]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/kern/kern_thread.c
Merge ACPICA 20120711.
[FreeBSD/FreeBSD.git] / sys / kern / kern_thread.c
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28
29 #include "opt_witness.h"
30 #include "opt_kdtrace.h"
31 #include "opt_hwpmc_hooks.h"
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rangelock.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sdt.h>
45 #include <sys/smp.h>
46 #include <sys/sched.h>
47 #include <sys/sleepqueue.h>
48 #include <sys/selinfo.h>
49 #include <sys/turnstile.h>
50 #include <sys/ktr.h>
51 #include <sys/rwlock.h>
52 #include <sys/umtx.h>
53 #include <sys/cpuset.h>
54 #ifdef  HWPMC_HOOKS
55 #include <sys/pmckern.h>
56 #endif
57
58 #include <security/audit/audit.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/uma.h>
63 #include <sys/eventhandler.h>
64
65 SDT_PROVIDER_DECLARE(proc);
66 SDT_PROBE_DEFINE(proc, , , lwp_exit, lwp-exit);
67
68
69 /*
70  * thread related storage.
71  */
72 static uma_zone_t thread_zone;
73
74 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75 static struct mtx zombie_lock;
76 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77
78 static void thread_zombie(struct thread *);
79
80 #define TID_BUFFER_SIZE 1024
81
82 struct mtx tid_lock;
83 static struct unrhdr *tid_unrhdr;
84 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
85 static int tid_head, tid_tail;
86 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
87
88 struct  tidhashhead *tidhashtbl;
89 u_long  tidhash;
90 struct  rwlock tidhash_lock;
91
92 static lwpid_t
93 tid_alloc(void)
94 {
95         lwpid_t tid;
96
97         tid = alloc_unr(tid_unrhdr);
98         if (tid != -1)
99                 return (tid);
100         mtx_lock(&tid_lock);
101         if (tid_head == tid_tail) {
102                 mtx_unlock(&tid_lock);
103                 return (-1);
104         }
105         tid = tid_buffer[tid_head++];
106         tid_head %= TID_BUFFER_SIZE;
107         mtx_unlock(&tid_lock);
108         return (tid);
109 }
110
111 static void
112 tid_free(lwpid_t tid)
113 {
114         lwpid_t tmp_tid = -1;
115
116         mtx_lock(&tid_lock);
117         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
118                 tmp_tid = tid_buffer[tid_head++];
119                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
120         }
121         tid_buffer[tid_tail++] = tid;
122         tid_tail %= TID_BUFFER_SIZE;
123         mtx_unlock(&tid_lock);
124         if (tmp_tid != -1)
125                 free_unr(tid_unrhdr, tmp_tid);
126 }
127
128 /*
129  * Prepare a thread for use.
130  */
131 static int
132 thread_ctor(void *mem, int size, void *arg, int flags)
133 {
134         struct thread   *td;
135
136         td = (struct thread *)mem;
137         td->td_state = TDS_INACTIVE;
138         td->td_oncpu = NOCPU;
139
140         td->td_tid = tid_alloc();
141
142         /*
143          * Note that td_critnest begins life as 1 because the thread is not
144          * running and is thereby implicitly waiting to be on the receiving
145          * end of a context switch.
146          */
147         td->td_critnest = 1;
148         td->td_lend_user_pri = PRI_MAX;
149         EVENTHANDLER_INVOKE(thread_ctor, td);
150 #ifdef AUDIT
151         audit_thread_alloc(td);
152 #endif
153         umtx_thread_alloc(td);
154         return (0);
155 }
156
157 /*
158  * Reclaim a thread after use.
159  */
160 static void
161 thread_dtor(void *mem, int size, void *arg)
162 {
163         struct thread *td;
164
165         td = (struct thread *)mem;
166
167 #ifdef INVARIANTS
168         /* Verify that this thread is in a safe state to free. */
169         switch (td->td_state) {
170         case TDS_INHIBITED:
171         case TDS_RUNNING:
172         case TDS_CAN_RUN:
173         case TDS_RUNQ:
174                 /*
175                  * We must never unlink a thread that is in one of
176                  * these states, because it is currently active.
