]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Import libxo-0.9.0:
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/rangelock.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sdt.h>
46 #include <sys/smp.h>
47 #include <sys/sched.h>
48 #include <sys/sleepqueue.h>
49 #include <sys/selinfo.h>
50 #include <sys/syscallsubr.h>
51 #include <sys/sysent.h>
52 #include <sys/turnstile.h>
53 #include <sys/ktr.h>
54 #include <sys/rwlock.h>
55 #include <sys/umtx.h>
56 #include <sys/vmmeter.h>
57 #include <sys/cpuset.h>
58 #ifdef  HWPMC_HOOKS
59 #include <sys/pmckern.h>
60 #endif
61
62 #include <security/audit/audit.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_extern.h>
66 #include <vm/uma.h>
67 #include <sys/eventhandler.h>
68
69 /*
70  * Asserts below verify the stability of struct thread and struct proc
71  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
72  * to drift, change to the structures must be accompanied by the
73  * assert update.
74  *
75  * On the stable branches after KBI freeze, conditions must not be
76  * violated.  Typically new fields are moved to the end of the
77  * structures.
78  */
79 #ifdef __amd64__
80 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
81     "struct thread KBI td_flags");
82 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
83     "struct thread KBI td_pflags");
84 _Static_assert(offsetof(struct thread, td_frame) == 0x470,
85     "struct thread KBI td_frame");
86 _Static_assert(offsetof(struct thread, td_emuldata) == 0x518,
87     "struct thread KBI td_emuldata");
88 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
89     "struct proc KBI p_flag");
90 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
91     "struct proc KBI p_pid");
92 _Static_assert(offsetof(struct proc, p_filemon) == 0x3d0,
93     "struct proc KBI p_filemon");
94 _Static_assert(offsetof(struct proc, p_comm) == 0x3e4,
95     "struct proc KBI p_comm");
96 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8,
97     "struct proc KBI p_emuldata");
98 #endif
99 #ifdef __i386__
100 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
101     "struct thread KBI td_flags");
102 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
103     "struct thread KBI td_pflags");
104 _Static_assert(offsetof(struct thread, td_frame) == 0x2e8,
105     "struct thread KBI td_frame");
106 _Static_assert(offsetof(struct thread, td_emuldata) == 0x334,
107     "struct thread KBI td_emuldata");
108 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
109     "struct proc KBI p_flag");
110 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
111     "struct proc KBI p_pid");
112 _Static_assert(offsetof(struct proc, p_filemon) == 0x27c,
113     "struct proc KBI p_filemon");
114 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
115     "struct proc KBI p_comm");
116 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
117     "struct proc KBI p_emuldata");
118 #endif
119
120 SDT_PROVIDER_DECLARE(proc);
121 SDT_PROBE_DEFINE(proc, , , lwp__exit);
122
123 /*
124  * thread related storage.
125  */
126 static uma_zone_t thread_zone;
127
128 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
129 static struct mtx zombie_lock;
130 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
131
132 static void thread_zombie(struct thread *);
133 static int thread_unsuspend_one(struct thread *td, struct proc *p,
134     bool boundary);
135
136 #define TID_BUFFER_SIZE 1024
137
138 struct mtx tid_lock;
139 static struct unrhdr *tid_unrhdr;
140 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
141 static int tid_head, tid_tail;
142 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
143
144 struct  tidhashhead *tidhashtbl;
145 u_long  tidhash;
146 struct  rwlock tidhash_lock;
147
148 EVENTHANDLER_LIST_DEFINE(thread_ctor);
149 EVENTHANDLER_LIST_DEFINE(thread_dtor);
150 EVENTHANDLER_LIST_DEFINE(thread_init);
151 EVENTHANDLER_LIST_DEFINE(thread_fini);
152
153 static lwpid_t
154 tid_alloc(void)
155 {
156         lwpid_t tid;
157
158         tid = alloc_unr(tid_unrhdr);
159         if (tid != -1)
160                 return (tid);
161         mtx_lock(&tid_lock);
162         if (tid_head == tid_tail) {
163                 mtx_unlock(&tid_lock);
164                 return (-1);
165         }
166         tid = tid_buffer[tid_head];
167         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
168         mtx_unlock(&tid_lock);
169         return (tid);
170 }
171
172 static void
173 tid_free(lwpid_t tid)
174 {
175         lwpid_t tmp_tid = -1;
176
177         mtx_lock(&tid_lock);
178         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
179                 tmp_tid = tid_buffer[tid_head];
180                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
181         }
182         tid_buffer[tid_tail] = tid;
183         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
184         mtx_unlock(&tid_lock);
185         if (tmp_tid != -1)
186                 free_unr(tid_unrhdr, tmp_tid);
187 }
188
189 /*
190  * Prepare a thread for use.
