]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Merge bmake 20151020
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/sysent.h>
49 #include <sys/turnstile.h>
50 #include <sys/ktr.h>
51 #include <sys/rwlock.h>
52 #include <sys/umtx.h>
53 #include <sys/cpuset.h>
54 #ifdef  HWPMC_HOOKS
55 #include <sys/pmckern.h>
56 #endif
57
58 #include <security/audit/audit.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/uma.h>
63 #include <vm/vm_domain.h>
64 #include <sys/eventhandler.h>
65
66 SDT_PROVIDER_DECLARE(proc);
67 SDT_PROBE_DEFINE(proc, , , lwp__exit);
68
69 /*
70  * thread related storage.
71  */
72 static uma_zone_t thread_zone;
73
74 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75 static struct mtx zombie_lock;
76 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77
78 static void thread_zombie(struct thread *);
79 static int thread_unsuspend_one(struct thread *td, struct proc *p,
80     bool boundary);
81
82 #define TID_BUFFER_SIZE 1024
83
84 struct mtx tid_lock;
85 static struct unrhdr *tid_unrhdr;
86 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
87 static int tid_head, tid_tail;
88 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
89
90 struct  tidhashhead *tidhashtbl;
91 u_long  tidhash;
92 struct  rwlock tidhash_lock;
93
94 static lwpid_t
95 tid_alloc(void)
96 {
97         lwpid_t tid;
98
99         tid = alloc_unr(tid_unrhdr);
100         if (tid != -1)
101                 return (tid);
102         mtx_lock(&tid_lock);
103         if (tid_head == tid_tail) {
104                 mtx_unlock(&tid_lock);
105                 return (-1);
106         }
107         tid = tid_buffer[tid_head];
108         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
109         mtx_unlock(&tid_lock);
110         return (tid);
111 }
112
113 static void
114 tid_free(lwpid_t tid)
115 {
116         lwpid_t tmp_tid = -1;
117
118         mtx_lock(&tid_lock);
119         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
120                 tmp_tid = tid_buffer[tid_head];
121                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
122         }
123         tid_buffer[tid_tail] = tid;
124         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
125         mtx_unlock(&tid_lock);
126         if (tmp_tid != -1)
127                 free_unr(tid_unrhdr, tmp_tid);
128 }
129
130 /*
131  * Prepare a thread for use.
132  */
133 static int
134 thread_ctor(void *mem, int size, void *arg, int flags)
135 {
136         struct thread   *td;
137
138         td = (struct thread *)mem;
139         td->td_state = TDS_INACTIVE;
140         td->td_oncpu = NOCPU;
141
142         td->td_tid = tid_alloc();
143
144         /*
145          * Note that td_critnest begins life as 1 because the thread is not
146          * running and is thereby implicitly waiting to be on the receiving
147          * end of a context switch.
148          */
149         td->td_critnest = 1;
150         td->td_lend_user_pri = PRI_MAX;
151         EVENTHANDLER_INVOKE(thread_ctor, td);
152 #ifdef AUDIT
153         audit_thread_alloc(td);
154 #endif
155         umtx_thread_alloc(td);
156         return (0);
157 }
158
159 /*
160  * Reclaim a thread after use.
161  */
162 static void
163 thread_dtor(void *mem, int size, void *arg)
164 {
165         struct thread *td;
166
167         td = (struct thread *)mem;
168
169 #ifdef INVARIANTS
170         /* Verify that this thread is in a safe state to free. */
171         switch (td->td_state) {
172         case TDS_INHIBITED:
173         case TDS_RUNNING:
174         case TDS_CAN_RUN:
175         case TDS_RUNQ:
176                 /*
177                  * We must never unlink a thread that is in one of
178                  * these states, because it is currently active.
179                  */
180                 panic("bad state for thread unlinking");
181                 /* NOTREACHED */
182         case TDS_INACTIVE:
183                 break;
184         default:
185                 panic("bad thread state");
186                 /* NOTREACHED */
187         }
188 #endif
189 #ifdef AUDIT
190         audit_thread_free(td);
191 #endif
192         /* Free all OSD associated to this thread. */
193         osd_thread_exit(td);
194
195         EVENTHANDLER_INVOKE(thread_dtor, td);
196         tid_free(td->td_tid);
197 }
198
199 /*
200  * Initialize type-stable parts of a thread (when newly created).