177                  */
178                 panic("bad state for thread unlinking");
179                 /* NOTREACHED */
180         case TDS_INACTIVE:
181                 break;
182         default:
183                 panic("bad thread state");
184                 /* NOTREACHED */
185         }
186 #endif
187 #ifdef AUDIT
188         audit_thread_free(td);
189 #endif
190         /* Free all OSD associated to this thread. */
191         osd_thread_exit(td);
192
193         EVENTHANDLER_INVOKE(thread_dtor, td);
194         tid_free(td->td_tid);
195 }
196
197 /*
198  * Initialize type-stable parts of a thread (when newly created).
199  */
200 static int
201 thread_init(void *mem, int size, int flags)
202 {
203         struct thread *td;
204
205         td = (struct thread *)mem;
206
207         td->td_sleepqueue = sleepq_alloc();
208         td->td_turnstile = turnstile_alloc();
209         td->td_rlqe = NULL;
210         EVENTHANDLER_INVOKE(thread_init, td);
211         td->td_sched = (struct td_sched *)&td[1];
212         umtx_thread_init(td);
213         td->td_kstack = 0;
214         return (0);
215 }
216
217 /*
218  * Tear down type-stable parts of a thread (just before being discarded).
219  */
220 static void
221 thread_fini(void *mem, int size)
222 {
223         struct thread *td;
224
225         td = (struct thread *)mem;
226         EVENTHANDLER_INVOKE(thread_fini, td);
227         rlqentry_free(td->td_rlqe);
228         turnstile_free(td->td_turnstile);
229         sleepq_free(td->td_sleepqueue);
230         umtx_thread_fini(td);
231         seltdfini(td);
232 }
233
234 /*
235  * For a newly created process,
236  * link up all the structures and its initial threads etc.
237  * called from:
238  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
239  * proc_dtor() (should go away)
240  * proc_init()
241  */
242 void
243 proc_linkup0(struct proc *p, struct thread *td)
244 {
245         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
246         proc_linkup(p, td);
247 }
248
249 void
250 proc_linkup(struct proc *p, struct thread *td)
251 {
252
253         sigqueue_init(&p->p_sigqueue, p);
254         p->p_ksi = ksiginfo_alloc(1);
255         if (p->p_ksi != NULL) {
256                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
257                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
258         }
259         LIST_INIT(&p->p_mqnotifier);
260         p->p_numthreads = 0;
261         thread_link(td, p);
262 }
263
264 /*
265  * Initialize global thread allocation resources.
266  */
267 void
268 threadinit(void)
269 {
270
271         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
272         /* leave one number for thread0 */
273         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
274
275         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
276             thread_ctor, thread_dtor, thread_init, thread_fini,
277             16 - 1, 0);
278         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
279         rw_init(&tidhash_lock, "tidhash");
280 }
281
282 /*
283  * Place an unused thread on the zombie list.
284  * Use the slpq as that must be unused by now.
285  */
286 void
287 thread_zombie(struct thread *td)
288 {
289         mtx_lock_spin(&zombie_lock);
290         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
291         mtx_unlock_spin(&zombie_lock);
292 }
293
294 /*
295  * Release a thread that has exited after cpu_throw().
296  */
297 void
298 thread_stash(struct thread *td)
299 {
300         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
301         thread_zombie(td);
302 }
303
304 /*
305  * Reap zombie resources.
306  */
307 void
308 thread_reap(void)
309 {
310         struct thread *td_first, *td_next;
311
312         /*
313          * Don't even bother to lock if none at this instant,
314          * we really don't care about the next instant..
