'return_instead' argument tells the function if it may do a
740  * thread_exit() or suspend, or whether the caller must abort and back
741  * out instead.
742  *
743  * If the thread that set the single_threading request has set the
744  * P_SINGLE_EXIT bit in the process flags then this call will never return
745  * if 'return_instead' is false, but will exit.
746  *
747  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
748  *---------------+--------------------+---------------------
749  *       0       | returns 0          |   returns 0 or 1
750  *               | when ST ends       |   immediatly
751  *---------------+--------------------+---------------------
752  *       1       | thread exits       |   returns 1
753  *               |                    |  immediatly
754  * 0 = thread_exit() or suspension ok,
755  * other = return error instead of stopping the thread.
756  *
757  * While a full suspension is under effect, even a single threading
758  * thread would be suspended if it made this call (but it shouldn't).
759  * This call should only be made from places where
760  * thread_exit() would be safe as that may be the outcome unless
761  * return_instead is set.
762  */
763 int
764 thread_suspend_check(int return_instead)
765 {
766         struct thread *td;
767         struct proc *p;
768
769         td = curthread;
770         p = td->td_proc;
771         mtx_assert(&Giant, MA_NOTOWNED);
772         PROC_LOCK_ASSERT(p, MA_OWNED);
773         while (P_SHOULDSTOP(p) ||
774               ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
775                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
776                         KASSERT(p->p_singlethread != NULL,
777                             ("singlethread not set"));
778                         /*
779                          * The only suspension in action is a
780                          * single-threading. Single threader need not stop.
781                          * XXX Should be safe to access unlocked
782                          * as it can only be set to be true by us.
783                          */
784                         if (p->p_singlethread == td)
785                                 return (0);     /* Exempt from stopping. */
786                 }
787                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
788                         return (EINTR);
789
790                 /* Should we goto user boundary if we didn't come from there? */
791                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
792                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
793                         return (ERESTART);
794
795                 /* If thread will exit, flush its pending signals */
796                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
797                         sigqueue_flush(&td->td_sigqueue);
798
799                 PROC_SLOCK(p);
800                 thread_stopped(p);
801                 /*
802                  * If the process is waiting for us to exit,
803                  * this thread should just suicide.
804                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
805                  */
806                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
807                         thread_exit();
808                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
809                         if (p->p_numthreads == p->p_suspcount + 1) {
810                                 thread_lock(p->p_singlethread);
811                                 thread_unsuspend_one(p->p_singlethread);
812                                 thread_unlock(p->p_singlethread);
813                         }
814                 }
815                 PROC_UNLOCK(p);
816                 thread_lock(td);
817                 /*
818                  * When a thread suspends, it just
819                  * gets taken off all queues.
820                  */
821                 thread_suspend_one(td);
822                 if (return_instead == 0) {
823                         p->p_boundary_count++;
824                         td->td_flags |= TDF_BOUNDARY;
825                 }
826                 PROC_SUNLOCK(p);
827                 mi_switch(SW_INVOL, NULL);
828                 if (return_instead == 0)
829                         td->td_flags &= ~TDF_BOUNDARY;
830                 thread_unlock(td);
831                 PROC_LOCK(p);
832                 if (return_instead == 0)
833                         p->p_boundary_count--;
834         }
835         return (0);
836 }
837
838 void
839 thread_suspend_switch(struct thread *td)
840 {
841         struct proc *p;
842
843         p = td->td_proc;
844         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
845         PROC_LOCK_ASSERT(p, MA_OWNED);
846         PROC_SLOCK_ASSERT(p, MA_OWNED);
847         /*
848          * We implement thread_suspend_one in stages here to avoid
849          * dropping the proc lock while the thread lock is owned.
850          */
851         thread_stopped(p);
852         p->p_suspcount++;
853         PROC_UNLOCK(p);
854         thread_lock(td);
855         TD_SET_SUSPENDED(td);
856         PROC_SUNLOCK(p);
857         DROP_GIANT();
858         mi_switch(SW_VOL, NULL);
859         thread_unlock(td);
860         PICKUP_GIANT();
861         PROC_LOCK(p);
862         PROC_SLOCK(p);
863 }
864
865 void
866 thread_suspend_one(struct thread *td)
867 {
868         struct proc *p = td->td_proc;
869
870         PROC_SLOCK_ASSERT(p, MA_OWNED);
871         THREAD_LOCK_ASSERT(td, MA_OWNED);
872         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
873         p->p_suspcount++;
874         TD_SET_SUSPENDED(td);
875 }
876
877 void
878 thread_unsuspend_one(struct thread *td)
879 {
880         struct proc *p = td->td_proc;
881
882         PROC_SLOCK_ASSERT(p, MA_OWNED);
883         THREAD_LOCK_ASSERT(td, MA_OWNED);
884         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
885         TD_CLR_SUSPENDED(td);
886         p->p_suspcount--;
887         setrunnable(td);
888 }
889
890 /*
891  * Allow all threads blocked by single threading to continue running.
892  */
893 void
894 thread_unsuspend(struct proc *p)
895 {
896         struct thread *td;
897
898         PROC_LOCK_ASSERT(p, MA_OWNED);
899         PROC_SLOCK_ASSERT(p, MA_OWNED);
900         if (!P_SHOULDSTOP(p)) {
901                 FOREACH_THREAD_IN_PROC(p, td) {
902                         thread_lock(td);
903                         if (TD_IS_SUSPENDED(td)) {
904                                 thread_unsuspend_one(td);
905                         }
906                         thread_unlock(td);
907                 }
908         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
909             (p->p_numthreads == p->p_suspcount)) {
910                 /*
911                  * Stopping everything also did the job for the single
912                  * threading request. Now we've downgraded to single-threaded,
913                  * let it continue.
914                  */
915                 thread_lock(p->p_singlethread);
916                 thread_unsuspend_one(p->p_singlethread);
917                 thread_unlock(p->p_singlethread);
918         }
919 }
920
921 /*
922  * End the single threading mode..
923  */
924 void
925 thread_single_end(void)
926 {
927         struct thread *td;
928         struct proc *p;
929
930         td = curthread;
931         p = td->td_proc;
932         PROC_LOCK_ASSERT(p, MA_OWNED);
933         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
934         PROC_SLOCK(p);
935         p->p_singlethread = NULL;
936         /*
937          * If there are other threads they mey now run,
938          * unless of course there is a blanket 'stop order'
939          * on the process. The single threader must be allowed
940          * to continue however as this is a bad place to stop.
941          */
942         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
943                 FOREACH_THREAD_IN_PROC(p, td) {
944                         thread_lock(td);
945                         if (TD_IS_SUSPENDED(td)) {
946                                 thread_unsuspend_one(td);
947                         }
948                         thread_unlock(td);
949                 }
950         }
951         PROC_SUNLOCK(p);
952 }
953
954 struct thread *
955 thread_find(struct proc *p, lwpid_t tid)
956 {
957         struct thread *td;
958
959         PROC_LOCK_ASSERT(p, MA_OWNED);
960         PROC_SLOCK(p);
961         FOREACH_THREAD_IN_PROC(p, td) {
962                 if (td->td_tid == tid)
963                         break;
964         }
965         PROC_SUNLOCK(p);
966         return (td);
967 }