201  */
202 static int
203 thread_init(void *mem, int size, int flags)
204 {
205         struct thread *td;
206
207         td = (struct thread *)mem;
208
209         td->td_sleepqueue = sleepq_alloc();
210         td->td_turnstile = turnstile_alloc();
211         td->td_rlqe = NULL;
212         EVENTHANDLER_INVOKE(thread_init, td);
213         td->td_sched = (struct td_sched *)&td[1];
214         umtx_thread_init(td);
215         td->td_kstack = 0;
216         td->td_sel = NULL;
217         return (0);
218 }
219
220 /*
221  * Tear down type-stable parts of a thread (just before being discarded).
222  */
223 static void
224 thread_fini(void *mem, int size)
225 {
226         struct thread *td;
227
228         td = (struct thread *)mem;
229         EVENTHANDLER_INVOKE(thread_fini, td);
230         rlqentry_free(td->td_rlqe);
231         turnstile_free(td->td_turnstile);
232         sleepq_free(td->td_sleepqueue);
233         umtx_thread_fini(td);
234         seltdfini(td);
235 }
236
237 /*
238  * For a newly created process,
239  * link up all the structures and its initial threads etc.
240  * called from:
241  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
242  * proc_dtor() (should go away)
243  * proc_init()
244  */
245 void
246 proc_linkup0(struct proc *p, struct thread *td)
247 {
248         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
249         proc_linkup(p, td);
250 }
251
252 void
253 proc_linkup(struct proc *p, struct thread *td)
254 {
255
256         sigqueue_init(&p->p_sigqueue, p);
257         p->p_ksi = ksiginfo_alloc(1);
258         if (p->p_ksi != NULL) {
259                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
260                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
261         }
262         LIST_INIT(&p->p_mqnotifier);
263         p->p_numthreads = 0;
264         thread_link(td, p);
265 }
266
267 /*
268  * Initialize global thread allocation resources.
269  */
270 void
271 threadinit(void)
272 {
273
274         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
275
276         /*
277          * pid_max cannot be greater than PID_MAX.
278          * leave one number for thread0.
279          */
280         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
281
282         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
283             thread_ctor, thread_dtor, thread_init, thread_fini,
284             16 - 1, UMA_ZONE_NOFREE);
285         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
286         rw_init(&tidhash_lock, "tidhash");
287 }
288
289 /*
290  * Place an unused thread on the zombie list.
291  * Use the slpq as that must be unused by now.
292  */
293 void
294 thread_zombie(struct thread *td)
295 {
296         mtx_lock_spin(&zombie_lock);
297         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
298         mtx_unlock_spin(&zombie_lock);
299 }
300
301 /*
302  * Release a thread that has exited after cpu_throw().
303  */
304 void
305 thread_stash(struct thread *td)
306 {
307         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
308         thread_zombie(td);
309 }
310
311 /*
312  * Reap zombie resources.
313  */
314 void
315 thread_reap(void)
316 {
317         struct thread *td_first, *td_next;
318
319         /*
320          * Don't even bother to lock if none at this instant,
321          * we really don't care about the next instant..
322          */
323         if (!TAILQ_EMPTY(&zombie_threads)) {
324                 mtx_lock_spin(&zombie_lock);
325                 td_first = TAILQ_FIRST(&zombie_threads);
326                 if (td_first)
327                         TAILQ_INIT(&zombie_threads);
328                 mtx_unlock_spin(&zombie_lock);
329                 while (td_first) {
330                         td_next = TAILQ_NEXT(td_first, td_slpq);
331                         thread_cow_free(td_first);
332                         thread_free(td_first);
333                         td_first = td_next;
334                 }
335         }
336 }
337
338 /*
339  * Allocate a thread.
340  */
341 struct thread *
342 thread_alloc(int pages)
343 {
344         struct thread *td;
345
346         thread_reap(); /* check if any zombies to get */
347
348         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
349         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
350         if (!vm_thread_new(td, pages)) {
351                 uma_zfree(thread_zone, td);
352                 return (NULL);
353         }
354         cpu_thread_alloc(td);
355         vm_domain_policy_init(&td->td_vm_dom_policy);
356         return (td);
357 }
358
359 int
360 thread_alloc_stack(struct thread *td, int pages)
361 {
362
363         KASSERT(td->td_kstack == 0,
364             ("thread_alloc_stack called on a thread with kstack"));
365         if (!vm_thread_new(td, pages))
366                 return (0);
367         cpu_thread_alloc(td);
368         return (1);
369 }
370
371 /*
372  * Deallocate a thread.