315          */
316         if (!TAILQ_EMPTY(&zombie_threads)) {
317                 mtx_lock_spin(&zombie_lock);
318                 td_first = TAILQ_FIRST(&zombie_threads);
319                 if (td_first)
320                         TAILQ_INIT(&zombie_threads);
321                 mtx_unlock_spin(&zombie_lock);
322                 while (td_first) {
323                         td_next = TAILQ_NEXT(td_first, td_slpq);
324                         if (td_first->td_ucred)
325                                 crfree(td_first->td_ucred);
326                         thread_free(td_first);
327                         td_first = td_next;
328                 }
329         }
330 }
331
332 /*
333  * Allocate a thread.
334  */
335 struct thread *
336 thread_alloc(int pages)
337 {
338         struct thread *td;
339
340         thread_reap(); /* check if any zombies to get */
341
342         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
343         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
344         if (!vm_thread_new(td, pages)) {
345                 uma_zfree(thread_zone, td);
346                 return (NULL);
347         }
348         cpu_thread_alloc(td);
349         return (td);
350 }
351
352 int
353 thread_alloc_stack(struct thread *td, int pages)
354 {
355
356         KASSERT(td->td_kstack == 0,
357             ("thread_alloc_stack called on a thread with kstack"));
358         if (!vm_thread_new(td, pages))
359                 return (0);
360         cpu_thread_alloc(td);
361         return (1);
362 }
363
364 /*
365  * Deallocate a thread.
366  */
367 void
368 thread_free(struct thread *td)
369 {
370
371         lock_profile_thread_exit(td);
372         if (td->td_cpuset)
373                 cpuset_rel(td->td_cpuset);
374         td->td_cpuset = NULL;
375         cpu_thread_free(td);
376         if (td->td_kstack != 0)
377                 vm_thread_dispose(td);
378         uma_zfree(thread_zone, td);
379 }
380
381 /*
382  * Discard the current thread and exit from its context.
383  * Always called with scheduler locked.
384  *
385  * Because we can't free a thread while we're operating under its context,
386  * push the current thread into our CPU's deadthread holder. This means
387  * we needn't worry about someone else grabbing our context before we
388  * do a cpu_throw().
389  */
390 void
391 thread_exit(void)
392 {
393         uint64_t runtime, new_switchtime;
394         struct thread *td;
395         struct thread *td2;
396         struct proc *p;
397         int wakeup_swapper;
398
399         td = curthread;
400         p = td->td_proc;
401
402         PROC_SLOCK_ASSERT(p, MA_OWNED);
403         mtx_assert(&Giant, MA_NOTOWNED);
404
405         PROC_LOCK_ASSERT(p, MA_OWNED);
406         KASSERT(p != NULL, ("thread exiting without a process"));
407         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
408             (long)p->p_pid, td->td_name);
409         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
410
411 #ifdef AUDIT
412         AUDIT_SYSCALL_EXIT(0, td);
413 #endif
414         umtx_thread_exit(td);
415         /*
416          * drop FPU & debug register state storage, or any other
417          * architecture specific resources that
418          * would not be on a new untouched process.
419          */
420         cpu_thread_exit(td);    /* XXXSMP */
421
422         /*
423          * The last thread is left attached to the process
424          * So that the whole bundle gets recycled. Skip
425          * all this stuff if we never had threads.
426          * EXIT clears all sign of other threads when
427          * it goes to single threading, so the last thread always
428          * takes the short path.
429          */
430         if (p->p_flag & P_HADTHREADS) {
431                 if (p->p_numthreads > 1) {
432                         thread_unlink(td);
433                         td2 = FIRST_THREAD_IN_PROC(p);
434                         sched_exit_thread(td2, td);
435
436                         /*
437                          * The test below is NOT true if we are the
438                          * sole exiting thread. P_STOPPED_SINGLE is unset
439                          * in exit1() after it is the only survivor.