191  */
192 static int
193 thread_ctor(void *mem, int size, void *arg, int flags)
194 {
195         struct thread   *td;
196
197         td = (struct thread *)mem;
198         td->td_state = TDS_INACTIVE;
199         td->td_oncpu = NOCPU;
200
201         td->td_tid = tid_alloc();
202
203         /*
204          * Note that td_critnest begins life as 1 because the thread is not
205          * running and is thereby implicitly waiting to be on the receiving
206          * end of a context switch.
207          */
208         td->td_critnest = 1;
209         td->td_lend_user_pri = PRI_MAX;
210         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
211 #ifdef AUDIT
212         audit_thread_alloc(td);
213 #endif
214         umtx_thread_alloc(td);
215         return (0);
216 }
217
218 /*
219  * Reclaim a thread after use.
220  */
221 static void
222 thread_dtor(void *mem, int size, void *arg)
223 {
224         struct thread *td;
225
226         td = (struct thread *)mem;
227
228 #ifdef INVARIANTS
229         /* Verify that this thread is in a safe state to free. */
230         switch (td->td_state) {
231         case TDS_INHIBITED:
232         case TDS_RUNNING:
233         case TDS_CAN_RUN:
234         case TDS_RUNQ:
235                 /*
236                  * We must never unlink a thread that is in one of
237                  * these states, because it is currently active.
238                  */
239                 panic("bad state for thread unlinking");
240                 /* NOTREACHED */
241         case TDS_INACTIVE:
242                 break;
243         default:
244                 panic("bad thread state");
245                 /* NOTREACHED */
246         }
247 #endif
248 #ifdef AUDIT
249         audit_thread_free(td);
250 #endif
251         /* Free all OSD associated to this thread. */
252         osd_thread_exit(td);
253         td_softdep_cleanup(td);
254         MPASS(td->td_su == NULL);
255
256         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
257         tid_free(td->td_tid);
258 }
259
260 /*
261  * Initialize type-stable parts of a thread (when newly created).
262  */
263 static int
264 thread_init(void *mem, int size, int flags)
265 {
266         struct thread *td;
267
268         td = (struct thread *)mem;
269
270         td->td_sleepqueue = sleepq_alloc();
271         td->td_turnstile = turnstile_alloc();
272         td->td_rlqe = NULL;
273         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
274         umtx_thread_init(td);
275         td->td_kstack = 0;
276         td->td_sel = NULL;
277         return (0);
278 }
279
280 /*
281  * Tear down type-stable parts of a thread (just before being discarded).
282  */
283 static void
284 thread_fini(void *mem, int size)
285 {
286         struct thread *td;
287
288         td = (struct thread *)mem;
289         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
290         rlqentry_free(td->td_rlqe);
291         turnstile_free(td->td_turnstile);
292         sleepq_free(td->td_sleepqueue);
293         umtx_thread_fini(td);
294         seltdfini(td);
295 }
296
297 /*
298  * For a newly created process,
299  * link up all the structures and its initial threads etc.
300  * called from:
301  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
302  * proc_dtor() (should go away)
303  * proc_init()
304  */
305 void
306 proc_linkup0(struct proc *p, struct thread *td)
307 {
308         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
309         proc_linkup(p, td);
310 }
311
312 void
313 proc_linkup(struct proc *p, struct thread *td)
314 {
315
316         sigqueue_init(&p->p_sigqueue, p);
317         p->p_ksi = ksiginfo_alloc(1);
318         if (p->p_ksi != NULL) {
319                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
320                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
321         }
322         LIST_INIT(&p->p_mqnotifier);
323         p->p_numthreads = 0;
324         thread_link(td, p);
325 }
326
327 /*
328  * Initialize global thread allocation resources.
329  */
330 void
331 threadinit(void)
332 {
333
334         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
335
336         /*
337          * pid_max cannot be greater than PID_MAX.
338          * leave one number for thread0.
339          */
340         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
341
342         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
343             thread_ctor, thread_dtor, thread_init, thread_fini,
344             32 - 1, UMA_ZONE_NOFREE);
345         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
346         rw_init(&tidhash_lock, "tidhash");
347 }
348
349 /*
350  * Place an unused thread on the zombie list.
351  * Use the slpq as that must be unused by now.
352  */
353 void
354 thread_zombie(struct thread *td)
355 {
356         mtx_lock_spin(&zombie_lock);
357         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
358         mtx_unlock_spin(&zombie_lock);
359 }
360
361 /*
362  * Release a thread that has exited after cpu_throw().
363  */
364 void
365 thread_stash(struct thread *td)
366 {
367         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
368         thread_zombie(td);
369 }
370
371 /*
372  * Reap zombie resources.
373  */
374 void
375 thread_reap(void)
376 {
377         struct thread *td_first, *td_next;
378
379         /*
380          * Don't even bother to lock if none at this instant,
381          * we really don't care about the next instant.