373  */
374 void
375 thread_free(struct thread *td)
376 {
377
378         lock_profile_thread_exit(td);
379         if (td->td_cpuset)
380                 cpuset_rel(td->td_cpuset);
381         td->td_cpuset = NULL;
382         cpu_thread_free(td);
383         if (td->td_kstack != 0)
384                 vm_thread_dispose(td);
385         vm_domain_policy_cleanup(&td->td_vm_dom_policy);
386         uma_zfree(thread_zone, td);
387 }
388
389 void
390 thread_cow_get_proc(struct thread *newtd, struct proc *p)
391 {
392
393         PROC_LOCK_ASSERT(p, MA_OWNED);
394         newtd->td_ucred = crhold(p->p_ucred);
395         newtd->td_limit = lim_hold(p->p_limit);
396         newtd->td_cowgen = p->p_cowgen;
397 }
398
399 void
400 thread_cow_get(struct thread *newtd, struct thread *td)
401 {
402
403         newtd->td_ucred = crhold(td->td_ucred);
404         newtd->td_limit = lim_hold(td->td_limit);
405         newtd->td_cowgen = td->td_cowgen;
406 }
407
408 void
409 thread_cow_free(struct thread *td)
410 {
411
412         if (td->td_ucred != NULL)
413                 crfree(td->td_ucred);
414         if (td->td_limit != NULL)
415                 lim_free(td->td_limit);
416 }
417
418 void
419 thread_cow_update(struct thread *td)
420 {
421         struct proc *p;
422         struct ucred *oldcred;
423         struct plimit *oldlimit;
424
425         p = td->td_proc;
426         oldcred = NULL;
427         oldlimit = NULL;
428         PROC_LOCK(p);
429         if (td->td_ucred != p->p_ucred) {
430                 oldcred = td->td_ucred;
431                 td->td_ucred = crhold(p->p_ucred);
432         }
433         if (td->td_limit != p->p_limit) {
434                 oldlimit = td->td_limit;
435                 td->td_limit = lim_hold(p->p_limit);
436         }
437         td->td_cowgen = p->p_cowgen;
438         PROC_UNLOCK(p);
439         if (oldcred != NULL)
440                 crfree(oldcred);
441         if (oldlimit != NULL)
442                 lim_free(oldlimit);
443 }
444
445 /*
446  * Discard the current thread and exit from its context.
447  * Always called with scheduler locked.
448  *
449  * Because we can't free a thread while we're operating under its context,
450  * push the current thread into our CPU's deadthread holder. This means
451  * we needn't worry about someone else grabbing our context before we
452  * do a cpu_throw().
453  */
454 void
455 thread_exit(void)
456 {
457         uint64_t runtime, new_switchtime;
458         struct thread *td;
459         struct thread *td2;
460         struct proc *p;
461         int wakeup_swapper;
462
463         td = curthread;
464         p = td->td_proc;
465
466         PROC_SLOCK_ASSERT(p, MA_OWNED);
467         mtx_assert(&Giant, MA_NOTOWNED);
468
469         PROC_LOCK_ASSERT(p, MA_OWNED);
470         KASSERT(p != NULL, ("thread exiting without a process"));
471         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
472             (long)p->p_pid, td->td_name);
473         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
474
475 #ifdef AUDIT
476         AUDIT_SYSCALL_EXIT(0, td);
477 #endif
478         /*
479          * drop FPU & debug register state storage, or any other
480          * architecture specific resources that
481          * would not be on a new untouched process.
482          */
483         cpu_thread_exit(td);    /* XXXSMP */
484
485         /*
486          * The last thread is left attached to the process
487          * So that the whole bundle gets recycled. Skip
488          * all this stuff if we never had threads.
489          * EXIT clears all sign of other threads when
490          * it goes to single threading, so the last thread always
491          * takes the short path.
492          */
493         if (p->p_flag & P_HADTHREADS) {
494                 if (p->p_numthreads > 1) {
495                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
496                         thread_unlink(td);
497                         td2 = FIRST_THREAD_IN_PROC(p);
498                         sched_exit_thread(td2, td);
499
500                         /*
501                          * The test below is NOT true if we are the
502                          * sole exiting thread. P_STOPPED_SINGLE is unset
503                          * in exit1() after it is the only survivor.
504                          */
505                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
506                                 if (p->p_numthreads == p->p_suspcount) {
507                                         thread_lock(p->p_singlethread);
508                                         wakeup_swapper = thread_unsuspend_one(
509                                                 p->p_singlethread, p, false);
510                                         thread_unlock(p->p_singlethread);
511                                         if (wakeup_swapper)
512                                                 kick_proc0();
513                                 }
514                         }
515
516                         PCPU_SET(deadthread, td);
517                 } else {
518                         /*
519                          * The last thread is exiting.. but not through exit()
520                          */
521                         panic ("thread_exit: Last thread exiting on its own");
522                 }
523         } 
524 #ifdef  HWPMC_HOOKS
525         /*
526          * If this thread is part of a process that is being tracked by hwpmc(4),
527          * inform the module of the thread's impending exit.