440                          */
441                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
442                                 if (p->p_numthreads == p->p_suspcount) {
443                                         thread_lock(p->p_singlethread);
444                                         wakeup_swapper = thread_unsuspend_one(
445                                                 p->p_singlethread);
446                                         thread_unlock(p->p_singlethread);
447                                         if (wakeup_swapper)
448                                                 kick_proc0();
449                                 }
450                         }
451
452                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
453                         PCPU_SET(deadthread, td);
454                 } else {
455                         /*
456                          * The last thread is exiting.. but not through exit()
457                          */
458                         panic ("thread_exit: Last thread exiting on its own");
459                 }
460         } 
461 #ifdef  HWPMC_HOOKS
462         /*
463          * If this thread is part of a process that is being tracked by hwpmc(4),
464          * inform the module of the thread's impending exit.
465          */
466         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
467                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
468 #endif
469         PROC_UNLOCK(p);
470
471         /* Do the same timestamp bookkeeping that mi_switch() would do. */
472         new_switchtime = cpu_ticks();
473         runtime = new_switchtime - PCPU_GET(switchtime);
474         td->td_runtime += runtime;
475         td->td_incruntime += runtime;
476         PCPU_SET(switchtime, new_switchtime);
477         PCPU_SET(switchticks, ticks);
478         PCPU_INC(cnt.v_swtch);
479
480         /* Save our resource usage in our process. */
481         td->td_ru.ru_nvcsw++;
482         ruxagg(p, td);
483         rucollect(&p->p_ru, &td->td_ru);
484
485         thread_lock(td);
486         PROC_SUNLOCK(p);
487         td->td_state = TDS_INACTIVE;
488 #ifdef WITNESS
489         witness_thread_exit(td);
490 #endif
491         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
492         sched_throw(td);
493         panic("I'm a teapot!");
494         /* NOTREACHED */
495 }
496
497 /*
498  * Do any thread specific cleanups that may be needed in wait()
499  * called with Giant, proc and schedlock not held.
500  */
501 void
502 thread_wait(struct proc *p)
503 {
504         struct thread *td;
505
506         mtx_assert(&Giant, MA_NOTOWNED);
507         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
508         td = FIRST_THREAD_IN_PROC(p);
509         /* Lock the last thread so we spin until it exits cpu_throw(). */
510         thread_lock(td);
511         thread_unlock(td);
512         /* Wait for any remaining threads to exit cpu_throw(). */
513         while (p->p_exitthreads)
514                 sched_relinquish(curthread);
515         lock_profile_thread_exit(td);
516         cpuset_rel(td->td_cpuset);
517         td->td_cpuset = NULL;
518         cpu_thread_clean(td);
519         crfree(td->td_ucred);
520         thread_reap();  /* check for zombie threads etc. */
521 }
522
523 /*
524  * Link a thread to a process.
525  * set up anything that needs to be initialized for it to
526  * be used by the process.
527  */
528 void
529 thread_link(struct thread *td, struct proc *p)
530 {
531
532         /*
533          * XXX This can't be enabled because it's called for proc0 before
534          * its lock has been created.
535          * PROC_LOCK_ASSERT(p, MA_OWNED);
536          */
537         td->td_state    = TDS_INACTIVE;
538         td->td_proc     = p;
539         td->td_flags    = TDF_INMEM;
540
541         LIST_INIT(&td->td_contested);
542         LIST_INIT(&td->td_lprof[0]);
543         LIST_INIT(&td->td_lprof[1]);
544         sigqueue_init(&td->td_sigqueue, p);
545         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
546         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
547         p->p_numthreads++;
548 }
549
550 /*
551  * Convert a process with one thread to an unthreaded process.