382          */
383         if (!TAILQ_EMPTY(&zombie_threads)) {
384                 mtx_lock_spin(&zombie_lock);
385                 td_first = TAILQ_FIRST(&zombie_threads);
386                 if (td_first)
387                         TAILQ_INIT(&zombie_threads);
388                 mtx_unlock_spin(&zombie_lock);
389                 while (td_first) {
390                         td_next = TAILQ_NEXT(td_first, td_slpq);
391                         thread_cow_free(td_first);
392                         thread_free(td_first);
393                         td_first = td_next;
394                 }
395         }
396 }
397
398 /*
399  * Allocate a thread.
400  */
401 struct thread *
402 thread_alloc(int pages)
403 {
404         struct thread *td;
405
406         thread_reap(); /* check if any zombies to get */
407
408         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
409         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
410         if (!vm_thread_new(td, pages)) {
411                 uma_zfree(thread_zone, td);
412                 return (NULL);
413         }
414         cpu_thread_alloc(td);
415         return (td);
416 }
417
418 int
419 thread_alloc_stack(struct thread *td, int pages)
420 {
421
422         KASSERT(td->td_kstack == 0,
423             ("thread_alloc_stack called on a thread with kstack"));
424         if (!vm_thread_new(td, pages))
425                 return (0);
426         cpu_thread_alloc(td);
427         return (1);
428 }
429
430 /*
431  * Deallocate a thread.
432  */
433 void
434 thread_free(struct thread *td)
435 {
436
437         lock_profile_thread_exit(td);
438         if (td->td_cpuset)
439                 cpuset_rel(td->td_cpuset);
440         td->td_cpuset = NULL;
441         cpu_thread_free(td);
442         if (td->td_kstack != 0)
443                 vm_thread_dispose(td);
444         callout_drain(&td->td_slpcallout);
445         uma_zfree(thread_zone, td);
446 }
447
448 void
449 thread_cow_get_proc(struct thread *newtd, struct proc *p)
450 {
451
452         PROC_LOCK_ASSERT(p, MA_OWNED);
453         newtd->td_ucred = crhold(p->p_ucred);
454         newtd->td_limit = lim_hold(p->p_limit);
455         newtd->td_cowgen = p->p_cowgen;
456 }
457
458 void
459 thread_cow_get(struct thread *newtd, struct thread *td)
460 {
461
462         newtd->td_ucred = crhold(td->td_ucred);
463         newtd->td_limit = lim_hold(td->td_limit);
464         newtd->td_cowgen = td->td_cowgen;
465 }
466
467 void
468 thread_cow_free(struct thread *td)
469 {
470
471         if (td->td_ucred != NULL)
472                 crfree(td->td_ucred);
473         if (td->td_limit != NULL)
474                 lim_free(td->td_limit);
475 }
476
477 void
478 thread_cow_update(struct thread *td)
479 {
480         struct proc *p;
481         struct ucred *oldcred;
482         struct plimit *oldlimit;
483
484         p = td->td_proc;
485         oldcred = NULL;
486         oldlimit = NULL;
487         PROC_LOCK(p);
488         if (td->td_ucred != p->p_ucred) {
489                 oldcred = td->td_ucred;
490                 td->td_ucred = crhold(p->p_ucred);
491         }
492         if (td->td_limit != p->p_limit) {
493                 oldlimit = td->td_limit;
494                 td->td_limit = lim_hold(p->p_limit);
495         }
496         td->td_cowgen = p->p_cowgen;
497         PROC_UNLOCK(p);
498         if (oldcred != NULL)
499                 crfree(oldcred);
500         if (oldlimit != NULL)
501                 lim_free(oldlimit);
502 }
503
504 /*
505  * Discard the current thread and exit from its context.
506  * Always called with scheduler locked.
507  *
508  * Because we can't free a thread while we're operating under its context,
509  * push the current thread into our CPU's deadthread holder. This means
510  * we needn't worry about someone else grabbing our context before we
511  * do a cpu_throw().
512  */
513 void
514 thread_exit(void)
515 {
516         uint64_t runtime, new_switchtime;
517         struct thread *td;
518         struct thread *td2;
519         struct proc *p;
520         int wakeup_swapper;
521
522         td = curthread;
523         p = td->td_proc;
524
525         PROC_SLOCK_ASSERT(p, MA_OWNED);
526         mtx_assert(&Giant, MA_NOTOWNED);
527
528         PROC_LOCK_ASSERT(p, MA_OWNED);
529         KASSERT(p != NULL, ("thread exiting without a process"));
530         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
531             (long)p->p_pid, td->td_name);
532         SDT_PROBE0(proc, , , lwp__exit);
533         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
534
535 #ifdef AUDIT
536         AUDIT_SYSCALL_EXIT(0, td);
537 #endif
538         /*
539          * drop FPU & debug register state storage, or any other
540          * architecture specific resources that
541          * would not be on a new untouched process.