528          */
529         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
530                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
531 #endif
532         PROC_UNLOCK(p);
533         PROC_STATLOCK(p);
534         thread_lock(td);
535         PROC_SUNLOCK(p);
536
537         /* Do the same timestamp bookkeeping that mi_switch() would do. */
538         new_switchtime = cpu_ticks();
539         runtime = new_switchtime - PCPU_GET(switchtime);
540         td->td_runtime += runtime;
541         td->td_incruntime += runtime;
542         PCPU_SET(switchtime, new_switchtime);
543         PCPU_SET(switchticks, ticks);
544         PCPU_INC(cnt.v_swtch);
545
546         /* Save our resource usage in our process. */
547         td->td_ru.ru_nvcsw++;
548         ruxagg(p, td);
549         rucollect(&p->p_ru, &td->td_ru);
550         PROC_STATUNLOCK(p);
551
552         td->td_state = TDS_INACTIVE;
553 #ifdef WITNESS
554         witness_thread_exit(td);
555 #endif
556         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
557         sched_throw(td);
558         panic("I'm a teapot!");
559         /* NOTREACHED */
560 }
561
562 /*
563  * Do any thread specific cleanups that may be needed in wait()
564  * called with Giant, proc and schedlock not held.
565  */
566 void
567 thread_wait(struct proc *p)
568 {
569         struct thread *td;
570
571         mtx_assert(&Giant, MA_NOTOWNED);
572         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
573         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
574         td = FIRST_THREAD_IN_PROC(p);
575         /* Lock the last thread so we spin until it exits cpu_throw(). */
576         thread_lock(td);
577         thread_unlock(td);
578         lock_profile_thread_exit(td);
579         cpuset_rel(td->td_cpuset);
580         td->td_cpuset = NULL;
581         cpu_thread_clean(td);
582         thread_cow_free(td);
583         thread_reap();  /* check for zombie threads etc. */
584 }
585
586 /*
587  * Link a thread to a process.
588  * set up anything that needs to be initialized for it to
589  * be used by the process.
590  */
591 void
592 thread_link(struct thread *td, struct proc *p)
593 {
594
595         /*
596          * XXX This can't be enabled because it's called for proc0 before
597          * its lock has been created.
598          * PROC_LOCK_ASSERT(p, MA_OWNED);
599          */
600         td->td_state    = TDS_INACTIVE;
601         td->td_proc     = p;
602         td->td_flags    = TDF_INMEM;
603
604         LIST_INIT(&td->td_contested);
605         LIST_INIT(&td->td_lprof[0]);
606         LIST_INIT(&td->td_lprof[1]);
607         sigqueue_init(&td->td_sigqueue, p);
608         callout_init(&td->td_slpcallout, 1);
609         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
610         p->p_numthreads++;
611 }
612
613 /*
614  * Called from:
615  *  thread_exit()
616  */
617 void
618 thread_unlink(struct thread *td)
619 {
620         struct proc *p = td->td_proc;
621
622         PROC_LOCK_ASSERT(p, MA_OWNED);
623         TAILQ_REMOVE(&p->p_threads, td, td_plist);
624         p->p_numthreads--;
625         /* could clear a few other things here */
626         /* Must  NOT clear links to proc! */
627 }
628
629 static int
630 calc_remaining(struct proc *p, int mode)
631 {
632         int remaining;
633
634         PROC_LOCK_ASSERT(p, MA_OWNED);
635         PROC_SLOCK_ASSERT(p, MA_OWNED);
636         if (mode == SINGLE_EXIT)
637                 remaining = p->p_numthreads;
638         else if (mode == SINGLE_BOUNDARY)
639                 remaining = p->p_numthreads - p->p_boundary_count;
640         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
641                 remaining = p->p_numthreads - p->p_suspcount;
642         else
643                 panic("calc_remaining: wrong mode %d", mode);
644         return (remaining);
645 }
646
647 static int
648 remain_for_mode(int mode)
649 {
650
651         return (mode == SINGLE_ALLPROC ? 0 : 1);
652 }
653
654 static int
655 weed_inhib(int mode, struct thread *td2, struct proc *p)
656 {
657         int wakeup_swapper;
658
659         PROC_LOCK_ASSERT(p, MA_OWNED);
660         PROC_SLOCK_ASSERT(p, MA_OWNED);
661         THREAD_LOCK_ASSERT(td2, MA_OWNED);
662
663         wakeup_swapper = 0;
664         switch (mode) {
665         case SINGLE_EXIT:
666                 if (TD_IS_SUSPENDED(td2))
667                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
668                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
669                         wakeup_swapper |= sleepq_abort(td2, EINTR);
670                 break;
671         case SINGLE_BOUNDARY:
672                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
673                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
674                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
675                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
676                 break;
677         case SINGLE_NO_EXIT:
678                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
679                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
680                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
681                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
682                 break;
683         case SINGLE_ALLPROC:
684                 /*
685                  * ALLPROC suspend tries to avoid spurious EINTR for
686                  * threads sleeping interruptable, by suspending the
687                  * thread directly, similarly to sig_suspend_threads().