552  */
553 void
554 thread_unthread(struct thread *td)
555 {
556         struct proc *p = td->td_proc;
557
558         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
559         p->p_flag &= ~P_HADTHREADS;
560 }
561
562 /*
563  * Called from:
564  *  thread_exit()
565  */
566 void
567 thread_unlink(struct thread *td)
568 {
569         struct proc *p = td->td_proc;
570
571         PROC_LOCK_ASSERT(p, MA_OWNED);
572         TAILQ_REMOVE(&p->p_threads, td, td_plist);
573         p->p_numthreads--;
574         /* could clear a few other things here */
575         /* Must  NOT clear links to proc! */
576 }
577
578 static int
579 calc_remaining(struct proc *p, int mode)
580 {
581         int remaining;
582
583         PROC_LOCK_ASSERT(p, MA_OWNED);
584         PROC_SLOCK_ASSERT(p, MA_OWNED);
585         if (mode == SINGLE_EXIT)
586                 remaining = p->p_numthreads;
587         else if (mode == SINGLE_BOUNDARY)
588                 remaining = p->p_numthreads - p->p_boundary_count;
589         else if (mode == SINGLE_NO_EXIT)
590                 remaining = p->p_numthreads - p->p_suspcount;
591         else
592                 panic("calc_remaining: wrong mode %d", mode);
593         return (remaining);
594 }
595
596 /*
597  * Enforce single-threading.
598  *
599  * Returns 1 if the caller must abort (another thread is waiting to
600  * exit the process or similar). Process is locked!
601  * Returns 0 when you are successfully the only thread running.
602  * A process has successfully single threaded in the suspend mode when
603  * There are no threads in user mode. Threads in the kernel must be
604  * allowed to continue until they get to the user boundary. They may even
605  * copy out their return values and data before suspending. They may however be
606  * accelerated in reaching the user boundary as we will wake up
607  * any sleeping threads that are interruptable. (PCATCH).
608  */
609 int
610 thread_single(int mode)
611 {
612         struct thread *td;
613         struct thread *td2;
614         struct proc *p;
615         int remaining, wakeup_swapper;
616
617         td = curthread;
618         p = td->td_proc;
619         mtx_assert(&Giant, MA_NOTOWNED);
620         PROC_LOCK_ASSERT(p, MA_OWNED);
621         KASSERT((td != NULL), ("curthread is NULL"));
622
623         if ((p->p_flag & P_HADTHREADS) == 0)
624                 return (0);
625
626         /* Is someone already single threading? */
627         if (p->p_singlethread != NULL && p->p_singlethread != td)
628                 return (1);
629
630         if (mode == SINGLE_EXIT) {
631                 p->p_flag |= P_SINGLE_EXIT;
632                 p->p_flag &= ~P_SINGLE_BOUNDARY;
633         } else {
634                 p->p_flag &= ~P_SINGLE_EXIT;
635                 if (mode == SINGLE_BOUNDARY)
636                         p->p_flag |= P_SINGLE_BOUNDARY;
637                 else
638                         p->p_flag &= ~P_SINGLE_BOUNDARY;
639         }
640         p->p_flag |= P_STOPPED_SINGLE;
641         PROC_SLOCK(p);
642         p->p_singlethread = td;
643         remaining = calc_remaining(p, mode);
644         while (remaining != 1) {
645                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
646                         goto stopme;
647                 wakeup_swapper = 0;
648                 FOREACH_THREAD_IN_PROC(p, td2) {
649                         if (td2 == td)
650                                 continue;
651                         thread_lock(td2);
652                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
653                         if (TD_IS_INHIBITED(td2)) {
654                                 switch (mode) {
655                                 case SINGLE_EXIT:
656                                         if (TD_IS_SUSPENDED(td2))
657                                                 wakeup_swapper |=
658                                                     thread_unsuspend_one(td2);
659                                         if (TD_ON_SLEEPQ(td2) &&
660                                             (td2->td_flags & TDF_SINTR))
661                                                 wakeup_swapper |=
662                                                     sleepq_abort(td2, EINTR);
663                                         break;
664                                 case SINGLE_BOUNDARY:
665                                         if (TD_IS_SUSPENDED(td2) &&
666                                             !(td2->td_flags & TDF_BOUNDARY))
667                                                 wakeup_swapper |=
668                                                     thread_unsuspend_one(td2);
669                                         if (TD_ON_SLEEPQ(td2) &&
670                                             (td2->td_flags & TDF_SINTR))
671                                                 wakeup_swapper |=
672                                                     sleepq_abort(td2, ERESTART);
673                                         break;
674                                 case SINGLE_NO_EXIT:
675                                         if (TD_IS_SUSPENDED(td2) &&
676                                             !(td2->td_flags & TDF_BOUNDARY))
677                                                 wakeup_swapper |=
678                                                     thread_unsuspend_one(td2);
679                                         if (TD_ON_SLEEPQ(td2) &&
680                                             (td2->td_flags & TDF_SINTR))
681                                                 wakeup_swapper |=
682                                                     sleepq_abort(td2, ERESTART);
683                                         break;
684                                 default:
685                                         break;
686                                 }
687                         }
688 #ifdef SMP
689                         else if (TD_IS_RUNNING(td2) && td != td2) {
690                                 forward_signal(td2);
691                         }
692 #endif
693                         thread_unlock(td2);
694                 }
695                 if (wakeup_swapper)
696                         kick_proc0();
697                 remaining = calc_remaining(p, mode);
698
699                 /*
700                  * Maybe we suspended some threads.. was it enough?