542          */
543         cpu_thread_exit(td);
544
545         /*
546          * The last thread is left attached to the process
547          * So that the whole bundle gets recycled. Skip
548          * all this stuff if we never had threads.
549          * EXIT clears all sign of other threads when
550          * it goes to single threading, so the last thread always
551          * takes the short path.
552          */
553         if (p->p_flag & P_HADTHREADS) {
554                 if (p->p_numthreads > 1) {
555                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
556                         thread_unlink(td);
557                         td2 = FIRST_THREAD_IN_PROC(p);
558                         sched_exit_thread(td2, td);
559
560                         /*
561                          * The test below is NOT true if we are the
562                          * sole exiting thread. P_STOPPED_SINGLE is unset
563                          * in exit1() after it is the only survivor.
564                          */
565                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
566                                 if (p->p_numthreads == p->p_suspcount) {
567                                         thread_lock(p->p_singlethread);
568                                         wakeup_swapper = thread_unsuspend_one(
569                                                 p->p_singlethread, p, false);
570                                         thread_unlock(p->p_singlethread);
571                                         if (wakeup_swapper)
572                                                 kick_proc0();
573                                 }
574                         }
575
576                         PCPU_SET(deadthread, td);
577                 } else {
578                         /*
579                          * The last thread is exiting.. but not through exit()
580                          */
581                         panic ("thread_exit: Last thread exiting on its own");
582                 }
583         } 
584 #ifdef  HWPMC_HOOKS
585         /*
586          * If this thread is part of a process that is being tracked by hwpmc(4),
587          * inform the module of the thread's impending exit.
588          */
589         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
590                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
591                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
592         }
593 #endif
594         PROC_UNLOCK(p);
595         PROC_STATLOCK(p);
596         thread_lock(td);
597         PROC_SUNLOCK(p);
598
599         /* Do the same timestamp bookkeeping that mi_switch() would do. */
600         new_switchtime = cpu_ticks();
601         runtime = new_switchtime - PCPU_GET(switchtime);
602         td->td_runtime += runtime;
603         td->td_incruntime += runtime;
604         PCPU_SET(switchtime, new_switchtime);
605         PCPU_SET(switchticks, ticks);
606         VM_CNT_INC(v_swtch);
607
608         /* Save our resource usage in our process. */
609         td->td_ru.ru_nvcsw++;
610         ruxagg(p, td);
611         rucollect(&p->p_ru, &td->td_ru);
612         PROC_STATUNLOCK(p);
613
614         td->td_state = TDS_INACTIVE;
615 #ifdef WITNESS
616         witness_thread_exit(td);
617 #endif
618         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
619         sched_throw(td);
620         panic("I'm a teapot!");
621         /* NOTREACHED */
622 }
623
624 /*
625  * Do any thread specific cleanups that may be needed in wait()
626  * called with Giant, proc and schedlock not held.
627  */
628 void
629 thread_wait(struct proc *p)
630 {
631         struct thread *td;
632
633         mtx_assert(&Giant, MA_NOTOWNED);
634         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
635         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
636         td = FIRST_THREAD_IN_PROC(p);
637         /* Lock the last thread so we spin until it exits cpu_throw(). */
638         thread_lock(td);
639         thread_unlock(td);
640         lock_profile_thread_exit(td);
641         cpuset_rel(td->td_cpuset);
642         td->td_cpuset = NULL;
643         cpu_thread_clean(td);
644         thread_cow_free(td);
645         callout_drain(&td->td_slpcallout);
646         thread_reap();  /* check for zombie threads etc. */
647 }
648
649 /*
650  * Link a thread to a process.
651  * set up anything that needs to be initialized for it to
652  * be used by the process.
653  */
654 void
655 thread_link(struct thread *td, struct proc *p)
656 {
657
658         /*
659          * XXX This can't be enabled because it's called for proc0 before
660          * its lock has been created.