688                  * Since such sleep is not performed at the user
689                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
690                  * is used to avoid immediate un-suspend.
691                  */
692                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
693                     TDF_ALLPROCSUSP)) == 0)
694                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
695                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
696                         if ((td2->td_flags & TDF_SBDRY) == 0) {
697                                 thread_suspend_one(td2);
698                                 td2->td_flags |= TDF_ALLPROCSUSP;
699                         } else {
700                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
701                         }
702                 }
703                 break;
704         }
705         return (wakeup_swapper);
706 }
707
708 /*
709  * Enforce single-threading.
710  *
711  * Returns 1 if the caller must abort (another thread is waiting to
712  * exit the process or similar). Process is locked!
713  * Returns 0 when you are successfully the only thread running.
714  * A process has successfully single threaded in the suspend mode when
715  * There are no threads in user mode. Threads in the kernel must be
716  * allowed to continue until they get to the user boundary. They may even
717  * copy out their return values and data before suspending. They may however be
718  * accelerated in reaching the user boundary as we will wake up
719  * any sleeping threads that are interruptable. (PCATCH).
720  */
721 int
722 thread_single(struct proc *p, int mode)
723 {
724         struct thread *td;
725         struct thread *td2;
726         int remaining, wakeup_swapper;
727
728         td = curthread;
729         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
730             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
731             ("invalid mode %d", mode));
732         /*
733          * If allowing non-ALLPROC singlethreading for non-curproc
734          * callers, calc_remaining() and remain_for_mode() should be
735          * adjusted to also account for td->td_proc != p.  For now
736          * this is not implemented because it is not used.
737          */
738         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
739             (mode != SINGLE_ALLPROC && td->td_proc == p),
740             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
741         mtx_assert(&Giant, MA_NOTOWNED);
742         PROC_LOCK_ASSERT(p, MA_OWNED);
743
744         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
745                 return (0);
746
747         /* Is someone already single threading? */
748         if (p->p_singlethread != NULL && p->p_singlethread != td)
749                 return (1);
750
751         if (mode == SINGLE_EXIT) {
752                 p->p_flag |= P_SINGLE_EXIT;
753                 p->p_flag &= ~P_SINGLE_BOUNDARY;
754         } else {
755                 p->p_flag &= ~P_SINGLE_EXIT;
756                 if (mode == SINGLE_BOUNDARY)
757                         p->p_flag |= P_SINGLE_BOUNDARY;
758                 else
759                         p->p_flag &= ~P_SINGLE_BOUNDARY;
760         }
761         if (mode == SINGLE_ALLPROC)
762                 p->p_flag |= P_TOTAL_STOP;
763         p->p_flag |= P_STOPPED_SINGLE;
764         PROC_SLOCK(p);
765         p->p_singlethread = td;
766         remaining = calc_remaining(p, mode);
767         while (remaining != remain_for_mode(mode)) {
768                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
769                         goto stopme;
770                 wakeup_swapper = 0;
771                 FOREACH_THREAD_IN_PROC(p, td2) {
772                         if (td2 == td)
773                                 continue;
774                         thread_lock(td2);
775                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
776                         if (TD_IS_INHIBITED(td2)) {
777                                 wakeup_swapper |= weed_inhib(mode, td2, p);
778 #ifdef SMP
779                         } else if (TD_IS_RUNNING(td2) && td != td2) {
780                                 forward_signal(td2);
781 #endif
782                         }
783                         thread_unlock(td2);
784                 }
785                 if (wakeup_swapper)
786                         kick_proc0();
787                 remaining = calc_remaining(p, mode);
788
789                 /*
790                  * Maybe we suspended some threads.. was it enough?