701                  */
702                 if (remaining == 1)
703                         break;
704
705 stopme:
706                 /*
707                  * Wake us up when everyone else has suspended.
708                  * In the mean time we suspend as well.
709                  */
710                 thread_suspend_switch(td);
711                 remaining = calc_remaining(p, mode);
712         }
713         if (mode == SINGLE_EXIT) {
714                 /*
715                  * We have gotten rid of all the other threads and we
716                  * are about to either exit or exec. In either case,
717                  * we try our utmost  to revert to being a non-threaded
718                  * process.
719                  */
720                 p->p_singlethread = NULL;
721                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
722                 thread_unthread(td);
723         }
724         PROC_SUNLOCK(p);
725         return (0);
726 }
727
728 /*
729  * Called in from locations that can safely check to see
730  * whether we have to suspend or at least throttle for a
731  * single-thread event (e.g. fork).
732  *
733  * Such locations include userret().
734  * If the "return_instead" argument is non zero, the thread must be able to
735  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
736  *
737  * The 'return_instead' argument tells the function if it may do a
738  * thread_exit() or suspend, or whether the caller must abort and back
739  * out instead.
740  *
741  * If the thread that set the single_threading request has set the
742  * P_SINGLE_EXIT bit in the process flags then this call will never return
743  * if 'return_instead' is false, but will exit.
744  *
745  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
746  *---------------+--------------------+---------------------
747  *       0       | returns 0          |   returns 0 or 1
748  *               | when ST ends       |   immediatly
749  *---------------+--------------------+---------------------
750  *       1       | thread exits       |   returns 1
751  *               |                    |  immediatly
752  * 0 = thread_exit() or suspension ok,
753  * other = return error instead of stopping the thread.
754  *
755  * While a full suspension is under effect, even a single threading
756  * thread would be suspended if it made this call (but it shouldn't).
757  * This call should only be made from places where
758  * thread_exit() would be safe as that may be the outcome unless
759  * return_instead is set.
760  */
761 int
762 thread_suspend_check(int return_instead)
763 {
764         struct thread *td;
765         struct proc *p;
766         int wakeup_swapper;
767
768         td = curthread;
769         p = td->td_proc;
770         mtx_assert(&Giant, MA_NOTOWNED);
771         PROC_LOCK_ASSERT(p, MA_OWNED);
772         while (P_SHOULDSTOP(p) ||
773               ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
774                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
775                         KASSERT(p->p_singlethread != NULL,
776                             ("singlethread not set"));
777                         /*
778                          * The only suspension in action is a
779                          * single-threading. Single threader need not stop.
780                          * XXX Should be safe to access unlocked
781                          * as it can only be set to be true by us.