661          * PROC_LOCK_ASSERT(p, MA_OWNED);
662          */
663         td->td_state    = TDS_INACTIVE;
664         td->td_proc     = p;
665         td->td_flags    = TDF_INMEM;
666
667         LIST_INIT(&td->td_contested);
668         LIST_INIT(&td->td_lprof[0]);
669         LIST_INIT(&td->td_lprof[1]);
670         sigqueue_init(&td->td_sigqueue, p);
671         callout_init(&td->td_slpcallout, 1);
672         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
673         p->p_numthreads++;
674 }
675
676 /*
677  * Called from:
678  *  thread_exit()
679  */
680 void
681 thread_unlink(struct thread *td)
682 {
683         struct proc *p = td->td_proc;
684
685         PROC_LOCK_ASSERT(p, MA_OWNED);
686         TAILQ_REMOVE(&p->p_threads, td, td_plist);
687         p->p_numthreads--;
688         /* could clear a few other things here */
689         /* Must  NOT clear links to proc! */
690 }
691
692 static int
693 calc_remaining(struct proc *p, int mode)
694 {
695         int remaining;
696
697         PROC_LOCK_ASSERT(p, MA_OWNED);
698         PROC_SLOCK_ASSERT(p, MA_OWNED);
699         if (mode == SINGLE_EXIT)
700                 remaining = p->p_numthreads;
701         else if (mode == SINGLE_BOUNDARY)
702                 remaining = p->p_numthreads - p->p_boundary_count;
703         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
704                 remaining = p->p_numthreads - p->p_suspcount;
705         else
706                 panic("calc_remaining: wrong mode %d", mode);
707         return (remaining);
708 }
709
710 static int
711 remain_for_mode(int mode)
712 {
713
714         return (mode == SINGLE_ALLPROC ? 0 : 1);
715 }
716
717 static int
718 weed_inhib(int mode, struct thread *td2, struct proc *p)
719 {
720         int wakeup_swapper;
721
722         PROC_LOCK_ASSERT(p, MA_OWNED);
723         PROC_SLOCK_ASSERT(p, MA_OWNED);
724         THREAD_LOCK_ASSERT(td2, MA_OWNED);
725
726         wakeup_swapper = 0;
727         switch (mode) {
728         case SINGLE_EXIT:
729                 if (TD_IS_SUSPENDED(td2))
730                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
731                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
732                         wakeup_swapper |= sleepq_abort(td2, EINTR);
733                 break;
734         case SINGLE_BOUNDARY:
735         case SINGLE_NO_EXIT:
736                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
737                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
738                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
739                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
740                 break;
741         case SINGLE_ALLPROC:
742                 /*
743                  * ALLPROC suspend tries to avoid spurious EINTR for
744                  * threads sleeping interruptable, by suspending the
745                  * thread directly, similarly to sig_suspend_threads().
746                  * Since such sleep is not performed at the user
747                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
748                  * is used to avoid immediate un-suspend.
749                  */
750                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
751                     TDF_ALLPROCSUSP)) == 0)
752                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
753                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
754                         if ((td2->td_flags & TDF_SBDRY) == 0) {
755                                 thread_suspend_one(td2);
756                                 td2->td_flags |= TDF_ALLPROCSUSP;
757                         } else {
758                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
759                         }
760                 }
761                 break;
762         }
763         return (wakeup_swapper);
764 }
765
766 /*
767  * Enforce single-threading.
768  *
769  * Returns 1 if the caller must abort (another thread is waiting to
770  * exit the process or similar). Process is locked!
771  * Returns 0 when you are successfully the only thread running.
772  * A process has successfully single threaded in the suspend mode when
773  * There are no threads in user mode. Threads in the kernel must be
774  * allowed to continue until they get to the user boundary. They may even
775  * copy out their return values and data before suspending. They may however be
776  * accelerated in reaching the user boundary as we will wake up
777  * any sleeping threads that are interruptable. (PCATCH).
778  */
779 int
780 thread_single(struct proc *p, int mode)
781 {
782         struct thread *td;
783         struct thread *td2;
784         int remaining, wakeup_swapper;
785
786         td = curthread;
787         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
788             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
789             ("invalid mode %d", mode));
790         /*
791          * If allowing non-ALLPROC singlethreading for non-curproc
792          * callers, calc_remaining() and remain_for_mode() should be
793          * adjusted to also account for td->td_proc != p.  For now
794          * this is not implemented because it is not used.
795          */
796         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
797             (mode != SINGLE_ALLPROC && td->td_proc == p),
798             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
799         mtx_assert(&Giant, MA_NOTOWNED);
800         PROC_LOCK_ASSERT(p, MA_OWNED);
801
802         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
803                 return (0);
804
805         /* Is someone already single threading? */
806         if (p->p_singlethread != NULL && p->p_singlethread != td)
807                 return (1);
808
809         if (mode == SINGLE_EXIT) {
810                 p->p_flag |= P_SINGLE_EXIT;
811                 p->p_flag &= ~P_SINGLE_BOUNDARY;
812         } else {
813                 p->p_flag &= ~P_SINGLE_EXIT;
814                 if (mode == SINGLE_BOUNDARY)
815                         p->p_flag |= P_SINGLE_BOUNDARY;
816                 else
817                         p->p_flag &= ~P_SINGLE_BOUNDARY;
818         }
819         if (mode == SINGLE_ALLPROC)
820                 p->p_flag |= P_TOTAL_STOP;
821         p->p_flag |= P_STOPPED_SINGLE;
822         PROC_SLOCK(p);
823         p->p_singlethread = td;
824         remaining = calc_remaining(p, mode);
825         while (remaining != remain_for_mode(mode)) {
826                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
827                         goto stopme;
828                 wakeup_swapper = 0;
829                 FOREACH_THREAD_IN_PROC(p, td2) {
830                         if (td2 == td)
831                                 continue;
832                         thread_lock(td2);
833                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
834                         if (TD_IS_INHIBITED(td2)) {
835                                 wakeup_swapper |= weed_inhib(mode, td2, p);
836 #ifdef SMP
837                         } else if (TD_IS_RUNNING(td2) && td != td2) {
838                                 forward_signal(td2);
839 #endif
840                         }
841                         thread_unlock(td2);
842                 }
843                 if (wakeup_swapper)
844                         kick_proc0();
845                 remaining = calc_remaining(p, mode);
846
847                 /*
848                  * Maybe we suspended some threads.. was it enough?