791                  */
792                 if (remaining == remain_for_mode(mode))
793                         break;
794
795 stopme:
796                 /*
797                  * Wake us up when everyone else has suspended.
798                  * In the mean time we suspend as well.
799                  */
800                 thread_suspend_switch(td, p);
801                 remaining = calc_remaining(p, mode);
802         }
803         if (mode == SINGLE_EXIT) {
804                 /*
805                  * Convert the process to an unthreaded process.  The
806                  * SINGLE_EXIT is called by exit1() or execve(), in
807                  * both cases other threads must be retired.
808                  */
809                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
810                 p->p_singlethread = NULL;
811                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
812
813                 /*
814                  * Wait for any remaining threads to exit cpu_throw().
815                  */
816                 while (p->p_exitthreads != 0) {
817                         PROC_SUNLOCK(p);
818                         PROC_UNLOCK(p);
819                         sched_relinquish(td);
820                         PROC_LOCK(p);
821                         PROC_SLOCK(p);
822                 }
823         } else if (mode == SINGLE_BOUNDARY) {
824                 /*
825                  * Wait until all suspended threads are removed from
826                  * the processors.  The thread_suspend_check()
827                  * increments p_boundary_count while it is still
828                  * running, which makes it possible for the execve()
829                  * to destroy vmspace while our other threads are
830                  * still using the address space.
831                  *
832                  * We lock the thread, which is only allowed to
833                  * succeed after context switch code finished using
834                  * the address space.
835                  */
836                 FOREACH_THREAD_IN_PROC(p, td2) {
837                         if (td2 == td)
838                                 continue;
839                         thread_lock(td2);
840                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
841                             ("td %p not on boundary", td2));
842                         KASSERT(TD_IS_SUSPENDED(td2),
843                             ("td %p is not suspended", td2));
844                         thread_unlock(td2);
845                 }
846         }
847         PROC_SUNLOCK(p);
848         return (0);
849 }
850
851 bool
852 thread_suspend_check_needed(void)
853 {
854         struct proc *p;
855         struct thread *td;
856
857         td = curthread;
858         p = td->td_proc;
859         PROC_LOCK_ASSERT(p, MA_OWNED);
860         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
861             (td->td_dbgflags & TDB_SUSPEND) != 0));
862 }
863
864 /*
865  * Called in from locations that can safely check to see
866  * whether we have to suspend or at least throttle for a
867  * single-thread event (e.g. fork).
868  *
869  * Such locations include userret().
870  * If the "return_instead" argument is non zero, the thread must be able to
871  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
872  *
873  * The 'return_instead' argument tells the function if it may do a
874  * thread_exit() or suspend, or whether the caller must abort and back
875  * out instead.
876  *
877  * If the thread that set the single_threading request has set the
878  * P_SINGLE_EXIT bit in the process flags then this call will never return
879  * if 'return_instead' is false, but will exit.
880  *
881  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
882  *---------------+--------------------+---------------------
883  *       0       | returns 0          |   returns 0 or 1
884  *               | when ST ends       |   immediately
885  *---------------+--------------------+---------------------
886  *       1       | thread exits       |   returns 1
887  *               |                    |  immediately
888  * 0 = thread_exit() or suspension ok,
889  * other = return error instead of stopping the thread.
890  *
891  * While a full suspension is under effect, even a single threading
892  * thread would be suspended if it made this call (but it shouldn't).
893  * This call should only be made from places where
894  * thread_exit() would be safe as that may be the outcome unless
895  * return_instead is set.
896  */
897 int
898 thread_suspend_check(int return_instead)
899 {
900         struct thread *td;
901         struct proc *p;
902         int wakeup_swapper;
903
904         td = curthread;
905         p = td->td_proc;
906         mtx_assert(&Giant, MA_NOTOWNED);
907         PROC_LOCK_ASSERT(p, MA_OWNED);
908         while (thread_suspend_check_needed()) {
909                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
910                         KASSERT(p->p_singlethread != NULL,
911                             ("singlethread not set"));
912                         /*
913                          * The only suspension in action is a
914                          * single-threading. Single threader need not stop.
915                          * XXX Should be safe to access unlocked
916                          * as it can only be set to be true by us.
917                          */
918                         if (p->p_singlethread == td)
919                                 return (0);     /* Exempt from stopping. */
920                 }
921                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
922                         return (EINTR);
923
924                 /* Should we goto user boundary if we didn't come from there? */
925                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
926                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
927                         return (ERESTART);
928
929                 /*
930                  * Ignore suspend requests if they are deferred.