782                          */
783                         if (p->p_singlethread == td)
784                                 return (0);     /* Exempt from stopping. */
785                 }
786                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
787                         return (EINTR);
788
789                 /* Should we goto user boundary if we didn't come from there? */
790                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
791                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
792                         return (ERESTART);
793
794                 /*
795                  * If the process is waiting for us to exit,
796                  * this thread should just suicide.
797                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
798                  */
799                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
800                         PROC_UNLOCK(p);
801                         tidhash_remove(td);
802                         PROC_LOCK(p);
803                         tdsigcleanup(td);
804                         PROC_SLOCK(p);
805                         thread_stopped(p);
806                         thread_exit();
807                 }
808
809                 PROC_SLOCK(p);
810                 thread_stopped(p);
811                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
812                         if (p->p_numthreads == p->p_suspcount + 1) {
813                                 thread_lock(p->p_singlethread);
814                                 wakeup_swapper =
815                                     thread_unsuspend_one(p->p_singlethread);
816                                 thread_unlock(p->p_singlethread);
817                                 if (wakeup_swapper)
818                                         kick_proc0();
819                         }
820                 }
821                 PROC_UNLOCK(p);
822                 thread_lock(td);
823                 /*
824                  * When a thread suspends, it just
825                  * gets taken off all queues.
826                  */
827                 thread_suspend_one(td);
828                 if (return_instead == 0) {
829                         p->p_boundary_count++;
830                         td->td_flags |= TDF_BOUNDARY;
831                 }
832                 PROC_SUNLOCK(p);
833                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
834                 if (return_instead == 0)
835                         td->td_flags &= ~TDF_BOUNDARY;
836                 thread_unlock(td);
837                 PROC_LOCK(p);
838                 if (return_instead == 0) {
839                         PROC_SLOCK(p);
840                         p->p_boundary_count--;
841                         PROC_SUNLOCK(p);
842                 }
843         }
844         return (0);
845 }
846
847 void
848 thread_suspend_switch(struct thread *td)
849 {
850         struct proc *p;
851
852         p = td->td_proc;
853         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
854         PROC_LOCK_ASSERT(p, MA_OWNED);
855         PROC_SLOCK_ASSERT(p, MA_OWNED);
856         /*
857          * We implement thread_suspend_one in stages here to avoid
858          * dropping the proc lock while the thread lock is owned.
859          */
860         thread_stopped(p);
861         p->p_suspcount++;
862         PROC_UNLOCK(p);
863         thread_lock(td);
864         td->td_flags &= ~TDF_NEEDSUSPCHK;
865         TD_SET_SUSPENDED(td);
866         sched_sleep(td, 0);
867         PROC_SUNLOCK(p);
868         DROP_GIANT();
869         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
870         thread_unlock(td);
871         PICKUP_GIANT();
872         PROC_LOCK(p);
873         PROC_SLOCK(p);
874 }
875
876 void
877 thread_suspend_one(struct thread *td)
878 {
879         struct proc *p = td->td_proc;
880
881         PROC_SLOCK_ASSERT(p, MA_OWNED);
882         THREAD_LOCK_ASSERT(td, MA_OWNED);
883         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
884         p->p_suspcount++;
885         td->td_flags &= ~TDF_NEEDSUSPCHK;
886         TD_SET_SUSPENDED(td);
887         sched_sleep(td, 0);
888 }
889
890 int
891 thread_unsuspend_one(struct thread *td)
892 {
893         struct proc *p = td->td_proc;
894
895         PROC_SLOCK_ASSERT(p, MA_OWNED);
896         THREAD_LOCK_ASSERT(td, MA_OWNED);
897         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
898         TD_CLR_SUSPENDED(td);
899         p->p_suspcount--;
900         return (setrunnable(td));
901 }
902
903 /*
904  * Allow all threads blocked by single threading to continue running.