849                  */
850                 if (remaining == remain_for_mode(mode))
851                         break;
852
853 stopme:
854                 /*
855                  * Wake us up when everyone else has suspended.
856                  * In the mean time we suspend as well.
857                  */
858                 thread_suspend_switch(td, p);
859                 remaining = calc_remaining(p, mode);
860         }
861         if (mode == SINGLE_EXIT) {
862                 /*
863                  * Convert the process to an unthreaded process.  The
864                  * SINGLE_EXIT is called by exit1() or execve(), in
865                  * both cases other threads must be retired.
866                  */
867                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
868                 p->p_singlethread = NULL;
869                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
870
871                 /*
872                  * Wait for any remaining threads to exit cpu_throw().
873                  */
874                 while (p->p_exitthreads != 0) {
875                         PROC_SUNLOCK(p);
876                         PROC_UNLOCK(p);
877                         sched_relinquish(td);
878                         PROC_LOCK(p);
879                         PROC_SLOCK(p);
880                 }
881         } else if (mode == SINGLE_BOUNDARY) {
882                 /*
883                  * Wait until all suspended threads are removed from
884                  * the processors.  The thread_suspend_check()
885                  * increments p_boundary_count while it is still
886                  * running, which makes it possible for the execve()
887                  * to destroy vmspace while our other threads are
888                  * still using the address space.
889                  *
890                  * We lock the thread, which is only allowed to
891                  * succeed after context switch code finished using
892                  * the address space.
893                  */
894                 FOREACH_THREAD_IN_PROC(p, td2) {
895                         if (td2 == td)
896                                 continue;
897                         thread_lock(td2);
898                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
899                             ("td %p not on boundary", td2));
900                         KASSERT(TD_IS_SUSPENDED(td2),
901                             ("td %p is not suspended", td2));
902                         thread_unlock(td2);
903                 }
904         }
905         PROC_SUNLOCK(p);
906         return (0);
907 }
908
909 bool
910 thread_suspend_check_needed(void)
911 {
912         struct proc *p;
913         struct thread *td;
914
915         td = curthread;
916         p = td->td_proc;
917         PROC_LOCK_ASSERT(p, MA_OWNED);
918         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
919             (td->td_dbgflags & TDB_SUSPEND) != 0));
920 }
921
922 /*
923  * Called in from locations that can safely check to see
924  * whether we have to suspend or at least throttle for a
925  * single-thread event (e.g. fork).
926  *
927  * Such locations include userret().
928  * If the "return_instead" argument is non zero, the thread must be able to
929  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
930  *
931  * The 'return_instead' argument tells the function if it may do a
932  * thread_exit() or suspend, or whether the caller must abort and back
933  * out instead.
934  *
935  * If the thread that set the single_threading request has set the
936  * P_SINGLE_EXIT bit in the process flags then this call will never return
937  * if 'return_instead' is false, but will exit.
938  *
939  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
940  *---------------+--------------------+---------------------
941  *       0       | returns 0          |   returns 0 or 1
942  *               | when ST ends       |   immediately
943  *---------------+--------------------+---------------------
944  *       1       | thread exits       |   returns 1
945  *               |                    |  immediately
946  * 0 = thread_exit() or suspension ok,
947  * other = return error instead of stopping the thread.
948  *
949  * While a full suspension is under effect, even a single threading
950  * thread would be suspended if it made this call (but it shouldn't).
951  * This call should only be made from places where
952  * thread_exit() would be safe as that may be the outcome unless
953  * return_instead is set.
954  */
955 int
956 thread_suspend_check(int return_instead)
957 {
958         struct thread *td;
959         struct proc *p;
960         int wakeup_swapper;
961
962         td = curthread;
963         p = td->td_proc;
964         mtx_assert(&Giant, MA_NOTOWNED);
965         PROC_LOCK_ASSERT(p, MA_OWNED);
966         while (thread_suspend_check_needed()) {
967                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
968                         KASSERT(p->p_singlethread != NULL,
969                             ("singlethread not set"));
970                         /*
971                          * The only suspension in action is a
972                          * single-threading. Single threader need not stop.