931                  */
932                 if ((td->td_flags & TDF_SBDRY) != 0) {
933                         KASSERT(return_instead,
934                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
935                         return (0);
936                 }
937
938                 /*
939                  * If the process is waiting for us to exit,
940                  * this thread should just suicide.
941                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
942                  */
943                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
944                         PROC_UNLOCK(p);
945                         tidhash_remove(td);
946
947                         /*
948                          * Allow Linux emulation layer to do some work
949                          * before thread suicide.
950                          */
951                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
952                                 (p->p_sysent->sv_thread_detach)(td);
953
954                         PROC_LOCK(p);
955                         tdsigcleanup(td);
956                         umtx_thread_exit(td);
957                         PROC_SLOCK(p);
958                         thread_stopped(p);
959                         thread_exit();
960                 }
961
962                 PROC_SLOCK(p);
963                 thread_stopped(p);
964                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
965                         if (p->p_numthreads == p->p_suspcount + 1) {
966                                 thread_lock(p->p_singlethread);
967                                 wakeup_swapper = thread_unsuspend_one(
968                                     p->p_singlethread, p, false);
969                                 thread_unlock(p->p_singlethread);
970                                 if (wakeup_swapper)
971                                         kick_proc0();
972                         }
973                 }
974                 PROC_UNLOCK(p);
975                 thread_lock(td);
976                 /*
977                  * When a thread suspends, it just
978                  * gets taken off all queues.
979                  */
980                 thread_suspend_one(td);
981                 if (return_instead == 0) {
982                         p->p_boundary_count++;
983                         td->td_flags |= TDF_BOUNDARY;
984                 }
985                 PROC_SUNLOCK(p);
986                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
987                 thread_unlock(td);
988                 PROC_LOCK(p);
989         }
990         return (0);
991 }
992
993 void
994 thread_suspend_switch(struct thread *td, struct proc *p)
995 {
996
997         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
998         PROC_LOCK_ASSERT(p, MA_OWNED);
999         PROC_SLOCK_ASSERT(p, MA_OWNED);
1000         /*
1001          * We implement thread_suspend_one in stages here to avoid
1002          * dropping the proc lock while the thread lock is owned.
1003          */
1004         if (p == td->td_proc) {
1005                 thread_stopped(p);
1006                 p->p_suspcount++;
1007         }
1008         PROC_UNLOCK(p);
1009         thread_lock(td);
1010         td->td_flags &= ~TDF_NEEDSUSPCHK;
1011         TD_SET_SUSPENDED(td);
1012         sched_sleep(td, 0);
1013         PROC_SUNLOCK(p);
1014         DROP_GIANT();
1015         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1016         thread_unlock(td);
1017         PICKUP_GIANT();
1018         PROC_LOCK(p);
1019         PROC_SLOCK(p);
1020 }
1021
1022 void
1023 thread_suspend_one(struct thread *td)
1024 {
1025         struct proc *p;
1026
1027         p = td->td_proc;
1028         PROC_SLOCK_ASSERT(p, MA_OWNED);
1029         THREAD_LOCK_ASSERT(td, MA_OWNED);
1030         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1031         p->p_suspcount++;
1032         td->td_flags &= ~TDF_NEEDSUSPCHK;
1033         TD_SET_SUSPENDED(td);
1034         sched_sleep(td, 0);
1035 }
1036
1037 static int
1038 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1039 {
1040
1041         THREAD_LOCK_ASSERT(td, MA_OWNED);
1042         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1043         TD_CLR_SUSPENDED(td);
1044         td->td_flags &= ~TDF_ALLPROCSUSP;
1045         if (td->td_proc == p) {
1046                 PROC_SLOCK_ASSERT(p, MA_OWNED);
1047                 p->p_suspcount--;
1048                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1049                         td->td_flags &= ~TDF_BOUNDARY;
1050                         p->p_boundary_count--;
1051                 }
1052         }
1053         return (setrunnable(td));
1054 }
1055
1056 /*
1057  * Allow all threads blocked by single threading to continue running.
1058  */
1059 void
1060 thread_unsuspend(struct proc *p)
1061 {
1062         struct thread *td;
1063         int wakeup_swapper;
1064
1065         PROC_LOCK_ASSERT(p, MA_OWNED);
1066         PROC_SLOCK_ASSERT(p, MA_OWNED);
1067         wakeup_swapper = 0;
1068         if (!P_SHOULDSTOP(p)) {
1069                 FOREACH_THREAD_IN_PROC(p, td) {
1070                         thread_lock(td);
1071                         if (TD_IS_SUSPENDED(td)) {
1072                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1073                                     true);
1074                         }
1075                         thread_unlock(td);
1076                 }
1077         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1078             p->p_numthreads == p->p_suspcount) {
1079                 /*
1080                  * Stopping everything also did the job for the single
1081                  * threading request. Now we've downgraded to single-threaded,
1082                  * let it continue.