905  */
906 void
907 thread_unsuspend(struct proc *p)
908 {
909         struct thread *td;
910         int wakeup_swapper;
911
912         PROC_LOCK_ASSERT(p, MA_OWNED);
913         PROC_SLOCK_ASSERT(p, MA_OWNED);
914         wakeup_swapper = 0;
915         if (!P_SHOULDSTOP(p)) {
916                 FOREACH_THREAD_IN_PROC(p, td) {
917                         thread_lock(td);
918                         if (TD_IS_SUSPENDED(td)) {
919                                 wakeup_swapper |= thread_unsuspend_one(td);
920                         }
921                         thread_unlock(td);
922                 }
923         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
924             (p->p_numthreads == p->p_suspcount)) {
925                 /*
926                  * Stopping everything also did the job for the single
927                  * threading request. Now we've downgraded to single-threaded,
928                  * let it continue.
929                  */
930                 thread_lock(p->p_singlethread);
931                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
932                 thread_unlock(p->p_singlethread);
933         }
934         if (wakeup_swapper)
935                 kick_proc0();
936 }
937
938 /*
939  * End the single threading mode..
940  */
941 void
942 thread_single_end(void)
943 {
944         struct thread *td;
945         struct proc *p;
946         int wakeup_swapper;
947
948         td = curthread;
949         p = td->td_proc;
950         PROC_LOCK_ASSERT(p, MA_OWNED);
951         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
952         PROC_SLOCK(p);
953         p->p_singlethread = NULL;
954         wakeup_swapper = 0;
955         /*
956          * If there are other threads they may now run,
957          * unless of course there is a blanket 'stop order'
958          * on the process. The single threader must be allowed
959          * to continue however as this is a bad place to stop.
960          */
961         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
962                 FOREACH_THREAD_IN_PROC(p, td) {
963                         thread_lock(td);
964                         if (TD_IS_SUSPENDED(td)) {
965                                 wakeup_swapper |= thread_unsuspend_one(td);
966                         }
967                         thread_unlock(td);
968                 }
969         }
970         PROC_SUNLOCK(p);
971         if (wakeup_swapper)
972                 kick_proc0();
973 }
974
975 struct thread *
976 thread_find(struct proc *p, lwpid_t tid)
977 {
978         struct thread *td;
979
980         PROC_LOCK_ASSERT(p, MA_OWNED);
981         FOREACH_THREAD_IN_PROC(p, td) {
982                 if (td->td_tid == tid)
983                         break;
984         }
985         return (td);
986 }
987
988 /* Locate a thread by number; return with proc lock held. */
989 struct thread *
990 tdfind(lwpid_t tid, pid_t pid)
991 {
992 #define RUN_THRESH      16
993         struct thread *td;
994         int run = 0;
995
996         rw_rlock(&tidhash_lock);
997         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
998                 if (td->td_tid == tid) {
999                         if (pid != -1 && td->td_proc->p_pid != pid) {
1000                                 td = NULL;
1001                                 break;
1002                         }
1003                         PROC_LOCK(td->td_proc);
1004                         if (td->td_proc->p_state == PRS_NEW) {
1005                                 PROC_UNLOCK(td->td_proc);
1006                                 td = NULL;
1007                                 break;
1008                         }
1009                         if (run > RUN_THRESH) {
1010                                 if (rw_try_upgrade(&tidhash_lock)) {
1011                                         LIST_REMOVE(td, td_hash);
1012                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1013                                                 td, td_hash);
1014                                         rw_wunlock(&tidhash_lock);
1015                                         return (td);
1016                                 }
1017                         }
1018                         break;
1019                 }
1020                 run++;
1021         }
1022         rw_runlock(&tidhash_lock);
1023         return (td);
1024 }
1025
1026 void
1027 tidhash_add(struct thread *td)
1028 {
1029         rw_wlock(&tidhash_lock);
1030         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1031         rw_wunlock(&tidhash_lock);
1032 }
1033
1034 void
1035 tidhash_remove(struct thread *td)
1036 {
1037         rw_wlock(&tidhash_lock);
1038         LIST_REMOVE(td, td_hash);
1039         rw_wunlock(&tidhash_lock);
1040 }