973                          * It is safe to access p->p_singlethread unlocked
974                          * because it can only be set to our address by us.
975                          */
976                         if (p->p_singlethread == td)
977                                 return (0);     /* Exempt from stopping. */
978                 }
979                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
980                         return (EINTR);
981
982                 /* Should we goto user boundary if we didn't come from there? */
983                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
984                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
985                         return (ERESTART);
986
987                 /*
988                  * Ignore suspend requests if they are deferred.
989                  */
990                 if ((td->td_flags & TDF_SBDRY) != 0) {
991                         KASSERT(return_instead,
992                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
993                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
994                             (TDF_SEINTR | TDF_SERESTART),
995                             ("both TDF_SEINTR and TDF_SERESTART"));
996                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
997                 }
998
999                 /*
1000                  * If the process is waiting for us to exit,
1001                  * this thread should just suicide.
1002                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1003                  */
1004                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1005                         PROC_UNLOCK(p);
1006
1007                         /*
1008                          * Allow Linux emulation layer to do some work
1009                          * before thread suicide.
1010                          */
1011                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1012                                 (p->p_sysent->sv_thread_detach)(td);
1013                         umtx_thread_exit(td);
1014                         kern_thr_exit(td);
1015                         panic("stopped thread did not exit");
1016                 }
1017
1018                 PROC_SLOCK(p);
1019                 thread_stopped(p);
1020                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1021                         if (p->p_numthreads == p->p_suspcount + 1) {
1022                                 thread_lock(p->p_singlethread);
1023                                 wakeup_swapper = thread_unsuspend_one(
1024                                     p->p_singlethread, p, false);
1025                                 thread_unlock(p->p_singlethread);
1026                                 if (wakeup_swapper)
1027                                         kick_proc0();
1028                         }
1029                 }
1030                 PROC_UNLOCK(p);
1031                 thread_lock(td);
1032                 /*
1033                  * When a thread suspends, it just
1034                  * gets taken off all queues.
1035                  */
1036                 thread_suspend_one(td);
1037                 if (return_instead == 0) {
1038                         p->p_boundary_count++;
1039                         td->td_flags |= TDF_BOUNDARY;
1040                 }
1041                 PROC_SUNLOCK(p);
1042                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1043                 thread_unlock(td);
1044                 PROC_LOCK(p);
1045         }
1046         return (0);
1047 }
1048
1049 void
1050 thread_suspend_switch(struct thread *td, struct proc *p)
1051 {
1052
1053         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1054         PROC_LOCK_ASSERT(p, MA_OWNED);
1055         PROC_SLOCK_ASSERT(p, MA_OWNED);
1056         /*
1057          * We implement thread_suspend_one in stages here to avoid
1058          * dropping the proc lock while the thread lock is owned.
1059          */
1060         if (p == td->td_proc) {
1061                 thread_stopped(p);
1062                 p->p_suspcount++;
1063         }
1064         PROC_UNLOCK(p);
1065         thread_lock(td);
1066         td->td_flags &= ~TDF_NEEDSUSPCHK;
1067         TD_SET_SUSPENDED(td);
1068         sched_sleep(td, 0);
1069         PROC_SUNLOCK(p);
1070         DROP_GIANT();
1071         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1072         thread_unlock(td);
1073         PICKUP_GIANT();
1074         PROC_LOCK(p);
1075         PROC_SLOCK(p);
1076 }
1077
1078 void
1079 thread_suspend_one(struct thread *td)
1080 {
1081         struct proc *p;
1082
1083         p = td->td_proc;
1084         PROC_SLOCK_ASSERT(p, MA_OWNED);
1085         THREAD_LOCK_ASSERT(td, MA_OWNED);
1086         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1087         p->p_suspcount++;
1088         td->td_flags &= ~TDF_NEEDSUSPCHK;
1089         TD_SET_SUSPENDED(td);
1090         sched_sleep(td, 0);
1091 }
1092
1093 static int
1094 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1095 {
1096
1097         THREAD_LOCK_ASSERT(td, MA_OWNED);
1098         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1099         TD_CLR_SUSPENDED(td);
1100         td->td_flags &= ~TDF_ALLPROCSUSP;
1101         if (td->td_proc == p) {
1102                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1103                 p->p_suspcount--;
1104                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1105                         td->td_flags &= ~TDF_BOUNDARY;
1106                         p->p_boundary_count--;
1107                 }
1108         }
1109         return (setrunnable(td));
1110 }
1111
1112 /*
1113  * Allow all threads blocked by single threading to continue running.