1083                  */
1084                 if (p->p_singlethread->td_proc == p) {
1085                         thread_lock(p->p_singlethread);
1086                         wakeup_swapper = thread_unsuspend_one(
1087                             p->p_singlethread, p, false);
1088                         thread_unlock(p->p_singlethread);
1089                 }
1090         }
1091         if (wakeup_swapper)
1092                 kick_proc0();
1093 }
1094
1095 /*
1096  * End the single threading mode..
1097  */
1098 void
1099 thread_single_end(struct proc *p, int mode)
1100 {
1101         struct thread *td;
1102         int wakeup_swapper;
1103
1104         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1105             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1106             ("invalid mode %d", mode));
1107         PROC_LOCK_ASSERT(p, MA_OWNED);
1108         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1109             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1110             ("mode %d does not match P_TOTAL_STOP", mode));
1111         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1112             ("thread_single_end from other thread %p %p",
1113             curthread, p->p_singlethread));
1114         KASSERT(mode != SINGLE_BOUNDARY ||
1115             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1116             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1117         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1118             P_TOTAL_STOP);
1119         PROC_SLOCK(p);
1120         p->p_singlethread = NULL;
1121         wakeup_swapper = 0;
1122         /*
1123          * If there are other threads they may now run,
1124          * unless of course there is a blanket 'stop order'
1125          * on the process. The single threader must be allowed
1126          * to continue however as this is a bad place to stop.
1127          */
1128         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1129                 FOREACH_THREAD_IN_PROC(p, td) {
1130                         thread_lock(td);
1131                         if (TD_IS_SUSPENDED(td)) {
1132                                 wakeup_swapper |= thread_unsuspend_one(td, p,
1133                                     mode == SINGLE_BOUNDARY);
1134                         }
1135                         thread_unlock(td);
1136                 }
1137         }
1138         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1139             ("inconsistent boundary count %d", p->p_boundary_count));
1140         PROC_SUNLOCK(p);
1141         if (wakeup_swapper)
1142                 kick_proc0();
1143 }
1144
1145 struct thread *
1146 thread_find(struct proc *p, lwpid_t tid)
1147 {
1148         struct thread *td;
1149
1150         PROC_LOCK_ASSERT(p, MA_OWNED);
1151         FOREACH_THREAD_IN_PROC(p, td) {
1152                 if (td->td_tid == tid)
1153                         break;
1154         }
1155         return (td);
1156 }
1157
1158 /* Locate a thread by number; return with proc lock held. */
1159 struct thread *
1160 tdfind(lwpid_t tid, pid_t pid)
1161 {
1162 #define RUN_THRESH      16
1163         struct thread *td;
1164         int run = 0;
1165
1166         rw_rlock(&tidhash_lock);
1167         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1168                 if (td->td_tid == tid) {
1169                         if (pid != -1 && td->td_proc->p_pid != pid) {
1170                                 td = NULL;
1171                                 break;
1172                         }
1173                         PROC_LOCK(td->td_proc);
1174                         if (td->td_proc->p_state == PRS_NEW) {
1175                                 PROC_UNLOCK(td->td_proc);
1176                                 td = NULL;
1177                                 break;
1178                         }
1179                         if (run > RUN_THRESH) {
1180                                 if (rw_try_upgrade(&tidhash_lock)) {
1181                                         LIST_REMOVE(td, td_hash);
1182                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1183                                                 td, td_hash);
1184                                         rw_wunlock(&tidhash_lock);
1185                                         return (td);
1186                                 }
1187                         }
1188                         break;
1189                 }
1190                 run++;
1191         }
1192         rw_runlock(&tidhash_lock);
1193         return (td);
1194 }
1195
1196 void
1197 tidhash_add(struct thread *td)
1198 {
1199         rw_wlock(&tidhash_lock);
1200         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1201         rw_wunlock(&tidhash_lock);
1202 }
1203
1204 void
1205 tidhash_remove(struct thread *td)
1206 {
1207         rw_wlock(&tidhash_lock);
1208         LIST_REMOVE(td, td_hash);
1209         rw_wunlock(&tidhash_lock);
1210 }