1114  */
1115 void
1116 thread_unsuspend(struct proc *p)
1117 {
1118         struct thread *td;
1119         int wakeup_swapper;
1120
1121         PROC_LOCK_ASSERT(p, MA_OWNED);
1122         PROC_SLOCK_ASSERT(p, MA_OWNED);
1123         wakeup_swapper = 0;
1124         if (!P_SHOULDSTOP(p)) {
1125                 FOREACH_THREAD_IN_PROC(p, td) {
1126                         thread_lock(td);
1127                         if (TD_IS_SUSPENDED(td)) {
1128                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1129                                     true);
1130                         }
1131                         thread_unlock(td);
1132                 }
1133         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1134             p->p_numthreads == p->p_suspcount) {
1135                 /*
1136                  * Stopping everything also did the job for the single
1137                  * threading request. Now we've downgraded to single-threaded,
1138                  * let it continue.
1139                  */
1140                 if (p->p_singlethread->td_proc == p) {
1141                         thread_lock(p->p_singlethread);
1142                         wakeup_swapper = thread_unsuspend_one(
1143                             p->p_singlethread, p, false);
1144                         thread_unlock(p->p_singlethread);
1145                 }
1146         }
1147         if (wakeup_swapper)
1148                 kick_proc0();
1149 }
1150
1151 /*
1152  * End the single threading mode..
1153  */
1154 void
1155 thread_single_end(struct proc *p, int mode)
1156 {
1157         struct thread *td;
1158         int wakeup_swapper;
1159
1160         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1161             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1162             ("invalid mode %d", mode));
1163         PROC_LOCK_ASSERT(p, MA_OWNED);
1164         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1165             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1166             ("mode %d does not match P_TOTAL_STOP", mode));
1167         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1168             ("thread_single_end from other thread %p %p",
1169             curthread, p->p_singlethread));
1170         KASSERT(mode != SINGLE_BOUNDARY ||
1171             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1172             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1173         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1174             P_TOTAL_STOP);
1175         PROC_SLOCK(p);
1176         p->p_singlethread = NULL;
1177         wakeup_swapper = 0;
1178         /*
1179          * If there are other threads they may now run,
1180          * unless of course there is a blanket 'stop order'
1181          * on the process. The single threader must be allowed
1182          * to continue however as this is a bad place to stop.
1183          */
1184         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1185                 FOREACH_THREAD_IN_PROC(p, td) {
1186                         thread_lock(td);
1187                         if (TD_IS_SUSPENDED(td)) {
1188                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1189                                     mode == SINGLE_BOUNDARY);
1190                         }
1191                         thread_unlock(td);
1192                 }
1193         }
1194         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1195             ("inconsistent boundary count %d", p->p_boundary_count));
1196         PROC_SUNLOCK(p);
1197         if (wakeup_swapper)
1198                 kick_proc0();
1199 }
1200
1201 struct thread *
1202 thread_find(struct proc *p, lwpid_t tid)
1203 {
1204         struct thread *td;
1205
1206         PROC_LOCK_ASSERT(p, MA_OWNED);
1207         FOREACH_THREAD_IN_PROC(p, td) {
1208                 if (td->td_tid == tid)
1209                         break;
1210         }
1211         return (td);
1212 }
1213
1214 /* Locate a thread by number; return with proc lock held. */
1215 struct thread *
1216 tdfind(lwpid_t tid, pid_t pid)
1217 {
1218 #define RUN_THRESH      16
1219         struct thread *td;
1220         int run = 0;
1221
1222         rw_rlock(&tidhash_lock);
1223         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1224                 if (td->td_tid == tid) {
1225                         if (pid != -1 && td->td_proc->p_pid != pid) {
1226                                 td = NULL;
1227                                 break;
1228                         }
1229                         PROC_LOCK(td->td_proc);
1230                         if (td->td_proc->p_state == PRS_NEW) {
1231                                 PROC_UNLOCK(td->td_proc);
1232                                 td = NULL;
1233                                 break;
1234                         }
1235                         if (run > RUN_THRESH) {
1236                                 if (rw_try_upgrade(&tidhash_lock)) {
1237                                         LIST_REMOVE(td, td_hash);
1238                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1239                                                 td, td_hash);
1240                                         rw_wunlock(&tidhash_lock);
1241                                         return (td);
1242                                 }
1243                         }
1244                         break;
1245                 }
1246                 run++;
1247         }
1248         rw_runlock(&tidhash_lock);
1249         return (td);
1250 }
1251
1252 void
1253 tidhash_add(struct thread *td)
1254 {
1255         rw_wlock(&tidhash_lock);
1256         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1257         rw_wunlock(&tidhash_lock);
1258 }
1259
1260 void
1261 tidhash_remove(struct thread *td)
1262 {
1263         rw_wlock(&tidhash_lock);
1264         LIST_REMOVE(td, td_hash);
1265         rw_wunlock(&tidhash_lock);
1266 }